固体物理期末考试

合集下载

固体物理期末复习题目

固体物理期末复习题目

一、名词解释:1、晶体 ;2、非晶体;3、点阵;4、晶格;5、格点;6、晶体的周期性;7、晶体的对称性8、密勒指数;9、倒格子;10、配位数;11、致密度;12、固体物理学元胞;13、结晶学元胞;14、布拉菲格子;15、复式格子;16、声子;17、布洛赫波 ;18、布里渊区;19、格波;20、电子的有效质量二、计算证明题1. 晶体点阵中的一个平面hkl ,试证:(1)晶格的两个相邻平行平面(这些平面通过格点)之间的距离为2||hkl d K π=此处123K hb kb lb =++;(2)利用上述关系证明,对于简单立方格子,22d l =+ a 为晶格常数;(3)说明什么样的晶面容易解理,为什么?2、金刚石晶胞的立方边长为m 101056.3-⨯,求最近邻原子间的距离、平均每立方厘米中的原子数和金刚石的密度。

(碳原子的重量为2310*99.1-g )3. 试证:在晶体中由于受到周期性的限制,只能有1、2、3、4、6重旋转对称轴,5重和大于6重的对称轴不存在。

4、晶体点阵中的一个平面.hkl(a )证明倒易点阵矢量321b l b k b h G ++=垂直于这个平面。

(b )证明正格子原胞体积与倒格子原胞体积互为倒数5. 证明体心立方格子和面心立方格子互为正、倒格子。

6. 在六角空间格子中选取一平行六面体为原胞,试求:(1)基矢321,,a a a的表示式;(2)原胞的体积;(3)倒格子基矢321,,b b b 。

7、氪原子组成惰性晶体为体心立方结构,其总势能可写为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6612122R A R A N R U σσε,其中N 为氪原子数,R 为最近邻原子间距离,点阵和A 6=12.25,A 12=9.11;设雷纳德—琼斯系数ε=0.014eV ,σ=3.65。

求:(1)平衡时原子间最近距离R 0及点阵常数a ;(2)每个原子的结合能(eV )。

8. 设两原子间的互作用能可表示为()n m r r r u βα+-=式中,第一项为引力能;第二项为排斥能;βα,均为正常数。

固体物理期末卷子

固体物理期末卷子

一、1.半导体的迁移率比金属高,为什么金属导电性更好?2.用能带理论解释为什么绝缘体满带不导电,导体半满带导电。

3.什么是bloch电子,它所遵循的bloch定律是什么4.Drude和索莫非模型的区别?请写出他们各自的电子热容。

5.设在t=0时,除能带E和G的位置以外,所有的态都被充满,此时能带中的电流为零。

在外加电场E下,在单位时间△t下,电子空轨道可向前或向后走一步(如从E走到F 或是走到D处)。

若沿K x方向上加一电场E,1)试画出空穴能带,并标明经过2△t后空穴所在位置;2)写出电流密度大小,已知电子在G处的速度可写为v(G)。

(v为向量)6.金属有离子有电子,请问在常温下那个对热容贡献更大?对热导率呢?请说明理由。

二、作业5,第3题;(2018年改为作业5-4)三、(1)证明受主热电离p=√NaNc exp(-Ea/2KbT);(2)求化学势μ(利用上面的表达式和本征半导体的p公式相等)。

四、作业7,第1题改版:银的密度为10.5g/cm3,原子质量是107.87,在绝对零度下。

(1)求每个电子的平均能量;(2)银的体积弹性模量要求:写出公式推导过程,再代入计算。

五、作业8,第3题与第5题结合一简立方晶体,a=3埃,沿着FBZ 的[100]方向的紧束缚的能带具有如下形式:(1)计算并画出电子在这个方向的群速度。

(2)计算简单立方FBZ 的中心Г点和面心X 点处的有效质量。

(3)如果在x 方向上施加5 伏/米的外电场,每个原胞含一个价电子,在不考虑碰撞的情况下,计算电子沿[100]方向由费米面运动至带顶所需的时间。

(注意不同于作业改成了费米面)20172018。

固体物理期末考试理论题

固体物理期末考试理论题

1. 初基原胞 一个晶格最小的周期性单元 实际上是体积最小的晶胞2. 惯用原胞 能同时反映晶体周期性与对称特性的重复单元3. 晶面 通过布拉菲格子的任意三个不共线的格子可做一平面 该平面包含无数多个周期性分布的格点。

4. 晶向指数 晶向再三个坐标轴上投影的互质整数 代表了一簇晶列的取向5. 晶面指数 是晶面在3个结晶轴上的截距系数的倒数比 当化为最简单的整数比后 所得出的3个整数6. 螺型位错 一个晶体的某一部分相对于其余部分发生滑移 原子平面沿着一根轴线盘旋上升 每绕轴线一周 原子面上升一个晶面间距。

在中央轴线处即为一螺型位错7.刃型位错 由于某种原因 晶体的一部分相对于另一部分出现一个多余的半原子面 这种线缺陷称为刃型位错8.弗伦克尔缺陷 弗伦克尔缺陷是指原子离开其平衡位置而进入附近的间隙位置 在原来的位置上留下空位所形成的缺陷。

其特点是填隙原子与空位总是成对出现9.肖特基缺陷 由于晶体表面附近的原子热运动到表面 在原来的原子位置留出空位 然后内部邻近的原子再进入这个空位 这样逐步进行而造成的缺陷。

10.电负性 定义;电负性是元素的原子在化合物中吸引电子能力的标度11.扩散(系数)与哪些因素有关a.扩散介质结构的影响 扩散介质结构越紧密 扩散越困难b.扩散相与扩散介质的性质差异 一般说来 扩散相与扩散介质性质差异越大,扩散系数也越大。

c.结构缺陷的影响 在金属材料和离子晶体中 原子或离子在晶界上扩散远比在晶粒内部扩散的快d.温度与杂质的影响12.光电效应在光的照射下,电路中产生电流和电流变化的现象。

13.晶体传统定义:有固定的熔点,有规则的几何外形的固体;严格定义:内部质点在三维空间呈周期性重复排列的固体,或者说具有格子构造的固体;14.非晶体传统定义:没有固定的熔点,没有规则的几何外形的固体;严格定义:不具有长程有序,但具有短程有序的固体;15.长程有序晶体内部至少在微米量级范围内原子排列具有周期性,就称为晶体的长程有序。

高校物理专业固体物理学期末考试试卷及答案

高校物理专业固体物理学期末考试试卷及答案

高校物理专业固体物理学期末考试试卷及答案一、选择题(每题2分,共40分)1. 下列哪种材料是典型的固体?A. 水B. 空气C. 玻璃D. 油2. 表征物质导电性质的关键因素是:A. 导热系数B. 形变C. 导电子数D. 电阻率3. 相互作用力程远大于它的大小尺度的物质状态是:A. 液体B. 气体C. 等离子体D. 固体4. 根据原子内部粒子组织排列方式的不同,将固体分为晶体和非晶态,以下哪种属于非晶态?A. 钻石B. 石英C. 玻璃D. 铜5. 材料的抗拉强度指的是:A. 材料在拉伸过程中发生断裂的能力B. 材料的硬度C. 材料的耐磨性D. 材料的延展性(以下为第6题至第40题的选项省略)二、填空题(每题3分,共30分)1. 固体的最基本由原子、分子或离子组成的单位结构叫作_____________。

2. 点阵是固体晶体结构中原子、离子或分子的_____________组成的排列方式。

3. 若一堆物体在某种温度下开始熔化,则该温度即为该物质的_____________点。

4. 固体由于结构的紧密性,其密度通常较_____________。

5. 金属中导电电子为材料的_____________。

6. 非晶态材料的特点是_____________无规律的原子组织结构。

(以下为第7题至第30题的空格省略)三、问答题(共30分)1. 简述固体物理学研究的基本内容和意义。

解答:固体物理学研究的基本内容主要包括固体材料的结构、性质和应用等方面。

它通过研究固体的微观结构和宏观性质,探索物质内部的相互作用和运动规律,从而深入了解固体物质的特性和行为。

固体物理学的研究对于提高材料的功能和性能具有重要意义。

通过深入研究固体的结构和性质,我们可以开发出更好的材料,改善材料的导电、导热、机械强度等性能,为社会发展和工业生产提供重要支持。

同时,固体物理学的研究还能够为其他领域的科学研究提供基础和支撑,如电子学、光学、磁学等。

固体物理期末试题及答案

固体物理期末试题及答案

固体物理期末试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体的说法,错误的是:A. 晶体具有规则的几何外形B. 晶体内部原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 电子在金属中的自由运动是金属导电的主要原因,这种现象称为:A. 金属键B. 离子键C. 共价键D. 范德华力答案:A3. 半导体材料的导电性介于导体和绝缘体之间,这是因为:A. 半导体材料中的电子不能自由移动B. 半导体材料中的电子在特定条件下才能自由移动C. 半导体材料中的电子数量少于导体D. 半导体材料中的电子数量多于绝缘体答案:B4. 根据泡利不相容原理,一个原子轨道中最多可以容纳的电子数是:A. 1个B. 2个C. 4个D. 8个答案:B二、填空题(每题5分,共20分)1. 晶体的三种基本类型是________、________和________。

答案:单晶体、多晶体、非晶体2. 根据能带理论,固体中的能带可以分为________和________。

答案:导带、价带3. 固体物理中,费米能级是指在绝对零度时,电子占据的最高能级,其对应的温度是________。

答案:0K4. 根据德布罗意波理论,物质粒子也具有波动性,电子的波长与其动量成________关系。

答案:反比三、简答题(每题10分,共30分)1. 简述布拉格定律及其在晶体结构分析中的应用。

答案:布拉格定律是指当X射线或电子波以一定角度入射到晶体表面时,如果满足nλ=2d*sinθ的条件,其中n为整数,λ为波长,d为晶面间距,θ为入射角,那么会发生衍射现象。

这个定律在晶体结构分析中非常重要,因为它允许科学家通过测量衍射角来确定晶体的晶面间距和晶体结构。

2. 解释什么是超导现象,并简述其应用。

答案:超导现象是指某些材料在低于临界温度时,电阻突然降为零的现象。

这意味着在超导状态下,电流可以在材料内部无损耗地流动。

超导现象的应用非常广泛,包括但不限于磁悬浮列车、粒子加速器中的超导磁体、以及医疗成像设备如MRI。

固体物理期末考试题及答案

固体物理期末考试题及答案

固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。

晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。

例如,立方晶系的晶格常数a是指立方体的边长。

7. 简述能带理论的基本概念。

能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。

在固体中,电子的能量不是连续的,而是分成一系列的能带。

价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。

8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。

在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。

三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。

求该链的声子频率。

解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。

解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。

固体物理期末测验试卷

固体物理期末测验试卷

9

10. 扩散是物质内部由于热运动而导致原子或分子迁移的过程,扩散从微观上讲,实际上是。
二.简答题(共10分,每题5分)
1.在研究晶格振动问题中,爱因斯坦模型和德拜模型的物理思想是什么?
2.在能带理论中,近自由电子近似模型和紧束缚近似模型的物理思想是什么?
三.计算题(共60分,每题10分)
固体物理期末测验试卷
————-—————-—--———-———————-———-—— 作者:
—-—---—--——————-——-—-—————————-- 日期:
固体物理学期末考试卷
一。 填空题(共30分,每题3分)
1.固体结合的四种基本形式为:、、
、.
2.共价结合有两个基本特征是:和。
3.结合能是指:
1。 证明: 体心立方晶格的倒格子是面心立方; 面心立方晶格的倒格子是体心立方。
2.证明:倒格子矢量垂直于密勒指数为 的晶面系。
3.证明两种一价离子(如NaCl)组成的一维晶格的马德隆常数为:
α= 2ln2
4. 设三维晶格的光学振动在q=0附近的长波极限有
求证:频率分布函数为
5.设晶体中每个振子的零点振动能为,试用德拜模型求晶体的零点振动能。
6。 电子周期场的势能函数为
其中a=4b,ω为常数
(1) 试画出此势能曲线,并求其平均值。
(2) 用近自由电子近似模型求出晶体的第一个及第二个带隙宽度.

4.晶体中的表示原子的平衡位置,晶格振动是指在格点附近的振动。
5.作简谐振动的格波的能量量子称为,若电子从晶格获得 q能量,称为,若电子给晶格 q能量,称为。
6。 Bloch定理的适用范围(三个近似)是指:、
、.

固体物理学考试题及答案

固体物理学考试题及答案

固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。

A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。

A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。

A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。

A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。

A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。

A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。

A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。

A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。

A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。

A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。

答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。

答案:带隙3. 金属导电的原因是金属原子的价电子可以______。

高校物理专业固体物理期末试卷及答案

高校物理专业固体物理期末试卷及答案

高校物理专业固体物理期末试卷及答案一、选择题(每题5分,共30分)1. 以下哪个不是固体物理的研究对象?A. 电荷的导体中的传播B. 物质的晶体结构C. 电子的运动D. 液体的流动性质答案:D2. 在固体物理中,布拉格方程是用来描述什么现象的?A. 光的干涉现象B. 电子的散射现象C. 磁场的分布现象D. 热传导现象答案:A3. 阻塞模型是固体物理中用来解释材料导电性的模型,它主要考虑了以下哪些因素?A. 电子的散射和杨氏模量B. 电子的散射和晶格缺陷C. 杨氏模量和晶体结构D. 晶格缺陷和电子的能带结构答案:B4. 下列哪个参数不是用来描述固体物理中晶格振动的特性?A. 固体的杨氏模量B. 固体的居里温度C. 固体的声速D. 固体的谐振子频率答案:A5. 铁磁体和反铁磁体的主要区别在于它们的:A. 热传导性质B. 磁化曲线形状C. 磁化方向D. 磁化温度答案:C6. 固体物理中的光栅是一种重要的实验工具,它主要用来:A. 进行晶体的结构分析B. 测定材料的电导率C. 测量固体的磁性D. 研究固体的光学性质答案:D二、填空题(每题10分,共40分)1. 固体物理中用于描述材料导电性的基本参量是电阻率和______。

答案:电导率2. 布拉格方程为d*sin(θ) = n*λ中,d表示晶格的______。

答案:间距3. 固体物理中描述材料磁性的基本参量是磁矩和______。

答案:磁化强度4. 固体物理研究中,振动频率最低的模式被称为______模式。

答案:基态5. 根据阻塞模型,材料的电导率与温度的关系满足______定律。

答案:维恩三、简答题(每题20分,共40分)1. 什么是固体物理学中的费米面?它对材料的性质有什么影响?答案:费米面是能带理论中的一个重要概念,表示能量等于费米能级的电子所占据的状态的集合,它将占据态与未占据态分界开来。

费米面对材料的性质有很大影响,如电导率、热导率等。

带有较高电子密度的材料,其费米面形状趋于球形;而低电子密度材料,费米面呈现出不规则的形状。

固体物理期末试卷

固体物理期末试卷

c (2 6 / 3)a (4 6 / 3)R ,则六角密积的致密度为:
6 4 R3 3
6 4 R3 3
2
6 3a 2 c 6 3(2R)2 (4 6 / 3)R 6
4
4
4、知某晶体两相邻原子间的互作用能可表示成
ab U (r)
rm rn 求(1)晶体平衡时两原子间的距离;(2)平衡时的二原子间的结合能。
9、在长波极限下,光学波原子振动的特点是
质心不动,相邻原子振动方
向相反
,声学波原子振动的特点是 相邻原子振动方向相同,
反映质心运动
10、晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝 结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为 非晶体。由晶粒组成的固体,称为多晶。
三、计算题:
1、证明体心立方格子和面心立方格子互为正倒格子。
解:我们知体心立方格子的基矢为:
a1 a 2 a3
a
2 a
2 a
2
(i (i j (i j
j k) k) k)
根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为:
b1
b 2
b
3
2[a2 a3 ]
2[a3 a1 ]
固体物理试题
一、单项选择题 1、一个二维简单正交晶格的第一布里渊区形状是( A )。
A、长方形 B、正六边形 C、圆 D、圆球
2、晶格常数为 a 的简立方晶格的(111)面间距为( B ) 。 A、 a B、 a C、1/ a D、1/ a
3、对于一维双原子链晶格振动的频隙宽度,若最近邻原子之间的力 常数β增大为 4β,则晶格振动的频隙宽度变为原来的( A )。 A、 2 倍 B、 4 倍 C、 16 倍 D、1 倍

西南科技大学固体物理期末考试试卷

西南科技大学固体物理期末考试试卷

西南科技大学200 ——200 学年第1学期《固体物理》期末考试试卷(A卷)一、名词解释(每小题2分,共10分)1.单晶--整块晶体内原子排列的规律完全一致的晶体称为单晶体。

2.肖特基缺陷—晶体内格点原子扩散到表面,体内留下空位。

3.简谐近似:晶体中粒子相互作用势能泰勒展开式中只取到二阶项的近似。

4.色散关系:晶格振动中ω和q之间的关系。

5.能态密度:给定体积的晶体,单位能量间隔内所包含的电子状态数。

二、单项选择题(每小题2分,共20分)1. B ;2. D;3. A;4. B;5.B;6. A;7.C;8.D;9.A ;10.D三. 填空(每空1分,共10分)1.声学、声学、光学。

2.饱和性、方向性。

3.(4d,33/2d,3/6d。

4.能量守恒、准动量守恒。

四、判断对错(每小题2分,共10分)1.×;2. √;3.×;4. ×;5.×五、简述及问答题(每小题6分,共30分)1.试述晶态、非晶态、准晶、多晶和单晶的结构特征。

答:晶态固体材料中的原子有规律的周期性排列,或称为长程有序(1分)。

非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有西南科技大学200 ——200 学年第1学期《固体物理》期末考试试卷(A 卷)序性,或称为短程有序(1分)。

准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性(1.5分)。

另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体(1分);而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的(1.5分)。

2. 棱(刃)位错和 螺位错分别与位错线的关系如何?答:棱(刃)位错:滑移方向垂直位错线(3分)。

螺位错:滑移方向平行位错线(3分)。

3. 晶体中声子数目是否守恒?答:频率为叫ωi 的格波的(平均)声子数为i i )/()1()1B k T n e ωω=-(4分)即每一个格波的声子数都与温度有关,因此,晶体中声子数目不守恒(1分),它随温度的改变而改变(1分)。

固体物理-期末考试

固体物理-期末考试

一、概念、简答1。

晶体,非晶体,准晶体;(p1,p41,p48)答:理想晶体中原子排列十分规则,主要体现是原子排列具有周期性,或称为长程有序,而非晶体则不具有长程的周期性。

,因此不具有长程序,但非晶态材料中原子的排列也不是杂乱无章的,仍保留有原子排列的短程序.准晶态:具有长程序的取向序而没有长程序的平移对称序;取向序具有晶体周期性所不能容许的点群对称性,沿取向序对称轴的方向具有准周期性,有两个或两个以上的不可公度特征长度按着特定的序列方式排列.2. 布拉菲格子;(p11)答:布拉菲格子是一种数学上的抽象,是点在空间中周期性的规则排列,实际晶格可以看成在空间格子的每个格点上放有一组原子,它们相对位移为r,这个空间格子表征了晶格的周期性叫布拉菲格子。

3。

原胞,晶胞; (p11)答:晶格的最小周期性单元叫原胞.晶胞:为了反映晶格的对称性,选取了较大的周期单元,我们称晶体学中选取的单元为单胞。

4.倒格子,倒格子基矢;(p16)5。

独立对称操作:m、i、1、2、3、4、6、6.七个晶系、十四种布拉伐格子;(p35)答:7。

第一布里渊区:倒格子原胞答:在倒格子中取某一倒格点为原点,做所有倒格矢G的垂直平分面,这些平面将倒格子空间分成许多包围原点的多面体,其中与原点最近的多面体称为第一布里渊区。

8。

基矢为的晶体为何种结构;若又为何种结构?解:计算晶体原胞体积:由原胞推断,晶体结构属体心立方结构。

若则由原胞推断,该晶体结构仍属体心立方结构。

9。

固体结合的基本形式及基本特点。

(p49p55、57p67p69答:离子型结合以离子而不是以原子为结合的单位,共价结合是靠两个原子各贡献一个电子,形成所谓的共价键,具有饱和性和方向性。

金属性结合的基本特点是电子的共有化,在晶体内部一方面是由共有化电子形成的负电子云,另一方面是侵在这个负电子云中的带正点的各原子实。

范德瓦尔斯结合往往产生于原来有稳固电子结构的原子或分子间,是一种瞬时的电偶极矩的感应作用。

固体物理期末考试题

固体物理期末考试题

1.5、证明倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。

证明:因为33121323,a a a a CA CB h h h h =-=- ,112233G hb h b h b =++利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。

1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。

解:简单立方晶格:123a a a ⊥⊥ ,123,,a ai a aj a ak ===由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯ ,3121232a a b a a a π⨯=⋅⨯ ,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a a πππ===倒格子矢量:123G hb kb lb =++ ,222G h i k j l k a a aπππ=++晶面族()hkl 的面间距:2d Gπ= 2221()()()h k l a a a =++ 22222()a d h k l =++ 面指数越简单的晶面,其晶面的间距越大,晶面上格点的密度越大,单位表面的能量越小,这样的晶面越容易解理。

牛顿运动方程2221212121222(2)(2)n n n n n n n n m M μβμμμμβμμμ+-+++=---=---N 个原胞,有2N 个独立的方程设方程的解[(2)]2[(21)]21i t na q n i t n aq n Ae Be ωωμμ--++==,代回方程中得到22(2)(2cos )0(2cos )(2)0m A aq B aq A M B βωβββω⎧--=⎪⎨-+-=⎪⎩ A 、B 有非零解,2222cos 02cos 2m aq aqM βωβββω--=--,则12222()4{1[1sin ]}()m M mM aq mM m M ωβ+=±-+两种不同的格波的色散关系1222212222()4{1[1sin ]}()()4{1[1sin ]}()m M mM aq mM m M m M mM aq mM m M ωβωβ+-+=+-++=--+一个q 对应有两支格波:一支声学波和一支光学波.总的格波数目为2N.当M m =时4cos 24sin 2aq m aq m βωβω+-==,两种色散关系如图所示: 长波极限情况下0q →,sin()22qa qa≈, (2)q mβω-=与一维单原子晶格格波的色散关系一致.色散关系图:3.7、设三维晶格的光学振动在q=0附近的长波极限有20()q Aq ωω=- 求证:()1/2023/21(),4V f A ωωωωωπ=-<;0()0,f ωωω=>. 解()11222200000()0,0Aq f Aq q A ωωωωωωωωωω>-=>=<⇒-=⇒=-时,依据()3()2,()()2q q Vdsq Aq f q ωωωπ∇=-=∇⎰,并带入上边结果有()()()()()()()1/21/200331/2223/201142()222q Vds V A V f A Aq ωπωωωωωππωωπ=⋅=⋅-=⋅-∇- 3.8、有N 个相同原子组成的面积为S 的二维晶格,在德拜近似下计算比热,并论述在低温极限比热正比与2T 。

固体物理期末3套精彩试题题

固体物理期末3套精彩试题题

电子科技大学二零零六至二零零七学年第二学期期末考试固体电子学课程考试题卷(分钟)考试形式:考试日期200 7 年7 月日课程成绩构成:平时20 分,期中10 分,实验0 分,期末70 分一.填空(共30分,每空2分)1.Si晶体是--格子,由两个----的子晶格沿---套构而成;其固体物理学原胞包含---个原子,其固体物理学原胞基矢可表示-,-, -。

假设其结晶学原胞的体积为a3,则其固体物理学原胞体积为-。

2.-称为布拉菲格子;倒格子基矢与正格子基矢满足-,-称为倒格子格子;-称为复式格子。

最常见的两种原胞是--和- 3.声子是-,其能量为-动量为-二.问答题(共30分,每题6分)1.晶体有哪几种结合类型?简述晶体结合的一般性质。

-2.晶体的结合能, 晶体的能, 原子间的相互作用势能有何区别?-3.什么是热缺陷?简述肖特基缺陷和弗仑克尔缺陷的特点。

-4.简述空穴的概念及其性质.-5.根据量子理论简述电子对比热的贡献,写出表达式,并说明为什么在高温时可以不考虑电子对比热的贡献在低温时必须考虑?--三.综合应用(共40分)1.(10分)已知半导体InP 具有闪锌矿结构,In,P 两原子的距离为d=2Å,试求:(1)晶格常数;(2)原胞基矢及倒格子基矢;(3)密勒指数为(1,1,0)晶面的面间距,以及In(1,1,0)晶面与P (1,1,1)晶面的距离。

2. (15分)设有某个一维简单格子,晶格常数为a,原子质量为M ,在平衡位置附近两原子间的互作用势可表示为:32206121)21()(r r r a a U r U ξηξη+++-= 式中η和ξ都是常数,只考虑最近邻原子间的相互作用,试求:(1)在简谐近似下,求出晶格振动的色散关系;(2)求出它的比热0V C 。

(提示:a r dr r u d =⎪⎪⎭⎫ ⎝⎛=22)(β3. (15分)用紧束缚近似写出二维正方点阵最近邻近似下的s电子能带的能量表达式,并计算能带宽度及带底电子和带顶空穴的有效质量。

固体物理期末试卷及参考解答 B

固体物理期末试卷及参考解答 B

课程编号: 课程名称: 固体物理 试卷类型:卷 卷 考试时间: 120 分钟一、简答题(本大题共10小题,每小题5分,共50分)1.什么是晶面指数?什么是方向指数?它们有何联系?2.请写出布拉格衍射条件,并写出用波矢和倒格矢表示的衍射条件。

3. 为什么组成晶体的粒子(分子、原子或离子)间的相互作用力除吸引力还要有排斥力?排斥力的来源是什么?4.写出马德隆常数的定义,并计算一维符号交替变化的无限长离子线的马德隆常数。

5.什么叫声子?长光学支格波与长声学支格波的本质上有何区别?6.温度降到很低时。

爱因斯坦模型与实验结果的偏差增大,但此时,德拜模型却与实验结果符合的较好。

试解释其原因。

7. 自由电子模型的基态费米能和激发态费米能的物理意义是什么?费米能与那些因素有关?8.什么是弱周期场近似?按照弱周期场近似,禁带产生的原因是什么?9. 什么是本征载流子?什么是杂质导电?10.什么是紧束缚近似?按照紧束缚近似,禁带是如何产生的?二、计算题(本大题共5小题,每小题10分,共50分)电子系统相对于等量均匀正电荷背景有一小的整体位移,证明在这一位移下系统是稳定的,并给出这一小振动问题的特征频率。

2. 如将布拉维格子的格点位置在直角坐标系中用一组数),,(321n n n 表示,证明:对于面心立方格子,i n 的和为偶数。

3. 设一非简并半导体有抛物线型的导带极小,有效质量m m 1.0=*,当导带电子具有k T 300=的平均速度时,计算其能量、动量、波矢和德布罗意波长。

4. 对于原子间距为a ,由N 个原子组成的一维单原子链,在德拜近似下,(1)计算晶格振动频谱;(2)证明低温极限下,比热正比于温度T 。

5. 对原子间距为a 的由同种原子构成的二维密堆积结构,(1)画出前三个布里渊区;(2)求出每原子有一个自由电子时的费米波矢;(3)给出第一布里渊区内接圆的半径;(4)求出内接圆为费米圆时每原子的平均自由电子数;(5)平均每原子有两个自由电子时,在简约布里渊区中画出费米圆的图形。

固体物理期末试卷及参考解答208-b (2)

固体物理期末试卷及参考解答208-b (2)

课程编号: 课程名称: 固体物理试卷类型:卷 考试形式:开 考试时间: 120 分钟 一、简答题(本大题共10小题,每小题5分,共50分)1.什么是晶面指数?什么是方向指数?它们有何联系?2.请写出布拉格衍射条件,并写出用波矢和倒格矢表示的衍射条件。

3. 为什么组成晶体的粒子(分子、原子或离子)间的相互作用力除吸引力还要有排斥力?排斥力的来源是什么?4.写出马德隆常数的定义,并计算一维符号交替变化的无限长离子线的马德隆常数。

5.什么叫声子?长光学支格波与长声学支格波的本质上有何区别?6.温度降到很低时。

爱因斯坦模型与实验结果的偏差增大,但此时,德拜模型却与实验结果符合的较好。

试解释其原因。

7. 自由电子模型的基态费米能和激发态费米能的物理意义是什么?费米能与那些因素有关?8.什么是弱周期场近似?按照弱周期场近似,禁带产生的原因是什么?9. 什么是本征载流子?什么是杂质导电?10.什么是紧束缚近似?按照紧束缚近似,禁带是如何产生的?二、计算题(本大题共5小题,每小题10分,共50分)1. 考虑一在球形区域内密度均匀的自由电子气体,电子系统相对于等量均匀正电荷背景有一小的整体位移,证明在这一位移下系统是稳定的,并给出这一小振动问题的特征频率。

2. 如将布拉维格子的格点位置在直角坐标系中用一组数),,(321n n n 表示,证明:对于面心立方格子,i n 的和为偶数。

3. 设一非简并半导体有抛物线型的导带极小,有效质量m m 1.0=*,当导带电子具有k T 300=的平均速度时,计算其能量、动量、波矢和德布罗意波长。

4. 对于原子间距为a ,由N 个原子组成的一维单原子链,在德拜近似下, (1)计算晶格振动频谱;(2)证明低温极限下,比热正比于温度T 。

5. 对原子间距为a 的由同种原子构成的二维密堆积结构, (1)画出前三个布里渊区;(2)求出每原子有一个自由电子时的费米波矢; (3)给出第一布里渊区内接圆的半径;(4)求出内接圆为费米圆时每原子的平均自由电子数;(5)平均每原子有两个自由电子时,在简约布里渊区中画出费米圆的图形。

固体物理期末复习题目及答案

固体物理期末复习题目及答案
3、从能带论的角度解释导体,半导体和绝缘体的导电能力存在差别的原因。
答:(l)导体、半导体和绝缘体的能带图如下图所示。(3分)其中导体中存在不满带,半导体和绝缘体都只存在满带而不存在不满带,而不满带会导电,满带则不会导电,所以导体导电性好,而半导体和绝缘体则不容易导电。(3分)
(2)半导体中虽然只存在满带而不存在不满带,但由于其禁宽度比较小,所以在热激活下,满带顶的电子会被激活到空带上,使原来的空带变成不满带,原来的满带也变成不满带,所以半导体在热激活下也可.以导电。(2分、
5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。
见课件例题 以下作参考:
15.如图1.36所示,试求:
(1)晶列 , 和 的晶列指数;
(2)晶面 , 和 的密勒指数;
(3) 画出晶面(120),(131)。
密勒指数:以晶胞基矢定义的互质整数( )。 [截a,b,c.]
答:(1)波矢空间与倒格空间处于同一空间,倒格空间的基矢分别为b1,b2,b3,而波矢空间的基矢分别为b1/N1,b2/N2,b3/N3,其中N1,N2,N3分别是沿正格子基矢方向晶体的原胞数目。
(2)倒格空间中一个倒格点对应的体积为 ,
波矢空间中一个波矢点对应的体积为 即 ,
即波矢空间中一个波矢点对应的体积,是倒格空间中一个倒格点对应的体积的1/N。由于N是晶体的原胞数目, 数目巨大, 所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的. 也就是说, 波矢点作求和处理时, 可把波矢空间的状态点看成是准连续的.
3、计算由正负离子相间排列的一维离子链的马德隆常数。
4、氢原子电离能为13.6eV。(1)求PE和KE(2)电子的轨道半径(3)电子的运动速率(4)电子绕原子转动的频率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、概念、简答1.晶体,非晶体,准晶体;(p1,p41,p48)答:理想晶体中原子排列十分规则,主要体现是原子排列具有周期性,或称为长程有序,而非晶体则不具有长程的周期性.,因此不具有长程序,但非晶态材料中原子的排列也不是杂乱无章的,仍保留有原子排列的短程序.准晶态:具有长程序的取向序而没有长程序的平移对称序;取向序具有晶体周期性所不能容许的点群对称性,沿取向序对称轴的方向具有准周期性,有两个或两个以上的不可公度特征长度按着特定的序列方式排列.2. 布拉菲格子; (p11)答:布拉菲格子是一种数学上的抽象,是点在空间中周期性的规则排列,实际晶格可以看成在空间格子的每个格点上放有一组原子,它们相对位移为r,这个空间格子表征了晶格的周期性叫布拉菲格子.3.原胞,晶胞; (p11)答:晶格的最小周期性单元叫原胞.晶胞:为了反映晶格的对称性,选取了较大的周期单元,我们称晶体学中选取的单元为单胞.4.倒格子,倒格子基矢;(p16)5. 独立对称操作:m 、i 、1、2、3、4、6、6.七个晶系、十四种布拉伐格子;(p35) 答:7.第一布里渊区:倒格子原胞答:在倒格子中取某一倒格点为原点,做所有倒格矢G 的垂直平分面,这些平面将倒格子空间分成许多包围原点的多面体,其中与原点最近的多面体称为第一布里渊区。

8.基矢为 的晶体为何种结构;若 又为何种结构 4i a a =1ja a =2)(23k j i a a ++=i a k j a a 23)(23++=22220000)(3321a a a aa a a a a ==⨯⋅=Ω解:计算晶体原胞体积:由原胞推断,晶体结构属体心立方结构。

若 则由原胞推断,该晶体结构仍属体心立方结构。

9.固体结合的基本形式及基本特点。

(p49p55、57p67p69答:离子型结合以离子而不是以原子为结合的单位,共价结合是靠两个原子各贡献一个电子,形成所谓的共价键,具有饱和性和方向性。

金属性结合的基本特点是电子的共有化,在晶体内部一方面是由共有化电子形成的负电子云,另一方面是侵在这个负电子云中的带正点的各原子实。

范德瓦尔斯结合往往产生于原来有稳固电子结构的原子或分子间,是一种瞬时的电偶极矩的感应作用。

10.是否有与库仑力无关的晶体结合类型答:共价结合中,电子虽然不能脱离电负性大的原子,但靠近的两个电负性大的原子可以各出一个电子,形成电子共享形式,通过库仑力把两个原子连接起来。

离子晶体中,正负离子的吸引力就是库仑力。

金属结合中,原子依靠原子实与电子云间的库仑力紧紧地吸引着。

分子结合中,是电偶极矩把原本分离的原子结合成晶体,电偶极矩的作用力实际上就是库仑力。

氢键结合中,氢先与电负性大的原子形成共价结合后,氢核与负电中心不再重合,迫使它通过库仑力再与另一个电负性大的原i a k j a a 23)(23++=222230000)(3321a aa a a a a a a ==⨯⋅=Ω子结合。

可见,所有晶体结合类型都与库仑力有关。

11.为什么许多金属为密堆积结构答:金属结合中,受到最小能量原理的约束要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大原子实越紧凑,原子实与共有电子电子云靠的越紧密,库仑能越低,因此,许多金属结构为密积结构。

12.引入玻恩——卡门条件的理由是什么答:由原子运动方程可知,除原子链两端的两个原子外其他任一个原子的运动都与相邻的两个原子运动相关,原子链两端的两个原子只有一个相邻原子,其运动方程同其他原子不同,引入玻恩——卡门条件方便于求解运动方程。

并且引入玻恩——卡门条件后,实验测得的振动谱与理论相符的事实说明玻恩——卡门边界条件是目前较好的一个边界条件。

13.长光学支格波与长声学支格波本质上有何差别答:长光学支格波的特征是每个原胞内的不同原子作相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式。

长声学支格波的特征是原胞内的不同原子没有相对位移,原胞作整体运动,振动频率较低,他包含了晶格振动频率最低的振动模式,波速是一常数。

任何晶体都存在声学支格波,但简单晶格晶体不存在光学支格波。

14.布洛赫定理(p145)15.紧束缚模型电子的能量是正值还是负值答:紧束缚模型电子在原子附近的几率大,远离原子的几率很小,在原子附近它的行为同在孤立原子的行为相近,因此紧束缚模型电子能量与在孤立原子中的能量相近,孤立原子中电子能量是一个负值,所以紧束缚模型电子能量是一负值。

16.本征半导体的能带与绝缘体的能带有何异同答:在低温下,本征半导体能带与绝缘体的能带结构相同。

但是本征半导体禁带较窄,禁带宽度在2个电子伏特以下。

由于禁带窄,本征半导体禁带下满带顶的电子可以借助热激发跃迁到禁带上面空带底部,使得满带不满,空带不空,二者都对导电有贡献。

17.布洛赫函数满足 为什么说上式中的具有波矢的意义答:人们总可以把布洛赫函数展成傅立叶级数 其中 是电子的波矢。

将 代入 得到 其中)()(r e R r n R k i n ψψ⋅=+r G k i h n n e G k a r ⋅+'∑+'=)()()(ψk ')(r ψ)()(r e R r n R k i n ψψ⋅=+n n R k i R k i e e ⋅⋅'=m R G n h π2=⋅利用由上式可知, 有波矢的含义。

二、证明与计算1 立方格子的特征2 倒格子与正格子的区别与联系k k '=例 1 面心立方晶格,晶格常数为 原胞体积为第一布里渊区体积为例 2 体心立方晶格,晶格常数为 原胞体积为第一布里渊区体积为例3:知某种晶体固体物理学原胞基矢为(1)求原胞体积。

(2)求倒格子基矢(3)求第一布里渊区体积例4:证明正格矢和倒格矢之间的关系式为: aa j a i a a2321+=ja i a a2322+-=k c a =3为整数)m m R G (2π=⋅ a例5:证明:不存在5度旋转对称轴。

3.课后习题:证明:原子球半径为r,晶格常数a、试证明六方密排密堆积结构中证明:ABCD 四原子球构成四面体结构,633.13821≈⎪⎭⎫ ⎝⎛=a c试证明:面心立方的倒格子为体心立方。

试证明:体心立方的倒格子为面心立方画出体心立方和面心立方晶格结构在(100),(110),(111)面上的原子排列指出立方晶格(111)面与(100)面,(111)面与(110)面交线的晶向]011[ (111)面与(110)面交线的晶向•第二章•问题:计算马德隆常数证明两种一价离子组成的一维晶格的马德隆常数为证明方法)(12同号为负异号为正∑=±=Nj jaα2ln2=α、用紧束缚近似法求出面心立方晶格和体心立方晶格s态原子能级相应的能带函数。

解:我们求解面心立方,同学们做体心立方。

(1)如只计及最近邻的相互作用,按照紧束缚近似的结果,晶体中S态电子的能量可表示成:()0()()s ik R s s s Rs E k J J R e ε-⋅==--∑近邻在面心立方中,有12个最近邻,若取0m R =,则这12个最近邻的坐标是: ①(1,1,0),(1,1,0),(1,1,0),(1,1,0)2222a a a a ②(0,1,1),(0,1,1),(0,1,1),(0,1,1)2222a a a a ③(1,0,1)(1,0,1),(1,0,1),(1,0,1)2222a a a a由于S 态波函数是球对称的,在各个方向重叠积分相同,因此()S J R 有相同的值,简单表示为J 1=()S J R 。

又由于s 态波函数为偶宇称,即()()s s r r ϕϕ-=∴在近邻重叠积分*()()()()()s i s s i J R R U V R d ϕξξϕξξ⎡⎤-=--⎣⎦⎰中,波函数的贡献为正∴J 1>0。

于是,把近邻格矢S R 代入()s S E R 表达式得到:01()s ik R s S Rs E k J J e ε-⋅==--∑近邻=()()()()222201x y x y x y x y aa a ai k k i k k i k k i k k S J J e e e e ε-+----+---⎡--+++⎢⎣()()()()2222y z y z y z y z aaaai k k i k k i k k i k k eeee-+----+---+++++()()()()2222x z x z x z x z aaaai k k i k k i k k i k k eeee-+----+---⎤+++⎥⎦=012cos ()cos ()cos ()cos ()2222S x y x y y z y z a a a a J J k k k k k k k k ε⎧⎡⎤⎤⎡--++-+++-⎨⎢⎥⎥⎢⎦⎣⎣⎦⎩cos ()cos()2z x z x a k k k k ⎫⎡⎤+++-⎬⎢⎥⎣⎦⎭cos()cos()2cos cos αβαβαβ↓++-==014cos cos cos cos cos cos 222222s x y y z z x a a a a a a J J k k k k k k ε⎡⎤--++⎢⎥⎣⎦(2)对于体心立方:有8个最近邻,这8个最近邻的坐标是:(1,1,1),(1,1,1),(1,1,1),(1,1,1)2222a a a a(1,1,1),(1,1,1,),(1,1,1),(1,1,1)2222a a a a01()8(cos cos cos )222s s x y z a a a E k J J k k k ε=--、有一一维单原子链,间距为a ,总长度为N a 。

求(1)用紧束缚近似求出原子s 态能级对应的能带E(k)函数。

(2)求出其能态密度函数的表达式。

(3)如果每个原子s 态只有一个电子,求等于T=0K 的费米能级0F E 及0F E 处的能态密度。

<解>010101(1),()()2cos 2cos ika ika s s E k J J e e J J ka E J ka εε-=--+=--=-0()()s ik R s E k E J J p e -⋅⎡⎤=--⎢⎥⎣⎦∑ (2) ,1121()2222sin sin L dk Na NN E dE J a ka J kaπππ=⨯⨯=⨯=(3), 000022()22222Fk F F F Nak Na N k dk k k aπρππ=⋅=⋅⋅=∴=⎰00111()2cos,()2sin2F F s F NNE E k E J a E N E aJ J aaππππ==-⋅===⋅ 、设有一维晶体的电子能带可写成 2271()(cos cos 2)88E k ka ka ma =-+, 其中a 为晶格常数,m 是电子的质量。

相关文档
最新文档