浙江省杭州市2018_2019学年高二数学上学期期末模拟试题
东西湖区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析
东西湖区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .22. cos80cos130sin100sin130︒︒-︒︒等于( )A B .12 C .12- D . 3. 若函数1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )A .5B .1-C .7-D .24. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛物线C 的准线交于点N ,则||:||MN FN 的值是( )A .B .C .1:D (1 5. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q6. 如图,在正四棱锥S ﹣ABCD 中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①EP ∥BD ;②EP ⊥AC ;③EP ⊥面SAC ;④EP ∥面SBD 中恒成立的为( )A .②④B .③④C .①②D .①③7. 设集合A={x||x ﹣2|≤2,x ∈R},B={y|y=﹣x 2,﹣1≤x ≤2},则∁R (A ∩B )等于( )A .RB .{x|x ∈R ,x ≠0}C .{0}D .∅8. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 29. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件10.对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%11.在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 12.如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个 圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )A .π1B .π21 C .π121- D .π2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.二、填空题13.设,则14.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .15.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .DABCO16.命题“若a>0,b>0,则ab>0”的逆否命题是(填“真命题”或“假命题”.)17.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米.(太阳光线可看作为平行光线)18.运行如图所示的程序框图后,输出的结果是三、解答题19.如图,直四棱柱ABCD﹣A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点.(1)证明:平面MNE⊥平面D1DE;(2)证明:MN∥平面D1DE.20.已知函数f (x )=ax 3+bx 2﹣3x 在x=±1处取得极值.求函数f (x )的解析式.21.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.22.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC . (1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .23.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:BC1∥平面ACD1.(2)当时,求三棱锥E﹣ACD1的体积.24.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.东西湖区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解:由约束条件作出可行域如图,联立,得A (6,2),化目标函数z=x ﹣y 为y=x ﹣z ,由图可知,当直线y=x ﹣z 过点A 时,直线在y 轴上的截距最小,z 有最大值为4. 故选:A .【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.2. 【答案】D 【解析】试题分析:原式()()cos80cos130sin80sin130cos 80130cos210cos 30180cos30=︒︒-︒︒=︒+︒=︒=︒+︒=-︒=. 考点:余弦的两角和公式. 3. 【答案】D111] 【解析】试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值. 4. 【答案】D 【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M到焦点的距离转化为到准线的距离后进行解答的.5.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.6.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.7.【答案】B【解析】解:A=[0,4],B=[﹣4,0],所以A∩B={0},∁R(A∩B)={x|x∈R,x≠0},故选B.8.【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选B9.【答案】B【解析】解:∵b⊥m,∴当α⊥β,则由面面垂直的性质可得a⊥b成立,若a⊥b,则α⊥β不一定成立,故“α⊥β”是“a⊥b”的充分不必要条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.10.【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.11.【答案】C12.【答案】C【解析】设圆O的半径为2,根据图形的对称性,可以选择在扇形OAC中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为12-π,扇形OAC 的面积为π,所求概率为πππ12112-=-=P . 二、填空题13.【答案】9【解析】由柯西不等式可知14.【答案】 .【解析】解:复数z==﹣i (1+i )=1﹣i,复数z=(i 虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.15.【答案】锐角三角形【解析】解:∵c=12是最大边,∴角C是最大角根据余弦定理,得cosC==>0∵C ∈(0,π),∴角C 是锐角,由此可得A 、B 也是锐角,所以△ABC 是锐角三角形 故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.16.【答案】 真命题【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.17.【答案】 3.3【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.设BC=x,则根据题意=,AB=x,在AE=AB﹣BE=x﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.18.【答案】0【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin的值,由于sin周期为8,所以S=sin+sin+…+sin=0.故答案为:0.【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.三、解答题19.【答案】【解析】证明:(1)由等腰梯形ABCD中,∵AB=CD=AD=1,BC=2,N是AB的中点,∴NE⊥DE,又NE⊥DD1,且DD1∩DE=D,∴NE⊥平面D1DE,又NE⊂平面MNE,∴平面MNE⊥平面D1DE.…(2)等腰梯形ABCD中,∵AB=CD=AD=1,BC=2,N是AB的中点,∴AB∥DE,∴AB∥平面D1DE,又DD1∥BB1,则BB1∥平面D1DE,又AB∩BB1=B,∴平面ABB1A1∥平面D1DE,又MN⊂平面ABB1A1,∴MN∥平面D1DE.…20.【答案】【解析】解:(1)f'(x)=3ax2+2bx﹣3,依题意,f'(1)=f'(﹣1)=0,即,解得a=1,b=0.∴f(x)=x3﹣3x.【点评】本题考查了导数和函数极值的问题,属于基础题.21.【答案】【解析】解:(1)设抽取x人,则,解得x=2,即年龄在20:39岁之间应抽取2人.(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,则对应的概率P=.【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.22.【答案】(1)2=AD ;(2)3π=B .【解析】考点:正余弦定理的综合应用,二次方程,三角方程.【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理..当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.23.【答案】【解析】(1)证明:∵AB∥C1D1,AB=C1D1,∴四边形ABC1D1是平行四边形,∴BC1∥AD1,又∵AD1⊂平面ACD1,BC1⊄平面ACD1,∴BC1∥平面ACD1.(2)解:S△ACE=AEAD==.∴V=V===.【点评】本题考查了线面平行的判定,长方体的结构特征,棱锥的体积计算,属于中档题.24.【答案】【解析】解:(Ⅰ)由已知得解得…此时,(x>0).(Ⅱ)(x>0).(1)当a≥0时,f'(x)>0恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.…(2)当a<0时,令f'(x)=0,得,f(x),f'(x)的变化情况如下表:)所以函数f(x)的增区间为(0,),减区间为(,+∞).…要使函数f(x)在区间(m,+∞)上不单调,须且只须>m,即.所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+∞)上不单调.…(Ⅲ)存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0).…证明如下:令g(x)=lnx﹣x+1(x>0),则,易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)≤0,从而得lnx≤x﹣1.(*)…由,得.…令,,则p(x),q(x)在区间[x1,x2]上单调递增.且,,结合(*)式可得,,.令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间[x1,x2]上单调递增,且h(x1)<0,h(x2)>0,…所以函数h(x)在区间(x1,x2)上存在唯一的零点x0,即成立,从而命题成立.…(注:在(Ⅰ)中,未计算b的值不扣分.)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.。
桥东区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(1)
桥东区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .302. 设a 是函数x 的零点,若x 0>a ,则f (x 0)的值满足()A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定3. 设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是()A .﹣13B .6C .79D .374. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为( )120.51xyzA .1B .2C .3D .45. 已知双曲线和离心率为的椭圆有相同的焦点,是两曲线的一个公共点,若4sinπ21F F 、P ,则双曲线的离心率等于( )21cos 21=∠PF F A . B .C .D .2526276. 已知a ∈R ,“函数y=log a x 在(0,+∞)上为减函数”是“函数y=3x +a ﹣1有零点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 已知集合,则A0或B0或3C1或D1或38. 已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为()A .﹣3B .3C .﹣1D .19. 函数f (x )=2x ﹣的零点个数为( )A .0B .1C .2D .310.设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .4811.已知圆方程为,过点与圆相切的直线方程为( )C 222x y +=(1,1)P -C A . B .C .D .20x y -+=10x y +-=10x y -+=20x y ++=12.设集合是三角形的三边长,则所表示的平面区域是()(){,|,,1A x y x y x y =--}AA .B .C .D .13.已知双曲线的左、右焦点分别为,过的直线交双曲线于两点且)0,0(12222>>=-b a by a x 21F F 、2F Q P ,,若,,则双曲线离心率的取值范围为( ).1PF PQ ⊥||||1PF PQ λ=34125≤≤λe A. B. C. D. ]210,1(]537,1(210,537[),210[+∞第Ⅱ卷(非选择题,共100分)14.若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假15.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:由算得2()()()()()n ad bc K a b c d a c b d -=++++22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯附表:参照附表,则下列结论正确的是( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥①有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 99%②有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;99%③采用系统抽样方法比采用简单随机抽样方法更好;④采用分层抽样方法比采用简单随机抽样方法更好;A .①③B .①④C .②③D .②④二、填空题16.定积分sintcostdt= .17.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC 与平面所成角的正弦值为______________.ABC 【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.18.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 19.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小;③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数;④四棱锥C ′﹣MENF 的体积v=h (x )为常函数;以上命题中真命题的序号为 .三、解答题20.已知函数f (x )=1+(﹣2<x ≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.21.【常州市2018届高三上武进区高中数学期中】已知函数,.()()221ln f x ax a x x =+--R a ∈⑴若曲线在点处的切线经过点,求实数的值;()y f x =()()1,1f ()2,11a ⑵若函数在区间上单调,求实数的取值范围;()f x ()2,3a ⑶设,若对,,使得成立,求整数的最小值.()1sin 8g x x =()10,x ∀∈+∞[]20,πx ∃∈()()122f x g x +≥a22.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.(1)若p=,求A∩B;(2)若A∩B=B,求实数p的取值范围.23.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.24.已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆E上.(1)求椭圆E的方程;(2)设过点P(2,1)的直线l与椭圆相交于A、B两点,若AB的中点恰好为点P,求直线l的方程.25.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.桥东区高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用. 2.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.3. 【答案】 D 【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x 一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m 、n 为正整数,可得m=3、n=2,从而求得含x 2项的系数.【解答】解:由于多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m 、n 为正整数,可得m=3、n=2,故含x 2项的系数是(﹣2)2+(﹣5)2=37,故选:D .【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.4. 【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,,.第三列的第3,4,5个数分别是,,.又因为每一横行成等差数列,第四行的第1、3个数分别为,,所以y=,第5行的第1、3个数分别为,.所以z=.所以x+y+z=++=1.故选:A .【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力. 5. 【答案】C 【解析】试题分析:设椭圆的长半轴长为,双曲线的实半轴长为,焦距为,,,且不妨设1a 2a c 2m PF =1n PF =2,由,得,,又,由余弦定理可知:n m >12a n m =+22a n m =-21a a m +=21a a n -=21cos 21=∠PF F ∴,,,设双曲线的离心率为,则,解mn n m c -+=22242221234a a c +=∴432221=+∴c a c a 4322122=+e)(得.故答案选C .26=e 考点:椭圆的简单性质.【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由为公共点,可把焦半径P 、的长度用椭圆的半长轴以及双曲线的半实轴来表示,接着用余弦定理表示1PF 2PF 21,a a ,成为一个关于以及的齐次式,等式两边同时除以,即可求得离心率.圆锥曲线问题21cos 21=∠PF F 21,a a 2c 在选择填空中以考查定义和几何性质为主.6. 【答案】A【解析】解:若函数y=log a x 在(0,+∞)上为减函数,则0<a <1,若函数y=3x +a ﹣1有零点,则1﹣a >0,解得:a <1,故“函数y=log a x 在(0,+∞)上为减函数”是“函数y=3x +a ﹣1有零点”的充分不必要条件,故选:A . 7. 【答案】B 【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
2018-2019学年上学期高二数学12月月考试题含解析(371)
永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x <<2. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .33. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣14. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假5. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <06. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件7. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=18. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .210.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .11.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣iD .﹣1+i12.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )fB (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .三、解答题19.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.0250.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.024 6.63520.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3231312f x x k x kx =-+++,其中.k R ∈ (1)当3k =时,求函数()f x 在[]0,5上的值域; (2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围.22.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.23.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.24.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.12. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y ﹣8=0与抛物线y=﹣x 2无交点.设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0联立,得3x 2﹣4x ﹣m=0.由△=(﹣4)2﹣4×3(﹣m )=16+12m=0,得m=﹣.所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2相切的直线方程为4x+3y ﹣=0.所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是=.故选:A .【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.3. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.4.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.5.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.6.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A7.【答案】C【解析】解:如图,++().故选C.8.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.9.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.10.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.11.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.12.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.二、填空题13.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.14.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为. ∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.16.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.117.【答案】2 【解析】18.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.三、解答题19.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j (j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)21.【答案】(1)[]1,21;(2)2k ≥.【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;试题解析:(1)解:3k = 时,()32691f x x x x =-++则()()()23129313f x x x x x =-+=--' 令0f x '=得121,3x x ==列表由上表知函数()f x 的值域为[]1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()()min 31113132f x f k k ==-+++= 即53k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增所以()()()322min 313132f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2120k k +-=所以1k =-或2k =(舍)注:也可令()3234g k k k =-+则()()23632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤()3234g k k k =-+在()1,2k ∈单调递减所以()02g k <<不符合题意综上所述:实数k 取值范围为2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增所以()()min 23f x f <=不符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意综上所述:实数k 取值范围为2k ≥ 22.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+, ∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3),∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3),∴点B 横坐标的取值范围是(﹣3,3). 【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.23.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.24.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.。
2018_2019学年高二数学上学期期末考试试卷
2018—2019学年度第一学期期末调研测试试题高二数学2019.01(全卷满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“(0,)2x π∀∈,sin 1x <”的否定是▲.2.已知直线l 过点()()1120A ,B ,、,则直线l 的斜率为▲. 3.一质点的运动方程为210S t =+(位移单位:m ;时间单位:s ),则该质点在3t =时的瞬时速度为▲/m s .4. 课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4128、、, 若用分层抽样的方法抽取6个城市,则丙组中应抽取的城市数为▲个.5.在平面直角坐标系xOy 中,抛物线28y x =的准线方程为▲.6.执行如图所示的伪代码,若输出的y 的值为10,则输入的x 的值 是▲.7.若R a ∈,则“3a =-”是“直线1l :10ax y +-=与2l :()1240a x ay +++=垂直”的▲条件.(注:在“充要”、“既不充分也不必要”、“充分不必要”、“必要不充分”中选填一个) 8.函数()332f x x x =-+的单调递减区间为▲.9. 已知椭圆()222210x y a b a b+=>>左焦点为F 1,左准线为l ,若过F 1且垂直于x 轴的弦的长等于点F 1到l 的距离,则椭圆的离心率是▲.10. 有一个质地均匀的正四面体木块4个面分别标有数字1234,,,.将此木块在水平桌面上 抛两次,则两次看不到...的数字都大于2的概率为▲. 11. 在平面直角坐标系xOy 中,已知双曲线2211x y m m -=+的一个焦点为()30,,则双曲线 的渐近线方程为▲.(第6题)12. 已知可导函数()f x 的定义域为R ,()12f =,其导函数()f x '满足()23f x x '>,则不 等式()3281f x x <+的解集为▲.13.已知圆()22:16C x y +-=,AB 为圆C 上的两个动点,且AB =G 为弦AB的中点.直线20l :x y --=上有两个动点PQ ,且2PQ =.当AB 在圆C 上运动时,PGQ ∠恒为锐角,则线段PQ 中点M 的横坐标取值范围为▲.14.函数()xf x x e a =-在(1,2)上单调递增,则实数a 的取值范围是▲.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知m 为实数.命题p :方程221313x y m m +=--表示双曲线;命题q :对任意x R ∈,29(2)04x m x +-+>恒成立. (1)若命题p 为真命题,求实数m 的取值范围; (2)若命题“p 或q ”为真命题、“p 且q ”为假命题,求实数m 的取值范围.16.(本小题满分14分)某商场亲子游乐场由于经营管理不善突然倒闭。
江宁区二中2018-2019学年高二上学期数学期末模拟试卷含解析
江宁区二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 4213532,4,25a b c ===,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b <<2. 已知复数z 满足(3+4i )z=25,则=( ) A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i3. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a ≤C .﹣1≤a ≤1D .﹣2≤a ≤24. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.5. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x6. 复数的虚部为( )A .﹣2B .﹣2iC .2D .2i7. 图1是由哪个平面图形旋转得到的( )A .B .C .D .8. 方程1x -=表示的曲线是( )A .一个圆B . 两个半圆C .两个圆D .半圆 9. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1 B-1 C0 D10.下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinxC .f (x )=D .f (x )=x 2|x|11.对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是( ) A .(﹣∞,﹣2) B . D .上是减函数,那么b+c ( )A .有最大值B .有最大值﹣C .有最小值D .有最小值﹣12.如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )A .12B .34 C. 2 D .34-二、填空题13.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .14.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .15.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.16.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ . 17.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________.18.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.三、解答题19.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.20.24.(本小题满分10分)选修4-5:不等式选讲. 已知函数f (x )=|x +1|+2|x -a 2|(a ∈R ). (1)若函数f (x )的最小值为3,求a 的值;(2)在(1)的条件下,若直线y =m 与函数y =f (x )的图象围成一个三角形,求m 的范围,并求围成的三角形面积的最大值.21.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.22.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.23.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设动直线与y轴相交于点,点关于直线的对称点在椭圆上,求的最小值.24.已知三次函数f(x)的导函数f′(x)=3x2﹣3ax,f(0)=b,a、b为实数.(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式.江宁区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】试题分析:2223534,4,5a b c===,由于4xy=为增函数,所以a b>.应为23y x=为增函数,所以c a>,故b a c<<.考点:比较大小.2.【答案】B解析:∵(3+4i)z=25,z===3﹣4i.∴=3+4i.故选:B.3.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.4.【答案】A【解析】5.【答案】C【解析】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.6.【答案】C【解析】解:复数===1+2i的虚部为2.故选;C.【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.7.【答案】A【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.8.【答案】A【解析】试题分析:由方程1x-=,即22x-=221x y-++=,所(1)(1)1以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.9.【答案】B【解析】由题意,可取,所以10.【答案】A【解析】解:满足“∀x∈R,f(x)+f(﹣x)=0,且f′(x)≤0”的函数为奇函数,且在R上为减函数,A中函数f(x)=﹣xe|x|,满足f(﹣x)=﹣f(x),即函数为奇函数,且f′(x)=≤0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(﹣x)=﹣f(x),即函数为奇函数,但f′(x)=1+cosx≥0,在R上是增函数,C中函数f(x)=,满足f(﹣x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(﹣x)=f(x),故函数为偶函数,故选:A.11.【答案】B【解析】解:由f (x )在上是减函数,知 f ′(x )=3x 2+2bx+c ≤0,x ∈,则⇒15+2b+2c ≤0⇒b+c ≤﹣.故选B .12.【答案】B 【解析】试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x解得x =,即菱形1BED F =,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B. 考点:平面图形的投影及其作法.二、填空题13.【答案】 70 .【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为T r+1=(﹣1)r C 8r x 8﹣2r 令8﹣2r=0得r=4 则其常数项为C 84=70故答案为70.【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.14.【答案】21≥a 【解析】试题分析:'21()a f x x x =-,因为(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒成立,2112a x x ∴-≤,(0,3]x ∈,x x a +-≥∴221,(0,3]x ∈恒成立,由2111,222x x a -+≤∴≥.1考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.15.【答案】 24【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC 中,根据正弦定理得:BC==24海里,则这时船与灯塔的距离为24海里.故答案为:24.16.【答案】12-考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f ′(x )―→求方程f ′(x )=0的根―→列表检验f ′(x )在f ′(x )=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f ′(x 0)=0,且在该点左、右两侧的导数值符号相反. 17.【答案】1e e- 【解析】解析: 由ln a b ≥得ab e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“ab e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为111|a a e da e e ==-⎰,∴随机事件“ln a b ≥”的概率为1e e-. 18.【答案】(,0)(4,)-∞+∞【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.三、解答题19.【答案】【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列. ∴数列}{n a 的通项公式为nn a 3=.………………5分20.【答案】【解析】解:(1)f (x )=|x +1|+2|x -a 2|=⎩⎪⎨⎪⎧-3x +2a 2-1,x ≤-1,-x +2a 2+1,-1<x <a 2,3x -2a 2+1,x ≥a 2,当x ≤-1时,f (x )≥f (-1)=2a 2+2, -1<x <a 2,f (a 2)<f (x )<f (-1), 即a 2+1<f (x )<2a 2+2, 当x ≥a 2,f (x )≥f (a 2)=a 2+1,所以当x =a 2时,f (x )min =a 2+1,由题意得a 2+1=3,∴a =±2. (2)当a =±2时,由(1)知f (x )=⎩⎪⎨⎪⎧-3x +3,x ≤-1,-x +5,-1<x <2,3x -3,x ≥2,由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积最大,此时面积为12×|3-(-1)|×|6-3|=6.21.【答案】【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分. 平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5, 即估计选择理科的学生的平均分为79.5分. 22.【答案】 【解析】【分析】(Ⅰ)在图1中,△ABC 中,由已知可得:AC ⊥DE .在图2中,DE ⊥A 1D ,DE ⊥DC ,即可证明DE ⊥平面A 1DC ,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0).则,,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),即当x=3时,A1B长度达到最小值,最小值为.23.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)因为椭圆C:,所以,,故,解得,所以椭圆的方程为.因为,所以离心率.(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得.所以.当且仅当,即时等号成立.所以的最小值为.24.【答案】【解析】解:(1)由导数的几何意义f′(a+1)=12∴3(a+1)2﹣3a(a+1)=12∴3a=9∴a=3(2)∵f′(x)=3x2﹣3ax,f(0)=b∴由f′(x)=3x(x﹣a)=0得x1=0,x2=a∵x∈[﹣1,1],1<a<2∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.∴f(x)在区间[﹣1,1]上的最大值为f(0)∵f(0)=b,∴b=1∵,∴f(﹣1)<f(1)∴f(﹣1)是函数f(x)的最小值,∴∴∴f(x)=x3﹣2x2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.。
浙江省浙南名校联盟2022-2023学年高二数学上学期期末联考试题(含解析)
浙江省浙南名校联盟2018-2019学年高二数学上学期期末联考试题(含思路)选择题部分一,选择题:在每小题给出地四个选项中,只有一项是符合题目要求地.1.设集合,,则使成立地地值是()A. -1B. 0C. 1D. -1或1【结果】A【思路】【思路】依据集合A,B,以及B⊆A即可得出,从而求出a=﹣1.【详解】解:∵A={﹣1,0,1},B={a,a2},且B⊆A。
∴∴a=﹣1.故选:A.【点睛】本题考查列举法地定义,集合圆素地互异性,以及子集地定义.2.已知复数,则()A. B. C. D.【结果】A【思路】【思路】把z=﹣2+i代入,再利用复数代数形式地乘除运算化简得结果.【详解】解:由z=﹣2+i,得.故选:A.【点睛】本题考查了复数代数形式地乘除运算,是基础题.3.若为实数,则“”是“”地()A. 充分而不必要款件B. 必要而不充分款件C. 充分必要款件D. 既不充分也不必要款件【结果】B【思路】【思路】求出不等式地等价款件,结合充分款件和必要款件地定义进行判断即可.【详解】解:由得0<a<1,则“a<1”是“”地必要不充分款件,故选:B.【点睛】本题主要考查充分款件和必要款件地判断,结合不等式地关系是解决本题地关键.4.若实数,满足约束款件,则地最大值为()A. B. 0 C. D. 1【结果】C【思路】【思路】作出题中不等式组表示地平面区域,得如图地△ABC及其内部,再将目标函数z=x+2y对应地直线进行平移,可得当x,y时,z得到最大值.【详解】解:作出变量x,y满足约束款件表示地平面区域,得到如图地△ABC及其内部,其中A(,),B(,﹣1),C(2,﹣1)设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值=F(,).故选:C.【点睛】求目标函数最值地一般步骤是“一画,二移,三求”:(1)作出可行域(一定要注意是实线还是虚线)。
红星区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
红星区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .22. 函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称3. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O P Q ∆的面积等于( )A .B .C .2 D .44. 如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B )5. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=06. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)7. 已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( ) A .38B .20C .10D .98. 连续抛掷两次骰子得到的点数分别为m 和n ,记向量=(m ,n ),向量=(1,﹣2),则⊥的概率是( )A .B .C .D .9. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.复数满足2+2z1-i =i z ,则z 等于( )A .1+iB .-1+iC .1-iD .-1-i11.已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .12.已知全集U R =,{|239}xA x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx ﹣2)+f (x )<0恒成立,则x 的取值范围为_____.14.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).15.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________.16.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .17.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 .18.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.三、解答题19.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值;(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]20.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分): 甲 83 81 93 79 78 84 88 94 乙 87 89 89 77 74 78 88 98(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.21.设{a n}是公比小于4的等比数列,S n为数列{a n}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.(1)求数列{a n}的通项公式;(2)令b n=lna3n+1,n=12…求数列{b n}的前n项和T n.22.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.23.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.24.已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆E上.(1)求椭圆E的方程;(2)设过点P(2,1)的直线l与椭圆相交于A、B两点,若AB的中点恰好为点P,求直线l的方程.红星区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】B 【解析】解:∵f (x )=,∴f (﹣2)=1+log 24=1+2=3,=5,∴f (﹣2)+f (log 210)=3+5=8. 故选:B .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.2. 【答案】C【解析】解:∵f (﹣x )=﹣+x=﹣f (x )∴是奇函数,所以f (x )的图象关于原点对称故选C .3. 【答案】C 【解析】∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得218m =,∴12y y -==∴12122S OF y y =-=. (由1212420y y y y =-⎧⎨+=⎩,得12y y ⎧=⎪⎨=⎪⎩12y y ⎧=-⎪⎨=⎪⎩考点:抛物线的性质. 4. 【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A ,但不属于集合B 的元素构成, ∴对应的集合表示为A ∩∁U B . 故选:A .5. 【答案】C【解析】解:圆x 2+y 2﹣2x+4y=0化为:圆(x ﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l 将圆 x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l 的方程是:y+2=﹣(x ﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C .【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.6. 【答案】B【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0, 在(﹣1,0)上小于0,∴f (x )f ′(x )<0的解集为(﹣∞,﹣2)∪(﹣1,0). 故选B .7. 【答案】C【解析】解:根据等差数列的性质可得:a m ﹣1+a m+1=2a m ,则a m ﹣1+a m+1﹣a m 2=a m (2﹣a m )=0,解得:a m =0或a m =2, 若a m 等于0,显然S 2m ﹣1==(2m ﹣1)a m =38不成立,故有a m =2,∴S 2m ﹣1=(2m ﹣1)a m =4m ﹣2=38, 解得m=10. 故选C8. 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m ,n ),有36种可能,而使⊥的m ,n 满足m=2n ,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得⊥的概率是:;故选:A .【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题.9. 【答案】B【解析】解:∵z=cos θ+isin θ对应的点坐标为(cos θ,sin θ), 且点(cos θ,sin θ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B .【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.10.【答案】【解析】解析:选D.法一:由2+2z1-i =i z 得2+2z =i z +z , 即(1-i )z =-2,∴z =-21-i =-2(1+i )2=-1-i.法二:设z =a +b i (a ,b ∈R ), ∴2+2(a +b i )=(1-i )i (a +b i ), 即2+2a +2b i =a -b +(a +b )i ,∴⎩⎪⎨⎪⎧2+2a =a -b2b =a +b, ∴a =b =-1,故z =-1-i. 11.【答案】D【解析】解:由函数f (x )=sin 2(ωx )﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f (x )=﹣cos2x .若将其图象沿x 轴向右平移a 个单位(a >0),可得y=﹣cos2(x ﹣a )=﹣cos (2x ﹣2a )的图象;再根据所得图象关于原点对称,可得2a=k π+,a=+,k ∈Z .则实数a 的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos (ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.12.【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A .二、填空题13.【答案】22,3⎛⎫- ⎪⎝⎭【解析】14.【答案】BC【解析】【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.0,115.【答案】()【解析】16.【答案】240.【解析】解:a=(cosx﹣sinx)dx=(sinx+cosx)=﹣1﹣1=﹣2,则二项式(x2﹣)6=(x2+)6展开始的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.17.【答案】.【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.18.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.三、解答题19.【答案】(1)最大值为,最小值为32-;(2)14.【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用()sin()(0,||)2f x A x b πωϕωϕ=++><的性质可求在[0,]2π上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1试题解析:(2)因为()0f B =,即sin(2)16B π-=∵(0,)B π∈,∴112(,)666B πππ-∈-,∴262B ππ-=,∴3B π=又在ABC ∆中,由余弦定理得,22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以AC =由正弦定理得:sin sin b aB A =3sin sin 3A =,所以sin A =. 考点:1.辅助角公式;2.()sin()(0,||)2f x A x b πωϕωϕ=++><性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角. 20.【答案】【解析】解:(I )记甲、乙两位选手近8次的训练的平均成绩分别为、,方差分别为、.,.…,.…因为,,所以甲、乙两位选手的平均水平相当,但甲的发挥更稳定,故应派甲参加.…(II )记事件C 表示为“甲回答问题A 成功”,事件D 表示为“甲回答问题B 成功”,则P (C )=,P (D )=,且事件C 与事件D 相互独立. …记甲按AB 顺序获得奖品价值为ξ,则ξ的可能取值为0,100,400.P (ξ=0)=P ()=,P (ξ=100)=P ()=,P (ξ=400)=P (CD )=.0 100 400所以甲按AB 顺序获得奖品价值的数学期望.…记甲按BA 顺序获得奖品价值为η,则η的可能取值为0,300,400.P (η=0)=P ()=,P (η=300)=P ()=,P (η=400)=P (DC )=,η所以甲按BA 顺序获得奖品价值的数学期望.…因为E ξ>E η,所以甲应选择AB 的答题顺序,获得的奖品价值更高.…【点评】本小题主要考查平均数、方差、古典概型、相互独立事件的概率、离散型随机变量分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识,考查必然与或然思想、分类与整合思想.21.【答案】【解析】解:(1)设等比数列{a n }的公比为q <4,∵a 1+3,3a 2,a 3+4构成等差数列.∴2×3a 2=a 1+3+a 3+4,∴6q=1+7+q 2,解得q=2.(2)由(1)可得:a n =2n ﹣1.b n =lna 3n+1=ln23n =3nln2.∴数列{b n }的前n 项和T n =3ln2×(1+2+…+n )=ln2.22.【答案】【解析】解:(I )由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29. 所以该班在这次数学测试中成绩合格的有29人.(II )由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2, 设成绩为x 、y成绩在[90,100]的人数为50×10×0.006=3,设成绩为a 、b 、c , 若m ,n ∈[50,60)时,只有xy 一种情况, 若m ,n ∈[90,100]时,有ab ,bc ,ac 三种情况,事件“|m ﹣n|>10”所包含的基本事件个数有6种 ∴.【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.23.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5(5)2f =.试题解析:在[]2,5上任取两个数12x x <,则有12121233()()11x x f x f x x x -=-++12123()(1)(1)x x x x -=++0<,所以()f x 在[]2,5上是增函数. 所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2f x f ==. 考点:函数的单调性证明.【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.1 24.【答案】【解析】解:(1)由题得=,=1,又a 2=b 2+c 2,解得a 2=8,b 2=4.∴椭圆方程为:.(2)设直线的斜率为k ,A (x 1,y 1),B (x 2,y 2),∴,=1,两式相减得=0,∵P 是AB 中点,∴x 1+x 2=4,y 1+y 2=2, =k , 代入上式得:4+4k=0,解得k=﹣1,∴直线l :x+y ﹣3=0. 【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.。
2018_2019学年高二化学上学期期末考试试题
九江一中2018-2019学年上学期期末考试高二化学试卷可能用到的相对原子质量:H:1 C:12 N:14 O:16 Mg:24 Al:27 P:31 Cu:64第I卷(选择题)一、选择题(本题共25小题,每小题2分,共50分。
每个小题只有一个选项符合题意)1.苏轼的《格物粗谈》有这样的记载:“红柿摘下未熟,每篮用木瓜三枚放入,得气即发,并无涩味.”按照现代科技观点,该文中的“气”是指()A.脱落酸B.乙烯C.生长素D.甲烷2.下列关于电解质的说法,正确的是( )A. 金属导电,属于电解质B. 乙酸是有机物,属于非电解质C. 只有在水溶液中能够导电的物质才属于电解质D. NaCl和Al2O3在熔融状态下均导电,都属于电解质3.下列有关化学用语表示正确的是( )A. 质子数和中子数均为6的碳原子:B. 硫离子的结构示意图:C. 氢氧化钠的电子式:D. 乙烯的结构简式:CH2CH24.下列互为同素异形体的是( )A. H2O与H2O2B. 与C. 石墨与金刚石D. 正丁烷与异丁烷5.下列变化过程中,ΔS<0的是( )A.氯化钠溶于水中B.NH3(g)与HCl(g)反应生成NH4Cl(s)C.汽油的燃烧D.煅烧石灰石得到生石灰和二氧化碳6. 根据所学习的电化学知识,下列说法正确的是( )A. 太阳能电池的主要材料为二氧化硅B. 铁与电源正极连接可实现电化学保护C. 酸雨后钢铁易发生析氢腐蚀、铁锅存留盐液时易发生吸氧腐蚀D. iPhone7s用的锂离子电池属于一次电池7.从植物花朵中提取到一种色素,它实际上是一种有机弱酸,可用HR表示,HR在盐酸中呈现红色,在NaOH溶液中呈现蓝色,将HR加入浓硝酸中呈现红色,微热后溶液的红色褪去,根据以上现象,可推测( )A.HR应为红色B.HR应为蓝色C.R-应为无色D.R-应为红色8.对下列各种溶液中所含离子的判断合理的是()A. 向无色溶液中加氯水变橙色,溶液中可能含: SO42-、Br-、OH-、Ba2+B. 25℃时在水电离出的c(H+)=1.0×10-11mol/L的溶液中可能含:Mg2+、Cu2+、SO42-、NO3-C. 某溶液,加铝粉有氢气放出,则溶液中可能含:K+、Na+、H+、NO3-D. 在c(Fe3+)=1.0 mol/L的溶液中可能含:K+、Na+、SCN-、HCO3-9.①pH=0的盐酸②0.5 mol·L-1的盐酸③0.1 mol·L-1的NH4Cl溶液④0.1 mol·L-1的NaOH溶液⑤0.5 mol·L-1的NH4Cl溶液,以上溶液中水电离出的c(H+)由大到小的顺序是()A.⑤③④②① B.①②③⑤④ C.①②③④⑤ D.⑤③④①②10.设N A表示阿伏加德罗常数的值,下列叙述正确的是()A. 常温常压下,6.4 g O2和O3的混合气体中含有的原子数为0.4N AB. 100 mL l mol·L-1的碳酸钠溶液中含有的CO32-数为0.1N AC. 标准状况下,2.24 L苯中含有的碳原子数为0.6N AD. 用含有少量锌、铁、银等杂质的粗铜作阳极电解精炼铜,当阴极析出64 g金属时,阳极失去的电子数小于2N A11.下列说法中,不正确的是( )A.用惰性电极电解饱和食盐水或熔融氯化钠时,阳极的电极反应式均为2Cl--2e-===Cl2↑B.酸性介质或碱性介质的氢氧燃料电池的正极反应式均为O2+2H2O+4e-===4OH-C.精炼铜和电镀铜时,与电源负极相连的电极反应式均为Cu2++2e-===CuD.钢铁发生吸氧腐蚀和析氢腐蚀的负极反应式均为Fe-2e-===Fe2+12.下列实验误差分析不正确的是()A. 用容量瓶配制溶液,定容时俯视刻度线,所配溶液浓度偏小B. 滴定前滴定管内无气泡,终点读数时有气泡,所测体积偏小C. 用润湿的pH试纸测稀碱溶液的pH,测定值偏小D. 测定中和反应的反应热时,将碱缓慢倒入酸中,所测温度差值△t偏小13.下列事实不能用勒夏特列原理解释的是()A. 实验室中常用排饱和食盐水的方法收集Cl2B. 对CO(g)+NO2(g)CO2(g)+NO(g),平衡体系增大压强可使颜色变深C. 升高温度能够促进水的电离D. 在含有Fe(SCN)3的红色溶液中加少量铁粉,振荡静置,溶液颜色变浅14. 下列说法正确的是()A. 用铁片和稀硫酸反应制取氢气时,改用98%的浓硫酸可加快产生氢气的速率B. 对于反应2H2O2=2H2O+O2↑,加入MnO2或升高温度都能加快O2的生成速率C. 将铜片放入稀硫酸中,无明显现象;若再向所得溶液中加入硝酸银溶液,一段时间后,由于形成原电池,可看到有氢气产生D. 100mL 2mol/L的盐酸跟锌片反应,加入适量的氯化钠溶液,反应速率不变15.下列各图中,表示2A(g)+B(g)2C(g) ΔH<0可逆反应的正确图像为()16.白磷与氧可发生如下反应:P4+5O2=P4O10。
2019-2020学年浙江省宁波市九校2018级高二上学期期末联考数学试卷及解析
2019-2020学年浙江省宁波市九校2018级高二上学期期末联考数学试卷★祝考试顺利★(解析版)选择题部分:共40分一、选择题:本大题共10小题,每小题4分,共40分.在每个题给出的四个选项中只有一项是符合题目要求的.1.抛物线24y x =的焦点坐标是( )A. ()1,0B. ()0,1C. 1,016⎛⎫ ⎪⎝⎭D. 10,16⎛⎫ ⎪⎝⎭ 【答案】D【解析】将抛物线化简成标准形式再分析即可.【详解】24y x =即214x y =,故抛物线焦点在y 轴上,11248p p =⇒=,焦点纵坐标为1216p =. 故焦点坐标为10,16⎛⎫ ⎪⎝⎭故选:D2.若复数z 满足()1234i z i -=+,则z虚部为( ) A. 2i -B. 2iC. 2D. 2- 【答案】C【解析】 先计算出345i +=,再整理得512z i =-即可得解.【详解】345i +==即()125i z -=, ∴()25125121214i z i i i+===+--. 故选:C.3.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A. 若l m ⊥,m α⊂,则l α⊥B. 若//l α,//m α,则//l mC. 若//l m ,m α⊂,则//l αD. 若l α⊥,m α⊥,则//l m【答案】D【解析】在A 中,l 与α相交、平行或l α⊂;在B 中,l 与m 相交、平行或异面;在C 中,//l α或l α⊂;在D 中,由线面垂直的性质定理得//l m .【详解】由l ,m 是两条不同的直线,α是一个平面,知:在A 中,若l m ⊥,m α⊂,则l 与α相交、平行或l α⊂,故A 错误; B 中,若//l α,//m α,则l 与m 相交、平行或异面,故B 错误;在C 中,若//l m ,m α⊂,则//l α或l α⊂,故C 错误;在D 中,若l α⊥,m α⊥,则由线面垂直的性质定理得//l m ,故D 正确.故选D .4.设()1,1,2OA =-,()3,2,8OB =,()0,1,0OC =,则线段AB 的中点P 到点C 的距离为( )A. 2B. 2C. 4D. 534 【答案】A【解析】根据空间中中点的公式与点到点的距离公式求解即可.【详解】由()1,1,2OA =-,()3,2,8OB =可知AB 的中点1312283,,2,,32222P P ++-+⎛⎫⎛⎫⇒⎪ ⎪⎝⎭⎝⎭. 故P 到点C 2==. 故选:A5.已知A ,B ,C ,D 是空间四个不同的点,则“AC 与BD 是异面直线”是“AD 与BC 是异面直线”的( )A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件 【答案】B。
2018-2019学年浙江省宁波市镇海中学高二(上)期末数学试卷
2018-2019学年浙江省宁波市镇海中学高二(上)期末数学试卷试题数:22.满分:1501.(单选题.4分)已知集合M={x|x2-x≥0}.N={x|x≥2}.则M∩N=()A.∅B.{x|x≥1}C.{x|x≥2}D.{x|x≥1或x≤0}2.(单选题.4分)设a=ln10.b=ln100.c=(ln10)2.则()A.a>b>cB.a>c>bC.c>a>bD.c>b>a3.(单选题.4分)曲线y=x3-x在点(1.0)处切线的倾斜角为α.则tanα=()A.2B. −43C.-1D.04.(单选题.4分)已知定义在R上的函数f(x)的图象是连续的.且其中的四组对应值如下表.那么在下列区间中.函数f(x)不一定存在零点的是()B.[1.3]C.[2.5)D.(3.5)5.(单选题.4分)已知函数f(x)=(e x+e-x)ln 1−x.若f(a)=1.则f(-a)=()1+xA.1B.-1C.-2D.36.(单选题.4分)在y=2x.y=log2x.y=x2这三个函数中.当0<x1<x2<1时.使f(x1+x2)>2f(x1+x2)恒成立的函数的个数是()2A.0个B.1个C.2个D.3个在(0.+∞)上存在零点.则实数a的取值7.(单选题.4分)已知函数f(x)=ln(x+a)-e-x+ 12范围是()A. (−∞)√eB.√e)√eC. (−∞,√e))D. (−√e,√e存在两个不同的极值点x1.x2.则实数a的取值范8.(单选题.4分)函数f(x)=ln(x+a)- xx+1围是()A. (3,1)∪(1,+∞)4B.(0.+∞)C.(-∞.0)D. (−∞,3)49.(单选题.4分)已知函数f(x)=x2-2x+a.则“a<0”是“f(f(x))的值域与f(x)的值域相同”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件10.(单选题.4分)已知函数f(x)=x2-x+1.记f1(x)=f(x).当n≥2时.f n(x)=f n-1(f (x)).则对于下列结论正确的是()A.f5(x)在(1,+∞)单调递增2B.f5(x)在(1,+∞)单调递减2C.f5(x)在(1,1)单调递减.(1.+∞)单调递增2D.f 5(x )在 (12,1) 单调递增.(1.+∞)单调递减11.(填空题.6分)i 是虚数单位.设z= 1−i1+i +2i.则z=___ .|z|=___ .12.(填空题.6分)已知函数f (x )= {3x +2,x <12x,x ≥1 .则f (0)=___ .f (f (0))=___ .13.(填空题.6分)设条件p :|x|≤m (m >0).q :-1≤x≤4.若p 是q 的充分条件.则m 的最大值为___ .若p 是q 的必要条件.则m 的最小值为___ .14.(填空题.6分)已知函数f (x )=ae x -lnx-1.设x=1是f (x )的极值点.则a=___ .f (x )的单调增区间为___ .15.(填空题.4分)已知偶函数f (x )对任意x∈R 都有f (x+6)-f (x )=2f (3).则f (2019)=___ .16.(填空题.4分)函数f (x )= {x 2,x ≥0−x 2,x <0.若对于在意实数x∈[-1.1].f (x+a )≥4f (x ).则实数a 的取值范围为___ .17.(填空题.4分)已知函数f (x )=sinx.若方程3(f (x ))2-f (x )+m=0在 (0,5π6) 内有两个不同的解.则实数m 的取值范围为___ .18.(问答题.14分)记函数f (x )=ln (1-x 2)的定义域为M.g (x )=lg[(x+a+2)(-x-a+1)]的定义域为N .(1)求M ;(2)若M⊆N .求实数a 的取值范围.19.(问答题.15分)f (x )=3x 2-2(1+a )x+a . (1)若函数f (x )在[0.2]上的最大值为3.求a 的值;(2)设函数f (x )在[0.2]上的最小值为g (a ).求g (a )的表达式.20.(问答题.15分)已知函数 f (x )=13x 3+12.(1)求曲线y=f (x )在点 P (1,56) 处的切线与x 轴和y 轴围成的三角形面积; (2)若过点(2.a )可作三条不同直线与曲线y=f (x )相切.求实数a 的取值范围.21.(问答题.15分)已知函数f(x)=e x- 1ax2 -b.2(1)当a=1.b=1时.求f(x)在[-1.1]上的值域;(2)若对于任意实数x.f(x)≥0恒成立.求a+b的最大值.22.(问答题.15分)已知a>0.函数f(x)=e x+3ax2-2ex-a+1. (1)若函数f(x)在[0.1]上单调递减.求a的取值范围;(2)|f(x)|≤1对任意x∈[0.1]恒成立.求a的取值范围.2018-2019学年浙江省宁波市镇海中学高二(上)期末数学试卷参考答案与试题解析试题数:22.满分:1501.(单选题.4分)已知集合M={x|x2-x≥0}.N={x|x≥2}.则M∩N=()A.∅B.{x|x≥1}C.{x|x≥2}D.{x|x≥1或x≤0}【正确答案】:C【解析】:可求出集合M.然后进行交集的运算即可.【解答】:解:M={x|x≤0.或x≥1};∴M∩N={x|x≥2}.故选:C.【点评】:考查描述法的定义.一元二次不等式的解法.以及交集的运算.2.(单选题.4分)设a=ln10.b=ln100.c=(ln10)2.则()A.a>b>cB.a>c>bC.c>a>bD.c>b>a【正确答案】:D【解析】:可以得出2<ln10.从而得出2ln10<(ln10)2.从而得出ln10<ln100<(ln10)2.从而得出a.b.c的大小关系.【解答】:解:∵2<ln10;∴ln10<ln100=2ln10<(ln10)2;∴c>b>a.故选:D.【点评】:考查对数的运算.不等式的性质.对数函数的单调性.3.(单选题.4分)曲线y=x3-x在点(1.0)处切线的倾斜角为α.则tanα=()A.2B. −43C.-1D.0【正确答案】:A【解析】:求得函数y的导数.由导数的几何意义.即可得到所求值.【解答】:解:y=x3-x的导数为y′=3x2-1.曲线y=x3-x在点(1.0)处切线的斜率为3-1=2.即tanα=2.故选:A.【点评】:本题考查导数的运用:求切线的斜率.考查导数的几何意义.属于基础题.4.(单选题.4分)已知定义在R上的函数f(x)的图象是连续的.且其中的四组对应值如下表.那么在下列区间中.函数f(x)不一定存在零点的是()B.[1.3]C.[2.5)D.(3.5)【正确答案】:D【解析】:由图表可得f(1)=3.f(2)=-1.f(3)=2.f(5)=0.然后结合函数零点的判定得答案.【解答】:解:由图表可知.f(1)=3.f(2)=-1.f(3)=2.f(5)=0.由f(1)•f(2)<0.可知函数f(x)在(1.2)上一定有零点;则函数f(x)在[1.3]上一定有零点;由f(2)•f(3)<0.可知函数f(x)在(2.3)上一定有零点.则函数f(x)在[2.5)上一定有零点;由f(3)>0.f(5)=0.可知f(x)在(3.5)上不一定有零点.∴函数f(x)不一定存在零点的是(3.5).故选:D.【点评】:本题考查函数零点的判定.考查零点判定定理的应用.是中档题.5.(单选题.4分)已知函数f(x)=(e x+e-x)ln 1−x1+x.若f(a)=1.则f(-a)=()A.1B.-1C.-2D.3【正确答案】:B【解析】:可看出f(x)是奇函数.从而由f(a)=1得出f(-a)=-1.【解答】:解:f(a)=(e a+e−a)ln1−a1+a=1;∴ f(−a)=(e−a+e a)ln1+a1−a =−(e−a+e a)ln1−a1+a=−1.故选:B.【点评】:考查奇函数的定义.以及对数的运算性质.6.(单选题.4分)在y=2x.y=log2x.y=x2这三个函数中.当0<x1<x2<1时.使f(x1+x22)>f(x1+x2)2恒成立的函数的个数是()A.0个B.1个C.2个D.3个【正确答案】:B【解析】:先求出各个函数对应的f(x1+x22),f(x1+x2)2.再利用指数函数的单调性及基本不等式比较两者的大小.【解答】:解:对于y=2x有f(x1+x22)= 2x1+x22f(x1+x2)2=2x1+x22= 2x1+x2−1∵0<x1<x2<1.∴ x1+x22>x1+x2−1∴ f(x1+x22)>f(x1+x2)2恒成立对于y=log2x有f(x1+x22)= log2 (x1+x22) . f(x1+x2)2=log2( x1+x2)2= log2√x1+x2∵0<x1<x2<1.∴ x1+x22< √x1+x2 .∴ f(x1+x22)<f(x1+x2)2故选:B.【点评】:本题考查指数函数的单调性、基本不等式比较数的大小.7.(单选题.4分)已知函数f(x)=ln(x+a)-e-x+ 12在(0.+∞)上存在零点.则实数a的取值范围是()A. (−∞√e)B.√e√e)C. (−∞,√e)D. (−√e,√e)【正确答案】:C【解析】:当a>0时.由函数f(x)在(0.+∞)上单调递增.可得要使函数f(x)在(0.+∞)上存在零点.则f(0)=lna- 12<0.由此求得a的范围;当a≤0时.由函数f(x)在(-a.+∞)上单调递增.且函数f(x)的值域为(-∞.+∞).可知f(x)在(0.+∞)上存在零点.取并集可得实数a的取值范围.【解答】:解:当a>0时.函数f(x)在(0.+∞)上单调递增.要使函数f(x)在(0.+∞)上存在零点.则f(0)=lna- 12<0.即0<a<√e;当a≤0时.函数f(x)在(-a.+∞)上单调递增.此时函数f(x)的值域(-∞.+∞).则f(x)在(0.+∞)上存在零点.综上可得.a∈(-∞. √e).故选:C.【点评】:本题考查函数零点的判定.考查对数函数的性质.体现了分类讨论的数学思想方法.属中档题.8.(单选题.4分)函数f(x)=ln(x+a)- xx+1存在两个不同的极值点x1.x2.则实数a的取值范围是()A. (34,1)∪(1,+∞)B.(0.+∞)C.(-∞.0)D. (−∞,34)【正确答案】:A【解析】:运用导数求函数的极值可解决此问题.【解答】:解:f(x)的定义域是(-a.+∞).f′(x)= 1x+a - x+1−x(x+1)2= 1x+a- 1(x+1)2= x2+x+1−a(x+a)(x+1)2.令h(x)=x2+x+1-a.若函数f(x)存在两个不同的极值点x1.x2.则x2+x+1-a=0在(-a.+∞)有2个不同的根.∴a2-a+1-a>0 ①- 12>-a ②1-4(1-a)>0 ③① ② ③ 联立得34<a<1或a>1.故选:A.【点评】:本题考查利用导数研究函数的极值.9.(单选题.4分)已知函数f(x)=x2-2x+a.则“a<0”是“f(f(x))的值域与f(x)的值域相同”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【正确答案】:B【解析】:求出f(x)的单调区间和值域.从而得出f(x)的最大值与单调区间端点的关系.从而得出a的范围.再根据充分必要条件的定义即可判断.【解答】:解:函数f(x)=x2-2x+a=(x-1)2+a-1.则函数f(x)的值域为[a-1.+∞).且f(x)在(-∞.1)上为减函数.在(1.+∞)为增函数.∵f(f(x))的值域与f(x)的值域相同.∴a-1≤1.解得a≤2.故“a<0”是“f(f(x))的值域与f(x)的值域相同”的充分不必要条件.故选:B.【点评】:本题考查了函数的单调性和最值.考查了转化方法、方程与不等式的解法以及充分必要条件.考查了推理能力与计算能力.属于中档题.10.(单选题.4分)已知函数f(x)=x2-x+1.记f1(x)=f(x).当n≥2时.f n(x)=f n-1(f (x)).则对于下列结论正确的是()A.f5(x)在(12,+∞)单调递增B.f5(x)在(12,+∞)单调递减C.f5(x)在(12,1)单调递减.(1.+∞)单调递增D.f5(x)在(12,1)单调递增.(1.+∞)单调递减【正确答案】:A【解析】:根据题意.函数f1(x)=f(x)=x2-x+1=(x- 12)2+ 34.由二次函数的性质分析其单调性以及值域.由复合函数的单调性判断方法依次分析f2(x)、f3(x)、f4(x)、f5(x)的单调区间.即可得答案.【解答】:解:根据题意.函数f1(x)=f(x)=x2-x+1=(x- 12)2+ 34.在(-∞. 12)上递减.在(12 .+∞)递增.且f(x)≥ 34;对于f2(x)=f1(f(x)).令t=f(x).则t≥ 34 .则f2(x)在(-∞. 12)上递减.在(12.+∞)递增.对于f3(x)=f2(f(x)).则f3(x)=f2(t).t=f(x).在(-∞. 12)上递减.在(12.+∞)递增.且t≥ 34.而f2(x)在(12.+∞)递增.则f3(x)在(-∞. 12)上递减.在(12.+∞)递增.对于f4(x)=f3(f(x)).则f4(x)=f3(t).t=f(x).在(-∞. 12)上递减.在(12.+∞)递增.且t≥ 34.而f3(x)在(12.+∞)递增.则f4(x)在(-∞. 12)上递减.在(12.+∞)递增.对于f5(x)=f4(f(x)).则f5(x)=f4(t).t=f (x ).在(-∞. 12 )上递减.在( 12 .+∞)递增.且t≥ 34 . 而f 4(x )在( 12.+∞)递增.则f 5(x )在(-∞. 12 )上递减.在( 12 .+∞)递增. 故选:A .【点评】:本题考查复合函数的单调性的判断.涉及二次函数的性质.关键是掌握复合函数单调性判定的方法.属于基础题.11.(填空题.6分)i 是虚数单位.设z= 1−i1+i +2i.则z=___ .|z|=___ . 【正确答案】:[1]i; [2]1【解析】:直接利用复数代数形式的乘除运算化简.再由复数模的计算公式求解.【解答】:解:∵z= 1−i1+i +2i= (1−i )2(1+i )(1−i)+2i =i .∴|z|=1. 故答案为:i ;1.【点评】:本题考查复数代数形式的乘除运算.考查复数模的求法.是基础的计算题. 12.(填空题.6分)已知函数f (x )= {3x +2,x <12x,x ≥1 .则f (0)=___ .f (f (0))=___ .【正确答案】:[1]2; [2]4【解析】:推导出(0)=3×0+2=2.从而f (f (0))=f (2).由此能求出结果.【解答】:解:函数f (x )= {3x +2,x <12x ,x ≥1.∴f (0)=3×0+2=2. f (f (0))=f (2)=22=4. 故答案为:2.4.【点评】:本题考查等函数值的求法.考查函数性质等基础知识.考查运算求解能力.是基础题. 13.(填空题.6分)设条件p :|x|≤m (m >0).q :-1≤x≤4.若p 是q 的充分条件.则m 的最大值为___ .若p 是q 的必要条件.则m 的最小值为___ . 【正确答案】:[1]1; [2]4【解析】:先化简条件p.再根据充分必要条件的定义即可判断.【解答】:解:条件p:|x|≤m.可得:-m≤x≤m.条件q:-1≤x≤4.若p是q的充分条件.则-m≥-1.且m≤4.解得0<m≤1.则m最大值为1.p是q的必要条件.则-m≤-1且m≥4.解得m≥4.则m的最小值为4.故答案为:1.4【点评】:本题考查了绝对值不等式的性质、简易逻辑的判定方法.考查了推理能力与计算能力.属于基础题.14.(填空题.6分)已知函数f(x)=ae x-lnx-1.设x=1是f(x)的极值点.则a=___ .f(x)的单调增区间为___ .; [2](1.+∞)【正确答案】:[1] 1e【解析】:求出函数的导数.代入x的值.求出a的值.求出函数的单调区间即可.【解答】:解:∵函数f(x)=ae x-lnx-1..∴x>0.f′(x)=ae x- 1x∵x=1是f(x)的极值点..∴f′(1)=ae-1=0.解得a= 1e∴f(x)=e x-1-lnx-1.∴f′(x)=e x-1- 1.x当x>1时.f′(x)>0.∴f(x)在(1.+∞)单调递增..(1.+∞).故答案为:1e【点评】:本题考查了函数的单调性.极值问题.考查导数的应用.是一道常规题.15.(填空题.4分)已知偶函数f(x)对任意x∈R都有f(x+6)-f(x)=2f(3).则f(2019)=___ .【正确答案】:[1]0【解析】:对于f(x+6)-f(x)=2f(3).可取x=-3.从而得出f(3)-f(-3)=2f(3).根据f (x)是偶函数即可得出f(3)=0.从而得出f(x+6)=f(x).即f(x)的周期为6.从而可求出f(2019).【解答】:解:∵f(x)是偶函数.对f(x+6)-f(x)=2f(3).取x=-3得.f(3)-f(-3)=2f (3);∴f(3)=0;∴f(x+6)=f(x);∴f(x)的周期为6;∴f(2019)=f(3+336×6)=f(3)=0.故答案为:0.【点评】:考查偶函数的定义.以及周期函数的定义.16.(填空题.4分)函数f(x)= {x2,x≥0−x2,x<0.若对于在意实数x∈[-1.1].f(x+a)≥4f(x).则实数a的取值范围为___ .【正确答案】:[1][1.+∞)【解析】:判断函数f(x)的单调性.将不等式进行转化.结合函数的单调性减求解即可.【解答】:解:当x≥0时.f(x)为增函数.且f(x)≥0.当x<0时.f(x)为增函数.且f(x)<0.综上f(x)在R上为增函数.且4f(x)=f(2x).则不等式f(x+a)≥4f(x)等价为f(x+a)≥f(2x).即x+a≥2x在x∈[-1.1].上恒成立.即a≥x在x∈[-1.1].上恒成立.∵-1≤x≤1.∴a≥1.即实数a的取值范围是[1.+∞).故答案为:[1.+∞)【点评】:本题主要考查分段函数的应用.判断函数的单调性.将不等式进行转化是解决本题的关键.17.(填空题.4分)已知函数f(x)=sinx.若方程3(f(x))2-f(x)+m=0在(0,5π6)内有两个不同的解.则实数m的取值范围为___ .【正确答案】:[1]0<m<112或-2<m<- 14【解析】:利用换元法设t=f(x)=sinx.方程等价为m=-3t2+t.根t=sinx 交点个数.确定m=-3t2+t中t的取值范围.即可求出m的范围.【解答】:解:令t=f(x)=sinx.则方程等价为3t2-t+m=0.即m=-3t2+t=-3(t- 16)2+ 112由t=f(x)=sinx得当t=1或0<t≤ 12时.t=sinx只有一个根.当12<t<1时.t=sinx有两个不同的根.若t=1.此时m=-3+1=-2.此时方程3t2-t-2=0得(t-1)(3t+2)=0.得t=1或t=- 23 .当t=- 23时.t=sinx无解.此时方程3(f(x))2-f(x)+m=0在(0,5π6)内只有一个解不满足条件.若方程3(f(x))2-f(x)+m=0在(0,5π6)内有两个不同的解.等价为① 当0<t≤ 12时.m=-3t2+t=-3(t- 16)2+ 112有两个不同的交点.即0<m<112.或者② 当12<t<1时.m=-3t2+t=-3(t- 16)2+ 112有1个交点.∵t= 12时.m=- 14.t=1时.m=-2∴此时-2<m<- 14.综上0<m<112或-2<m<- 14.故答案为:0<m<112或-2<m<- 14.【点评】:本题主要考查函数与方程的应用.利用换元法转化为两个函数根的个数关系是解决本题的关键.综合性较强.有一定的难度.18.(问答题.14分)记函数f (x )=ln (1-x 2)的定义域为M.g (x )=lg[(x+a+2)(-x-a+1)]的定义域为N .(1)求M ;(2)若M⊆N .求实数a 的取值范围.【正确答案】:【解析】:(1)解不等式求出M 即可;(2)求出N.根据集合的包含关系得到关于a 的不等式组.解出即可.【解答】:解:(1)由题意得1-x 2>0. 解得:-1<x <1. 故M=(-1.1).(2)由(x+a+2)(-x-a+1)>0. 解得:-a-2<x <-a+1. 故N=(-a-2.-a+1). 若M⊆N .则 {−a −2≤−1−a +1≥1 .解得:-1≤a≤0.【点评】:本题考查了对数函数的性质.考查集合的包含关系.是一道常规题. 19.(问答题.15分)f (x )=3x 2-2(1+a )x+a . (1)若函数f (x )在[0.2]上的最大值为3.求a 的值;(2)设函数f (x )在[0.2]上的最小值为g (a ).求g (a )的表达式.【正确答案】:【解析】:(1)讨论对称轴与区间的中点1可得;(2)讨论对称轴与区间的端点0和2的大小.利用二次函数的单调性可得.【解答】:解:(1)当 1+a3≤1.即a≤2时.f (x )max =f (2)=8-3a=3解得a= 53 符合;当1+a3>1.即a >2时.f (x )max =f (0)=a=3.符合题意;综上a= 53.或者a=3 (2) ① 当 1+a3≤0.即 a≤-1时.f (x )在[0.2]上递增.∴f (x )min =g (a )=f (0)=a ;② 当 1+a3≥2即a≥5时.f (x )在[0.2]上递减.∴f (x )min =g (a )=f (2)=8-3a ;③ 当0< 1+a3 <2.即-1<a <5时.f (x )min =g (a )=f ( 1+a 3 )= −a 2+a−13 .综上得g (a )= { a ,a ≤−1−a 2+a−13,−1<a <58−3a ,a ≥5 .【点评】:本题考查了二次函数的性质与图象.属难题. 20.(问答题.15分)已知函数 f (x )=13x 3+12 .(1)求曲线y=f (x )在点 P (1,56) 处的切线与x 轴和y 轴围成的三角形面积; (2)若过点(2.a )可作三条不同直线与曲线y=f (x )相切.求实数a 的取值范围.【正确答案】:【解析】:(1)求得f (x )的导数.可得切线的斜率和切线方程.分别令y=0.x=0可得切线与x.y 轴的交点.可得三角形的面积;(2)设出切点坐标(m. 13 m 3+ 12 ).求出原函数的导函数.写出切线方程.把点(2.a )代入切线方程.整理得到4m 3-12m 2-3+6a=0有三个不同根.令g (x )=4x 3-12x 2-3.利用导数求其极大值为g(0).极小值为g(2).由-6a介于极小值和极大值之间.即可求得a的范围.【解答】:解:(1)函数f(x)=13x3+12的导数为f′(x)=x2.曲线y=f(x)在点P(1,56)处的切线斜率为1.可得切线方程为y- 56 =x-1即y=x- 16.切线与x轴和y轴的交点为(16 .0).(0.- 16).可得切线与x轴和y轴围成的三角形面积为12 × 16× 16= 172;(2)f(x)= 13 x3+ 12.则f′(x)=x2.设切点为(m. 13 m3+ 12).则f′(m)=m2.可得过切点处的切线方程为y- 13 m3- 12=m2(x-m).把点(2.a)代入得a- 13 m3- 12=m2(2-m).整理得4m3-12m2-3+6a=0.若过点(2.a)可作三条直线与曲线y=f(x)相切.则方程4m3-12m2-3+6a=0有三个不同根.令g(x)=4x3-12x2-3.则g′(x)=12x2-24x=12x(x-2).当x∈(-∞.0)∪(2.+∞)时.g′(x)>0;当x∈(0.2)时.g′(x)<0.则g(x)的单调增区间为(-∞.0).(2.+∞);单调减区间为(0.2).可得当x=0时.g(x)有极大值为g(0)=-3;当x=2时.g(x)有极小值为g(2)=-19.由-19<-6a<-3.得12<a<196.则实数n的取值范围是(12 . 196).【点评】:本题考查利用导数研究过曲线上某点处的切线方程.训练了利用导数求函数的极值.是中档题.21.(问答题.15分)已知函数f(x)=e x- 12ax2 -b.(1)当a=1.b=1时.求f(x)在[-1.1]上的值域;(2)若对于任意实数x.f(x)≥0恒成立.求a+b的最大值.【正确答案】:【解析】:(1)当a=1.b=1时.f(x)=e x- 12x2-1.f′(x)=e x-x=g(x).利用导数研究函数的单调性极值最值即可得出.(2)对于任意实数x.f(x)≥0恒成立.即b≤e x- 12ax2.亦即a+b≤e x- 12ax2 +a在R上恒成立.令h(x)=e x- 12ax2 +a.x∈R.h′(x)=e x-ax.对a分类讨论即可得出.【解答】:解:(1)当a=1.b=1时.f(x)=e x- 12x2-1.f′(x)=e x-x=g(x).g′(x)=e x-1.可得:-1≤x≤0.则g′(x)<0;0<x≤1时.则g′(x)>0.∴x=0时.函数g(x)取得极小值即最小值.g(0)=1>0.∴函数f(x)在[-1.1]上单调递增.∴f(x)min=f(-1)= 1e - 32.f(x)max=f(1)=e- 32.∴f(x)在[-1.1]上的值域为[ 1e - 32.e- 32].(2)对于任意实数x.f(x)≥0恒成立.即b≤e x- 12ax2.亦即a+b≤e x- 12ax2 +a在R上恒成立.令h(x)=e x- 12ax2 +a.x∈R.h′(x)=e x-ax.a≥0时.不成立舍去.a<0时.令e x-ax=0.x<0.解得e x0 =ax0.可得函数h(x)在x=x0处取得极小值即最小值.∴h(x)min= e x0 - 12a x02 +a= e x0 - x0e x02+ e x0x0= e x0(1−x02+1x0) .令u(x)=e x(1−x2+1x) .x<0.则u′(x)=e x• (x−1)(√2+x)(√2−x)2x2.可得x=- √2时.函数u(x)取得极大值即最大值.u(- √2)= e−√2.∴a+b的最大值是e−√2.【点评】:本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法.考查了推理能力与计算能力.属于难题.22.(问答题.15分)已知a >0.函数f (x )=e x +3ax 2-2ex-a+1. (1)若函数f (x )在[0.1]上单调递减.求a 的取值范围; (2)|f (x )|≤1对任意x∈[0.1]恒成立.求a 的取值范围.【正确答案】:【解析】:(1)求出函数的导数.问题转化为a≤ 2e−e x6x.令g (x )=2e−e x6x.根据函数的单调性求出a 的范围即可;(2)问题转化为只需f (t )+f (x )max ≥0即可.又-1≤f (t )≤1.故-1≤f (x )max ≤1.从而求出a 的范围即可.【解答】:解:(1)f (x )=e x +3ax 2-2ex-a+1. f′(x )=e x +6ax-2e.由函数f (x )在[0.1]上单调递减.得e x +6ax-2e≤0在[0.1]上恒成立. 当x=0时.对于任意正实数a.上式恒成立; 当x∈(0.1]时.则a≤ 2e−e x6x. 令g (x )=2e−e x6x.则g′(x )=−6xe x −12e+6e x36x 2.令h (x )=-6xe x -12e+6e x .则h′(x )=-6e x -6xe x +6e x =-6xe x <0. 则h (x )在(0.1]上单调递减.∴h (x )<h (0)<0. ∴g′(x )<0.则g (x )在(0.1]上单调递减. 则g (x ) ≥g (1)=e6 . ∴0<a≤ e 6; (2)∵|f (x )|≤1.∴ {|f (0)|=|2−a |≤1|f (1)|=|2a −e +1|≤1 . 解得: {1≤a ≤3e−22≤a ≤e 2.故a∈[1. e2].由(1)知f′(x)在[0.1]递增.且f′(0)=1-2e<0.f′(1)=6a-e>0.∴f(x)max=max{f(0).f(1))}.设x=t(0<t<1)时.f′(x)=0.即e t+6at-2e=0.则f(x)在[0.t]递减.在(t.1]递增.故f(x)min=f(t).若|f(x)|≤1.只需f(t)+f(x)max≥0即可. 又-1≤f(t)≤1.故-1≤f(x)max≤1.当2-a≥2a-e+1即a≤ e+13时.-1≤2-a≤1.解得:1≤a≤ e+13.当2-a<2a-e+1即a>e−13时.-1≤2a-e+1≤1.解得:e−13<a≤ e2.综上.a∈[1. e2].【点评】:本题考查了函数的单调性.最值问题.考查导数的应用以及分类讨论思想.转化思想.是一道综合题.。
临河区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
临河区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=2. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )AB .2D .43. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)4. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高 杂质低 旧设备 37 121 新设备22202根据以上数据,则( ) A .含杂质的高低与设备改造有关 B .含杂质的高低与设备改造无关 C .设备是否改造决定含杂质的高低D .以上答案都不对5. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( )A .7049B .7052C .14098D .141016. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()7. 在ABC ∆中,若60A ∠=,45B ∠=,32BC =,则AC =( ) A .43 B .23 C. 3 D .3 8. 复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)9. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.10.若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为22 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++=11.(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .12.若,[]0,1b ∈,则不等式221a b +≤成立的概率为( ) A .16π B .12π C .8π D .4π 二、填空题13.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .14.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的15﹣64岁劳动人口所占比例:的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.15.若曲线f (x )=ae x +bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= . 16.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = .17.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .18.运行如图所示的程序框图后,输出的结果是三、解答题19.已知等差数列{a n }满足a 1+a 2=3,a 4﹣a 3=1.设等比数列{b n }且b 2=a 4,b 3=a 8 (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)设c n =a n +b n ,求数列{c n }前n 项的和S n .20.如图所示,在正方体1111ABCD A B C D -中.(1)求11A C 与1B C 所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求11A C 与EF 所成角的大小.21.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.22.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.23.已知函数f (x )=.(1)求函数f (x )的最小正周期及单调递减区间; (2)当时,求f (x )的最大值,并求此时对应的x 的值.24.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2,(Ⅰ)求数列{b n }的通项公式;(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.临河区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】C【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数; B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;C 、因为,故两函数相同;D 、函数f (x )的定义域为{x|x ≥1},函数g (x )的定义域为{x|x ≤1或x ≥1},定义域不同,故不是相同函数.综上可得,C 项正确. 故选:C .2. 【答案】C 【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得()2122k k ππϕπ⨯+=+∈Z ,解得3πϕ=,从而()23f x x π⎛⎫+ ⎪⎝⎭,再次利用数形结合思想和转化化归思想可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116x x π+=-,从而()121133f x x ππ⎛⎫+=-+= ⎪⎝⎭.3. 【答案】 B【解析】解:由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2lnx ,即<在[1,e]上有解,令h(x)=,则h′(x)=,∵1≤x≤e,∴h′(x)≥0,∴h(x)max=h(e)=,∴<h(e)=,∴m<.∴m的取值范围是(﹣∞,).故选:B.【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.4.【答案】A【解析】独立性检验的应用.【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表杂质高杂质低合计旧设备37 121 158新设备22 202 224合计59 323 382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.5.【答案】B【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,∴,可得a n+1=a n﹣1,因此数列{a n}是周期为2的周期数列.a1=3,∴3a2+2=2a2+2×3,解得a2=4,∴S2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.6.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.7.【答案】B【解析】考点:正弦定理的应用.8.【答案】A【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).故选:A.【点评】本题考查了复数的运算法则、几何意义,属于基础题.9.【答案】C10.【答案】B【解析】考点:圆的方程.1111]11.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.12.【答案】D【解析】考点:几何概型.二、填空题13.【答案】2016.【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,∴数列{a n}是以e为公差的等差数列,则a1=a3﹣2e=4e﹣2e=2e,∴a2015=a1+2014e=2e+2014e=2016e.故答案为:2016e.【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.14.【答案】y=﹣1.7t+68.7【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.15.【答案】2.【解析】解:f(x)=ae x+bsinx的导数为f′(x)=ae x+bcosx,可得曲线y=f(x)在x=0处的切线的斜率为k=ae0+bcos0=a+b,由x=0处与直线y=﹣1相切,可得a+b=0,且ae0+bsin0=a=﹣1,解得a=﹣1,b=1,则b﹣a=2.故答案为:2.16.【答案】1 2考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.17.【答案】[5,+∞).【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.【解答】解:由题意可得f(x)=x6=x3.由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,由于x2在区间[,]上的最大值为5,故m≥5,即m的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.18.【答案】0【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin的值,由于sin周期为8,所以S=sin+sin+…+sin=0.故答案为:0.【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.三、解答题19.【答案】【解析】解:(1)设等差数列{a n}的公差为d,则由,可得,…解得:,∴由等差数列通项公式可知:a n=a1+(n﹣1)d=n,∴数列{a n}的通项公式a n=n,∴a4=4,a8=8设等比数列{b n}的公比为q,则,解得,∴;(2)∵…∴,=,=,∴数列{c n}前n项的和S n=.20.【答案】(1)60︒;(2)90︒.【解析】试题解析:(1)连接AC ,1AB ,由1111ABCD A B C D -是正方体,知11AAC C 为平行四边形, 所以11//AC A C ,从而1B C 与AC 所成的角就是11A C 与1B C 所成的角. 由11AB AC B C ==可知160B CA ∠=︒, 即11A C 与BC 所成的角为60︒.考点:异面直线的所成的角.【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题.21.【答案】(1)320x y ++=;(2)()2228x y -+=.【解析】试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形ABCD 外接圆的方程.(2)由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,因为矩形ABCD 两条对角线的交点为()2,0M ,所以M 为距形ABCD 外接圆的圆心, 又()()22200222AM =-++=从而距形ABCD 外接圆的方程为()2228x y -+=.1 考点:直线的点斜式方程;圆的方程的求解.【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.22.【答案】(1)1,14b c ==;(2)答案见解析;(3)当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.【解析】试题分析:(1)由题意得到关于实数b ,c 的方程组,求解方程组可得1,14b c ==; (3)函数()g x 的导函数()()2132444g x x a x a ⎛⎫=+--+ ⎪⎝⎭',结合导函数的性质可得当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.试题解析:(1)由题意()()01{440f cf b c=+=-+=,解得1{41bc==;(2)由(1)可知()()324f x x a x=+--1414a x⎛⎫++⎪⎝⎭,∴()()2132444f x x a x a⎛⎫=+--+⎪⎝⎭';假设存在x满足题意,则()()2000132444f x x a x a⎛⎫=+--+⎪⎝⎭'是一个与a无关的定值,即()2000124384x a x x-+--是一个与a无关的定值,则240x-=,即2x=,平行直线的斜率为()1724k f==-';(3)()()()324g x f x a x a x=+=+-1414a x a⎛⎫-+++⎪⎝⎭,∴()()2132444g x x a x a⎛⎫=+--+⎪⎝⎭',其中()21441244a a⎛⎫∆=-++=⎪⎝⎭()224166742510a a a++=++>,设()0g x'=两根为1x和()212x x x<,考察()g x在R上的单调性,如下表1°当0a>时,()010g a=+>,()40g a=>,而()152302g a=--<,∴()g x在()0,2和()2,4上各有一个零点,即()g x在()0,4有两个零点;2°当0a=时,()010g=>,()40g a==,而()15202g=-<,∴()g x仅在()0,2上有一个零点,即()g x在()0,4有一个零点;3°当0a<时,()40g a=<,且1324g a⎛⎫=->⎪⎝⎭,①当1a<-时,()010g a=+<,则()g x在10,2⎛⎫⎪⎝⎭和1,42⎛⎫⎪⎝⎭上各有一个零点,即()g x 在()0,4有两个零点;②当10a -≤<时,()010g a =+≥,则()g x 仅在1,42⎛⎫⎪⎝⎭上有一个零点, 即()g x 在()0,4有一个零点;综上:当1a <-或0a >时,()g x 在()0,4有两个零点; 当10a -≤≤时,()g x 在()0,4有一个零点.点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得. 23.【答案】【解析】解:(1)f (x )=﹣=sin 2x+sinxcosx ﹣=+sin2x ﹣ =sin (2x ﹣)…3分周期T=π,因为cosx ≠0,所以{x|x ≠+k π,k ∈Z}…5分当2x ﹣∈,即+k π≤x ≤+k π,x ≠+k π,k ∈Z 时函数f (x )单调递减,所以函数f (x )的单调递减区间为,,k ∈Z …7分 (2)当,2x ﹣∈,…9分sin (2x ﹣)∈(﹣,1),当x=时取最大值,故当x=时函数f (x )取最大值为1…12分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.24.【答案】【解析】(本小题满分13分)解:(1)当n=1时,a 2=2a ,则;当2≤n ≤2k ﹣1时,a n+1=(a ﹣1)S n +2,a n =(a ﹣1)S n ﹣1+2,所以a n+1﹣a n =(a ﹣1)a n ,故=a ,即数列{a n }是等比数列,,∴T n =a 1×a 2×…×a n =2n a1+2+…+(n ﹣1)=,b n ==.…(2)令,则n ≤k+,又n ∈N *,故当n ≤k 时,,当n ≥k+1时,.…|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|=+()+…+()…=(k+1+…+b 2k )﹣(b 1+…+b k )=[+k]﹣[]=,由,得2k 2﹣6k+3≤0,解得,…又k ≥2,且k ∈N *,所以k=2.…【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.。
红星区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析
红星区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 定义在R 上的奇函数f (x ),满足,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )A .B .C .D .2. 已知幂函数y=f (x )的图象过点(,),则f (2)的值为( )A .B .﹣C .2D .﹣23. 如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=4. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 5. 以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )A .B .C .D .6. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间 )4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)(7. 设函数()()21,141x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )A .(][],20,10-∞-B .(][],20,1-∞-C .(][],21,10-∞-D .[][]2,01,10-8. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( ) A .12 B .34C. D9. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A .4πB .12πC .16πD .48π10.定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 11.下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内 12.=( )A .﹣iB .iC .1+iD .1﹣i二、填空题13.曲线y=x+e x 在点A (0,1)处的切线方程是 .14.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .15.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .16.已知i 是虚数单位,复数的模为 .17.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .18.(lg2)2+lg2•lg5+的值为 .三、解答题19.已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N *)的展开式中x 的系数为11.(1)求x 2的系数取最小值时n 的值.(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.20.(本小题满分12分)如图所示,已知⊥AB 平面ACD ,⊥DE 平面ACD ,ACD ∆为等边 三角形,AB DE AD 2==,F 为CD 的中点. (1)求证://AF 平面BCE ; (2)平面⊥BCE 平面CDE .21.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.22.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.23.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.24.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈时,求f(x)取得最大值和最小值时的x的值.红星区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵函数f(x)是奇函数,在(0,+∞)上单调递减,且f ()=0,∴f (﹣)=0,且在区间(﹣∞,0)上单调递减,∵当x<0,当﹣<x<0时,f(x)<0,此时xf(x)>0当x>0,当0<x<时,f(x)>0,此时xf(x)>0综上xf(x)>0的解集为故选B2.【答案】A【解析】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,∴α=,即f(x)=,故f(2)==,故选:A.3.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.4. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题. 5. 【答案】D【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P==,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.6. 【答案】A 【解析】试题分析:命题p :2π=∠APB ,则以AB 为直径的圆必与圆()()11322=-++y x 有公共点,所以121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()xxx f 3log 4-=,()0log 1443<-=f ,()0log 34333>-=f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2π=∠APB ,因此在以AB 为直径的圆上,又点P 在圆1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数x xx f 3log 4)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.7. 【答案】A 【解析】考点:分段函数的应用.【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 8. 【答案】B 【解析】试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x解得x =,即菱形1BED F =,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为34,故选B. 考点:平面图形的投影及其作法. 9. 【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.10.【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]11.【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.12.【答案】B【解析】解:===i.故选:B.【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.二、填空题13.【答案】2x﹣y+1=0.【解析】解:由题意得,y′=(x+e x)′=1+e x,∴点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y﹣1=2x,即2x﹣y+1=0,故答案为:2x﹣y+1=0.【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题.14.【答案】.【解析】解:已知数列1,a1,a2,9是等差数列,∴a1+a2 =1+9=10.数列1,b1,b2,b3,9是等比数列,∴=1×9,再由题意可得b2=1×q2>0 (q为等比数列的公比),∴b2=3,则=,故答案为.【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.15.【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x﹣2y,再利用z的几何意义求最值,只需求出直线z=x﹣2y过图形上的点A的坐标,即可求解.【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,即圆心为(1,﹣2),半径为的圆,(如图)设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,最大值为:10.故答案为:10.16.【答案】.【解析】解:∵复数==i﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.17.【答案】锐角三角形【解析】解:∵c=12是最大边,∴角C是最大角根据余弦定理,得cosC==>0∵C∈(0,π),∴角C是锐角,由此可得A、B也是锐角,所以△ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.18.【答案】1.【解析】解:(lg2)2+lg2•lg5+=lg2(lg2+lg5)+lg5=lg2+lg5=1,故答案为:1.三、解答题19.【答案】【解析】【专题】计算题.【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,﹣1,两式子相加求出展开式中x的奇次幂项的系数之和.【解答】解:(1)由已知C m1+2C n1=11,∴m+2n=11,x2的系数为C m2+22C n2=+2n(n﹣1)=+(11﹣m)(﹣1)=(m﹣)2+.∵m ∈N *,∴m=5时,x 2的系数取得最小值22,此时n=3.(2)由(1)知,当x 2的系数取得最小值时,m=5,n=3,∴f (x )=(1+x )5+(1+2x )3.设这时f (x )的展开式为 f (x )=a 0+a 1x+a 2x 2++a 5x 5,令x=1,a 0+a 1+a 2+a 3+a 4+a 5=25+33,令x=﹣1,a 0﹣a 1+a 2﹣a 3+a 4﹣a 5=﹣1, 两式相减得2(a 1+a 3+a 5)=60,故展开式中x 的奇次幂项的系数之和为30.【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题.20.【答案】(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)推导出BC AC ⊥,1CC AC ⊥,从而⊥AC 平面11B BCC ,连接11,NA CA ,则N A B ,,1三点共线,推导出MN CN BA CN ⊥⊥,1,由线面垂直的判定定理得⊥CN 平面BNM ;(2)连接1AC 交1CA 于点H ,推导出1BA AH ⊥,1BA HQ ⊥,则AQH ∠是二面角C BA A --1的平面角.由此能求出二面角1B BN C --的余弦值.试题解析:(1)如图,取CE 的中点G ,连接BG FG ,. ∵F 为CD 的中点,∴DE GF //且DE GF 21=. ∵⊥AB 平面ACD ,⊥DE 平面ACD , ∴DE AB //, ∴AB GF //.又DE AB 21=,∴AB GF =. ∴四边形GFAB 为平行四边形,则BG AF //. (4分) ∵⊄AF 平面BCE ,⊂BG 平面BCE , ∴//AF 平面BCE (6分)考点:直线与平面平行和垂直的判定.21.【答案】【解析】(Ⅰ)解:椭圆的左,右焦点分别为F1(﹣c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b==c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;(Ⅱ)证明:设Q(x1,y1),R(x2,y2),F1(﹣1,0),由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,①设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t2﹣2=0,判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,即为t2﹣2k2<1②x1+x2=,x1x2=,③y1=kx1+t,y2=kx2+t,代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,将③代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2).即有直线l恒过定点(﹣2,0).将t=2k代入②,可得2k2<1,解得﹣<k<0或0<k<.则直线l的斜率k的取值范围是(﹣,0)∪(0,).【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.22.【答案】【解析】解:(1)∵EP与⊙O相切于点A,∴∠ACB=∠PAB=25°,又BC是⊙O的直径,∴∠ABC=65°,∵四边形ABCD内接于⊙O,∴∠ABC+∠D=180°,∴∠D=115°.证明:(2)∵∠DAE=25°,∴∠ACD=∠PAB,∠D=∠PBA,∴△ADC∽△PBA,∴,又DA=BA,∴DA2=DC•BP.23.【答案】【解析】解:(1)依题意,知f(x)的定义域为(0,+∞).…当a=2,b=1时,f(x)=lnx﹣x2﹣x,f′(x)=﹣2x﹣1=﹣.令f′(x)=0,解得x=.…当0<x<时,f′(x)>0,此时f(x)单调递增;当x>时,f′(x)<0,此时f(x)单调递减.所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…(2)F(x)=lnx+,x∈[2,3],所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…所以a≥(﹣x02+x0)max,x0∈[2,3]…当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…(3)当a=0,b=﹣1时,f(x)=lnx+x,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴m=1+,…设g(x)=1+,则g′(x)=.…令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…所以m=1+,或1≤m<1+.…24.【答案】【解析】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈,当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在单调递增,在上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.。
【压轴题】高二数学上期末第一次模拟试题附答案
【压轴题】高二数学上期末第一次模拟试题附答案一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49D .292.如图阴影部分为曲边梯形,其曲线对应函数为1xy e =-,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( )A .23e - B .13e - C .43e- D .53e- 3.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A .B .C .D .4.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S =(单位:升),则输入k 的值为A .6B .7C .8D .95.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正n 边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出n 的值分别为( )(参考数据:20sin200.3420,sin()0.11613≈≈)A.1180sin,242S nn=⨯⨯B.1180sin,182S nn=⨯⨯C.1360sin,542S nn=⨯⨯D.1360sin,182S nn=⨯⨯6.大学生小明与另外3名大学生一起分配到某乡镇甲、乙丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为()A.112B.12C.13D.167.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为()A.4i≤B.5i≤C.6i≤D.7i≤8.已知线段MN的长度为6,在线段MN上随机取一点P,则点P到点M,N的距离都大于2的概率为()A.34B.23C.12D.139.按照程序框图(如图所示)执行,第3个输出的数是()A.6B.5C.4D.310.执行如图所示的程序框图,若输入2x=-,则输出的y=()A.8-B.4-C.4D.811.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40337=+.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是()A.12B.13C.14D.1512.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为()A.48B.60C.64D.72二、填空题13.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X ,则()E X =______________.14.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).15.已知实数]9[1x ∈,,执行如图所示的流程图,则输出的x 不小于55的概率为________.16.现有10个数,其平均数为3,且这10个数的平方和是100,则这组数据的标准差是______.17.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值满足关系式y=-2x+4,则这样的x 值___个.18.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,问一开始输入的x =______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.19.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为_____.20.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______.三、解答题21.某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:(1)根据频率分布直方图计算该种蔬果日需求量的平均数x(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为x公斤≤≤,利润为y元.求y关于x的函数关系式,并结合频率分布直方图估计利润x(0500)y不小于1750元的概率.22.某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x (万元)与销售收入y(万元)进行了统计,得到相应数据如下表:广告投入x(万元)91081112销售收入y(万元)2123212025(1)求销售收入y关于广告投入x的线性回归方程y bx a=+$$$.(2)若想要销售收入达到36万元,则广告投入应至少为多少.参考公式:()()()121ni iiniix x y ybx x∧==--=-∑∑,ˆˆ•a yb x=-23.一个盒子中有5只同型号的灯泡,其中有3只一等品,2只二等品,现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;(Ⅱ)求至少有一次取到二等品的概率.24.东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在[20,70]之间,根据统计结果,做出频率分布直方图如图:(1)求频率分布直方图中x的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数x和中位数m(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.①在答题卡上的统计表中填出每组相应抽取的人数:年龄[20,30)[30,40)[40,50)[50,60)[60,70]人数②若从年龄在[30,50)的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在[30,40)的概率.25.甲乙两人同时生产内径为25.41mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:mm ) , 甲:25.44,25.43, 25.41,25.39,25.38 乙:25.41,25.42, 25.41,25.39,25.42. 从生产的零件内径的尺寸看、谁生产的零件质量较高. 26.某学校高一、高二、高三的三个年级学生人数如下表按年级分层抽样的方法评选优秀学生50人,其中高三有10人. (1)求z 的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取8人,经检测她们的得分如下:9.4,8.6,9.2, 9.6,8.7,9.3,9.0,8.2,把这8人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD , 平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫ ⎪⎝⎭,结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.D解析:D 【解析】 【分析】通过定积分可求出空白部分面积,于是利用几何概型公式可得答案. 【详解】由题可知长方形面积为3,而长方形空白部分面积为:()()11001|2x x e dx e x e -=-=-⎰,故所求概率为25133e e---=,故选D. 【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.3.C解析:C 【解析】 【分析】先求出基本事件总数n =27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率. 【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体, ∴基本事件总数n =27, 在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上, 且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P =故选:C 【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.4.C解析:C 【解析】分析:执行程序框图,得到输出值4k S =,令24k=,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==,循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=; 第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24kS ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.5.C解析:C 【解析】分析:在半径为1的圆内作出正n 边形,分成n 个小的等腰三角形,可得正n 边形面积是13602S n sinn=⨯⨯o,按照程序框图规定的运算方法逐次计算,直到达到输出条件即可的结果.详解:在半径为1的圆内作出正n 边形,分成n 个小的等腰三角形,每一个等腰三角形两腰是1,顶角是360n ⎛⎫ ⎪⎝⎭o,所以正n 边形面积是13602S n sin n=⨯⨯o,当6n =时, 2.6S =≈; 当18n =时, 3.08S ≈;当54n =时, 3.13S ≈;符合 3.11S ≥,输出54n =,故选C.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.C解析:C 【解析】 【分析】基本事件总数n 2343C A ==36,小明恰好分配到甲村小学包含的基本事件个数m 322332A C A =+=12,由此能求出小明恰好分配到甲村小学的概率.【详解】解:大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教, 每个村小学至少分配1名大学生,基本事件总数n 2343C A ==36,小明恰好分配到甲村小学包含的基本事件个数m 322332A C A =+=12,∴小明恰好分配到甲村小学的概率为p 121363m n ===. 故选C . 【点睛】本题考查概率的求法,考查古典概率、排列组合等基础知识,考查运算求解能力,是基础题.7.B解析:B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体;当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.8.D解析:D 【解析】 【分析】根据题意画出图形,结合图形即可得出结论. 【详解】 如图所示,线段MN 的长度为6,在线段MN 上随机取一点P , 则点P 到点M ,N 的距离都大于2的概率为2163P ==. 故选D . 【点睛】本题考查了几何概型的概率计算问题,是基础题.9.B解析:B 【解析】第一次输出1,A =第二次输出123A =+=,第三次输出325A =+= ,选B.10.C解析:C 【解析】 【分析】执行程序框图,可得程序框图的功能是计算并输出分段函数32,0,0x x y x x ⎧>=⎨≤⎩的值,从而计算得解. 【详解】执行程序框图,可得程序框图的功能是计算并输出分段函数32,0,0x x y x x ⎧>=⎨≤⎩的值,由于20x =-<,可得2(2)4y =-=,则输出的y 等于4,故选C. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有读取程序框图的输出的结果,在解题的过程中,需要明确框图的功能,从而求得结果.11.A解析:A 【解析】 【分析】先列出不超过11的素数,再列举出随机选取2个不同的数的情况,进而找到和小于等于10的情况,即可求解 【详解】不超过11的素数有:2,3,5,7,11,共有5个, 随机选取2个不同的数可能为:()2,3,()2,5,()2,7,()2,11,()3,5,()3,7,()3,11,()5,7,()5,11,()7,11,共有10种情况, 其中和小于等于10的有:()2,3,()2,5,()2,7,()3,5,()3,7,共有5种情况, 则概率为51102P ==, 故选:A 【点睛】本题考查列举法求古典概型的概率,属于基础题12.B解析:B 【解析】 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.二、填空题13.【解析】【分析】列出随机变量的分布列求解【详解】由题意知某人到达银行的概率为几何概型所以:其到达银行时服务窗口的个数为的分布列为: 5 4 3 4 2 则【点睛】本题考查几何概型及随 解析:3.5625【解析】 【分析】列出随机变量的分布列求解. 【详解】由题意知某人到达银行的概率为几何概型,所以: 其到达银行时服务窗口的个数为的分布列为:则()54342 3.56258161648E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查几何概型及随机变量的分布列.14.【解析】由题意可知2次检测结束的概率为3次检测结束的概率为则恰好检测四次停止的概率为解析:35【解析】由题意可知,2次检测结束的概率为22225110A p A ==,3次检测结束的概率为31123232335310A C C A p A +==, 则恰好检测四次停止的概率为231331110105p p p =--=--=. 15.【解析】设实数x ∈19经过第一次循环得到x=2x+1n=2经过第二循环得到x=2(2x+1)+1n=3经过第三次循环得到x=22(2x+1)+1+1n=4此时输出x 输出的值为8x+7令8x+7⩾55 解析:38【解析】 设实数x ∈[1,9],经过第一次循环得到x =2x +1,n =2, 经过第二循环得到x =2(2x +1)+1,n =3,经过第三次循环得到x =2[2(2x +1)+1]+1,n =4此时输出x , 输出的值为8x +7, 令8x +7⩾55,得x ⩾6,由几何概型得到输出的x 不小于55的概率为963918P -==-. 故答案为38. 16.1【解析】【分析】设这10个数为则这组数据的方差为:由此能求出这组数据的标准差【详解】现有10个数其平均数为3且这10个数的平方和是100设这10个数为则这组数据的方差为:这组数据的标准差故答案为1解析:1 【解析】 【分析】设这10个数为1x ,2x ,3x ,⋯,10x ,则12310310x x x x +++⋯+=,222212310100x x x x +++⋯+=,这组数据的方差为:()()22222222212310123101231011[()()())69101010S x x x x x x x x x x x x x x x x ⎛⎤⎤⎡=-+-+-+⋯+-=+++⋯+-+++⋯++⨯ ⎥⎥⎢⎦⎣⎝⎦,由此能求出这组数据的标准差. 【详解】现有10个数,其平均数为3,且这10个数的平方和是100, 设这10个数为1x ,2x ,3x ,⋯,10x , 则12310310x x x x +++⋯+=,222212310100x x x x +++⋯+=,∴这组数据的方差为:()()22222222212310123101231011[()()())691011010S x x x x x x x x x x x x x x x x ⎛⎤⎤⎡=-+-+-+⋯+-=+++⋯+-+++⋯++⨯= ⎥⎥⎢⎦⎣⎝⎦,∴这组数据的标准差1S =.故答案为1. 【点睛】本题考查一组数据的标准差的求法,考查平均数、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.17.2【解析】【分析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算分段函数的函数值并输出【详解】该题考查的是有关程序框图的问题在解题的过程中注意对框图进行分析明确框图的作用解析:2 【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数2,224,251,5x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,并输出.【详解】该题考查的是有关程序框图的问题,在解题的过程中,注意对框图进行分析,明确框图的作用,根据题意,建立相应的等量关系式,求得结果.根据题意,可知该程序的作用是计算分段函数2,224,251,5x x y x x x x ⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,依题意得2224x x x ≤⎧⎨=-+⎩或252424x x x <≤⎧⎨-=-+⎩或5124x x x>⎧⎪⎨=-+⎪⎩,解得1x =-±x 的值有两个, 故答案是:2. 【点睛】该题考查的是有关程序框图的问题,在解题的过程中,注意分析框图的作用,之后建立相应的等量关系式,求得结果,从而得到满足条件的x 的个数.18.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件输出令即可得结果【详解】第一次输入执行循环体执行循环体执行循环体输出的值为0解得:故答案为【点睛】本题主要考查程 解析:78【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件输出87x -,令870x -=即可得结果. 【详解】第一次输入x x =,1i =执行循环体,21x x =-,2i =,执行循环体,()221143x x x =--=-,3i =, 执行循环体,()243187x x x =--=-,43i =>,输出87x -的值为0,解得:78x =, 故答案为78. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19.8【解析】【分析】根据程序框图知该程序的功能是计算并输出变量的值模拟程序的运行过程即可求解【详解】当时满足循环条件当时满足循环条件当时满足循环条件;当时不满足循环条件跳出循环输出故填【点睛】本题主要解析:8 【解析】 【分析】根据程序框图知,该程序的功能是计算并输出变量s 的值,模拟程序的运行过程即可求解. 【详解】当2i =时,满足循环条件,2,4,2s i k ===, 当4i =时,满足循环条件,4,6,3s i k === , 当6i =时,满足循环条件,8,8,4s i k ===; 当8i =时,不满足循环条件,跳出循环,输出8s =. 故填8. 【点睛】本题主要考查了程序框图,循环结构,属于中档题.20.65【解析】设红球不在红盒内且黄球不在黄盒内的概率为再设红球在红盒内的概率为黄球在黄盒内的概率为红球在红盒内且黄球在黄盒内的概率为则红球不在红盒且黄球不在黄盒由古典概型概率公式可得则即故答案为解析:65 【解析】设红球不在红盒内且黄球不在黄盒内的概率为P ,再设红球在红盒内的概率为1P ,黄球在黄盒内的概率为2P ,红球在红盒内且黄球在黄盒内的概率为3P ,则()1231P P P P =-+-:P 红球不在红盒且黄球不在黄盒由古典概型概率公式可得,1234!3!,5!5!P P P ===,则()1234!3!131125!5!20P P P P ⎛⎫=-+-=-⨯-=⎪⎝⎭,即0.65P =,故答案为0.65. 三、解答题21.(1)265公斤 (2)0.7 【解析】 【分析】(1)用频率分布直方图的每一个矩形的面积乘以矩形的中点坐标求和即为平均值; (2)讨论日需求量与250公斤的关系,写出分段函数再利用频率分布直方图求概率即可. 【详解】 (1)500.00101001500.00201002500.00301003500.0025100x =⨯⨯+⨯⨯+⨯⨯+⨯⨯ 4500.0015100+⨯⨯ 265=故该种蔬果日需求量的平均数为265公斤.(2)当日需求量不低于250公斤时,利润()=2515250=2500y ⨯-元, 当日需求量低于250公斤时,利润()()=25152505=151250y x x x ---⨯-元 所以151250,0250,2500,250500.x x y x -≤<⎧=⎨≤≤⎩由1750y ≥得,200500x ≤≤, 所以()1750P y ≥=()200500P x ≤≤=0.0030100+0.0025100+0.0015100=0.7⨯⨯⨯ 故估计利润y 不小于1750元的概率为0.7 .【点睛】本题主要考查了频率分布直方图的应用,做此类题的关键是理解题意,属于中档题.22.(1)71510ˆyx =+(2)30 【解析】 【分析】(1)由表中数据计算平均数和回归系数,求出y 关于x 的线性回归方程;(2)利用回归方程令715361ˆ0yx =+≥,求出x 的范围即可. 【详解】(Ⅰ)由题意知,10,22,x y ==()()()()()222221101211223710212ˆ10b-⨯-+⨯+-⨯-+⨯-+⨯==++++则,72210151ˆ0a∴=-⨯=, ∴ y 关于x 的线性回归方程为71510ˆy x =+. (Ⅱ)令715361ˆ0yx =+≥,则30x ≥,即广告投入至少为30(万元). 【点睛】本题考查了线性回归方程的求法与应用问题,是基础题. 23.(Ⅰ)310;(Ⅱ)710. 【解析】 【分析】列举出所有的基本事件,共有20个, (I )从中查出第一次取到二等品,且第二次取到的是一等品的基本事件数共有6个,利用古典概型的概率公式可得结果;(II )事件“至少有一次取到二等品”的对立事件是“取到的全是一等品”,“取到的全是一等品”包括了6个事件,“至少有一次取到二等品”取法有14种, 利用古典概型的概率公式可得结果. 【详解】(I )令3只一等品灯泡分别为,,a b c ;2只二等品灯泡分别为,X Y . 从中取出2只灯泡,所有的取法有20种,分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,a b a c a X a Y b a b c b X b Y c a ,,(),c X ,(),c Y ,(),X a ,(),X b ,(),X c ,(),X Y ,(),Y a ,(),Y b ,(),Y c ,(),Y X第一次取到二等品,且第二次取到的是一等品取法有6种, 分别为()()()()()(),,,,,,,,,,,X a X b X c Y a Y b Y c ,故概率是632010=; (II )事件“至少有一次取到二等品”的对立事件是“取到的全是一等品”, “取到的全是一等品”包括了6种分别为()()()()()(),,,,,,,,,,,a b a c b a b c c a c b , 故“至少有一次取到二等品”取法有14种,事件“至少有一次取到二等品”的概率是1472010=.本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 ,(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先11(,)A B ,12(,)A B …. 1(,)n A B ,再21(,)A B ,22(,)A B …..2(,)n A B 依次31(,)A B 32(,)A B ….3(,)n A B … 这样才能避免多写、漏写现象的发生.24.(1)0.025x=,平均数x 为52,中位数为53.75m =(2)①见解析②35【解析】 【分析】(1)由频率分布直方图各个小矩形的面积之和为1可得x ,用区间中点值代替可计算均值,中位数把频率分布直方图中小矩形面积等分.(2)①分层抽样,是按比例抽取人数;②年龄在[30,40)有2人,在[40,50)有4人,设在[30,40)的是1a ,2a ,在[40,50)的是1234b , b , b , b ,可用列举法列举出选2人的所有可能,然后可计算出概率. 【详解】(1)由频率分布直方图各个小矩形的面积之和为1, 得0.025x=在频率分布直方图中,这100位参赛者年龄的样本平均数为:250.05350.1450.2550.4650.452⨯+⨯+⨯+⨯+⨯=设中位数为m ,由0.050.10.2(50)0.040.5m +++-⨯=,解得53.75m =.(2)①每组应各抽取人数如下表:②根据分层抽样的原理,年龄在有2人,在有4人,设在的是1a ,2a ,在[40,50)的是1234b , b , b , b ,列举选出2人的所有可能如下:()()()()()()()()()()()1211121314212223241213,,,,,,,,,,,,,,,,,,,,,a a a b a b a b a b a b a b a b a b b b b b ,()()()()14232434,,,,,,,b b b b b b b b 共15种情况.设“这2人至少有一人的年龄在区间[30,40)”为事件A ,则包含:()()()()()()()()()121112131422222324,,,,,,,,,,,,,,,,,a a a b a b a b a b a b a b a b a b 共9种情况则93()155P A ==本题考查频率分布直方图,考查样本数据特征、古典概型,属于基础题型. 25.乙生产的零件比甲的质量高 【解析】试题分析:分别利用平均值公式算出甲乙两人生产的零件的平均值,再利用方差公式算出甲乙两人生产的零件的方差,发现甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.试题解析:甲的平均数()125.4425.4325.4125.3925.3825.415x =⨯++++=甲. 乙的平均数()125.4125.4225.4125.3925.4225.415x =⨯++++=乙. 甲的方差20.00052s =甲,乙的方差20.00012s =乙.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高. 26.(1)400(2)710 (3)0.75【解析】 【分析】 【详解】(1)设该校总人数为n 人,由题意得,5010100300n =+, 所以n=2000.z=2000-100-300-150-450-600=400;(2)设所抽样本中有m 个女生,因为用分层抽样的方法在高一女生中抽取一个容量为5的样本,所以40010005m=, 解得m=2也就是抽取了2名女生,3名男生,分别记作S 1,S 2;B 1 ,B 2,B 3, 则从中任取2人的所有基本事件为(S 1, B 1),(S 1, B 2),(S 1, B 3),(S 2,B 1),(S 2,B 2), (S 2,B 3),(S 1, S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个, 其中至少有1名女生的基本事件有7个:(S 1, B 1),(S 1, B 2),(S 1, B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1, S 2), 所以从中任取2人,至少有1名女生的概率为710. (3)样本的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=, 那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为.。
2018-2019学年浙江省浙南名校联盟高二(上)期末数学试卷(解析版)
(Ⅰ)求椭圆 C1 的方程; (Ⅱ)是否存在直线 l,使得 DA⊥DB,若存在,求出 l 的方程;若不存在,求说明理由.
22.(15 分)已知函数
.
(Ⅰ)求函数 f(x)的单调区间;
(Ⅱ)若
,求证:af(x)>lnx.
第 4 页(共 14 页)
2018-2019 学年浙江省浙南名校联盟高二(上)期末数学 试卷
,则 z=x+2y 的最大值是( )
A.
B.
C.0
D.
5.(4 分)在△ABC 中,M 是 BC 的中点,AM=1,点 P 在 AM 上且满足 =2 ,则 (•
+ )等于( A.
) B.
C.
D.
6.(4 分)设函数 f(x)=2sin(ωx+ ),将 y=f(x)的图象向右平移 个单位后,所
得的函数为偶函数,则 ω 的值可以是( )
的最小值为
.
15.(6 分)已知直线 l:kx﹣y+ =0,曲线 C=y=
,若直线 l 与曲线 C 相交于
A、B 两点,则 k 的取值范围是
;|AB|的最小值是
.
16.(4 分)点 P 是边长为 2 的正方形 ABCD 的内部一点,
,若
(λ,
μ∈R),则 λ+μ 的取值范围为
.
17.(4 分)函数 f(x)=a2x﹣max(a>0 且 a≠1),若此函数图象上存在关于原点对称的点,
得 0<a<1,
则“a<1”是“
”的必要不充分条件,
故选:B.
4.【解答】解:作出变量 x,y 满足约束条件
表示的平面区域,
得到如图的△ABC 及其内部, 其中 A( , ),B(﹣ ,﹣1),C(2,﹣1) 设 z=F(x,y)=x+2y,将直线 l:z=x+2y 进行平移, 当 l 经过点 A 时,目标函数 z 达到最大值 ∴z 最大值=F( , )= . 故选:B.
富阳区二中2018-2019学年高二上学期数学期末模拟试卷含解析
富阳区二中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >22. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=()A .﹣2B .2C .﹣98D .983. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A .B .C .D .4. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)5. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A. B .483C.D .1632036. 阅读右图所示的程序框图,若,则输出的的值等于8,10m n ==S ( )A .28B .36C .45D .1207. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为()A .20B .25C .22.5D .22.758. 在区间上恒正,则的取值范围为()()()22f x a x a =-+[]0,1A .B .C .D .以上都不对0a >0a <<02a <<9. 已知双曲线和离心率为的椭圆有相同的焦点,是两曲线的一个公共点,若4sinπ21F F 、P ,则双曲线的离心率等于( )21cos 21=∠PF F A . B .C .D .25262710.已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( )A .B .﹣C .4D .11.已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣12.已知a ,b 是实数,则“a 2b >ab 2”是“<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .14.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.15.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 16.设函数f (x )=,则f (f (﹣2))的值为 .17.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC 与平面所成角的正弦值为______________.ABC【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.18.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取19.0100人,则应在高三年级中抽取的人数等于.三、解答题19.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc .(Ⅰ)求A 的大小;(Ⅱ)如果cosB=,b=2,求a 的值.20.已知函数f (x )=x 2﹣ax+(a ﹣1)lnx (a >1).(Ⅰ) 讨论函数f (x )的单调性;(Ⅱ) 若a=2,数列{a n }满足a n+1=f (a n ).(1)若首项a 1=10,证明数列{a n }为递增数列;(2)若首项为正整数,且数列{a n }为递增数列,求首项a 1的最小值. 21.已知三棱柱ABC﹣A1B1C1,底面三角形ABC为正三角形,侧棱AA1⊥底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF∥平面BEC1(2)求A到平面BEC1的距离.22.【南京市2018届高三数学上学期期初学情调研】已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(Ⅰ)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(Ⅲ)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.23.某运动员射击一次所得环数X的分布如下:X0~678910P00.20.30.30.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.(I)求该运动员两次都命中7环的概率;(Ⅱ)求ξ的数学期望Eξ.24.已知p:x∈A={x|x2﹣2x﹣3≤0,x∈R},q:x∈B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}(1)若A∩B=[0,3],求实数m的值;(2)若p是¬q的充分条件,求实数m的取值范围.富阳区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选:C.【点评】本题主要考查函数在某点取得极值的条件.属基础题.2.【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(﹣1),又f(x)在R上是奇函数,所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,故选A.【点评】本题考查函数的奇偶性与周期性.3.【答案】D【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,∴△A′B′C′的高为=,∴△A′B′C′的面积S==.故选D.【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.4.【答案】A【解析】解:令f(x)=x3﹣,∵f ′(x )=3x 2﹣ln =3x 2+ln2>0,∴f (x )=x 3﹣在R 上单调递增;又f (1)=1﹣=>0,f (0)=0﹣1=﹣1<0,∴f (x )=x 3﹣的零点在(0,1),∵函数y=x 3与y=()x 的图象的交点为(x 0,y 0),∴x 0所在的区间是(0,1).故答案为:A . 5. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-×2×2×1=,故选D.132036. 【答案】C【解析】解析:本题考查程序框图中的循环结构.,当121123mnn n n n m S C m---+=⋅⋅⋅⋅= 8,10m n ==时,,选C .82101045mn C C C ===7. 【答案】C【解析】解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x ,则0.3+(x ﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C .【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目. 8. 【答案】C 【解析】试题分析:由题意得,根据一次函数的单调性可知,函数在区间上恒正,则()()22f x ax a =-+[]0,1,即,解得,故选C.(0)0(1)0f f >⎧⎨>⎩2020a a a >⎧⎨-+>⎩02a <<考点:函数的单调性的应用.9. 【答案】C 【解析】试题分析:设椭圆的长半轴长为,双曲线的实半轴长为,焦距为,,,且不妨设1a 2a c 2m PF =1n PF =2,由,得,,又,由余弦定理可知:n m >12a n m =+22a n m =-21a a m +=21a a n -=21cos 21=∠PF F ∴,,,设双曲线的离心率为,则,解mn n m c -+=22242221234a a c +=∴432221=+∴c a c a 4322122=+e)(得.故答案选C .26=e 考点:椭圆的简单性质.【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由为公共点,可把焦半径P 、的长度用椭圆的半长轴以及双曲线的半实轴来表示,接着用余弦定理表示1PF 2PF 21,a a ,成为一个关于以及的齐次式,等式两边同时除以,即可求得离心率.圆锥曲线问题21cos 21=∠PF F 21,a a 2c 在选择填空中以考查定义和几何性质为主.10.【答案】B【解析】解:∵f (x )是定义在R 上周期为2的奇函数,∴f (log 35)=f (log 35﹣2)=f (log 3),∵x ∈(0,1)时,f (x )=3x ﹣1∴f (log 3)═﹣故选:B 11.【答案】B【解析】解:当a >1时,f (x )单调递增,有f (﹣1)=+b=﹣1,f (0)=1+b=0,无解;当0<a <1时,f (x )单调递减,有f (﹣1)==0,f (0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B12.【答案】C【解析】解:由a2b>ab2得ab(a﹣b)>0,若a﹣b>0,即a>b,则ab>0,则<成立,若a﹣b<0,即a<b,则ab<0,则a<0,b>0,则<成立,若<则,即ab(a﹣b)>0,即a2b>ab2成立,即“a2b>ab2”是“<”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.二、填空题13.【答案】 .【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.14.【答案】48【解析】15.【答案】:2x﹣y﹣1=0解:∵P(1,1)为圆(x﹣3)2+y2=9的弦MN的中点,∴圆心与点P确定的直线斜率为=﹣,∴弦MN所在直线的斜率为2,则弦MN所在直线的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0.故答案为:2x﹣y﹣1=016.【答案】 ﹣4 .【解析】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.17.【解析】18.【答案】25【解析】考点:分层抽样方法.三、解答题19.【答案】【解析】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又∵A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a===3.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.20.【答案】【解析】解:(Ⅰ)∵,∴(x>0),当a=2时,则在(0,+∞)上恒成立,当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】21.【答案】【解析】解:(1)取BC1的中点H,连接HE、HF,则△BCC1中,HF∥CC1且HF=CC1又∵平行四边形AA 1C 1C 中,AE ∥CC 1且AE=CC 1∴AE ∥HF 且AE=HF ,可得四边形AFHE 为平行四边形,∴AF ∥HE ,∵AF ⊄平面REC 1,HE ⊂平面REC 1∴AF ∥平面REC 1.…(2)等边△ABC 中,高AF==,所以EH=AF=由三棱柱ABC ﹣A 1B 1C 1是正三棱柱,得C 1到平面AA 1B 1B 的距离等于∵Rt △A 1C 1E ≌Rt △ABE ,∴EC 1=EB ,得EH ⊥BC 1可得S △=BC 1•EH=××=,而S △ABE =AB ×BE=2由等体积法得V A ﹣BEC1=V C1﹣BEC ,∴S △×d=S △ABE ×,(d 为点A 到平面BEC 1的距离)即××d=×2×,解之得d=∴点A 到平面BEC 1的距离等于.…【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离.着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题.22.【答案】(1)a =(2)(-∞,-1-].(3)121e 827【解析】(2)f (x )+f (-x )=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥.22ln xx 令g (x )=,x >0,则g '(x )=.22ln xx ()3212ln x x -令g'(x )=0,解得x .当x ∈(0)时,g '(x)>0,所以g (x )在(0)上单调递增;当x∞)时,g'(x )<0,所以g (x ∞)上单调递减.所以g (x )max =g ,1e 所以-(a +1)≥,即a ≤-1-,1e 1e 所以a 的取值范围为(-∞,-1-].1e (3)因为f (x )=2x 3-3(a +1)x 2+6ax ,所以f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ),f (1)=3a -1,f (2)=4.令f ′(x )=0,则x =1或a .f (1)=3a -1,f (2)=4.②当<a <2时,53当x ∈(1,a )时,f '(x )<0,所以f (x )在(1,a )上单调递减;当x ∈(a ,2)时,f '(x )>0,所以f (x )在(a ,2)上单调递增.又因为f (1)>f (2),所以M (a )=f (1)=3a -1,m (a )=f (a )=-a 3+3a 2,所以h (a )=M (a )-m (a )=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.因为h ' (a )=3a 2-6a +3=3(a -1)2≥0.所以h (a )在(,2)上单调递增,53所以当a ∈(,2)时,h (a )>h ()=.5353827③当a ≥2时,当x ∈(1,2)时,f '(x )<0,所以f (x )在(1,2)上单调递减,所以M (a )=f (1)=3a -1,m (a )=f (2)=4,所以h (a )=M (a )-m (a )=3a -1-4=3a -5,所以h (a )在[2,+∞)上的最小值为h (2)=1.综上,h (a )的最小值为.827点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.23.【答案】【解析】解:(1)设A=“该运动员两次都命中7环”,则P(A)=0.2×0.2=0.04.(2)依题意ξ在可能取值为:7、8、9、10且P(ξ=7)=0.04,P(ξ=8)=2×0.2×0.3+0.32=0.21,P(ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,∴ξ的分布列为:ξ78910P0.040.210.390.36ξ的期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.24.【答案】【解析】解:由已知得:A={x|﹣1≤x≤3},B={x|m﹣2≤x≤m+2}.(1)∵A∩B=[0,3]∴∴,∴m=2;(2)∵p是¬q的充分条件,∴A⊆∁R B,而C R B={x|x<m﹣2,或x>m+2}∴m﹣2>3,或m+2<﹣1,∴m>5,或m<﹣3.。
学易金卷:段考模拟君之2019学年高二理科数学上学期期末原创卷04(考试版)
高二理科数学试题 第1页(共6页) 高二理科数学试题 第2页(共6页)绝密★启用前|学科网试题命制中心2018-2019学年上学期期末原创卷04高二理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教必修3+选修2-1。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校准备调查高三年级学生完成课后作业所需的时间,采取了两种抽样调查的方式:第一种由学生会的同学随机对24名同学进行调查;第二种由教务处对年级的240名学生编号,由001到240,请学号最后一位为3的同学参加调查,则这两种抽样方式依次为 A .分层抽样,简单随机抽样 B .简单随机抽样,分层抽样 C .分层抽样,系统抽样D .简单随机抽样,系统抽样2.若点(1,2)P --在抛物线y =ax 2(a ∈R ,a ≠0)的准线上,则实数a 的值为 A .8B .18C .4D .143.用秦九韶算法计算多项式6532()25238103,4f x x x x x x x =++-+-=-时,4v 的值为 A .92B .1529C .602D .148-4.已知变量x 与y 负相关,且由观测数据算得样本平均数4, 5.6x y ==,则由该观测的数据算得的线性回归方程可能是 A .0.44y x =+B . 1.20.7y x =+C .0.68y x =-+D .0.78.2y x =-+5.已知命题p :方程22153x y k k+=+-表示椭圆,命题q :-5<k <3,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是 A .34B .23C .12D .137.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线与x 2+(y -2)2=1没有公共点,则双曲线离心率的取值范围是 A .(1,2)B .(1,2]C .(1,+∞)D .(2,+∞)8.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,通过分层抽样抽取一些样本进行数据分析,如果在区间[2,4)内抽取2个样本,那么在区间[10,12)内应抽取的样本个数为A .2B .4C .6D .99.2018年平昌冬季奥运会于2月9日~2月25日举行,为了解奥运会五环所占面积与单独五个环面积和的比例P ,某学生设计了如下的计算机模拟,通过计算机模拟在长为8,宽为5的长方形内随机取了N 个点,经统计,落入五环及其内部的点数为,圆环半径为1,则比值的近似值为A .325πnNB .32πnNC .8πnND .5π32nN。
2018-2019学年高二上学期第二次阶段考试数学(理)试题
一、选择题1.设集合[]{}2=12230M N x Z x x M N =∈--<⋂=,,,则( ) A .[1,2] B .(-1,3) C .{1} D .{l ,2}2.命题“所有能被2整除的整数都是偶数”的否定是( )A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数的整数都不是偶数C .存在一个不能被2整除的整数是偶数D .存在一个能被2整除的整数不是偶数 3.“12m =”是“直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件4.程序框图如右图所示,当12=13A 时,输出的k 的值为( )A. 11B. 12C. 13D. 145.在ABC ∆中,若2sin cos sin()B A A B =+,则ABC ∆的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形6.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( ) A .5 BC.547.在等差数列{}n a 中,0>n a ,且408321=++++a a a a ,则54a a ⋅的最大值是( ) A.5 B.10 C.25 D.508.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,,初日织五尺,今一月织九匹三丈(1 匹=40 尺,一丈=10 尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5 尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( ) A .12尺 B .815尺 C .1629尺 D .1631尺 9.已知椭圆的左焦点为1F ,有一小球A 从1F 处以速度v 开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,方向相反,小球半径忽略不计),若小球第一次回到1F 时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为( ) A.13C. 35D. 23 10.某几何体的三视图如图所示,则在该几何体的所有顶点 中任取两个顶点,它们之间距离的最大值为( ) AC..11.关于x 的不等式0ax b +>的解集为(),1-∞, 则关于x 的不等式02bx ax ->+的解集为 ( ) A .()2,1- B .()(),21,-∞--+∞ C.()2,1--D .()(),21,-∞-+∞12.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e =( ) A .38 B.12 C.58 D.78二、填空题13.某校今年计划招聘女教师x 人,男教师y 人,若x 、y 满足2526x y x y x -≥⎧⎪-≤⎨⎪<⎩,则该学校今年计划招聘教师 最多_______人.14.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于 .15.已知命题p :[2,3]x ∀∈,20x a -≥;q :x R ∃∈,2220x ax a ++-=.若p q ∧是真命题,则实数a 的取值范围为 .16.如图在平面四边形ABCD 中,45,60,150,24A B D AB BC ∠=︒∠=︒∠=︒==, 则四边形ABCD 的面积为 .三、解答题17.(本小题满分12分)已知等比数列{}n a 满足38a =,416a =,1n n b a =-. (1)求数列{}n a 的通项公式;(2)若n S 为数列{}n b 的前n 项和,试判断n ,n b ,n S 是否成等差数列; (3)记1+=n n nn b b a c ,求数列}{n c 的前n 项和n T .18.(本小题满分12分)如图,四棱柱1111ABCD A BC D -中,底面ABCD 为直角梯形,//,AB DC AB AD ⊥, 且11,2AD CD AA AB ====,侧棱1A A ⊥底面ABCD ,E 为棱1AA 的中点. (1)证明:11B C CE ⊥; (2)求点C 到平面11B C E 的距离.DCB19.(本小题满分12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.0.420.50(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,且椭圆的右顶点为(2,0),离心率为12e=﹒(1)求椭圆C的方程;(2)设椭圆C的左右顶点分别为A,B,P为椭圆C上一动点,直线PA,PB分别交直线4x=于点D,E.试探究D,E两点纵坐标的乘积是否为定值?若是定值,求出该定值;若不是,说明理由.21.(本小题满分12分)已知函数2()2x x af x b+=+.(1)当4a =,2b =-时,求满足()2x f x =的x 的值; (2)若函数()f x 是定义在R 上的奇函数.①存在[1,1]t ∈-,使得不等式22()(2)f t t f t k -<-有解,求实数k 的取值范围;②若函数()g x 满足[]()()222xxf xg x -⋅+=-,若对任意x ∈R 且0x ≠,不等式(2)()10g x m g x ⋅-≥恒成立,求实数m 的最大值.22.(本题满分10分)选修4-5:不等式选讲. 已知函数(),0.f x x m m =-<(1)当1m =-时,解不等式()()2f x f x x +-≥-;(2)若不等式()(2)1f x f x +<的解集非空,求m 的取值范围.高二理科数学第一学期二阶考试参考答案:一、选择题 二、填空题13.10 14.8 15.]4,1[]2 , ( --∞ 16.6三、解答题17.解:(1)设等比数列的公比为q ,则2131816a q a q ⎧=⎨=⎩ ………………1分 则122a q =⎧⎨=⎩……………………3分 数列{}n a 的通项公式为2nn a =. ………4分(2)由于12-=nn b 则22212211--=---=++n n S n n n ………6分此时n n n n b n n n S 2222211=-=--+=+++ ………7分 则n ,n b ,n S 成等差数列………8分(3)由于121121)12)(12()12()12()12)(12(211111---=-----=--==+++++n n n n n n n n n n n n n b b a c ………10分 从而)121121()121121()121121()121121(1433221---++---+---+---=+n n n T ………11分12221211111--=--=+++n n n . ………12分 18.【解析】(1)由题易知侧棱1CC ⊥平面1111A B C D ,11B C ⊂平面1111A B C D ,111CC B C ∴⊥. (1分)1AD CD ==,12AA AB ==,且E 为棱1AA 的中点,1111B E BC EC ∴===(3分) 则2221111B E B C EC =+,1190,BC E ∴∠=即111B C C E ⊥.(4分) 又11,CC C E ⊂平面1CC E ,111CC C E C =,11B C ∴⊥平面1CC E .(5分)又CE ⊂平面1CC E ,11BC CE ∴⊥.(6分)(2)解法一:由(1)知,111111122B C E S B C EC ∆=⋅=, 1111113B CC E CC E V B C S -∆=⋅. (7分) 取1CC 的中点M ,连接EM ,设点C 到平面11B C E 的距离为d .11,CE C E EM CC =∴⊥, (8分)1111112222CC ES CC EM CC ∆∴=⋅==⨯=1112,33B CC E V -∴== (9分)11111.3C B C E B C E V d S -∆=⋅= (10分)由1111C B C E B CC E V V --=23=,解得d =∴点C 到平面11B C E (12分)解法二:由(1)知11B C ⊥平面1CC E 及11B C ⊂平面11B C E ,∴平面11B C E ⊥平面1CC E .在平面1CC E 内作1CH EC ⊥交1EC 于H ,则CH ⊥平面11B C E , 即CH 之长为点C 到平面11B C E 的距离. (8分) 取1CC 的中点M ,连接EM ,由1CE C E =,知1EM CC ⊥,EM ∴===(9分)由等面积法,得11EM CC CH EC ⋅===,∴点C 到平面11B C E(12分)19.解:(1)由频率分布直方图,可知:月用水量在[]0,05.的频率为0.080.5=0.04.⨯………2分同理,在[)(][)[)[)[)0.5,1 1.5,222.53,3.5 3.5,44,4.5,,,,,,等组的频率分别为 0.08,0.21,0.25,0.06,0.04,0.02.………4分由()10.04+0.08+0.21+0.25+0.06+0.04+0.020=0.5+0.5a a -⨯⨯,解得0.30.a =………5分(2)由(1)得,100位居民月均水量不低于3吨的频率为0.06+0.04+0.02=0.12 (6)分由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为3000000.13=36000.⨯………8分(3)设中位数为x 吨.因为前5组的频率之和为0.040.080.15+0.21+0.250.730.5++=>,而前4组的频率之和为0.040.080.150.210.480.5+++=<,所以2 2.5.x <…………9分由()0.5020.50.48x ⨯-=-,解得 2.04.x =………11分 故可估计居民月均用水量的中位数为2.04吨.………12分20.解:(1)设椭圆E 的方程为222210)x ya b a b +=>>(,由已知得:212a c a =⎧⎪⎨=⎪⎩ ………1分21a c =⎧∴⎨=⎩………2分 2223b ac ∴=-=………3分 ∴椭圆E 的方程为22143x y += …………4分 (2)由(1)可知A (﹣2,0),B (2,0), …………5分 设P (x 0,y 0),则直线PA 的方程为y=(x +2)①, …………6分直线PB 的方程为y=(x ﹣2)②. …………7分将x=4代入①②,可得y D =,y E =, …………8分∴y D •y E =•=,…………10分 ∵P (x 0,y 0)在椭圆上,∴=﹣(﹣4),…………11分∴y D •y E ==﹣9 ∴D ,E 两点纵坐标的乘积是定值﹣9.…………12分21.解:(1)因为4a =,2b =-,所以24222x x x+=-,化简得2(2)3240x x -⋅-=………………1分解得()2124x x=-=舍或,…………………3分 所以2x =. ………………4分(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以22022x x xx a ab b--+++=++, 化简并变形得:()(22)220x xa b ab -++++=.要使上式对任意的x 成立,则010a b ab +=+=且, 解得:1111a a b b ⎧==-⎧⎪⎨⎨=-=⎪⎩⎩或,因为()f x 的定义域是R ,所以11a b =⎧⎨=-⎩舍去,所以1,1a b =-=,所以()2121x x f x -=+.…………………………………5分① ()21212121x x x f x -==-++.对任意12,x x ∈R ,12x x <有:12212112222(22)()()2121(21)(21)x x x x x x f x f x --=-=++++. 因为12x x <,所以12220x x -<,所以()()12f x f x <,因此()f x 在R 上递增.………………………………………6分因为22()(2)f t t f t k -<-,所以222t t t k -<-,即2k t t <+在[1,1]t ∈-时有解.当[1,1]t ∈-时,2max ()2t t +=,所以2k <.…………………………8分②因为[]()()222x x f x g x -⋅+=-,所以()22x x g x -=+(0x ≠), ………9分所以()222222(22)2x x x x g x --=+=+-.不等式(2)()10g x m g x ⋅-≥恒成立,即2(22)222)10(x x x x m --+-+-⋅≥,令22x x t -=+,2t >,则8m t t+≤在2t >时恒成立. ………………10分 因为2t >,由基本不等式可得:8t t +≥t =所以m ≤m的最大值为12分22.【解析】(1)当1m =-时,()()11f x f x x x +-=++-,设()2,1,112,11,2,1,x x F x x x x x x -<-⎧⎪=++-=-≤<⎨⎪≥⎩当1x <-时,22x x -≥-,解得2x ≤-;当11x -≤<时,22x ≥-,解得01x ≤<; 当1x ≥时,22x x ≥-,解得1x ≥.综上,原不等式的解集为{}20x x x ≤-≥或.(5分)(2)()()22,0.f x f x x m x m m +=-+-<设()()()2g x f x f x =+,当x m ≤时,()223g x m x m x m x =-+-=-,则()g x m ≥-; 当2m m x <<时,()2g x x m m x x =-+-=-,则()2m g x m -<<-; 当2m x ≥时,()232g x x m x m x m =-+-=-,则()2m g x ≥-.则()g x 的值域为,2m ⎡⎫-+∞⎪⎢⎣⎭. 由题知不等式()()21f x f x +<的解集非空,则12m >-,解得2m >-, 由于0m <,故m 的取值范围是()2,0-.(10分)。
高二数学期末模拟题
高二数学(人文方向)期末模拟试题(五)一、选择题:(本大题共12小题,每小题5分,共60分) 1.“△ABC 有一个内角是3π”是“△ABC 三个内角可构成等差数列”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线24x ay =的准线方程为( )A. x a =-B. x a =C. y a =-D. y a = 3.命题“如果22,x a b ≥+那么abx 2≥”的逆否命题是 ( )A .如果22,x ab <+那么2.x ab < B .如果2,x ab ≥那么22.x a b ≥+C .如果2.x ab <那么22.x a b <+ D .如果22,x a b ≥+那么2.x ab <4.已知0x <,函数4y xx=+有 ( )A .最小值4B .最大值4C .最大值-4D .最小值-45.过点(2 -2)且与双曲线1222=-yx有公共渐进线的双曲线是 ( )A14222=-xyB12422=-yxC12422=-xyD14222=-yx6.双曲线122=+y mx 的虚轴长是实轴长的2倍,则=m (A )A .-41B .-4C .4D .417.已知131,0,0=+>>ba b a ,则a + 2b 的最小值为( A )A .627+B .32C .327+D .14 8.曲线1323+-=xx y 在点)1,1(-处的切线方程为( )A .23+-=x yB .43-=x yC .34+-=x yD .54-=x y9.若圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( )A .椭圆B .双曲线C . 线段D 两射线 10.抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A .43B .75C .85D .311.如果方程22143xymm +=--表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .34m <<B .72m >C .732m <<D .742m <<12.设双曲线的焦点在y 轴上,两条渐近线为12y x=±,则该双曲线的离心率e( )A .5B .5C .52D .5413.213x y =-表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分14.若抛物线()022>=p px y 上一点P 到准线和抛物线的对称轴的距离分别为10和6,则此点P 的横坐标为 ( )A .8B .9C .2D .1二、填空题:请把答案填在题中横线上或答题纸上(每小题4分,共16分).13.函数f(x)=e x lnx 的导数是______14.过抛物线22(0)y px p =>的焦点F 作倾斜角为45 的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =2 15.设函数1()22,(0)f x x x x=+-< 则()f x 的最大值为 ________16、抛物线上的点到直线的距离的最小值是17.等差数列{}n a 中,n S 是它的前n 项之和,且6778,S S S S <>,则①此数列的公差0d <②9S 一定小于6S ③7a 是各项中最大的项 ④7S 一定是n S 中的最大值,其中正确的是________(填入序号).1812F F 、是椭圆C:22184xy+=的焦点,在C 上满足12PF PF ⊥的点个个数为________19.设命题:431p x -≤,命题2:(21)(1)0q x a x a a -+++≤。
滨江区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
滨江区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数满足,且,分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()g x ()h x R 若使得不等式恒成立,则实数的取值范围是( )(0,2]x ∀∈(2)()0g x ah x -≥A .B .C .D .(,-∞(,-∞(0,)+∞2. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A .64B .32C .D .6433233. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β4. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( )A .S 18=72B .S 19=76C .S 20=80D .S 21=845. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .6. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限7. 若直线:圆:交于两点,则弦长L 047)1()12(=--+++m y m x m C 25)2()1(22=-+-y x B A ,的最小值为( )||AB A .B .C .D .58545258. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()A .B.y=x2C.y=﹣x|x|D.y=x﹣29.在△ABC中,角A,B,C所对的边分别为a,b,c ,若(acosB+bcosA)=2csinC,a+b=8,且△ABC的面积的最大值为4,则此时△ABC的形状为()A.等腰三角形B.正三角形C.直角三角形D.钝角三角形34意在考查学生空间想象能力和计算能48,则它的首项是()C.4 D.6)D.13.从等边三角形纸片ABC上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .14.已知圆,则其圆心坐标是_________,的取值范围是________.22240C x y x y m +-++=:m 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.15.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .16.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 . 17.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .三、解答题19.(本小题满分10分)选修4-5:不等式选讲已知函数,.|1||2|)(+--=x x x f x x g -=)((1)解不等式;)()(x g x f >(2)对任意的实数,不等式恒成立,求实数的最小值.111])()(22)(R m m x g x x f ∈+≤-m 20.(本小题满分12分)已知数列的各项均为正数,,.{}n a 12a =114n n n na a a a ++-=+(Ⅰ)求数列的通项公式;{}n a (Ⅱ)求数列的前项和.11n n a a +⎧⎫⎨⎬+⎩⎭n n S21.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式;(2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:.()00f x '>22.已知{a n }为等比数列,a 1=1,a 6=243.S n 为等差数列{b n }的前n 项和,b 1=3,S 5=35.(1)求{a n }和{B n }的通项公式;(2)设T n =a 1b 1+a 2b 2+…+a n b n ,求T n . 23.(本小题满分10分)已知集合{}2131A x a x a =-<<+,集合{}14B x x =-<<.(1)若A B ⊆,求实数的取值范围;(2)是否存在实数,使得A B =?若存在,求出的值;若不存在,请说明理由.24.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.滨江区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1. 【答案】B 【解析】试题分析:因为函数满足,且分别是上的偶函数和奇函数,()xF x e =()()()F x g x h x =+()(),g x h x R 使得不等式()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 恒成立, 即恒成立, ()()20g x ah x -≥22022xxx xe ee e a --+--≥A()2222xx x xx xx xe e e e a e e e e -----++∴≤=--, 设,则函数在上单调递增,, 此时不等()2x x x xe e e e--=-++x x t e e -=-x x t e e -=-(]0,2220t e e -∴<≤-式当且仅当,即时, 取等号,,故选B.2t t +≥2t t=t =a ∴≤考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.2. 【答案】B 【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:,故选B. 1444322⨯⨯⨯=考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.3. 【答案】D【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D 选项中的命题是错误的故选D 4. 【答案】【解析】选B.∵3a 8-2a 7=4,∴3(a 1+7d )-2(a 1+6d )=4,即a 1+9d =4,S 18=18a 1+=18(a 1+d )不恒为常数.18×17d 2172S 19=19a 1+=19(a 1+9d )=76,19×18d 2同理S 20,S 21均不恒为常数,故选B.5. 【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A .【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件. 6. 【答案】D【解析】解:∵P (sin θcos θ,2cos θ)位于第二象限,∴sin θcos θ<0,cos θ>0,∴sin θ<0,∴θ是第四象限角.故选:D .【点评】本题考查了象限角的三角函数符号,属于基础题. 7. 【答案】B 【解析】试题分析:直线,直线过定点,解得定点,当点:L ()()0472=-++-+y x y x m ⎩⎨⎧=-+=-+04072y x y x ()1,3(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长AB ()()5123122=-+-=d ,故选B.545252=-=AB 考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R 是圆的半径,d 是圆心到直线的距离.222d R l -=1111]8. 【答案】D 【解析】解:函数为非奇非偶函数,不满足条件;函数y=x 2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;函数y=﹣x|x|为奇函数,不满足条件;函数y=x ﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题. 9. 【答案】A 【解析】解:∵(acosB+bcosA )=2csinC ,∴(sinAcosB+sinBcosA )=2sin 2C ,∴sinC=2sin 2C ,且sinC >0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab ≤16,(当且仅当a=b=4成立)∵△ABC 的面积的最大值S △ABC =absinC ≤=4,∴a=b=4,则此时△ABC 的形状为等腰三角形.故选:A . 10.【答案】D 【解析】11.【答案】B 【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,{}n a 123,,a a a 1322a a a +=12323a a a a ++=解得,由题意得,解得或,因为是递增的等差数列,所以24a =1313812a a a a +=⎧⎨=⎩1326a a =⎧⎨=⎩1362a a =⎧⎨=⎩{}n a ,故选B .132,6a a ==考点:等差数列的性质.12.【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确;中间的棱在侧视图中表现为一条对角线,故C 不正确;而对角线的方向应该从左上到右下,故B 不正确故A 选项正确.故选:A .【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.二、填空题13.【答案】 .【解析】解:设大小正方形的边长分别为x ,y ,(x ,y >0).则+x+y+=3+,化为:x+y=3.则x 2+y 2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.14.【答案】,.(1,2)-(,5)-∞【解析】将圆的一般方程化为标准方程,,∴圆心坐标,22(1)(2)5x y m -++=-(1,2)-而,∴的范围是,故填:,.505m m ->⇒<m (,5)-∞(1,2)-(,5)-∞15.【答案】 3x ﹣y ﹣11=0 .【解析】解:设过点P (4,1)的直线与抛物线的交点为A (x 1,y 1),B (x 2,y 2),即有y 12=6x 1,y 22=6x 2,相减可得,(y 1﹣y 2)(y 1+y 2)=6(x 1﹣x 2),即有k AB ====3,则直线方程为y ﹣1=3(x ﹣4),即为3x ﹣y ﹣11=0.将直线y=3x ﹣11代入抛物线的方程,可得9x 2﹣72x+121=0,判别式为722﹣4×9×121>0,故所求直线为3x ﹣y ﹣11=0.故答案为:3x ﹣y ﹣11=0. 16.【答案】 .【解析】解:由题意知点P 的坐标为(﹣c ,)或(﹣c ,﹣),∵∠F 1PF 2=60°,∴=,即2ac=b 2=(a 2﹣c 2).∴e 2+2e ﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题. 17.【答案】锐角三角形【解析】解:∵c=12是最大边,∴角C 是最大角根据余弦定理,得cosC==>0∵C ∈(0,π),∴角C 是锐角,由此可得A 、B 也是锐角,所以△ABC 是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题. 18.【答案】= .【解析】解:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2sin 2B .再由正弦定理可得 ab+bc=2b 2,即 a+c=2b ,故a ,b ,c 成等差数列.C=,由a ,b ,c 成等差数列可得c=2b ﹣a ,由余弦定理可得 (2b ﹣a )2=a 2+b 2﹣2abcosC=a 2+b 2+ab .化简可得 5ab=3b 2,∴ =.故答案为:.【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题. 三、解答题19.【答案】(1)或;(2).13|{<<-x x }3>x 【解析】试题解析:(1)由题意不等式可化为,)()(x g x f >|1||2|+>+-x x x 当时,,解得,即;1-<x )1()2(+->+--x x x 3->x 13-<<-x 当时,,解得,即;21≤≤-x 1)2(+>+--x x x 1<x 11<≤-x 当时,,解得,即(4分)2>x 12+>+-x x x 3>x 3>x 综上所述,不等式的解集为或.(5分))()(x g x f >13|{<<-x x }3>x (2)由不等式可得,m x g x x f +≤-)(22)(m x x ++≤-|1||2|分离参数,得,∴m |1||2|+--≥x x m max|)1||2(|+--≥x x m ∵,∴,故实数的最小值是. (10分)3|)1(2||1||2|=+--≤+--x x x x 3≥m m 考点:绝对值三角不等式;绝对值不等式的解法.120.【答案】(本小题满分12分)解: (Ⅰ)由得,∴是等差数列,公差为4,首项为4, (3分)114n n n na a a a ++-=+2214n n a a +-={}2n a ∴,由得. (6分)244(1)4n a n n=+-=0n a >n a =(Ⅱ)∵, (9分)1112n n a a +==+ ∴数列的前项和为11n n a a +⎧⎫⎨⎬+⎩⎭n . (12分)11111)1)2222+++=- 21.【答案】(1);(2);(3)证明见解析.()26ln f x x x x =--3n =【解析】试题解析: (1),所以,()2af'x x b x =+-(1)251(1)106f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩∴函数的解析式为;()f x 2()6ln (0)f x x x x x =-->(2),22626()6ln '()21x x f x x x x f x x x x--=--⇒=--=因为函数的定义域为,()f x 0x >令或,(23)(2)3'()02x x f x x x +-==⇒=-2x =当时,,单调递减,(0,2)x ∈'()0f x <()f x 当时,,函数单调递增,(2,)x ∈+∞'()0f x >()f x 且函数的定义域为,()f x 0x >(3)当时,函数,1a =2()ln f x x bx x =+-,,21111()ln 0f x x bx x =+-=22222()ln 0f x x bx x =+-=两式相减可得,.22121212()ln ln 0x x b x x x x -+--+=121212ln ln ()x x b x x x x -=-+-,,因为,1'()2f x x b x =+-0001'()2f x x b x =+-1202x x x +=所以12120121212ln ln 2'()2()2x x x x f x x x x x x x +-=⋅+-+--+212121221221122112211121ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤⎛⎫-⎢⎥⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦设,,211x t x =>2(1)()ln 1t h t t t -=-+∴,2222214(1)4(1)'()0(1)(1)(1)t t t h t t t t t t t +--=-==>+++所以在上为增函数,且,()h t (1,)+∞(1)0h =∴,又,所以.()0h t >2110x x >-0'()0f x >考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.22.【答案】【解析】解:(Ⅰ)∵{a n }为等比数列,a 1=1,a 6=243,∴1×q 5=243,解得q=3,∴.∵S n 为等差数列{b n}的前n 项和,b 1=3,S 5=35.∴5×3+d=35,解得d=2,b n =3+(n ﹣1)×2=2n+1.(Ⅱ)∵T n =a 1b 1+a 2b 2+…+a n b n ,∴①②①﹣②得:,整理得:.【点评】本题考查数列的通项公式的求法,考查数列的前n 项和的求法,解题时要认真审题,注意错位相减法的合理运用. 23.【答案】(1)[](2]01a ∈-∞- ,,;(2)不存在实数,使A B =.【解析】试题分析:(1)对集合A 可以分为A =∅或A ≠∅两种情况来讨论;(2)先假设存在实数,使A B =,则必有21103141a a a a -=-=⎧⎧⇒⎨⎨+==⎩⎩,无解.考点:集合基本运算.24.【答案】【解析】解:(Ⅰ)∵椭圆C :+=1(a >b >0)的短轴长为2,且离心率e=,∴,解得a2=4,b2=3,∴椭圆C的方程为=1.(Ⅱ)设直线MN的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,∴,,设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min=.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省杭州市富阳区新登中学2018-2019学年高二数学上学期期末模拟试题一.选择题(共10小题,每小题4分,共40分)1.双曲线=1的渐近线方程为()A.y=±B.y=±x C.y=±x D.y=±x2.在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,BB1的中点,则直线BC1与EF所成角的余弦值是()A.B.C.D.3.已知a、b、c为三条不重合的直线,下面有三个结论:①若a⊥b,a⊥c则b∥c;②若a ⊥b,a⊥c则b⊥c;③若a∥b,b⊥c则a⊥c.其中正确的个数为()A.0个B.1个C.2个D.3个4.设点P为椭圆上一点,F1,F2分别为C的左、右焦点,且∠F1PF2=60°,则△PF1F2的面积为()A.B.C.D.5.对于曲线:上的任意一点P,如果存在非负实数M和m,使不等式恒成立为坐标原点,M的最小值为,m的最大值为,则的值是A. 3B. 4C. 5D. 136.已知直线 l1:ax+(a+2)y+1=0,l2:x+ay+2=0,则“l1∥l2”是“a=﹣1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知点F为抛物线y 2=﹣8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为()A.B.C.6 D.4+28.已知圆O为Rt△ABC的外接圆,AB=AC,BC=4,过圆心O的直线l交圆O于P,Q两点,则的取值范围是()A.[﹣8,﹣1] B.[﹣8,0] C.[﹣16,﹣1] D.[﹣16,0]9.已知三棱锥D﹣ABC,记二面角C﹣AB﹣D的平面角为α,直线DA与平面ABC所成的角为β,直线DA与BC所成的角为γ,则()A.α≥β B.α≤β C.α≥γ D.α≤γ10.如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是()A、直线B、抛物线C、椭圆D、双曲线的一支二.填空题(共6小题,双空每空3分,单空每空4分,共30分)11.直线的斜率为;倾斜角大小为______.12.已知圆:, 则圆在点处的切线的方程是___________;过点(2,2)的切线方程是 .13.某几何体的三视图如图所示(单位:cm),则该几何体的体积为cm3,该几何体的表面积为cm214.已知m,n,s,t∈R+,m+n=2,,其中m、n是常数,当s+t取最小值时,m、n对应的点(m,n)是双曲线一条弦的中点,则此弦所在的直线方程为.15.在平面直角坐标系xoy中,双曲线的左支与焦点为F的抛物线x2=2py(p>0)交于M,N两点.若|MF|+|NF|=4|OF|,则该双曲线的离心率为.16.在三棱锥T﹣ABC中,TA,TB,TC两两垂直,T在底面ABC内的正投影为D,下列命题:①D一定是△ABC的垂心;②D一定是△ABC的外心;③△ABC是锐角三角形其中正确的是(写出所有正确的命题的序号)三、解答题(共4题,50分)17.(满分12分)已知抛物线C:y2=2px的焦点坐标为F(1,0),过F的直线l交抛物线C于A,B两点,直线AO,BO分别与直线m:x=﹣2相交于M,N两点.(Ⅰ)求抛物线C的方程;(Ⅱ)证明△ABO与△MNO的面积之比为定值.18.(满分12分)如图所示,四棱锥S﹣ABCD中,SA⊥底面ABCD,∠ABC=90°SA=2,,BC=1,,∠ACD=60°,E为CD的中点.(1)求证:BC∥平面SAE;(2)求直线SD与平面SBC所成角的正弦值.19.(满分12分)如图,在四棱锥P﹣ABCD中,点E是AD的中点,点F在棱PB上,AD∥BC,AB⊥AD,PA=PD=2,BC=AD=1,AB=,PC=.(1)证明:平面CEF⊥平面PAD;(2)设=k(0<k<1),且二面角P﹣CE﹣F的大小为30°,求实数k的值.20.(满分14分)对于曲线C上一点T,若在曲线C上存在异于T的两点,满足|TM|=|TN|,且TM⊥TN,则称点T为曲线C的“T点”,△TMN是点T的一个“特征三角形”.已知椭圆的一个顶点为B(0,1),A1,A2分别为椭圆G的左、右顶点.( I)证明:△BA1A2不是点B的“特征三角形”;( II)当a=2时,已知点A2是椭圆G的“T点”,且△A2MN是点A2的“特征三角形”,求出点M,N的一组坐标;( III)试判断点B是否为椭圆G的“T点”,若是,求出其“特征三角形”的个数;若不是,请说明理由.高二数学期末复习卷答案二.填空题(共6小题,双空每空3分,单空每空4分,共30分)11.; 12.;x=2或y=213. , 32 .x﹣2y+1=015..16.①③④三、解答题(共4题,50分)17.(满分12分)已知抛物线C:y2=2px的焦点坐标为F(1,0),过F的直线l交抛物线C 于A,B两点,直线AO,BO分别与直线m:x=﹣2相交于M,N两点.(Ⅰ)求抛物线C的方程;(Ⅱ)证明△ABO与△MNO的面积之比为定值.【解答】解:(Ⅰ)由焦点坐标为(1,0)可知,p=2∴抛物线C的方程为y2=4x(Ⅱ)当直线l垂直于x轴时,△ABO与△MNO相似,∴.当直线l与x轴不垂直时,设直线AB方程为y=k(x﹣1),设M(﹣2,y M),N(﹣2,y N),A(x1,y1),B(x2,y2),由整理得 k2x2﹣(4+2k2)x+k2=0,∵∠AOB=∠MON,∴x1•x2=1.∴.综上18.(满分12分)如图所示,四棱锥S﹣ABCD中,SA⊥底面ABCD,∠ABC=90°,,BC=1,,∠ACD=60°,E为CD的中点.(1)求证:BC∥平面SAE;(2)求直线SD与平面SBC所成角的正弦值.【解答】证明:(1)因为,BC=1,∠ABC=90°,所以AC=2,∠BCA=60°,在△ACD中,,AC=2,∠ACD=60°,由余弦定理可得:AD2=AC2+CD2﹣2AC•CDcos∠ACD解得:CD=4所以AC2+AD2=CD2,所以△ACD是直角三角形,又E为CD的中点,所以又∠ACD=60°,所以△ACE为等边三角形,所以∠CAE=60°=∠BCA,所以BC∥AE,又AE⊂平面SAE,BC⊄平面SAE,所以BC∥平面SAE.(2)由(1)可知∠BAE=90°,以点A为原点,以AB,AE,AS所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则S(0,0,2),,,.所以,,.设为平面SBC的法向量,则,即设x=1,则y=0,,即平面SBC的一个法向量为,所以所以直线SD与平面SBC所成角的正弦值为.19.(满分12分)如图,在四棱锥P﹣ABCD中,点E是AD的中点,点F在棱PB上,AD∥BC,AB⊥AD,PA=PD=2,BC=AD=1,AB=,PC=.(1)证明:平面CEF⊥平面PAD;(2)设=k(0<k<1),且二面角P﹣CE﹣F的大小为30°,求实数k的值.【解答】(1)证明:由PA=PD=2,点E是AD的中点,∴PA⊥AD,ABCE是矩形,∴EC⊥AD,∵平面PAD∩平面ABCD=AD,PE⊂平面PAD,EC∴PA⊥平面ABCDEC⊂平面ABCD∴PA⊥EC.∵BC=AD=1,AD∥BC,AB⊥AD,∴EC⊥AD,AD⊂平面PAD,∴平面CEF⊥平面PAD.(2)由(1)可得PA⊥AD,EC⊥AD,PA⊥EC,以E为坐标原点,向量,,的方向为x轴,y轴,z轴的正方形建立如图所示的空间直角坐标系A﹣xyz.E(0,0,0),P(0,0,),C(0,,0),B(﹣1,,0),设F(x,y,z),则=(x,y,z﹣),=(﹣1,,﹣),∵,∴,可得:x=﹣k,y=,z=,即F(﹣k,,),设平面CEF的法向量为(p,q,r),=(﹣k,,),=(﹣k,,)∴,即,令r=,则q=0,p=,即(,0,),PCE的法向量为=(﹣1,0,0),二面角P﹣CE﹣F的大小为30°,即cos30°=||=||=,解得:k=,故得实数k的值为.20.(满分14分)对于曲线C上一点T,若在曲线C上存在异于T的两点,满足|TM|=|TN|,且TM⊥TN,则称点T为曲线C的“T点”,△TMN是点T的一个“特征三角形”.已知椭圆的一个顶点为B(0,1),A1,A2分别为椭圆G的左、右顶点.( I)证明:△BA1A2不是点B的“特征三角形”;( II)当a=2时,已知点A2是椭圆G的“T点”,且△A2MN是点A2的“特征三角形”,求出点M,N的一组坐标;( III)试判断点B是否为椭圆G的“T点”,若是,求出其“特征三角形”的个数;若不是,请说明理由.【解答】(本小题满分14分)解:(I)证明:,,因为a>1,所以,即A 1B与A2B不垂直.所以△BA1A2不是点B的“特征三角形”.…(4分)( II)当a=2时,椭圆.因为点A2是椭圆G的“T点”,且△A2MN是点A2的一个“特征三角形”,不妨设M(m,n),N(m,﹣n)(﹣2<m<2).由题意得:解得或(舍)所以(或)….(8分)(III)点B是椭圆G的“T点”.不妨设点B的“特征三角形”为△BPQ.设直线BP的方程为y=kx+1(k>0),则直线BQ的方程为,由得(1+a2k2)x2+2a2kx=0.因为B(0,1),所以.所以=.同理可得.因为|BP|=|BQ|,所以,即(k﹣1)[k2+(1﹣a2)k+1]=0.(1)所以k=1或k2+(1﹣a2)k+1=0(2).由(2)式可得△=(1﹣a2)2﹣4=(a2+1)(a2﹣3).当时,(2)式有两个相等的正根1,所以(1)式有三个相等的正根为k=1;当时,(2)式有两个不等于1 的正根,所以(1)式有三个不相等的正根;当时,(2)式无实根,所以(1)式只有一个正根为k=1.综上:当时,满足条件的“特征三角形”有1个.当时,满足条件的“特征三角形”有3个.….(14分)。