窄带随机过程

合集下载

4.3 窄带随机过程的基本特点

4.3 窄带随机过程的基本特点
S AC (ω ) = S AS (ω ) = FT [ R X (τ ) cos(ω0τ ) + RX (τ ) sin(ω0τ )]
1 j = [ S X (ω + ω0 ) + S X (ω ω0 )] + [ S X (ω + ω0 ) S X (ω ω0 )] 2 2
S X (ω ) = j sgn( ω ) S X (ω )
AC (t)与AS (t)的互相关函数是奇函数
当τ = 0时, 有 : RAC AS (0) = 0
在同一时刻 AC (t)与AS (t)之间是正交的 , .
16
RAC AS (τ ) = RAS AC (τ ) SAC AS (ω) = SAS AC (ω) = FT[RAC AS (τ )]
RAC AS (τ ) = RX (τ ) sin( ω0τ ) + RX (τ ) cos(ω0τ )
1 SAC (ω) = SAS (ω) = {SX (ω +ω0 )[1+ sgn( ω +ω0 )] 2 + SX (ω ω0 )[1sgn( ω ω0 )]}
10
ω
SX (ω ω0 ) + SX (ω +ω0 )
1 ω 2
偶函数
11
ω SX (ω +ω0 ) + SX (ω ω0 ) ω < SAC (ω) = SAS (ω) = 2 0 其它
8
E[ AC (t)] = E[ AS (t)] = 0
AC (t)和AS (t)都是平稳过程
RAC (τ ) = RAS (τ ) = RX (τ ) cos(ω0τ ) + RX (τ ) sin( ω0τ )

随机信号分析_第五章_窄带随机过程

随机信号分析_第五章_窄带随机过程

定义复指数函数: ~s (t) ae j (t) ae j e j0t a~e j0t 式中 a~ ae j ,称为复包络。 可以看出s(t)是~s (t) 的实部,即:
s(t) Re[~s (t)]
某些情况下,用复指数形式来分析 问题更加简便,可以简化信号和滤波器 的分析。
复信号~s (t) 的频谱为:
1. s(t) Re[~s (t)]
2.
X~ (
)
2 0
X
(
)
0 0
式中X~ ( )为~s (t)的频谱。
可以证明:满足上面要求的 ~s (t) 是 存在的,称为解析信号。把它用解析表 达式表示为:~s (t) s(t) jsˆ(t)
可以推导出: sˆ(t)
1
s( ) d
t
上式称为希尔伯特(Hilbert)变换,记做
0
ω ω0-ωc ω0 ω0+ωc
|X~H(ω)|
0
ω0-ωc ω0 ω0+ωc
ω
2. 复指数表示
设s(t)为窄带信号,其频谱为X(ω) 。 定义窄带信号s(t)的复指数函数 ~se (t) 为:
~se (t) A(t)e j[0t (t)] A~(t)e j0t 其中A~(t)=A(t)e j (t) sc (t) jss (t)
用复数表示为:
s(t)=acosφ(t)=a[ejφ(t)+ e-jφ(t)]/2
因为 e j0t ( 0 )
所以s(t)的频谱为:
X(ω)= a[ejθδ(ω-ω0)+e-jθδ(ω+ω0)]/2 |X(ω)|= a[δ(ω-ω0)+δ(ω+ω0)]/2 说明正弦型信号包含正负两种频率成分, 其频谱为对称的两根单一谱线。

09第八章窄带随机过程

09第八章窄带随机过程

4S (w) w 0 (t)的 功 率 谱 密 度 S (w) X 5) 解 析 过 程 X X w 0 0 ˆ 解 : 已 知 R X ( ) 2[ R X ( ) jR X ( )], 等 式 两 边 做 傅 氏 变 换 可 得 : ˆ S X ( w ) 2[ S X ( w ) jS X ( w )] ˆ 其 中 , S X ( w ) j sgn( w ) S X ( w ) 所 以 : S X ( w ) 2[ S X ( w ) s g n ( w ) S X ( w )] 4SX (w) w 0 w 0 0
三、窄带随机过程的莱斯表达式
任 何 一 个 实 平 稳 随 机 过 程 X(t)都 可 以 表 示 为 : X ( t ) = ( t ) c o s w 0 t b ( t ) s in w 0 t 式 中 , 对 于 窄 带 随 机 过 程 来 说 , w 0一 般 为 窄 带 滤 波 器 的 中 心 频 率 。
( t ) , b ( t )为 另 外 两 个 随 机 过 程 。
ˆ ( t ) = X ( t ) c o s w 0t X ( t ) s i n w 0t ˆ b( t ) = - X ( t ) s i n w 0 t X ( t ) c o s w 0 t 证明:
证明: 若 X(t)为 实 随 机 过 程 , 则 其 解 析 过 程 为 : ˆ X ( t ) = X ( t ) jX ( t ) 用乘e
复随机过程
定义: 设{Xt, t∈T},{Yt, t∈T}是取实数值的两个随机过程,若对任意t∈T
Zt X
t
iY t
其中 i
1
,则称{Zt, t∈T}为复随机过程。

《随机信号分析》第五章-窄带随机过程

《随机信号分析》第五章-窄带随机过程
高斯 同一时刻不相关
独立
2020/10/24
06-9-27 28
5.3.2 结论1
对于均值为零的窄带平稳高斯过程
其同相分量和正交分量同样是平稳高斯过程, 而且均值都为零,方差也相同;
在同一时刻上的同相分量与正交分量是不相 关的或统计独立的。
2020/10/24
29
5.3.2
Rc Rs R cos 2 fc Rˆ sin 2 fc
15
2.随机信号的复信号表示
X (t) X (t) jXˆ (t)
R X
(
)
E
X
(t
)
X
*
(t)
E{[ X (t ) jXˆ (t )][ X (t) jXˆ (t)]}
RX ( ) RXˆ ( ) j[RXˆX ( ) RXXˆ ( )]
RX ( ) RXˆ ( ) RXˆX ( ) Rˆ X ( ) RXXˆ ( )
2020/10/24
2
希尔伯特变换 (Hilbert Transform)
1.定义
正变换定义:
H[x(t)] xˆ(t) 1 x( ) d
t
xˆ(t) x(t) 1
t
反变换:
H 1[xˆ(t)] x(t) 1 xˆ( ) d
t
H 1[xˆ(t)] xˆ(t) 1
第5章 窄带随机过程
Narrow-band Random Process
希尔伯特变换 信号的复信号表示 窄带随机过程的统计特性 窄带正态随机过程包络和相位的分布
2020/10/24
1
希尔伯特,D.(Hilbert,David,1862~ 1943)德国著名数学家。
希尔伯特领导的数学学派是19世纪末20 世纪初数学界的一面旗帜,希尔伯特被称 为“数学界的无冕之王”。

窄带随机过程的两种表达式

窄带随机过程的两种表达式

窄带随机过程的两种表达式
随机过程是有关概率的一个抽象概念,它指的是一系列随机变化的事件序列,可以通过某种数学形式来描述。

窄带随机过程是指在一定的时间和频率内的随机过程,它是不断变换的快速信号序列,可以被压缩表示为一维或二维的图像。

窄带随机过程的表达式可以主要分为两类:
一、谱密度函数表示法
谱密度函数可以定义为:S(f),是指窄带随机过程中,每一种频率f处的功率谱密度,即根据频率f得到每一次过程的变化情况,它可以用来预测窄带随机过程所属的分布,如正态分布、均方差和偏差等。

举例来说,以正态分布为例,谱密度函数S(f)的表达式可以表示为:S(f) = σ^2 / (2πf^2)
其中,σ代表窄带随机过程的均方差,f为频率。

二、功率谱密度函数表示法
功率谱密度函数可以定义为:P(f),是指窄带随机过程中,随机变量的模方差的函数,它可以用来描述窄带随机过程的功率谱特性,估计窄带
随机信号的能量。

举例来说,功率谱密度函数P(f)的表达式可以表示为:
P(f) = 2πf^2σ^2
其中,σ代表函数的模方差,f为频率。

总的来说,窄带随机过程的两种表达式主要是谱密度函数表达法和功率谱密度函数表达法,它们各有特点,可以根据不同的窄带随机信号类型选择不同的表达方式,以达到最佳的谱性能效果。

窄带随机过程《通信原理》

窄带随机过程《通信原理》

窄带随机过程
1.窄带随机过程的定义
若随机过程ξ(t)的谱密度集中在中心频率f c附近相对窄的频带范围Δf内,即满足
条件,且f c远离零频率,则称该ξ(t)为窄带随机过程。

2.窄带随机过程的表示
①一般正弦表达式
窄带随机过程的样本的波形如同一个包络和相位随机缓变的正弦波。


式中,及分别为窄带随机过程ξ(t)的随机包络和随机相位;为正弦波的中心角频率。

②三角函数展开式
式中,ξc(t)是ξ(t)的同相分量;ξs(t)是ξ(t)的正交分量,则
3.窄带随机过程的统计特性
(1)ξc(t)和ξs(t)的统计特性
一个均值为零的窄带平稳高斯过程ξ(t):
①它的同相分量ξc(t)和正交分量ξs(t)同样是平稳高斯过程;
②ξc(t)和ξs(t)的均值为零,方差相同;
③在同一时刻上得到的ξc和ξs是互不相关的或统计独立的。

(2)的统计特性
一个均值为零、方差为的窄带平稳高斯过程ξ(t):
①包络aξ(t)的一维分布是瑞利分布,相位φξ(t)的一维分布是均匀分布;
②就一维分布而言,aξ(t)与φξ(t)是统计独立的,即。

03第三讲:高斯过程、窄带过程

03第三讲:高斯过程、窄带过程
正交分量:
现在我们需要求 Zc(t)和Zs(t)的统计特性,即 f(Zc,Zs)=?
对于窄带高斯过程来说,同相分量和正交分量是不相关的,或 者也可以说是统计独立的,而对于正弦波+窄带高斯过程来说, 它仍然属于窄带的范畴,所以其同相分量和正交分量也是相互 独立的,而且也是高斯过程。
对于同相分量:
由此可得同相分量Zc(t)的概率密度函数,
(2)y1、y2是x1、x2的函数:y1=f1(x1,x2),y2=f2(x1,x2), 反函数:x1=g1(y1,y2), x2=g2(y1,y2),
如果已知x1,x2的pdf为f(x1,x2), 求:y1,y2的pdf,f(y1,y2)=? 解决此问题时,利用以下结论: f(y1,y2)=|J|f(x1,x2) |J|是Jacobi行列式,
窄带随机过程的带宽 固定不变,载波频率 变大时,频谱图向高 频处搬移,对应样函数的包络频率不变,但样函数波形的频率 变 大。载波频率 变小时,频谱图向低频处搬移,对应样函数的包络 频率不变,但样函数波形的频率 变小。
二、窄带过程的数学表示
1、用包络和相位的变化表示
窄带过程是功率谱限制在ωc附近的很窄范围内的一个随机过程, 过程中的
2

或erfc(x) 2 2( 2x)
2.6 窄带随机过程
一、引言
1.必要性:任何通信系统都有发送机和接收机,为了提高系 统的可靠性,即输出信噪比,通常在接收机的输入端接有一 个带通滤波器,信道内的噪声构成了一个随机过程,经过该 带通滤波器之后,则变成了窄带随机过程,因此,讨论窄带 随机过程的规律是重要的。
为了能够借助于数表(误差函数表,概率积分表) 来计算高斯分布 ,需要引入概率积分函数或者误 差函数(互补误差函数)

窄带随机过程

窄带随机过程




相频特性为:
()
/ 2
/
2
0 0
波 器
二、希尔伯特变换的性质
(1) H[xˆ(t)] x(t)
(2) H[cos(0t )] sin(0t )
H[sin(0t )] cos(0t )
(3) 如果a(t)是低频信号
H[a(t) cos0t] a(t)sin 0t H[a(t)sin 0t] a(t) cos0t
低频信号
是窄带确知信号,其解析信号为
x%(t) A(t)cos0t+(t) jA(t)sin0t+(t)
A(t)e j0t+ (t) A%(t)e j0t
其中 A%(t) A(t)e j (t) ,称为复包络。
一、确知信号的复信号表示
对解析信号取傅里叶变换,得
X%() X () jX ()
第五章 窄带随机过程
窄带随机过程
5.1 窄带随机过程 5.2 信号的复信号表示 5.3 窄带随机过程的统计特性 5.4 窄带正态随机过程包络和相位的分布
5.1 窄带随机过程
一、希尔伯特变换的定义
假定一实函数x(t),其希尔伯特变换为:
H[x(t)] xˆ(t) 1 x( ) d
t
其反变换为:
4、同相分量和正交分量的统计特性
RY ( ) cos0t cos0 (t ) RYˆY ( ) sin 0t cos0 (t )
RYYˆ ( ) cos0t sin 0 (t ) RYˆ ( ) sin 0t sin 0 (t ) 利用如下关系 RY ( ) RYˆ ( ) RYYˆ ( ) RˆY ( ) RYˆY ( )
具有系统函数为 jsgn 的网络是一个使相位滞 π 后 2 弧度的宽带相移全通网络。

窄带随机过程

窄带随机过程
0
0 为高频载波。
窄带随机过程----- 若一个随机过程的功率谱密度,只分布在高频载波
ω0 附近的一个较窄的频率范围∆ω内,且满足ω0>>∆ω 时,则称该过程为窄带随机过程。记为:Z( t ) 。
例:图6.1为以窄带随机过程的功率谱密度函数
GZ(ω)
0
0
0
0
问题: 对应于功率谱密度GZ (ω)的窄带随机过程Z(t)的表达 式为何?即如何 Gz ( ) Z(t ) 。
t t
称为Hilbert变换。
Hilbert 变换与反变换:
sˆ(t) H[s(t)] 1 s( ) d
t
s(t) H 1[sˆ(t)] 1 sˆ( ) d sˆ(t) * 1
t
1
全通滤
| H( )|
波器
H ( )
0
90
1
0
f
0
f
0
90
表达式(二): Z(t) X (t)cos 0t Y (t)sin0t
其中:
X (t ) B(t )cos (t ) Y (t ) B(t )sin(t )
B(t ) X 2 (t ) Y 2 (t ), tan (t) Y (t) / X (t)
由于 cos 0t 与sin0t 正交,故称 X( t )-----Z( t )的同相分量, Y( t )-----Z( t )的正交分量。
窄带随机过程的定义 解析信号与希尔伯特变换 窄带随机过程的性质 窄带高斯随机过程Z(t)的高斯分布 余弦波加窄带高斯过程
§6.1 窄带随机过程的定义
窄带系统---------很多无线电系统的通频带 是比较窄的,
它们远小于其中心频率 ,0 这种系统只允许输入信号靠近

《随机信号分析》第五章-窄带随机过程_第三讲

《随机信号分析》第五章-窄带随机过程_第三讲

c
s
t t
t cos 2 ˆ t cos 2
fct fct
ˆ t sin 2 t sin 2
fct fct
■ 若E t 0,E c t E s t 0.
■ 若 t 是高斯过程,c t 和s t 也是高斯过程. ■ 若 t 是广义平稳过程,c t 和s t 是联合广义平稳随机
(t
)
arctan
s c
(t (t
) )
2020/7/24
2
窄带随机过程的低通表示
■ t 的等效低通表示
(t ) (t ) jˆ(t ) L (t )e j2 fct
复包络 复载波
其中L (t) ~(t)e j2fct
L (t) c (t) js (t) a (t)e j (t)
(t ) Re t Re L (t)e j2 fct
2020/7/24
3
5.3.2窄带随机过程的统计特性
解析信号的统计特性
■ R E * t t E (t) jˆ(t) (t ) jˆ(t )
R Rˆ jRˆ jRˆ 2 R jRˆ
P ( f ) A
0
fc
fc fc f
f
A P ( f fc )
0
2 fc
fc
0 f
f
A P ( f fc )
0
f 0
fc
2 fc
f
2020/7/24
Pc ( f ) Ps ( f )
2A
f 0 f
f
10
5.4 窄带随机过程包络和相位的分布
窄带正态噪声的包络和相位分布
一维分布 二维分布
12
5.4.1
J 为Jocabian行列式。

Matlab仿真窄带随机过程

Matlab仿真窄带随机过程

随机过程数学建模分析任何通信系统都有发送机和接收机,为了提高系统的可靠性,即输出信噪比,通常在接收机的输入端接有一个带通滤波器,信道内的噪声构成了一个随机过程,经过该带通滤波器之后,则变成了窄带随机过程,因此,讨论窄带随机过程的规律是重要的。

一、窄带随机过程。

一个实平稳随机过程X(t),若它的功率谱密度具有下述性质:中心频率为ωc,带宽为△ω=2ω0,当△ω<<ωc时,就可认为满足窄带条件。

若随机过程的功率谱满足该条件则称为窄带随机过程。

若带通滤波器的传输函数满足该条件则称为窄带滤波器。

随机过程通过窄带滤波器传输之后变成窄带随机过程。

图1 为典型窄带随机过程的功率谱密度图。

若用一示波器来观测次波形,则可看到,它接近于一个正弦波,但此正弦波的幅度和相位都在缓慢地随机变化,图2所示为窄带随机过程的一个样本函数。

图1 典型窄带随机过程的功率谱密度图图2 窄带随机过程的一个样本函数二、窄带随机过程的数学表示1、用包络和相位的变化表示由窄带条件可知,窄带过程是功率谱限制在ωc附近的很窄范围内的一个随机过程,从示波器观察(或由理论上可以推知):这个过程中的一个样本函数(一个实现)的波形是一个频率为ƒc且幅度和相位都做缓慢变化的余弦波。

写成包络函数和随机相位函数的形式:X(t)=A(t)*cos[ωc t+ Φ(t)]其中:A(t)称作X(t)的包络函数; Φ(t)称作X(t)的随机相位函数。

包络随时间做缓慢变化,看起来比较直观,相位的变化,则看不出来。

2、莱斯(Rice)表示式任何一个实平稳随机过程X(t)都可以表示为:X(t)=A c(t) cosωc t-A S(t) sinωc t其中同相分量:A c(t)= X(t) cosφt= X(t) cosωc t+sinωc t=LP[X(t) *2cosωc t]正交分量:A S(t) = X(t)sinφt=cosωc t— X(t) sinωc t= LP[-X(t) *2sinωc t](LP[A]表示取A的低频部分)。

6.窄带与正弦波加窄带随机过程

6.窄带与正弦波加窄带随机过程

于是, 由式(3.5 - 9)及式(3.5 - 10)得到
Rsc(0)=Rcs(0)=0
(3.5 - 15)
于是,由式(3.5 - 9)及式(3.5 - 10)得到
Rξ(0)=Rc(0)=Rs(0)
(3.5 - 16)
即σ2ξ=σ2c=σ2s
(3.5 - 17)
பைடு நூலகம்
这表明ξ(t)、ξc(t)和ξs(t)具有相同的平均功率或方差(因
3.5 窄带随机过程
•窄带过程: 随机过程通过以fc为中心频率的窄带系统的输出. •窄带系统: 是指其通带宽度Δf<<fc,且fc远离零频率的系统。 •窄带随机过程 实际中,大多数通信系统都是窄带型的,通 过窄带系统的信号或噪声必是窄带的,如果这时的信号或噪 声又是随机的,则称它们为窄带随机过程. •窄带噪声的波形:
再取使cosωct=0的所有t
(3.5 - 9)
Rξ(τ)=Rs(τ)cosωcτ+Rsc(τ)sinωcτ (3.5 - 10)
其中应有
Rs(t, t+τ)=Rs(τ) Rsc(t, t+τ)=Rsc(τ)
由以上的数学期望和自相关函数分析可知, 如果窄带过 程ξ(t)是平稳的,则ξc(t)与ξs(t)也必将是平稳的。
由式(3.5 - 1)至(3.5 - 4)看出,ξ(t)的统计特性可由aξ(t), φξ(t)或ξc(t),ξs(t))的统计特性确定。反之,如果已知ξ(t)的统计 特性则可确定aξ(t),φξ(t)以及ξc(t),ξs(t)的统计特性。
3.5.1 窄带过程的同相和正交分量的统计特性
设窄带过程ξ(t)是平稳高斯窄带过程,且均值为零, 方差 为σ2。下面将证明它的同相分量ξc(t)和正交分量ξs(t)也是零均 值的平稳高斯过程,而且与ξ(t)具有相同的方差。

概率论第六章 窄带随机过程

概率论第六章  窄带随机过程

pB (
ut )
1
2
2
exp(
ut
2
2
)
ut 0
可见,窄带高斯过程包络平方的一维概率密度函数 为指数分布。一个重要的特例是σ2=1的情况,此时有
pu (ut )
1 exp( ut ),
2
2
ut
0
其均值为E[ut]=2,方差为D[ut]=4.
§6.5余弦信号与窄带高斯过程之 和的概率分布
一、余弦信号加窄带高斯过程的包络和相位概率分布
类似地,如果一个随机过程的功率谱密度,只分 布在高频载波ω0附近的一个窄频率范围Δω内,在 此范围之外全为零,且满足ω0>>Δω时,则称之为 窄带过程。
一、窄带过程的物理模型和数学模型
一个典型的确定性窄带信号可表示为
x(t) a(t) cos[0t (t)]
其中,a(t)为幅度调制或包络调制信号,Ф(t)为 相位调制信号,它们相对于载频ω0而言都是慢变化的。
根据希尔伯特变换的性质: RXˆ ( ) RX ( )
RXˆX ( ) RXXˆ ( ) RˆX ( )
整理,得 RX ( ) RZ ( )cos0 RˆZ ( )sin0
同理可以证明 RY ( ) RZ ( )cos0 RˆZ ( )sin0
RX ( ) RY ( )
窄带过程性质的证明
第六章 窄带随机过程
6.1 窄带随机过程的一般概念 6.2希尔伯特变换 6.3 窄带随机过程的性质 6.4窄带高斯随机过程的包络和相位的概率分布 6.5余弦信号与窄带高斯过程之和的概率分布
§ 6.1 窄带随机过程的一般概念
窄带信号的频率或窄带系统的频率响应被限制在 中心频率ω0附近一个比较窄的范围内,而中心频率ω0 又离开零频足够远。

第5章-窄带随机过程

第5章-窄带随机过程

RXXˆ () RXXˆ ()
RXXˆ (0) 0
互相关函数是奇函数
ˆ (t )正交 意味着 X (t )与 X
17
(9)偶函数的希尔伯特变换为奇函数,奇函数的希 尔伯特变换为偶函数 2015/6/2
Hilbert变换

常用变换
xt
cos 2 f0 t sin 2 f0 t
X () X () j ( j sgn()) X () (1 sgn()) X () =2 X ( w)U ( w) 2 X ( w), W 0 W 0 0, 即,解析信号的频谱在负频率部分为0,在正频率部分是 是信号的两倍。
2015/6/2 22
解析信号的特点2:解析信号频谱与复包络频谱
2015/6/2
6
希尔伯特变换 (Hilbert Transform)
1. 定义 :
正变换定义:
ˆ (t ) H [ x(t )] x
反变换:
ˆ ( ) x ˆ (t )] x(t ) H [x d t 1 1 ˆ (t )] x ˆ (t ) H [x t
2015/6/2 20

解析信号的性质(2)
4) 解析信号 x(t ) 的能量为其实信号 x (t)能量的2倍
x1 t x 2 t 0 5) 提示:利用性质2)和3) x t x2 t 0 1 6) 已知实函数 x t , 求其解析信号的方法
x( t ) A( t )cos 2 f 0 t x( t ) A t e j 2 f0t
2015/6/2
注:A t 为低通信号,其带宽W f 0 .

第7章 窄带随机过程

第7章 窄带随机过程

h(t ) 1/ t
| H ( ) |
2 ( ) 2
90
0 0
H ( ) 的相移
1

0

0

H () 1
90
2
解析信号(用信号的希尔伯特变换构造解析信号)
• 由实信号 x(t ) 作为复信号 z(t ) 的实部, x(t ) 的希尔伯特变 换作为复信号 z(t ) 的虚部,即
H () 1
/ 2 0 ( ) /2 0
相频特性为:
正 交 滤 波 器
1 希尔伯特变换 希尔伯特变换相当于一个正交滤波器
1 ˆ (t ) x(t ) * x t
H ( )
+j 0 -j
j 0 H ( ) j 0
什么叫窄带?当信号的带宽远小于载波频率时, 则该信号称为窄带信号,如通信系统中的调幅信号 和调频信号。正弦信号或余弦信号为单频信号(谱线), 是最窄的一种窄带信号,实际上它的带宽等于 0 , 而扩频信号则为宽带信号。这些概念对于理解 窄带随机过程是很重要的。
窄带随机过程
高斯白噪声是一种典型的随机过程,它的概率密度函数为正 态分布(又称高斯分布) ,它的功率谱在整个频率范围内为常数, 故称之为“白” 。当它通过一个窄带滤波器后,就形成了一种窄带 高斯噪声, 它是一种典型的窄带随机过程, 如图所示。 图中 ni (t ) 为 输入高斯白噪声, n0 (t ) 为输出窄带高斯噪声,NBPF 为窄带滤波 器,根据前面随机信号通过线性系统的结论,得输出窄带高斯噪 声的功率谱及窄带随机过程的时域波形如下页图所示。
5
1. 窄带随机过程的定义
一个实平稳随机过程X(t),若它的功率谱密度:

《随机信号分析基础》第5章 课件 _窄带随机过程

《随机信号分析基础》第5章 课件 _窄带随机过程
其中 N(t) 为窄带零均值高斯噪声, q 为在(0,2p) 上均匀分布的随机相位。 N(t) 可表示为
N (t) = Ac(t)cos w0t - As(t)sin w 0t
因此
X(t) = [acosq+Ac(t)]cosw0t -[asinq+As(t)] sinw0t = A(t)cos[w0t+F(t)]
Gx (w)
A
w 0
w0
W
解:(1)零均值平稳窄带高斯信号 X(t) 的正交表达式为
X(t) = Ac(t)cos w 0t - As (t)sin w 0t
ò 基于功率谱计算功率得 P
=
Rx (0)
=
s2
=
1 2p
¥
G X (w)dw

=
AW 2p
5‐ 6 / 7
X(t) 为 0 均值的高斯随机信号,所以 X(t) N (0, s 2)
Ps(w) = 2121p Pm(w) * p[d(w - wc ) + d(w + wc )]
=
1 4
[Pm
(w
-
wc)
+ Pmd(w
+
wc ]
功率
P
=
Rsm (0)
=
1 2
Rm
(0)
cos
0
=
1 2
或则
ò ò P
=
1 4

1 2p
¥ -¥
Ps
(w)d
w
=
1 2p
¥ -¥
[Pm
(w
-
wc )
+
Pm (w
fAcAs (ac,as ) = fAc(ac )fAs (a s ) =

4.3 窄带随机过程的基本特点及解析表示

4.3 窄带随机过程的基本特点及解析表示

RAC AS RAS AC 0
即: AC t 与
S AC AS S ASA 0
C
AS t 处处正交
结论:
X(t)宽平稳,期望为0的实窄带随机过程, Ac(t),As(t) 低频过程
性质: (1)Ac(t),As(t) 期望为0,低频、平稳过程,且 联合平稳 (2)自相关函数,功率谱密度相同
RAc () RAs () S Ac () S As ()
(3)Ac(t),As(t)与X(t)平均功率同,方差同
(4)Ac(t),As(t) 互相关函数为奇函数
互谱密度相反
(5)同一时刻Ac(t),As(t)正交
(6)若X(t)单边功率谱关于ω0对偶,则两低频Ac(t),As(t) 过程始终正交(互谱密度,互相关函数横为0)
直接得到困难
X (t )
A(t ) (t )
AC (t ) AS (t )
展开成另一种表达形式(莱斯表示式):
X t A t cos 0 t t
A t cos t cos 0t A t sin t sin 0t
1.均值:零均值
ˆ t sin t 0 E A t E X t cos t X 0 0 C
ˆ t cos t 0 E A t E X t sin t X 0 0 S
4.3.2 平稳窄带随机过程的特点
这节讨论的X(t)是任意的宽平稳、数学期望为零的 实窄带随机过程。
对窄带过程取希尔伯特变换
X t AC t cos 0 t AS t sin 0 t ˆ X ( t ) AC t sin 0 t AS t cos 0 t

5.5窄带随机过程的莱斯表示

5.5窄带随机过程的莱斯表示

随机信号分析目录CONTENTSCONTENTS窄带随机过程的定义窄带随机过程的莱斯表示窄带随机过程的莱斯表示证明小结⚫定义:一个实平稳随机过程X(t),若它的功率谱密度具有下述性质00() ()0 X c c X S S ωωωωωωω⎧−≤≤+⎪=⎨⎪⎩其它且带宽,满足则称此随机过程为窄带平稳随机过程,以下简称窄带随机过程。

2c ωω∆=0ωω∆<<窄带随机过程的功率谱密度图)(ωX S O ωω∆ω∆000 c c ωωωωω−+000 - -c c ωωωωω−−+窄带随机过程的一个样本函数缓慢变化的包络[B(t )]频率近似为ω0有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)窄带随机过程的莱斯表示⚫窄带随机过程的莱斯表示式:其中:00ˆ()()cos ()sin a t X t t X t t ωω=+00ˆ()()sin ()cos b t X t t X t t ωω=−+将X(t)表示成解析过程:0000ˆˆ()cos ()sin ()sin ()cos X t t X t t j X t t X t t ωωωω⎡⎤⎡⎤=++−+⎣⎦⎣⎦ˆ()()()X t X t jXt =+[]000ˆ()()()cos sin j t X t e X t jX t t j t ωωω−⎡⎤=+−⎣⎦0()()()j tX t e a t jb t ω−=+证明:()a t =()b t ==+ωX t a t jb t e j t()()()0][=−++ωωωωa t t b t t j a t t b t t ()sin ()cos ()sin ()cos 0000][][=−ωω()()sin ()cos 00X t a t t b t t =+ωωa t X t t X t t ()()cos ()sin ˆ00=−+ωωb t X t t X t t ()()sin ()cos ˆ00取实部:=X t ()=Xt ()ˆ窄带随机过程的莱斯表示有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)窄带随机过程的定义:一个是平稳随机过程X(t),若它的功率谱密度具有下述性质00() ()0 X c c X S S ωωωωωωω⎧−≤≤+⎪=⎨⎪⎩其它且带宽,满足则称其为窄带随机过程。

窄带随机过程

窄带随机过程
n0 Pξ (ω ) = , w / Hz 2
由Pξ (ω ) R(τ )
因为R(τ )在τ = 0才有值,所以白噪声只与τ = 0相关
(三)
∴ R(τ ) =
宽 带 过 程
n0 δ (τ ) 2
2.带限白噪声 定义: 白噪声限制于(-f0,f0)之内
白噪声 n0/2 n0/2
R(τ ) = f 0 n0 S a (ω 0τ )
FT
1 H [ f (t )]= f (t ) πt
H [a (t )Cosω c t ]
j ω ←→ Sgn [A(ω ω c ) + A(ω + ω c )] 2 2π
FT
1 jA(ω + ω c ) ω < 0 X H ( jω ) = 2 1 2 jA(ω ω c ) ω > 0
X(w)
△f
0
fc
f
1 xH (t ) = F [X H ( jω )] = 2π
1
{∫
∞ j 0 2
A(ω ω c )e dω + ∫
jωt
j ∞ 2
0
A(ω + ω c )e jωt dω
}
因为是窄带信号,假设a(t)带宽为(-W,W)
ω c +W j ω c +W j 1 j ωt = A(ω ω c )e dω + ∫ A(ω + ω c )e jωt dω ω c W 2 2π ∫ω c W 2 分别令ω ' = ω ω c;ω ' = ω + ω c
R(τ)
带限白噪声
Pξ(w) n0/2
1/2f0
-f0
f0
r (t ) = ACos (ω c t + θ ) + n(t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N (t ) 平稳窄带实高斯随机过程,具有零均值和方差 2
功率谱密度对称于 0
N(t) 表示成莱斯表示式 N (t) a(t) cos0t b(t) sin 0t
X (t) acos a(t)cos0t asin b(t)sin0t

a1 b1
(t) (t)
a a
cos s in
a(t)
b(t)
于是, X (t) a1(t) cos0t b1(t) sin 0t
低频限带随机过程
同样 X (t) A(t) cos[0t (t)] 准正弦振荡
A(t) a12 (t) b12 (t)
慢变化随机过程
(t) arctg[b1 (t) / a1 (t)]
概率密度函数?
正弦信号与窄带随机过程之和的包络与相位概率密度函数
D(a1t ) D(b1t ) 2
f a1b1
(a1t , b1t
)
1
2
2
exp
1
2
2
[(a1t
a cos )2
(b1t
a sin )2 ]
2、由随机变量的函数的概率分布求 fA (At ,t )
ab11tt
At At
cost sin t
J cost sin t
At sin t At cost
f A ( At ,t )
f A ( At ), f (t )
二维r.v.函数的概率密度变换 边沿概率密度
f ab (at , bt ) f a (at ) fb (bt )
1
2
2
exp
at2 bt2
2 2
1
2
2
exp
At2
2 2
abtt
At At
cost s in t
利用二维随机变量函数的概率密度变换有:
解析过程性质
若X (t)为实平稳随机过程,则 Xˆ (t)也是实平稳 过程,且联合平稳 。
实函数与其希尔伯特变换的相关函数(功率谱)
相同
RXˆ ( ) RX ( ) S Xˆ () S X ()
RXˆX ( ) RˆX ( ) RXXˆ ( ) RˆX ( )
RXXˆ ( ) RXˆX ( )
| H () | 1
0
H ()的相移 90
0 90
希尔伯特变换逆变换
x(t) H 1[xˆ(t)]
1 xˆ(t )d 1 xˆ(t )d
h(t) xˆ(t)
h(t) 1
t
希尔伯特变换应用及实现
滤波法(难点在于滤波器设计)
平衡调幅器 0 带通滤波器 0 单边带输出
At
f A ( At ,t ) J fa1b1 (a1t , b1t )
f a1b1
(a1t ,b1t
)
1
2
2
exp
1
2
2
[(a1t
a cos )2
(b1t
a sin )2 ]
f A
(
,t
|
)
At
2
2
exp
1
2
2
[ At2
a2
2a(a1t
cos
b1t
s in
)]
f A ( At ,t ) J f a1b1 (a1t , b1t )
At
2
2
exp
1
2
2
[ At2
a2
2a(a1t
cos
b1t
sin )]
At
2
2
exp
1
2
2
[ At2
a2
2aAt
(cos t
cos
sin t
sin )]
At
2
2
exp
1
2
2
[ At2
a2
2aAt
cos(
t
)]
0 t 2 At 0
由边沿分布求 fA (At ) f (t )
RXˆX ( ) RXˆX ( )
解析过程性质
RXˆX (0) 0
RX~ ( ) 2[RX ( ) jRXXˆ ( )] 2[RX ( ) jRˆ( )]
S XXˆ
()
jSX jSX
() ()
0 0
S
X~
()
4S
0
X
()
0 0
例题解析
设低频信号a(t)的频谱为:
A()
a(t) X (t) cos0t Xˆ (t) sin 0t b(t) X (t) sin 0t Xˆ (t) cos0t 称此为莱斯表达式。
a(t),b(t)的性质
a(t)和b(t)都是实随机过程 E[a(t)] E[b(t)] 0 a(t)和b(t)都是平稳随机过程,且联合平稳。
fA (At ,t ) J fab(at ,bt )
at J At
bt At
at
t cost bt sint
t
At sint At cost At
f A
(
At
,t
)
At
2
2
exp
At2
2 2
0
At 0, 0 2
else
2
2
fA ( At ) 0 fA ( At ,t )dt f A ( At ,t ) 0 dt
2
1 ut
ut
2
exp( ut )
2 2
=
1 exp( ut )
2 2
2 2
概率密度为指数函数
包络与相位的二维概率密度函数
求解过程:
协方差矩阵
考虑最简单最常用的功率谱密度关于中心频 率对称的情况
2
K
0
Ra (
)
Rab ( )
0 a2
Rab ( ) Ra ( )
Ra ( ) Rab ( )
(或0 ) 0
希尔伯特变换应用及实现
相移法(难点在移相网络)
调制信号
V0 sin t
平衡 v1=V0 sin t sin0t 调幅器A
V0 sin 0t 载波 振荡器
调制信号90度 载波90度
移相网络
移相网络
合并网络 v3
V0 cos0t
平衡 v2 =V0 cos t cos0t 调幅器B
实信号、复信号、解析信号
包络和相位的一维概率密度
假设窄带高斯实随机过程 X (t)的均值为0,方差为 2
表示成莱斯表示式
X (t) a(t) cos0t b(t) sin 0t
令t固定,
abtt
At At
cost s in t
a(t) A(t)cos(t) b(t) A(t)sin(t)
fab (at , bt )
E[a2 (t)] E[b2 (t)] E[ X 2 (t)]
a(t),b(t)的性质
Rab( ) RX ( )sin0 RˆX ( )cos0
Rab (0) 0
RX ( ) Ra ( ) cos0 Rba ( )sin0
Sa () Sb () LP[SX ( 0 ) SX ( 0 )] Sab () jLP[SX ( 0 ) SX ( 0 )]
3.由边沿分布求 fA (At ) f (t )
At 的条件概率密度为
2
f A ( At ) 0 f A ( At ,t )dt
At exp( At2 a 2 ) • 1
2
2 2 2
2 0
exp[
aAt
2
cos(
t )]dt
At
2
exp(
At2 a 2
2 2
)
I
0
(
窄带随机过程
信息与通信工程学院 叶方
本章重点及难点
窄带随机过程的特点及工程意义 赖斯表达式、准正弦振荡表达式 窄带随机过程包络与相位慢变化特性 窄带高斯随机过程包络和相位特性 窄带高斯过程包络平方的概率密度函数 正弦信号与窄带随机过程之和的包络与相位特

希尔伯特变换
定义
在区间( t )内给定实值函数x(t) ,它的希 尔伯特变换记作 xˆ(t() 或者记作H[x(t)])
aAt
2
)
At 0
因此正弦型信号加窄带高斯噪声包络的一维概率密度为
f A ( At
)
At
2
exp(
At2 a 2
2 2
)
I
0
(
aAt
2
)
At 0
服从广义瑞利分布
窄带高斯过程的包络服从瑞利分布
正弦信号加窄带高斯噪声的包络服从广义瑞利 分布(又称为莱斯分布)
为何引入复信号 实信号与复信号的关系 如何得到,有何特点,与之间存在什么关系
解析过程
定义
给定任实随机过程X (t) ,定义复随机过程X (t)为
X (t) X (t) jXˆ (t)
Xˆ (t) H[X (t)] 1 X ( )d
t
称X~(t)为实随机过程X (t) 的复解析过程,简称 解析过程。
窄带波形的频谱及示意图
f £ fc
S( f )
O
S( f )
O
(a) 缓慢变化的包络[a(t)]
频率近似为 fc (b)
f
fc
f
t
莱斯表达式
任何一个实平稳窄带随机过程 X (t) 都可以表示 为: X (t) a(t) cos0t b(t) sin 0t
其中 0为固定值, a(t)、b(t)是另外两个随机过 程,且
At
2
2
exp
相关文档
最新文档