二次函数的图像(顶点式)
二次函数抛物线顶点式顶点坐标顶点式y=a(x-h)^2+k
二次函数抛物线顶点式顶点坐标 顶点式:y=a(x-h)^2+k 顶点坐标:(-b/2a,(4ac-b^2)/4a) 在二次函数的图像上 顶点式:y=a(x-h)^2+k 抛物线的顶点P(h,k) 顶点坐标:对于二次函数 y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)考点扫描 1.会用描点法画出二次函数的图象. 2.能利用图象或配方法确定抛物线的开口方向及对称轴、顶点的位置. 3.会根据已知图象上三个点的坐标求出二次函数的解析式. 4. 将一般式化为顶点式。
讲解 1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax2 y=a(x-h)2 y=a(x-h)2+k y=ax2+bx+c 顶点坐标 (0,0) (h,0) (h,k) () 对 称 轴 x=0 x=h x=h x= 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h<0时,则向左平行移动|h|个单位得到. 当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 因此,研究抛物线 y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便. 2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=,顶点坐标是(). 3.抛物线y=ax2+bx+c(a≠0),若a>0,当x≤时,y随x的增大而减小;当x≥时,y随x的增大而增大.若a<0,当x≤时,y随x的增大而增大;当x≥时,y随x的增大而减小. 4.抛物线y=ax2+bx+c的图象与坐标轴的交点: (1)图象与y轴一定相交,交点坐标为(0,c); (2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a≠0)的两根.这两点间的距离AB=|x2-x1|=. 当△=0.图象与x轴只有一个交点; 当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0. 5.抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x=时,y最小(大)值=. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax2+bx+c(a≠0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h) 2+k(a≠0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0). 7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
二次函数解析式顶点式
二次函数解析式顶点式1. 引言大家好,今天咱们来聊聊一个听起来有点高深的数学话题——二次函数的顶点式。
说到二次函数,可能有的小伙伴会觉得这是个“深不可测”的领域,其实不然。
二次函数就像是一个会“打滚”的球,有它自己的起伏和节奏,了解它之后,你会发现这其中的奥秘其实非常简单,也很有趣。
别担心,今天我会用最简单的语言和最轻松的方式来给大家讲解。
2. 什么是二次函数?2.1 二次函数的定义首先,我们得知道什么是二次函数。
简单来说,二次函数就是形如 ( y = ax^2 + bx + c ) 的数学表达式。
这里的 ( a )、( b ) 和 ( c ) 可不是随便写的,它们是常数,其中 ( a ) 不能等于零哦。
要是 ( a ) 等于零了,那就变成了一次函数,跟我们今天的主题可就没关系啦。
2.2 二次函数的图像接下来,咱们聊聊这个二次函数的图像。
想象一下,二次函数的图像就像是一座大山,山顶就是它的最高点或最低点,取决于 ( a ) 的符号。
要是 ( a ) 是正的,图像就像微笑的弯曲,称为“开口向上”;如果 ( a ) 是负的,那就是愁眉苦脸的样子,叫做“开口向下”。
所以,二次函数就有点像人生,有高兴也有低谷,真是颇具哲理呀!3. 顶点式的形成3.1 顶点式的定义说到顶点,咱们就得介绍一下顶点式。
顶点式是二次函数的一种表现形式,写作( y = a(x h)^2 + k ),其中 ( (h, k) ) 就是这个二次函数的顶点坐标。
就像每个人都有自己的特点,二次函数也有它的“个性”,通过顶点式,我们可以一眼看出它的“明星”在哪里。
3.2 如何转换为顶点式那么,如何把普通的二次函数变成顶点式呢?这就涉及到一个叫“完全平方法”的小技巧。
听起来复杂,但其实就像把一个脏衣服洗干净一样。
你只需要把 ( ax^2 + bx + c ) 转换成 ( a(x h)^2 + k ) 的形式。
简单的步骤是,先提取出 ( a ),然后在括号里搞定( (x h)^2 ) 的部分,最后再加上常数项 ( k )。
二次函数的图像和性质总结
二次函数的图像和性质总结二次函数的图像和性质总结二次函数的图像和性质一、二次函数的定义:形如的函数叫二次函数。
二、二次函数的解析式三种形式1一般式:;2顶点式:ya(xh)2k(a≠0),顶点坐标为(,),对称轴是。
3两点式:设x1、x2是抛物线与x轴的两个交点的横坐标,则ya(xx1)(xx2)对称轴为直线xx1x2。
2三、二次函数yax2bx+c(a≠0)的图象与性质二次函数1.开口大小。
由决定,越大,开口越。
2.开口方向:由决定。
当a>0时,函数开口方向向;当a若交点在X轴的上方,则c0;若交点在X轴的下方,则C0;(3)b的符号由对称轴来确定:b0知a、b同号;2ab若对称轴在Y轴的右侧,由0知a、b异号。
2a对称轴在Y轴的左侧,由7.缺项二次函数的特征2(1)抛物线yax(a≠0)的顶点在Y轴上时抛物bx+c线关于轴对称,=0;解析式为。
2(2)抛物线yax(a≠0)经过原点,则=0;bx+c解析式为。
2(3)抛物线yax(a≠0)顶点在原点,则b=bx+cc=,解析式为。
8.抛物线的平移和轴对称.左右平移在括号,记上反符号上下平移在末梢(1)抛物线yax2bx+c上(下)平移n(n0)个单位后的解析式求法:将原解析式中的不变,把转换为;(2)抛物线yax2bx+c左(右)平移n(n0)个单位后的解析式求法:将原解析式中的不变,把转换为。
2(3)抛物线yax关于x轴对称的抛物线解析式bx+c是(方法是将原yax2bx+c解析式中的不变,把转换为,再整理)2④物线yaxbx关于y轴对称的抛物线解析式是+c(方法是将原解析yax2bx+c式中的不变,把转换为,再整理)扩展阅读:二次函数的图像和性质总结二次函数的图像和性质1.二次函数的图像与性质:解析式a的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点yax22当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的(0,0)x0(0,0)yaxkya(xh)2(0,c)x0(0,k)右侧y随x的增大而增大。
二次函数的图像与性质
06
二次函数与一元二次方程的关 系
一元二次方程的基本概念
1 2
一元二次方程的标准形式
ax² + bx + c = 0,其中a、b、c是系数,且a≠0 。
判别式
Δ = b² - 4ac,用于判断一元二次方程的实数根 的个数。
3
根的求解
通过配方或公式法求解,若Δ > 0,方程有两个 实数根,若Δ = 0,方程有一个实数根,若Δ < 0 ,方程没有实数根。
顶点式
表达式
$y = a(x - h)^{2} + k$
描述
顶点式表示二次函数的顶点坐标,其中$(h, k)$是顶点坐标,$a$是二次项系数。
焦点式
表达式
$y = a\sqrt{x^{2} + 2ax + b}$
描述
焦点式主要用于描述二次函数的 焦点位置和形状,其中$a$和$b$ 分别是二次项和一次项的系数。
05
二次函数的应用
求最值问题
定义
设f(x)=ax2+bx+c(a,b,c是常数, a≠0),当a>0时,函数f(x)的图像是 一个开口向上的抛物线;当a<0时, 函数f(x)的图像是一个开口向下的抛物 线。
顶点
极值点
当a>0时,二次函数f(x)的图像在x=b/2a处取得最小值f(-b/2a);当a<0 时,二次函数f(x)的图像在x=-b/2a处 取得最大值f(-b/2a)。
对称
二次函数图像的对称主要改变函数的单调性。如果一个二次函数图像关于y轴对 称,那么它的单调性将发生改变;如果一个二次函数图像关于x轴对称,那么它 的单调性不变。
04
二次函数的解析式
初三二次函数课件ppt课件
02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。
二次函数抛物线公式大全
抛物线公式大全
抛物线方程是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法。
在几何平面上可以根据抛物线的方程画出抛物线。
抛物线在合适的坐标变换下,也可看成二次函数图像。
抛物线方程公式
一般式:ax²+bx+c(a、b、c为常数,a≠0)
顶点式:y=a(X-h)2+k(a、h、k为常数,a≠0)
交点式(两根式):y=a(x-x1)(x-x2)(a≠0)
其中抛物线y=aX2+bX+c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2+bX+c=0的两实数根。
抛物线标准方程
右开口抛物线:y^2=2px
左开口抛物线:y^2= -2px
上开口抛物线:x^2=2py y=ax^2(a大于等于0)
下开口抛物线:x^2= -2py y=ax^2(a小于等于0)
[p为焦准距(p>0)]
抛物线四种方程的异同
共同点:
①原点在抛物线上,离心率e均为1;
②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4。
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
二次函数的图像_课件
函数y=ax2(a≠0)与函数y=a(x+h)2+k(a≠0)的变换
【问题导思】 1.函数y=x2的图像与函数y=(x-1)2的图像有怎样的 关系?如何由y=x2的图像得到y=(x-1)2的图像? 【提示】 它们的形状相同,位置不同.把y=x2的图 像向右平移1个单位就可得到y=(x-1)2的图像. 2.如何由y=x2的图像得到y=x2-1的图像? 【提示】 把y=x2的图像向下平移1个单位.
(2)把y=2x2的图像,向右平移3个单位长度,再向上平 移4个单位长度,就得到函数y=2(x-3)2+4,即y=2x2- 12x+22的图像.
(3)y=4x2+2x+1
=4(x2+12x)+1
=4(x2+12x+116-116)+1
=4[(x+14)2-116]+1
=4(x+14)2+34.
把y=4x2的图像向左平移
1 4
个单位长度,再向上平移
3 4
个
单位长度,就可得到函数y=4x2+2x+1的图像.
求二次函数的解析式
根据下列条件,求二次函数y=f(x)的解析式. (1)图像过点(2,0),(4,0),(0,3); (2)图像顶点为(1,2)并且过点(0,4); (3)过点(1,1),(0,2),(3,5).
2.二次函数y=a(x+h)2+k的图像可由y=ax2向右平移 |h| 个单位长度(h<0),再向 下 平移|k| 个单位长度(k<0)得到.
在二次函数y=a(x+h)2+k(a≠0)中,a决定了二次函数图
像的开口大小及方向.
3.将二次函数y=ax2+bx+c(a≠0)通过配方化为y=a(x +h)2+k (a≠0)的形式,然后通过函数y=ax2(a≠0)的图像左
二次函数顶点式图像性质总结
二次函数顶点式图像性质总结二次函数性质:a正号说明开口向上,负号说明开口向下;a的绝对值越大,抛物线开口越小;c表示抛物线与y轴的交点,图像过(0,c)点。
二次函数y=ax2+bx+c(a≠0),当y=0时,二次函数为关于x的一元二次方程,即ax2+bx+c=0(a≠0)此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax2,y=ax2+k,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。
2.抛物线y=ax2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b2]/4a).3.抛物线y=ax2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。
若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.4.抛物线y=ax2+bx+c(a≠0)的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x2-x1|另外,抛物线上任何一对对称点的距离可以由2x|A+b/2a|(A为其中一点的横坐标)当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax2+bx+c的最值(也就是极值):如果a>0(a<0),则当x=-b/2a 时,y最小(大)值=(4ac-b2)/4a.顶点的横坐标,是取得极值时的自变量值,顶点的纵坐标,是极值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
二次函数的顶点式图像与性质教案
二次函数的顶点式图像与性质教案第一章:二次函数的顶点式图像1.1 引入二次函数的一般形式:y = ax^2 + bx + c1.2 解释二次函数的顶点式图像:y = a(x h)^2 + k,其中(h, k)为顶点坐标1.3 探讨顶点式图像的特点:开口方向、对称轴、顶点坐标等1.4 利用顶点式图像分析二次函数的增减性、最大值或最小值等性质第二章:开口方向与a的取值2.1 分析a的取值对开口方向的影响:a > 0时,开口向上;a < 0时,开口向下2.2 利用顶点式图像观察不同开口方向的二次函数特点2.3 引导学生通过观察图像判断开口方向及a的取值范围第三章:对称轴与顶点坐标3.1 解释二次函数的对称轴公式:x = h3.2 探讨对称轴与顶点坐标的关系:对称轴经过顶点3.3 利用顶点式图像分析二次函数的对称性质3.4 引导学生通过图像找到对称轴及顶点坐标第四章:增减性与最值4.1 解释二次函数的增减性:a > 0时,函数在顶点左侧递减,在顶点右侧递增;a < 0时,函数在顶点左侧递增,在顶点右侧递减4.2 探讨最值的求法:当a > 0时,最小值为顶点的y坐标;当a < 0时,最大值为顶点的y坐标4.3 利用顶点式图像观察二次函数的最值及增减性4.4 引导学生通过图像分析二次函数的最值和增减性第五章:实际问题与二次函数的顶点式图像5.1 引入实际问题:如抛物线运动、物体的抛物线轨迹等5.2 解释实际问题中的二次函数顶点式图像与性质的应用5.3 利用顶点式图像解决实际问题,如求物体的最大高度等5.4 引导学生将实际问题与二次函数的顶点式图像和性质相结合,提高解决问题的能力第六章:二次函数图像的平移6.1 回顾一次函数图像的平移规律:上加下减,左加右减6.2 介绍二次函数图像的平移规律:上加下减,左加右减,改变顶点坐标6.3 利用顶点式图像展示二次函数图像的平移过程6.4 引导学生通过实际例子,掌握二次函数图像的平移规律第七章:二次函数图像的叠加7.1 解释二次函数图像的叠加原理:两个函数图像在同一坐标系中绘制,观察交点情况7.2 利用顶点式图像展示两个二次函数图像的叠加情况7.3 探讨二次函数图像的叠加规律:开口方向、对称轴、顶点坐标等7.4 引导学生通过实际例子,理解二次函数图像的叠加原理第八章:二次函数图像与坐标轴的交点8.1 分析二次函数图像与x轴的交点:令y = 0,解方程得到x的值8.2 分析二次函数图像与y轴的交点:令x = 0,解方程得到y的值8.3 利用顶点式图像找出二次函数图像与坐标轴的交点8.4 引导学生通过实际例子,求解二次函数图像与坐标轴的交点第九章:二次函数图像的应用9.1 引入实际应用场景:如抛物线运动、物体的抛物线轨迹等9.2 解释实际应用中二次函数图像的重要性9.3 利用顶点式图像解决实际应用问题,如求物体的最大速度等9.4 引导学生将实际应用与二次函数图像相结合,提高解决问题的能力10.2 强调二次函数图像在实际问题中的应用价值10.3 提出拓展问题,激发学生对二次函数图像与性质的深入研究兴趣10.4 引导学生进行拓展练习,巩固所学知识重点和难点解析一、二次函数的顶点式图像重点和难点解析:理解顶点式图像的开口方向、对称轴、顶点坐标等特点是教学的重点,也是学生理解的难点。
二次函数配方法求顶点式
二次函数配方法求顶点式引言二次函数是高中数学中重要的概念之一,求二次函数的顶点式是解决二次函数相关问题的一种常用方法。
本文将介绍二次函数配方法求顶点式的具体步骤和应用示例。
二次函数的一般形式二次函数的一般形式为:y=ax2+bx+c其中,a,b,c是实数,且a eq0。
二次函数的顶点二次函数的图像是一个抛物线,抛物线的最高(或最低)点称为顶点。
在二次函数中,顶点的横坐标称为顶点横坐标,顶点的纵坐标称为顶点纵坐标。
二次函数配方法求顶点式的步骤二次函数配方法求顶点式的具体步骤如下:1.将二次函数化简为顶点式的一般形式。
2.求出顶点的横坐标。
3.将横坐标代入二次函数,求出顶点的纵坐标。
4.根据顶点的坐标得出二次函数的顶点式。
二次函数配方法求顶点式的示例现以一个具体的例子来说明二次函数配方法求顶点式的过程。
例:求二次函数y=x2+4x+3的顶点式。
第一步:化简为顶点式的一般形式首先,我们将二次函数化简为一般形式。
给定函数为y=x2+4x+3。
第二步:求顶点的横坐标顶点的横坐标可以通过以下公式求得:$$ x = -\\frac{b}{2a} $$将a,b代入公式,得到:$$ x = -\\frac{4}{2 \\cdot 1} = -2 $$第三步:求顶点的纵坐标将顶点的横坐标代入原函数,得到顶点的纵坐标:$$ y = (-2)^2 + 4 \\cdot (-2) + 3 = 7 $$第四步:得出顶点式根据顶点的坐标(-2,7),我们可以得出二次函数的顶点式:y=(x+2)2+7二次函数顶点式的应用二次函数顶点式在解决二次函数相关问题时具有广泛的应用。
下面介绍几个常见的应用场景:1. 最值问题通过求得二次函数的顶点式,可以直接得到二次函数的最值。
最值问题是在实际问题中经常遇到的,通过二次函数的顶点式可以快速求解。
2. 图像分析二次函数的顶点式可以直观地表示抛物线的顶点位置,通过对顶点式的分析,可以获得抛物线的图像特征,如对称轴、开口方向等。
数学顶点式
数学顶点式
顶点式是一种表示二次函数的方程形式。
它由一个带有变量的二次项、线性项和常数项组成,其中二次项的系数不能为零。
顶点式的形式为y = a(x - h)² + k,其中(a, h, k)表示顶点的坐标。
顶点式中,参数a决定了二次函数的开口方向和大小。
当a > 0时,函数开口向上;当a < 0时,函数开口向下。
顶点式中,参数(h, k)表示顶点的横纵坐标。
顶点即二次函数的最高点或最低点,是函数图像的关键特征。
使用顶点式可以方便地确定二次函数的顶点及开口方向。
也可以通过顶点式推断二次函数的图像特征,如对称轴、焦点等。
要将一般形式的二次函数转化为顶点式,可以利用配方法或求解完成平方的方式。
顶点式在几何分析、优化问题和物理学等领域中具有广泛的应用。
掌握顶点式有助于对二次函数的性质进行研究和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、5次函数y=a(x-h)2+k 的图像
执笔人:刘红梅 时间:2009年12月3日
学习目标: 会用描点法画出函数y=a(x-h)2+k 的图像 学习重点: 1.会用描点法画出二次函数 的图像;
2.知道抛物线 的对称轴与顶点坐标; 学习难点:确定形如
的二次函数的顶点坐标和对称轴。
学习方法:三五三教学模式法。
一、自主探究:
1、在同一坐标系中画出函y= x 2 ,y=x 2+2, y=(x-1)2 , y=(x-1)2+2, 的图像
解:列表:
描点连线:
2、观察图像完成下表:
1、观察函数y= x 2 ,y=x 2+2, y=(x-1)2 , y=(x-1)2+2的图像,回答问题 (1)它们的形状_________,位置____________. (2)函数y= x 2与函数y=(x-1)2+2有什么联系?
2、归纳总结:
1、二次函数y=a(x ±h)2+k 图像的性质 函数 开口方向 顶点坐标 对称轴 最值 y 随x 的增大而减小 y= x 2 ,y=x 2+2, y=(x-1)2 ,
y=(x-1)2+2, 抛物线 开口方向 对称性 顶点坐标 最值 y 随x 的减小而减小 y=a(x+h)2+k (a>0) y=a(x-h)2+k (a<0)
2、函数y=a(x ±h)2+k (a ≠0)的图像可以看作是y=ax 2向左或向右平移_________ 个单位,再向上或向下平移___________个单位得到的. 三、巩固练习:
1、指出下列抛物线的开口方向、顶点坐标、对称轴、最值及y 随x 增大而减小的x 取值范围。
(1)y=-6(x-2)2 (2)y=3x 2-6 (3)y=3-x 412 (4) y=x 5
1
2 (5) y=2(x+3)2+7
(6) y=4-2(x+4)2
2、抛物线的y=-4(x -6)2-3向左或向右平移_________ 再__________
平移___个单位得到y=-4x 2. 四、延伸迁移:
如图,某公路的隧道横截面为抛物线,其最大高度为6米,,底部宽OM 的
为12米,建立如图所示的直角坐标系。
(1) 直接写出M 及抛物线顶点P 的坐标; (2) 求这条抛物线的解析式。
五、达标检测:1、课本53页知识技能1
2、抛物线y=3(x+h )2
+k 的顶点坐标是(1,5),则h=_____ k=_____
六、学习收获。