九年级数学中考模拟试卷(人教版含答案)
人教版九年级中考冲刺数学模拟卷5(附答案)
中考数学试卷一、选择题。
(本大题共12小题.每小题3分.共36分.在每小题给出的四个选项中.只有一项是符合题目要求的) 1.计算(﹣5)×3的结果等于( )。
A .﹣2B .2C .﹣15D .152.tan30°的值等于( )。
A.33B .22 C .1 D .23.据2021年5月12日《天津日报》报道.第七次全国人口普查数据公布.普查结果显示.全国人口共141178万人.将141178用科学记数法表示应为( )。
A .0.141178×106 B .1.41178×105C .14.1178×104D .141.178×1034.在一些美术字中.有的汉字是轴对称图形.下面4个汉字中.可以看作是轴对称图形的是( )。
A .B .C .D .5.如图是一个由6个相同的正方体组成的立体图形.它的主视图是( )。
A .B .C .D .6.估计17的值在( )。
A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.方程组⎩⎨⎧=+=+432y x y x 的解是( )。
A .⎩⎨⎧==20y xB .⎩⎨⎧==11y xC .⎩⎨⎧-==22y xD .⎩⎨⎧-==33y x8.如图.▱ABCD 的顶点A .B .C 的坐标分别是(0.1). (﹣2.﹣2).(2.﹣2).则顶点D 的坐标是( )。
A .(﹣4.1) B .(4.﹣2)C .(4.1)D .(2.1)9.计算ba bb a a ---33的结果是( )。
A .3 B .3a +3b C .1 D .b a a-610.若点A (﹣5.y 1).B (1.y 2).C (5.y 3)都在反比例函数y =﹣x5的图象上.则y 1.y 2.y 3的大小关系是( )。
A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 1<y 211.如图.在△ABC 中.∠BAC =120°.将△ABC 绕点C 逆时针旋转得到△DEC .点A .B 的对应点分别为D .E .连接AD .当点A .D .E 在同一条直线上时.下列结论一定正确的是( )。
人教版九年级数学中考模拟试卷及答案解析
人教版九年级数学中考模拟试卷考 生须知 1.本试卷共8页,共三道大题,28道小题.满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上, 选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷和答题卡一并交回. 一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.在北京筹办2022年冬奥会期间,原首钢西十筒仓一片130000平方米的区域被改建为北京冬奥组委办公区.将130000用科学记数法表示应为 (A )41310⨯(B )51.310⨯(C )60.1310⨯(D )71.310⨯2.如图是某几何体的三视图,该几何体是 (A )三棱柱 (B )三棱锥 (C )长方体 (D )正方体3.实数a ,b ,c 在数轴上对应点的位置如图所示,则正确的结论是(A )2a >-(B )1b > (C )0a c +>(D )0abc >4.下列图案中,是中心对称图形的为(A ) (B ) (C ) (D )bca–1–2–3–412345.如图,直线AB ∥CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分∠BEF ,交CD 于点G , 若1∠=70︒,则2∠的度数是 (A )60︒ (B )55︒ (C )50︒(D )45︒6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用 平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示点A 的坐标为()1,1-,表示点B 的坐标为()32,,则表示其他位置的点的坐标正确的是7.下面的统计图反映了我国五年来农村贫困人口的相关情况,其中“贫困发生率”是 指贫困人口占目标调查人口的百分比.(以上数据来自国家统计局)根据统计图提供的信息,下列推断不合理...的是 (A )与2017年相比,2018年年末全国农村贫困人口减少了1386万人 (B )2015 ~2018年年末,与上一年相比,全国农村贫困发生率逐年下降 (C )2015~2018年年末,与上一年相比,全国农村贫困人口的减少量均超过1000万(D )2015~2018年年末,与上一年相比,全国农村贫困发生率均下降1.4个百分点BACDEGF 212014 ~ 2018年年末全国农村贫困人口统计图2014 ~ 2018年年末全国农村贫困发生率统计图8.如图,在平面直角坐标系xOy 中,△AOB 可以看作是 由△OCD 经过两次图形的变化(平移、轴对称、旋转) 得到的,这个变化过程不可能...是 (A )先平移,再轴对称 (B )先轴对称,再旋转 (C )先旋转,再平移 (D )先轴对称,再平移二、填空题(本题共16分,每小题2分) 9.写出一个大于2且小于3的无理数:.10.右图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m n . (填“>”,“=”或“<”)11.一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为. 12.若正多边形的一个内角是135︒,则该正多边形的边数为. 13.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,DE ∥BC .若6AE =,3EC =,8DE =, 则BC =.14.如果230m m --=,那么代数式211m m m m +⎛⎫-÷ ⎪⎝⎭的值是.15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为.16.如图,AB 是⊙O 的一条弦,P 是⊙O 上一动点 (不与点A ,B 重合),C ,D 分别是AB ,BP 的中点. 若AB = 4,∠APB = 45°,则CD 长的最大值为.EDCBA三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.下面是小立设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 及直线l 外一点A . 求作:直线AD ,使得AD ∥l .作法:如图2,①在直线l 上任取一点B ,连接AB ; ②以点B 为圆心,AB 长为半径画弧, 交直线l 于点C ;③分别以点A ,C 为圆心,AB 长为半径 画弧,两弧交于点D (不与点B 重合); ④作直线AD .所以直线AD 就是所求作的直线. 根据小立设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.(说明:括号里填推理的依据)证明:连接CD .∵AD=CD=BC=AB ,∴四边形ABCD 是().∴AD ∥l ().18.计算:()02cos3023π︒++-.19.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 20.关于x 的一元二次方程()2320x m x m -+++=. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值.lA图1图2l21.如图,在△ABC 中,90ACB ∠=︒,D 为AB 边上一点,连接CD ,E 为CD 中点,连接BE 并延长至点F ,使得EF =EB ,连接DF 交AC 于点G ,连接CF . (1)求证:四边形DBCF 是平行四边形; (2)若30A ∠=︒,4BC =,6CF =,求CD 的长.22.如图,AB 是⊙O 的直径,过⊙O 上一点C 作⊙O 的切线CD ,过点B 作BE ⊥CD于点E ,延长EB 交⊙O 于点F ,连接AC ,AF . (1)求证:12CE AF =; (2)连接BC ,若⊙O 的半径为5,tan 2CAF ∠=,求BC 的长.23.如图,在平面直角坐标系xOy 中,函数()0ky x x=<的图象经过点()16A -,, 直线2y mx =-与x 轴交于点()10B -,. (1)求k ,m 的值;(2)过第二象限的点P ()2n n -,作平行于x 轴的直线,交直线2y mx =-于点C ,交 函数()0ky x x=<的图象于点D . ①当1=-n 时,判断线段PD 与PC 的数量关系,并说明理由; ②若2PD PC ≥,结合函数的图象,直接写出n 的取值范围.CFDG EBA24.如图,Q 是AB 上一定点,P 是弦AB 上一动点,C 为AP 中点,连接CQ ,过点P 作PD ∥CQ 交AB 于点D ,连接AD ,CD .已知8AB cm ,设A ,P 两点间的距离为x cm ,C ,D 两点间的距离为y cm . (当点P 与点小荣根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小荣的探究过程,请补充完整:(1x x(2)建立平面直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合函数图象,解决问题:当DA DP ⊥时,AP 的长度约为cm .25.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了 整理、描述和分析.下面给出了部分信息.a .甲、乙两校40名学生成绩的频数分布统计表如下:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以 下为不合格)b .甲校成绩在70≤x <80这一组的是: 70707071727373737475767778c 根据以上信息,回答下列问题: (1)写出表中n 的值;(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是; (3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.26.在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m . (1)求m 的值;(2)求抛物线的顶点坐标;(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围.27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC <,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.28.在平面直角坐标系xOy 中,正方形ABCD 的顶点分别为(0,1)A ,(1,0)B -,(0,1)C -,(1,0)D .对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为正方形ABCD边上任意一点,如果P ,Q 两点间的距离有最大值,那么称这个最大值为图形M 的 “正方距”,记作d (M ). (1)已知点(0,4)E ,①直接写出()d E 点的值;②直线4y kx =+(0)k ≠与x 轴交于点F ,当()d EF 线段取最小值时,求k 的取 值范围;(2)⊙T 的圆心为(,3)T t ,半径为1.若()6d T <,直接写出t 的取值范围.DB参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分) 9.答案不唯一,10.>11.31012.813.12 14.315.552x y x y =+⎧⎪⎨=-⎪⎩16.三、解答题(本题共68分,第17-22题,每小题5分,第23 - 26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.解:(1)补全的图形如图所示:(2)菱形;四条边都相等的四边形是菱形; 菱形的对边平行. 18.解:原式=213+ 2+=.………………2分………………5分………………4分 ………………4分 ………………5分19.解:解不等式13(3)x x -<-,得4x >. 解不等式52x x +≥,得5x ≥. ∴原不等式组的解集为5x ≥.20.(1)证明:依题意,得()()2342m m ∆=⎡-+⎤-+⎣⎦ 26948m m m =++--()21m =+.∵()210m +≥, ∴0∆≥.∴方程总有两个实数根.(2)解:解方程,得1212x x m ==+,, ∵方程的两个实数根都是正整数,∴21m +≥. ∴1m -≥.∴m 的最小值为1-.21.(1)证明:∵点E 为CD 中点, ∴CE =DE .∵EF =BE ,∴四边形DBCF 是平行四边形.(2)解:∵四边形DBCF 是平行四边形,∴CF ∥AB ,DF ∥BC .∴30FCG A ∠=∠=︒,90CGF CGD ACB ∠=∠=∠=︒.在Rt △FCG 中,CF =6,∴132FG CF ==,CG = ∵4DF BC ==, ∴1DG =. 在Rt △DCG 中, 由勾股定理,得CD =………………………………2分………………………………3分 ………………………………4分………………………………5分………………………………2分 ………………………………4分 ………………………………5分………………………………2分………………………………3分………………………………4分………………………………5分CFDG EBA22.(1)证明:连接CO 并延长交AF 于点G . ∵CD 是⊙O 的切线, ∴90ECO ∠=︒.∵AB 是⊙O 的直径, ∴90AFB ∠=︒. ∵BE CD ⊥, ∴90CEF ∠=︒.∴四边形CEFG 是矩形.∴GF CE =,90CGF ∠=︒. ∴CG AF ⊥.∴12GF AF =. ∴12CE AF =.(2)解:∵CG AF ⊥, ∴CF CA =.∴CBA CAF ∠=∠.∴tan tan 2CBA CAF ∠=∠=.∵AB 是⊙O 的直径,∴90ACB ∠=︒.在Rt △CBA 中,设BC x =,2AC x =,则=52AB =⨯.∴BC x ==23.解:(1)∵函数()0ky x x=<的图象G 经过点A (-1,6), ∴6k =-.…………… 1分∵直线2y mx =-与x 轴交于点B (-1,0),∴2m =-. ……………………… 2分(2)①判断:PD =2PC .理由如下:……… 3分当1n =-时,点P 的坐标为(-1,2),∴点C 的坐标为(-2,2),点D 的坐标为(-3,2).∴PC =1,PD =2.∴PD =2PC .…………… 4分②10n -<≤或3n -≤.…………… 6分………………………………3分………………………………4分………………………………5分………………………………2分24.解:(1)(2)(3)3.3125.解:(1)(2乙校样本数据的中位数76分,所以该学生在甲校排在前20名,在乙校排 在后20名,而这名学生在所属学校排在前20名,说明这名学生是甲校的学生.(3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数为1680032040⨯=.26.解:(1)∵1(0)y kx k =+≠经过点A 23(,),∴1k =.∵直线1y x =+与抛物线2y ax bx a =++的对称轴交于点C ()m,2,∴1m =.(2)∵抛物线2y ax bx a =++的对称轴为1x =,∴12ba-=,即2b a =-. ∴22y ax ax a =-+2(1)a x =-.∴抛物线的顶点坐标为()1,0.……………………………4分 ……………………………6分………………………………4分……………………………1分……………………………2分(3) 当0a >时,如图,若抛物线过点B 01(,),则1a =.结合函数图象可得01a <<. 当0a <时,不符合题意.综上所述,a 的取值范围是01a <<.27.(1)补全的图形如图1所示.…………… 1分 (2)证明:△ABC 是等边三角形, ∴AB BC CA ==.60ABC BCA CAB ∠=∠=∠=︒.由平移可知ED ∥BC ,ED =BC .………… 2分60ADE ACB ∴∠=∠=︒.90GMD ∠=︒,2DG DM DE ∴==.…………… 3分 DE BCAC ==, DG AC ∴=.AG CD ∴=.…………… 4分(3)线段AH 与CG 的数量关系:AH = CG .…………… 5分证明:如图2,连接BE ,EF .,ED BC =ED ∥BC ,BEDC ∴四边形是平行四边形.BE CD CBE ADE ABC ∴=∠=∠=∠,. GM ED 垂直平分,EF DF ∴=.DEF EDF ∴∠=∠. ED ∥BC ,BFE DEF BFH EDF ∴∠=∠∠=∠,. BFE BFH ∴∠=∠. BF BF =,BEF BHF ∴△≌△.…………… 6分 BE BH CD AG ∴===. AB AC =,AH CG ∴=.…………… 7分 ………………………………6分 图1图228.解:(1)①5.②如图,(5d E =点.()d EF ∴线段的最小值是5.∴符合题意的点F 满足()5d F 点≤.当()=5d F 点时,125BF DF ==.∴点1F 的坐标为()4,0,点2F 的坐标为()4,0-. ∴1k =-或1k =.结合函数图象可得1k ≤-或1k ≥.(2)33t -<<.………………………………5分………………………………7分。
人教版中考仿真押题卷《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题 1.12-的倒数是( ) A. B. 12 C. D.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( ) A. B. C. D. 3. 下列图形中,由AB ∥CD ,能得到∠1=∠2的是A. B. C. D. 4.如图,将RtABC 绕直角项点C 顺时针旋转90°,得到A' B'C ,连接AA',若∠1=20°,则∠B 度数是( )A. 70°B. 65°C. 60°D. 55°5.已知a b <,下列不等式中,变形正确的是( ) A. a 3b 3->- B. 3a 13b 1->- C. 3a 3b ->- D. a b 33> 6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103B. 55×103C. 0.55×104D. 5.5×104 7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 49.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于点D .若∠A =30°,AE =6 cm ,则BC 等于( )3 B. 3 cm 3 D.4 cm10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d 0022A B +,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d 223543=+,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6二.填空题11.因式分解:2ax 2﹣4axy +2ay 2=_____.12.函数2y x =-中,自变量的取值范围是 . 13.如图,点A(t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tanα=32 ,则t 的值是________.14.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于___________.15.如图,一折扇完全打开后,若外侧两竹片OA,OB的夹角为120°,扇面ABDC的宽度AC是OA的一半,且OA=30 cm,则扇面ABDC的周长为__________cm.16.如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比12OAAD,若AB=1.5,则DE=_____.17.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是cm.18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.三.解答题19.计算:(﹣1)2020+(π﹣3)0﹣3tan30°+11()2-.20.已知x 、y 满足方程组52251x y x y -=-⎧⎨+=-⎩,求代数式()()()222x y x y x y --+-的值. 21.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,求OM 的长.22.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2面积之比为 (不写解答过程,直接写出结果).23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 面积为8,求▱ABCD 的面积.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?26.如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 时AD 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C .(1)求证:AB =BC ;(2)如果AB =10.tan ∠FAC =12,求FC 的长.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.答案与解析一、选择题1.12-的倒数是( )A. B. 12C. D.【答案】A【解析】【分析】根据倒数的定义求解即可.【详解】12-的倒数是,故选A.【点睛】本题考查了倒数,分子分母交换位置是求一个数倒数的关键.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴.据此可以分析.【详解】根据轴对称图形的定义可知,选项A,C,D,是轴对称图形,选项B不是轴对称图形.故选B【点睛】本题考核知识点:轴对称图形.解题关键点:理解轴对称图形的定义.3. 下列图形中,由AB∥CD,能得到∠1=∠2的是A. B. C. D.【答案】B【解析】【详解】分析:根据平行线的性质应用排除法求解:A、∵AB∥CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB∥CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB∥CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选B.4.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )A. 70°B. 65°C. 60°D. 55°【答案】B【解析】【分析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.5.已知a b <,下列不等式中,变形正确的是( )A. a 3b 3->-B. 3a 13b 1->-C. 3a 3b ->-D. a b 33> 【答案】C【解析】【分析】根据不等式的性质解答即可.【详解】解:A 、不等式a b <的两边同时减去3,不等式仍成立,即33a b -<-,故本选项错误; B 、不等式a b <的两边同时乘以3再减去1,不等式仍成立,即3131a b -<-,故本选项错误; C 、不等式a b <的两边同时乘以3-,不等式的符号方向改变,即33a b ->-,故本选项正确; D 、不等式a b <的两边同时除以3,不等式仍成立,即33a b <,故本选项错误; 故选C .【点睛】本题考查了不等式的性质注意:不等式两边都乘以同一个负数,不等号的方向改变.6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103 B. 5.5×103 C. 0.55×104 D. 5.5×104 【答案】D【解析】【分析】由科学记数法公式()101<10n a a ⨯≤即可得到结果;【详解】455000=5.510⨯;故答案选D .【点睛】本题主要考查了科学记数法的表示,准确判断小数点的位置是关键.7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.【答案】A【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选A.【点睛】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 4【答案】A【解析】【分析】根据众数的概念进行求解即可.【详解】2出现了两次,其余数据均出现一次,2出现的次数最多,所以这组数据的众数是2,故选A.【点睛】本题考查了众数的概念,熟练掌握”众数是指一组数据中出现次数最多的数据”是解题的关键.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于点D.若∠A=30°,AE=6 cm,则BC等于()3cm B. 3 cm 3 D. 4 cm【答案】C【解析】【分析】根据直角三角形的性质求出DE ,根据角平分线的性质求出CE ,根据正切的定义计算即可.【详解】解:在Rt △ADE 中,∠A=30°,∴DE=12AE=3,∠ABC=60°, ∵BE 平分∠ABC ,ED ⊥AB ,∠ACB=90°,∴CE=DE=3,∠EBC=30°,在Rt △CBE 中,BC=tan CE EBC =∠(cm ), 故选:C .【点睛】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d35=,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6【答案】B【解析】【分析】先将直线的解析式化为定义中的形式,再根据距离公式计算即可. 【详解】∵3544y x =-+ ∴35044x y +-= ∴点1)(3,4P 到直线3544y x =-+5454== 故选:B .【点睛】本题考查了一次函数的几何应用:点到直角的距离公式,掌握理解距离公式是解题关键.二.填空题11.因式分解:2ax2﹣4axy+2ay2=_____.【答案】2a(x﹣y)2【解析】【分析】先提取公因式2a,再对余下的多项式利用平方差公式继续分解.【详解】解:原式=2a(x2﹣2xy+y2)=2a(x﹣y)2,故答案为:2a(x﹣y)2【点睛】本题主要考查因式分解,因式分解时,如果多项式的各项有公因式,首先考虑提取公因式,然后根据多项式的项数来选择方法继续因式分解,如果是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式,掌握上述因式分解的知识点是解题的关键.12.函数12yx=-中,自变量的取值范围是.【答案】x>2【解析】【分析】根据分式有意义和二次根式有意义的条件求解.详解】解:根据题意得,x﹣2>0,解得x>2.故答案为x>2.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα= 32,则t的值是________.【答案】2 【解析】【分析】根据正切的定义即可求解.【详解】∵点A (t ,3)在第一象限,∴AB=3,OB=t ,又∵tanα=AB OB =32, ∴t=2.故答案为2.14.如图,△ABC 绕点A 顺时针旋转45°得到△A′B′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于___________.2-1【解析】【分析】由旋转的性质可得45CAC BAB ∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==可证AFB ∆',ADB ∆和BEF ∆为等腰直角三角形,分别求出ADB S ∆,BEF S ∆的值,即可求解.【详解】解:如图,设,AB B C ''交于点,BC B C '',交于点,90BAC ∠=︒,2AB AC ==45B C ∴∠=∠=︒,ABC ∆绕点顺时针旋转45︒得到△AB C '',45CAC BAB ∴∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==, AFB ∴∆'是等腰直角三角形,AD BC ∴⊥,B F AF '⊥,212AF AB ='=, 21BF AB AF ∴=-=-, 45B ∠=︒,EF BF ⊥,AD BD ⊥,ADB ∴∆和BEF ∆为等腰直角三角形,212AD BD AB ∴===,21EF BF ==-, 图中阴影部分的面积1111(21)(21)2122ADB BEF S S ∆∆=-=⨯⨯---=-, 故答案为:21-.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.15.如图,一折扇完全打开后,若外侧两竹片OA ,OB 的夹角为120°,扇面ABDC 的宽度AC 是OA 的一半,且OA =30 cm ,则扇面ABDC 的周长为__________cm .【答案】(30π+30)【解析】【分析】根据题意求出OC ,根据弧长公式分别求出AB 、CD 的弧长,根据扇形周长公式计算.【详解】由题意可得:1152OC AC OA ===, 弧AB 长=12030=20180ππ⨯, 弧CD 的长=12015=10180ππ⨯, ∴扇形ABCD 的周长=()20+10+15+15=30+30cm πππ, 故答案为()30+30π. 【点睛】本题主要考查了弧长的计算,准确理解所给图形找出相关的量是解题的关键. 16.如图,在平面直角坐标系中,已知△ABC 与△DEF 位似,原点O 是位似中心,位似比12OA AD =,若AB =1.5,则DE =_____.【答案】4.5【解析】【分析】根据位似图形的性质得出AO,DO 的长,进而得出, 13OA OD =,13AB DE =求出DE 的长即可 【详解】∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB OA DE OD =, ∵12OA AD =, ∴13OA OD =, ∴13AB DE =, ∴DE =3×1.5=4.5. 故答案为4.5.【点睛】此题考查坐标与图形性质和位似变换,解题关键在于得出AO,DO 的长17.在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是 cm .【答案】5<x <10.【解析】【分析】设AB=AC=x ,则BC=20﹣2x ,根据三角形的三边关系即可得出结论.【详解】∵在等腰△ABC 中,AB=AC ,其周长为20cm ,∴设AB=AC=x cm ,则BC=(20﹣2x )cm ,∴22022020x x x >-⎧⎨->⎩ , 解得5cm <x <10cm ,故答案为5<x <10.【点睛】本题考查了等腰三角形的性质,三角形三边关系,正确理解和灵活运用相关知识是解题的关键. 18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.【答案】20﹣208000=401401. 【解析】【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+=归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.三.解答题19.计算:(﹣1)2020+(π+11()2-.【答案】3.【解析】【分析】先计算有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂,再计算实数的乘法,最后计算实数的加减运算即可.【详解】原式1123=+-+1112=+-+3=.【点睛】本题考查了有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂等知识点,熟记各运算法则是解题关键.20.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.【答案】35【解析】【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.【详解】原式=(x2-2xy+y2)-(x2-4y2)=x2-2xy+y2-x2+4y2=-2xy+5y2,方程组52251x yx y--⎧⎨+-⎩=①=②,①+②得:3x=-3,即x=-1,把x=-1代入①得:y=15,则原式=213+=555.【点睛】此题考查了代数式求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.21.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,求OM的长.【答案】OM=5.【解析】【分析】作PD⊥MN于D,根据30°角所对直角边是斜边一半的性质可得OD的长,根据等腰三角形三线合一的性质求出MD,即可得出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,∠AOB=60º,OP=12,∴OD=12OP=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=12MN=1,∴OM=OD-MD=6-1=5.【点睛】本题主要考查了含30º角的直角三角形性质、等腰三角形的”三线合一”性质,过点P作PD⊥OB 是解答的关键.22.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)△A1B1C1与△A2B2C2面积之比为(不写解答过程,直接写出结果).【答案】(1)作图见解析;(2)作图见解析;(3)1:4【解析】【分析】(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.【详解】(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3) ∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1∶2,∴△A1B1C1与△A2B2C2面积之比为:1∶4.【点睛】本题考查了作图-轴对称变换、作图-位似变换,熟练掌握直角坐标系中的基本作图方法是解答的关键.23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.【答案】(1)一次函数的表达式为y =-x +1,反比例函数的表达式为y =-2x ;(2)S △ABD =3. 【解析】【分析】(1)先把B 点坐标代入m y x=中求出m ,得到反比例函数解析式为2y x =-,再利用解析式确定A 点坐标,然后利用待定系数法求一次函数解析式即可;(2)先利用一次函数解析式确定()0,1C ,利用关于x 轴对称的性质得到()0,1D -,则BD x ∥轴,然后根据三角形面积公式计算即可;【详解】解:(1)∵反比例函数m y x =的图象经过点B(2,-1), ∴m =-2.……∵点A(-1,n)在2y x=-的图象上,∴n =2.∴A(-1,2). 把点A ,B 的坐标代入y =kx +b ,得221k b k b ⎧-+=⎨+=-⎩解得11k b ⎧=-⎨=⎩, ∴一次函数的表达式为y =-x +1,反比例函数的表达式为2y x =-; (2)∵直线y =-x +1交y 轴于点C ,∴C(0,1).∵点D 与点C 关于x 轴对称,∴D(0,-1).∵B(2,-1),∴BD ∥x 轴.∴S △ABD =12×2×3=3. 【点睛】本题主要考查了反比例函数与一次函数的交点问题知识点,准确理解待定系数法求解析式是关键.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 的面积为8,求▱ABCD 的面积.【答案】(1)证明见解析;(2)ABCD 的面积为100.【解析】【分析】(1)根据平行四边形的判定与性质即可得证;(2)先根据平行四边形的性质得出DF 、AD 的长和//,//AB CD BD EF ,再根据平行线的性质得出,F ADB FDG A ∠=∠∠=∠,然后根据相似三角形的判定与性质得出2()DFG ADB SDF S AD =,从而可求出ADB △的面积,由此即可得ABCD 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形∴//AD BC ,即//DF BE又∵DF =BE∴四边形BEFD 是平行四边形∴//BD EF ;(2)∵四边形ABCD 是平行四边形,4,6BE EC ==∴4,4610DF BE AD BC BE EC ====+=+=,//AB CD∴FDG A ∠=∠∵四边形BEFD 是平行四边形//BD EF ∴∴F ADB ∠=∠ ∴DFG ADB ~∴2244()()1025DFG ADB S DF SAD === ∵8DFG S =∴50ADBS=∴ABCD的面积为2250100ADBS=⨯=.【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识点,较难的是题(2),利用平行四边形的性质得到两个三角形相似的条件是解题关键.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?【答案】(1)高铁列车的平均时速为240千米/小时;(2)王老师能在开会之前到达.【解析】【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220-90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【详解】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,122012209082.5x x--=,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+0.5=3.75(小时),从10:00到下午14:00,共计4小时>3.75小时,故王老师能在开会之前到达.【点睛】此题考查分式方程的应用,解题关键在于列出方程26.如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC =12,求FC的长.【答案】(1)证明见解析;(2)FC=203.【解析】【分析】(1)连接EB,可得BE⊥AC,∠ABE=∠CBE,再证∆ABE≅∆CBE,即可得到结论;(2)易得∠FAC=∠ABE,从而得AEBE=12,设AE=x,则BE=2x,可得AC=5BE=5,作CH⊥AF于点H,易证Rt△ACH∽Rt△BAE,可得HC=4,AH=8,由HC∥AB,得FCFB=HCAB,进而即可求解.【详解】(1)连接EB,∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵点E为AD弧的中点,∴∠ABE=∠CBE,在∆ABE与∆CBE中,∵=90{AEB CEBBE BEABE CBE∠∠=︒=∠∠=,∴∆ABE≅∆CBE(ASA),∴BA=BC;(2)∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan ∠ABE =tan ∠FAC =12, ∵在Rt △ABE 中,tan ∠ABE =AE BE =12, ∴设AE =x ,则BE =2x , ∴AB =5x ,即5x =10,解得:x =25,∴∆ABE ≅∆CBE ,∴AC =2AE =45,BE =45,作CH ⊥AF 于点H ,∵∠HAC =∠ABE ,∴Rt △ACH ∽Rt △BAE ,∴HC AE =AH BE =AC AB ,即HC 25=AH 45=4510, ∴HC =4,AH =8,∵HC ∥AB ,∴FC FB =HC AB ,即FC FC 10+=25, 解得:FC =203.【点睛】本题主要考查圆的基本性质,锐角三角函数以及相似三角形的综合,掌握圆周角定理的推论,锐角三角函数的定义以及相似三角形的判定和性质定理,是解题的关键.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) (3,23)Q -或()3,23-或113113,22⎛⎫-+- ⎪ ⎪⎝⎭或1133313,22⎛⎫--+ ⎪ ⎪⎝⎭. 【解析】【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角关系,确定直线OQ 倾斜角,进而求解.【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况: ①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =,过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =, ∴CH 2则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:3x =±故点(3,3)Q -或()3,23-;②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
人教版九年级数学中考模拟试卷及参考答案
第7题图第10题图人教版九年级数学中考模拟试卷一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)一、选择题 (本题共10小题,每小题3分,满分30分) 1.3- 的相反数为 ( )A . 3-B . 3C . 31-D . 31 2.下列图形中是中心对称图形的是( )A .B .C .D .3.把不等式组10630x x +>⎧⎨-≥⎩的解集表示在数轴上正确的是( )A .B .C .D .4.在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE =6,则BC =( ) A .3 B .6C .9D .125.在一次立定跳远的测试中,小娟等6位同学立定跳远的成绩分别为: 1.8、2、2.2、1.7、2、1.9,那么关于这组数据的说法正确的是( ) A .平均数是2 B .中位数是2 C .众数是2 D .方差是2 6.若一个正多边形的一个外角是30°,则这个正多边形的边数是( )A .12B .11C .10D .9 7.如图,AB DE ∥,62E ∠=,则B C ∠+∠等于( ) A .138B .118C .38D .628.对于二次函数2241y x x =--+,下列说法正确的是A .当 0x <,y 随x 的增大而增大B .当 1x =- 时,y 有最大值 3C .图象的顶点坐标为 ()1,3D .图象与轴有一个交点9.已知圆锥的母线长是4cm ,侧面积是12πcm 2,则这个圆锥底面圆的半径是( ) A .3cm B . 4cm C .5cm D .6cm10.将抛物线241y x x 向左平移至顶点落在y 轴上,如图所示,则两条抛物线、直线3y 和x 轴围成的图形的面积S (图中阴影部分)是( ) A .5 B .6C .7D .8第16题图二、填空题 (共6小题,每小题3分,满分18分) 11.分解因式:224a ab -= . 12.计算:20199(1)2sin 30=+-- .13.已知命题:“如果两个角是直角,那么它们相等”,该命题的....是 命题(填“真”或“假”).14.已知一次函数图象经过第一、二、四象限,请写出一个..符合条件的一次函数解析式 .15. 已知点1122(,)(,)A x y B x y 、在二次函数2(1)1y x =-+的图象上,若121x x >>,则12____y y 。
新人教版初三年级数学中考模拟测验卷及答案
初三数学模拟测试卷说明:本卷共有六大题,25小题,全卷满分120分。
考试时间120分钟1.下列4个数中,大于-6的数是( ) (A )-5 (B )-6 (C )-7 (D )-82.已知a<b<0,则点A(a-b,b)在( )(A )第一象限(B )第二象限(C )第三象限 (D )第四象限3.长城总长为67000100米,用科学记数法表示为( ) (A )6.7×108 (B )6.7×107(C )6.7×106(D )6.7×1054.下列图形中,能够说明∠1 > ∠2的是( )(A ) (B ) (C ) (D ) 5.将如图所示放置的一个直角三角形ABC ,(∠C=90°),绕斜边AB 旋转一周,所得到的几何体的正视图是下面四个图中的( )(A ) (B )(C )(D )6.在右边的表格中,每一行、列及对角线上的三个整数的和 都相等,则X 的值为( )(A )-3 (B )0(C )2(D )37.如图 ———— 在一个房间的门口装有两个开关,以控制里面的电灯,现在门口随机拉一下开关,房间里面的灯能够亮的可能性为( )(A )12(B )13(C )14(D )238.有一个商店,某件商品按进价加20%作为定价,可是总 是卖不出去,后来老板按定价减价20%以96元出售,很快 就卖掉了,则这次生意的盈亏情况是 ( ) (A )赚6元 (B )亏4元 (C )亏24元(D )不亏不赚 9.如图,在⊙O 中,弦AB=3.6cm ,圆周角∠ACB=30°,则⊙O 的直径等于 ( (A )3.6cm (B )1.8cm (C )5.4cm (D )7.2cm10.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( ) (A )平均数 (B )加权平均数 (C )中位数 (D )众数二、填空题(本大题共6小题,每小题3分,共18 11.a 的相反数等于2007,则a=______ 12.抛物线y=ax 2+bx+c 如图所示,则它关于y 轴对称的抛物线的解析式是________13.如图。
人教版九年级中考数学模拟考试试题(含答案)(山东地区)
九年级中考数学二模考试试题满分150分时间:120分钟一、单选题。
(每小题4分,共40分)1.﹣2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图所示的几何体,从正面看是()3.2022年12月4日,神舟14号载人飞船返回舱在东风着陆场成功着陆,它在轨飞行183Tina,共飞行里程约125 000 000千米,其中“125 000 000”用科学记数法表示为()A.125×106B.1.25×109C.1.25×108D.1.25×10104.如图,AB∥CD,BE平分∠ABC,且交CD于D点,∠CDE=150°,则∠C的度数为()A.30°B.60°C.124°D.150°(第4题图)(第8题图)(第9题图)5.下列图形中既是轴对称图形又是中心对称图形的是()6.下列计算正确的是()A.(3a3)2=9a6B.a3+a2=2a5C.(a+b)2=a2+b2D.(a4)3=a77.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立春和立夏的概率是( )A.16 B.18 C.23 D.128.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ’B ’C ’,则点P 的坐标是( )A.(0,4)B.(1,1)C.(1,2)D.(2,1) 9.如图1,AD 是△ABC 的高,以点B 为圆心,适当长为半径画弧交AB 于点M ,交BC 于点N ,分别以M ,N 为圆心,大于12MN 的长为半径作弧,两弧相交于P ,作射线BP 交AD 于点E ,若∠ABC=45°,AB ⊥AC ,DE=1,则CD 的长为( )A.√2B.√2+1C.√3D.√2-110.在平面直角坐标系中,抛物线y=x 2-2mx+3与y 轴交于点A ,过点A 作x 轴的平行线与抛物线交于另一点B ,点M (m+2,3),N (0,m+3),若抛物线与线段MN 有且只有一个公共点,则m 的取值范围是( )A.0<m ≤2或m <﹣2B.0<m ≤2或m ≤﹣2C.0≤m ≤2或m ≤﹣2D.0≤m <2或m <﹣2二.填空题。
人教版九年级中考数学模拟考试试题(含答案)(山东地区)
九年级中考数学二模考试试题满分150分 时间:120分钟一、单选题。
(每小题4分,共40分) 1.|﹣2023|等于( )A.-2024B.﹣2023C.2024D.20232.如图是由5个相同的正方体搭成的几何体,这个几何体的主视图是( )3.“有一种三体文明距地球大约400 000 000千米,它们之间被大量氢气和暗物质纽带连接,看起来似乎是连在一起的三体星系,其中“400 000 000”用科学记数法表示为( ) A.4×108B.4×106C.0.4×108D.4000×1044.如图,两条直线a ,b 被第三条直线l 所截,若a ∥b ,∠1=55°,则∠2的度数为( ) A.55° B.105° C.125° D.135°(第3题图) (第9题图) (第10题图) 5.下列运算正确的是( )A.(3a 2)3=9a 6B.a 3÷a 3=aC.a 2+a 2=a 4D.a 2•a 3=a 5 6.化简m -1m÷m -1m 2的结果是( )A.mB.1m C.m -1 D.1m -17.一个不透明的口袋中有三个完全相同的小球,分别标号为1,2,3,随机摸取一个小球然后放回,再随机摸取一个球,则两次取出的小球标号相同的概率为( ) A.29 B.19 C.13 D.498.在同一平面直角坐标系中,函数y=kx-k与y=kx的大致图象可能是()9.在平面直角坐标系中,矩形ABCD的边BC在x轴上,O为线段BC的中点,矩形ABCD的顶点D(2,3),连接AC按照下列方法作图:(1)以点C为圆心,适当的长度为半径画弧分别交CA,CD于点E,F;(2)分别以E,F为圆心,大于12EF的长为半径画弧交于点G;(3)做射线CG交AD于H,则线段DH的长为()A.158 B.1 C.32D.5410.如图,抛物线y=x2+2x与直线y=x+2交于A,B两点,与直线x=2交于点P,将抛物线沿着射线AB平移3√2个单位,在整个平移过程中,点P经过的路程为()A.6B.132 C.254D.14二.填空题。
人教版九年级数学中考模拟试卷及参考答案
人教版九年级数学中考模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°2.下列图形中,是中心对称图形的是()A.B.C.D.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.下列事件中,属于不可能事件的是()A.明天会下雨B.从只装有8个白球的袋子中摸出红球C.抛一枚硬币正面朝上D.在一个标准大气压下,加热到100℃水会沸腾5.在△ABC与△DEF中,下列四个命题是真命题的个数共有()①如果∠A=∠D,=,那么△ABC与△DEF相似;②如果∠A=∠D,=,那么△ABC与△DEF相似;③如果∠A=∠D=90°,=,那么△ABC与△DEF相似;④如果∠A=∠D=90°,=,那么△ABC与△DEF相似;A.1个B.2个C.3个D.4个6.如图,ABCD为平行四边形,BC=2AB,∠BAD的平分线AE交对角线BD于点F,若△BEF的面积为1,则四边形CDFE的面积是()A.3 B.4 C.5 D.67.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.8.下列一元二次方程中没有实数根的方程是()A.(x﹣1)2=1 B.x2+2x﹣10=0 C.x2+4=7 D.x2+x+1=09.如图是一个餐盘,它的外围是由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,已知正三角形的边长为10,则该餐盘的面积是()A.50π﹣50B.50π﹣25C.25π+50D.50π10.若反比例函数y=(k≠0)的图象经过点P(2,﹣3),则该函数的图象不经过的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)11.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣4,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.2C.3 D.412.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣1 0 1 2 3 …y…﹣2 3 6 7 6 …当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>3二.填空题(共6小题,满分18分,每小题3分)13.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.14.写一个反比例函数的解析式,使它的图象在第一、三象限:.15.函数y=x2﹣2x﹣4的最小值为.16.某生利用标杆测量学校旗杆的高度,标杆CD等于3m,标杆与旗杆的水平距离BD=15m,人的眼睛距地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m.则旗杆AB的高度为.17.如图,⊙O的半径是,△ABC是⊙O的内接三角形,过圆心O分别作AB,BC,AC的垂线,垂足为E,F,G,连接EF,若OG=1,则EF的长为.18.如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24cm2,则AC 长是cm.三.解答题(共7小题,满分66分)19.(8分)解方程:2x2﹣3x+2x=1.20.(8分)如图,在Rt△ABC中,∠C=90°,AB=4,BC=3,求AC的长及∠B的正弦值、余弦值和正切值.21.(10分)已知反比例函数的图象过点A(﹣2,2).(1)求函数的解析式.y随x的增大而如何变化?(2)点B(4,﹣2),C(3,)和D()哪些点在图象上?(3)画出这个函数的图象.22.(10分)在⊙O中,AB为直径,C为⊙O上一点.(1)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=28°,求∠P的大小;(2)如图②,D为的中点,连接OD交AC于点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=12°,求∠P的大小.23.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)24.(10分)如图,边长为4的正方形ABCD中,动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位的速度从点A出发沿正方形的边AD﹣DC﹣CB方向顺时针做折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t秒.(1)当点P在BC上运动时,PB=;(用含t的代数式表示)(2)当点Q在AD上运动时,AQ=;(用含t的代数式表示)(3)当点Q在DC上运动时,DQ=,QC=;(用含t的代数式表示)(4)当t等于多少时,点Q运动到DC的中点?(5)当t等于多少时,点P与点Q相遇?25.(10分)已知二次函数y=ax2﹣4ax+3a.(1)该二次函数图象的对称轴是x=;(2)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,求当1≤x≤4时,y的最小值;(3)若该二次函数的图象开口向下,对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合图象,直接写出t的最大值.参考答案一.选择题(共12小题,满分36分,每小题3分)1.【分析】根据特殊角的三角函数值求解.【解答】解:∵sin A=,∠A为锐角,∴∠A=30°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.2.【分析】根据旋转180°后与原图重合的图形是中心对称图形,进而分析即可.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、明天会下雨是随机事件,故A不符合题意;B、从只装有8个白球的袋子中摸出红球是不可能事件,故B符合题意;C、抛一枚硬币正面朝上是随机事件,故C不符合题意;D、在一个标准大气压下,加热到100℃水会沸腾是必然事件,故D不符合题意;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【分析】根据相似三角形的判定定理判断即可.【解答】解:①如果∠A=∠D,=,那么△ABC与△DEF相似;故错误;②如果∠A=∠D,=,那么△ABC与△DEF相似;故正确;③如果∠A=∠D=90°,=,那么△ABC与△DEF相似;故正确;④如果∠A=∠D=90°,=,那么△ABC与△DEF相似;故正确;故选:C.【点评】本题考查了相似三角形的判定和判定,熟记相似三角形的判定定理是解题的关键.6.【分析】首先证明AD=2BE,BE∥AD,进而得出△BEF∽△DAF,即可得出△ABF,△ABD,的面积,用面积的和差即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴BA=BE,∵BC=2AB,∴AD=BC=2BE,BE∥AD,∴△BEF∽△DAF,∴==,∴=()2=,∵△BEF的面积为1,∴S△ABF=2S△BEF=2,S△ADF=4S△BEF=4,∴S△ABD=S△ABF+S△ADF=6,∴S四边形DCEF=S△BCD﹣S△BEF=S△ABD﹣S△BEF=5,故选:C.【点评】此题是相似三角形的判定和性质,主要考查了平行四边形的性质,同高的三角形的面积比是底的比,用相似三角形的性质得出S△ABF=2S△BEF=2,S△ADF=4S△BEF=4是解本题的关键.7.【分析】首先利用列表法,列举出所有的可能,再看至少有一个骰子点数为3的情况占总情况的多少即可.【解答】解:列表如下1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知一共36种等可能结果,其中至少有一枚骰子的点数是3的有11种结果,所以至少有一枚骰子的点数是3的概率为,故选:B.【点评】此题主要考查了列表法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3的情况数是关键.8.【分析】根据方程和根的判别式逐个判断即可.【解答】解:A、(x﹣1)2=1,x﹣1=±1,即方程有两个实数根,故本选项不符合题意;B、x2+2x﹣10=0,△=22﹣4×1×(﹣10)=44>0,方程有两个实数根,故本选项不符合题意;C、x2+4=7,x2=3,x=,方程有两个实数根,故本选项不符合题意;D、x2+x+1=0,△=12﹣4×1×1=﹣3<0,方程无实数根;故选:D.【点评】本题考查了根的判别式和一元二次方程,能熟记根的判别式的内容是解此题的关键.9.【分析】由扇形面积减去三角形面积求出弓形面积,三个弓形与一个等边三角形面积之和即为餐盘面积.【解答】解:该餐盘的面积为3(﹣×102)+×102=50π﹣50,故选:A.【点评】此题考查了正多边形和圆,熟练掌握扇形面积公式是解本题的关键.10.【分析】由题意可求反比例函数解析式y=,将x=3,1,﹣1代入解析式可求函数值y的值,即可求函数的图象不经过的点.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6∴解析式y=当x=3时,y=﹣2当x=1时,y=﹣6当x=﹣1时,y=6∴图象不经过点(﹣1,﹣6)故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键.11.【分析】连接OP.根据勾股定理知PQ2=OP2﹣OQ2,因为OQ是定值,所以当OP⊥AB时,线段OP 最短,即线段PQ最短.【解答】解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∵当PO⊥AB时,线段PQ最短;又∵A(﹣4,0)、B(0,4),∴OA=OB=4,∴AB=4∴OP=AB=2,∴PQ=.故选:A.【点评】本题考查了切线的判定与性质、坐标与图形性质以及矩形的性质等知识点.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角来解决有关问题.12.【分析】由二次函数图象上点的坐标(1,6)和(3,6),利用二次函数的性质可得出二次函数图象的对称轴,进而可得出顶点坐标,结合二次函数图象的顶点坐标,即可找出y<6时x的取值范围.【解答】解:∵当x=1时,y=6;当x=3时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),∴当y<6时,x<1或x>3.故选:D.【点评】本题考查了二次函数的图象、二次函数的性质以及二次函数图象上点的坐标特征,解题的关键是:(1)由点的坐标,利用二次函数的性质找出二次函数图象的顶点坐标.二.填空题(共6小题,满分18分,每小题3分)13.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.【分析】反比例函数y=(k是常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:2.故答案为:y=等.【点评】此题主要考查了反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.15.【分析】将二次函数配方,即可直接求出二次函数的最小值.【解答】解:∵y=x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5,∴可得二次函数的最小值为﹣5.故答案是:﹣5.【点评】本题考查了二次函数的最值问题,用配方法是解此类问题的最简洁的方法.16.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出=,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:如图所示:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴=,即:=,∴=,∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).故答案为:13.5 m.【点评】此题主要考查了相似三角形的应用,主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.17.【分析】连接OA,根据勾股定理求出AG,根据垂径定理求出AC,根据垂径定理得到EF是△ABC 的中位线,根据中位线定理计算即可.【解答】解:连接OA,∵OG⊥AC,OA=,OG=1,∴AG==2,∵OG⊥AC,∴AC=2AG=4,∵OE⊥AB,OF⊥BC,∴AE=EB,BF=FC,∴EF=AC=2.故答案为:2.【点评】本题考查的是三角形中位线定理、垂径定理和勾股定理的应用,三角形的中位线平行于第三边,并且等于第三边的一半,垂直弦的直径平分这条弦,并且平分弦所对的两条弧.18.【分析】先根据四边形内角和定理判断出∠2+∠B=180°,再延长至点E,使DE=BC,连接AE,由全等三角形的判定定理得出△ABC≌△ADE,故可得出△ACE是直角三角形,再根据四边形ABCD 的面积为24cm2即可得出结论.【解答】解:延长CD至点E,使DE=BC,连接AE,∵∠BAD=∠BCD=90°,∴∠2+∠B=180°,∵∠1+∠2=180°,∠2+∠B=180°,∴∠1=∠B,在△ABC与△ADE中,∵,∴△ABC≌△ADE(SAS),∴∠EAD=∠BAC,AC=AE,S△AEC=S四边形ABCD∵∠BAD=90°,∴∠EAC=90°,∴△ACE是等腰直角三角形,∵四边形ABCD的面积为24cm2,∴AC2=24,解得AC=4或﹣4,∵AC为正数,∴AC=4.故答案为:4.【点评】本题考查的是全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形及等腰直角三角形,再根据三角形的面积公式进行解答即可.三.解答题(共7小题,满分66分)19.【分析】由原方程变形为x2+2x+x2﹣3x+3=4,则(x+)2=4,所以x+=2或x+=﹣2,然后分别解两个无理方程,再进检验确定原方程的解.【解答】解:x2+2x+x2﹣3x+3=4,(x+)2=4,x+=2或x+=﹣2,当x+=2时,则=2﹣x,化为整式方程得x=1,当x+=﹣2,则=﹣x﹣2,化为整式方程得x=﹣,经检验,原方程的解为x=1.【点评】本题考查了解无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.解无理方程,往往会产生增根,应注意验根.20.【分析】根据勾股定理求出AC,根据锐角三角函数的定义解答.【解答】解:由勾股定理得,AC==,sin B==,cos B==,tan B==.【点评】本题考查的是勾股定理、锐角三角函数的定义,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.【分析】(1)利用待定系数法求反比例函数的解析式;(2)根据反比例函数图象上点的坐标特征,将B、C、D三点分别代入进行验证即可;(3)根据该反比例函数所在的象限、以及该函数的单调性画出图象.【解答】解:设该反比例函数的解析式为y=(k≠0),则2=,解得,k=﹣4;所以,该反比例函数的解析式为y=﹣;∵﹣4<0,∴该反比例函数经过第二、四象限,且在每一象限内,y随x的增大而增大;(2)由(1)知,该反比例函数的解析式为y=﹣,则xy=﹣4.∵﹣2×4=﹣8≠﹣4,3×(﹣)=﹣4,2×(﹣)=﹣4,∴点B(4,﹣2)不在该函数图象上,点C(3,)和D()在该函数图象上;(3)反比例函数的图象过点A(﹣2,2),由(1)知,该反比例函数经过第二、四象限,且在每一象限内,y随x的增大而增大;所以其图象如图所示:【点评】本题考查了反比例函数的图象与性质、待定系数法求反比例函数的解析式以及反比例函数图象上点的坐标特征.经过函数的某点一定在该函数的图象上.22.【分析】(1)连接OC,根据三角形的外角的性质求出∠POC,根据切线的性质得到∠OCP=90°,根据三角形内角和定理计算即可;(2)根据垂径定理得到OD⊥AC,根据圆周角定理,三角形的外角的性质计算即可.【解答】解:(1)连接OC,∵OA=OC,∴∠A=∠OCA=28°,∴∠POC=56°,∵CP是⊙O的切线,∴∠OCP=90°,∴∠P=34°;(2)∵D为的中点,OD为半径,∴OD⊥AC,∵∠CAB=12°,∴∠AOE=78°,∴∠DCA=39°,∵∠P=∠DCA﹣∠CAB,∴∠P=27°.【点评】本题考查的是垂径定理,切线的性质,圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.23.【分析】(1)由cos∠FHE==可得答案;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,据此知GM=AB,HN=EG,Rt△ABC中,求得AB=BC tan60°=;Rt△ANH中,求得HN=AH sin45°=;根据EM=EG+GM可得答案.【解答】解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BC tan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AH sin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.【点评】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.24.【分析】(1)由路程=速度×时间,可得BP的值;(2)由路程=速度×时间,可得AQ的值;(3)由DQ=点Q的路程﹣AD的长度,可得DQ的值;由QC=CD﹣DQ,可求QC的长;(4)由路程=速度×时间,可得t的值;(5)由点P路程+点Q路程=AD+CD+BC,可求t的值.【解答】解:(1)∵动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,∴BP=1×t=t,故答案为:t,(2)∵动点Q同时以每秒4个单位的速度从点A出发,∴AQ=4×t=4t,故答案为:4t,(3)∵DQ=4t﹣AD∴DQ=4t﹣4,∵QC=CD﹣DQ∴QC=4﹣(4t﹣4)=8﹣4t故答案为:4t﹣4,8﹣4t(4)根据题意可得:4t=4+2t=1.5答:当t等于1.5时,点Q运动到DC的中点.(5)根据题意可得:4t+t=4×3t=答:当t等于时,点P与点Q相遇.【点评】本题四边形综合题,考查了正方形的性质,一元一次方程的应用,正确理解题意列出方程是本题的关键.25.【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)当t≤x1≤t+1,x2≥5时,均满足y1≥y2,推出当抛物线开口向下,点P在点Q左边或重合时,满足条件,可得t+1≤5,由此即可解决问题;【解答】解:(1)对称轴x=﹣=2.故答案为2.(2)∵该二次函数的图象开口向下,且对称轴为直线x=2,∴当x=2时,y取到在1≤x≤4上的最大值为2.∴4a﹣8a+3a=2.∴a=﹣2,y=﹣2x2+8x﹣6,∵当1≤x≤2时,y随x的增大而增大,∴当x=1时,y取到在1≤x≤2上的最小值0.∵当2≤x≤4时,y随x的增大而减小,∴当x=4时,y取到在2≤x≤4上的最小值﹣6.∴当1≤x≤4时,y的最小值为﹣6.(3)∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,∴当抛物线开口向下,点P在点Q左边或重合时,满足条件,∴t+1≤5,∴t≤4,∴t的最大值为4.【点评】本题考查二次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
人教版中考仿真模拟检测《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题 1.13-的相反数是( ) A. 13 B. 13- C. 3 D. -32.下列图形中,不是轴对称图形的是( )A. B.C. D.3.结果为a 2的式子是( )A. a 6÷a 3B. a 4·a -2C. (a -1)2D. a 4-a 2 4.已知:如图, AB CD ⊥,垂足为,EF 为过点的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角 5.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A. x <y B. x >y C. x≤y D. x≥y6.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是【 】A. B. C. D.7.函数13xyx+=-中自变量x取值范围是()A. x≥B. x≠3C. x≥且x≠3D. 1x<-8.样本数据3、6、a、4、2的平均数是5,则这个样本的方差是( )A. 8B. 5C. 22D. 39.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2 cm,则⊙O的半径为()A. 5 cmB. 4 cmC. 3 cmD. 2 cm10.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.正确..的个数是()A. 4B. 3C. 2D. 111.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是()A 2 B. 3 C. 5 D. 612.已知抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论①abc <0,②a +b +c =2,③a >12④0<b <1中正确的有( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题13.股市有风险,投资须谨慎.截止今年5月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学记数法表示为 .14.因式分解:34a a -=_______________________.15.如图,∠AOB =45°,过OA 上到点O 的距离分别为1,3,5,7,9,11,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4,…,观察图中的规律,求出第10个黑色梯形的面积S 10=_____.16.如图,已知双曲线(0)k y x x=>经过矩形OABC 边AB 的中点,交BC 于点,且四边形OEBF 的面积为2,则k =_______.三、解答题17.计算:1011()(3)2cos 45221π---+-+- 18.解方程:11322x x x-=---. 19.我校数学社团成员想利用所学知识测量某广告牌的宽度(图中线段MN 的长).直线MN 垂直于地面,垂足为点P ,在地面A 处测得点M 的仰角为60°,点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5米.且A 、B 、P 三点在一直线上,请根据以上数据求广告牌的宽MN 的长.(结果保留根号)20.当前,”精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要”建档立卡”.某初级中学七年级共有四个班,已”建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.(1)求七年级已”建档立卡”贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 直径,AE ⊥CD 交CD 的延长线于点E ,DA 平分∠BDE . ⑴求证:AE 是⊙O 的切线;⑵若AE =4cm ,CD =6cm ,求AD 的长.A B C三种品牌脐橙共100吨参加上海世博会,按计划,20辆汽车都要22.我市某镇组织20辆汽车装运完,,装运,每辆汽车只能装运用一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:从A,B两地运往甲,乙两地的费用如下表:脐橙品种 A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获利(百元) 12 16 10(1)设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案?(3)若要使此次销售获利最大,应采用哪种安排方案?请求出最大利润的值23.如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B→A,B→C 运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M 也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=______厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;24.如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点抛物线L1向右平移2个单位得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.答案与解析一、选择题1.13-的相反数是()A. 13B.13- C. 3 D. -3【答案】A 【解析】试题分析:根据相反数的意义知:13-的相反数是13.故选A.【考点】相反数.2.下列图形中,不是轴对称图形的是( )A. B.C. D.【答案】A【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点睛】本题考查轴对称的定义,牢记定义是解题关键.3.结果为a2的式子是()A. a6÷a3B. a4·a-2C. (a-1)2D. a4-a2【答案】B【解析】【分析】根据同底数幂的乘除法以及幂的乘方公式,即可求得答案.【详解】解:A. a 6÷a 3=633a a -=,错误; B. a 4·a -2= a 4-2=2a ,正确;C. (a -1)2=2a -,错误;D .a 4-a 2≠a 2,错误.故选B .【点睛】本题考查整式的乘法,涉及的知识点有同底数幂的乘除法以及幂的乘方,熟练掌握整式乘法的运算法则是解题的关键.4.已知:如图, AB CD ⊥,垂足为,EF 为过点的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角【答案】C【解析】【分析】 根据互余的定义,结合图形解答即可.【详解】∵AB CD ⊥,∴∠BOC=90°,∴∠1+∠COE=90°.∵∠2=∠COE ,∴∠1+∠2=90°,∴1∠与2∠互余.故选C.【点睛】本题考查了垂直的定义,对顶角的性质,以及余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.5.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A. x <yB. x >yC. x≤yD. x≥y【答案】B【解析】 【详解】解:根据题意得,他买黄瓜每斤平均价是302050x y +, 以每斤2x y +元的价格卖完后,结果发现自己赔了钱 则302050x y +>2x y + 解之得,x >y .所以赔钱的原因是x >y .故选B .6.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是【 】A. B. C. D.【答案】C【解析】根据浮力的知识,铁块露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.因为小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度. 故选C .7.函数1x y +=x 的取值范围是( ) A. x ≥B. x ≠3C. x ≥且x ≠3D. 1x <-【答案】C【解析】【详解】解:根据被开方数为非负数和分母不分0列不等式:10{30x x +≥-≠, 解得:x ≥且x ≠3.故选C .【点睛】本题考查函数自变量的取值范围.8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是( )A. 8B. 5C. 22D. 3【答案】A【解析】【分析】本题可先求出a 的值,再代入方差的公式即可.【详解】∵3、6、a 、4、2的平均数是5,∴a=10, ∴方差22222211[35651054525]40855S =-+-+-+-+-=⨯=()()()()(). 故选A . 【点睛】本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数. 9.如图,⊙O 是△ABC 的外接圆,∠C =30°,AB =2 cm ,则⊙O 的半径为( )A. 5 cmB. 4 cmC. 3 cmD. 2 cm【答案】D【解析】【分析】 连接OA 、OB ,根据一条弧所对的圆周角等于它所对的圆心角的一半,可知△OAB 是等边三角形,即可求得⊙O 的半径OA=OB=AB=2.【详解】解:如图:连接OA 、OB ,则OA 、OB 即为半径,∵∠C=30°,∴∠AOB=60°,又∵OA=OB,∴△OAB为等边三角形,且AB=2 cm,∴OA=OB= AB=2 cm.故选D.【点睛】本题考查圆周角与三角形的综合运用,熟练掌握圆周角定理,作出辅助线是解题的关键.10.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.正确..的个数是()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出四边形AEDF是平行四边形,故①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;如果AD平分∠BAC,通过等量代换可得∠EAD=∠EDA,可得平行四边形AEDF的一组邻边相等,即可得到四边形AEDF是菱形,故③正确;由AD⊥BC且AB=AC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,故④正确;进而得到正确说法的个数.【详解】解:∵DE∥CA,DF∥BA∴四边形AEDF是平行四边形,①正确;若∠BAC=90°∴平行四边形AEDF为矩形,②正确;若AD平分∠BAC∴∠EDA=∠FAD又DE∥CA,∴∠EAD=∠EDA,∴AE=DE.∴平行四边形AEDF为菱形,③正确;若AD⊥BC,AB=AC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,④正确;故选A.【点睛】本题考查四边形与三角形结合的相关知识,熟练掌握平行四边形、矩形、菱形的判定定理是解答本题的关键.11.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是()A. 2B. 3C. 5D. 6【答案】D【解析】【分析】根据∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO△COD,进而可以证明AP=CO,即可解题.【详解】解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD,∴∠APO=∠COD,在△APO和△COD中A CAPO CODOD OP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APO △COD (AAS ),即AP=CO ,∵CO=AC-AO=6,∴AP=6.故答案为6.【点睛】本题是全等三角形与旋转的综合题型,理解题意,找出全等的三角形,再通过代换求得答案是解题的关键.12.已知抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论①abc <0,②a +b +c =2,③a >12④0<b <1中正确的有( )A. ①②B. ①②③C. ①②④D. ①②③④【答案】B【解析】【分析】 根据抛物线的开口方向可以判断a 与0的关系,由抛物线与y 轴交点判断c 与0的关系,然后根据对称轴以及抛物线与x 轴交点情况进行推理,进而得到结论. 【详解】解:∵抛物线的开口向上,∴a 0>当x=0时,可得c 0<,∵对称轴x=- 02b a<,∴a 、0b b >同号,即,∴abc <0,故①正确;当x=1时,即a++c=2故②正确;当x=-1时,a-+c 0<,又a++c=2,∴a+c=2-,将上式代入a-+c 0<,即2-2b 0<,∴b 1>.故④错误;∵对称轴x=- 12b a >-, 解得 2b < a , 因为b 1>, ∴a 12>, 故③正确.故选B .【点睛】本题是二次函数图像的综合题型,掌握二次函数的定义,对称轴等相关知识是解题的关键,是中考的必考点.二、填空题13.股市有风险,投资须谨慎.截止今年5月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学记数法表示 .【答案】9.5×710【解析】【分析】实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n 的形式时,其中1≤|a|<10,n 为比整数位数少1的数,而且a×10n (1≤|a|<10,n 为整数)中n 的值是易错点.【详解】解:根据题意95 000 000=9.5×107. 故答案为:9.5×107. 【点睛】本题考查科学计数法,在a×10n 中,a 的整数部分只能取一位整数,且n 的数值比原数的位数少1,95 000 000的数位是8,则n 的值为7.14.因式分解:34a a -=_______________________.【答案】(2)(2)a a a +-【解析】【分析】先提公因式,再用平方差公式分解.【详解】解:()3244(2)(2)a a a a a a a -=-=+-【点睛】本题考查因式分解,掌握因式分解方法是关键.15.如图,∠AOB =45°,过OA 上到点O 的距离分别为1,3,5,7,9,11,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4,…,观察图中的规律,求出第10个黑色梯形的面积S 10=_____.【答案】76【解析】【分析】仔细观察可发现规律:第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2,然后按此公式求得上下底,再利用面积公式计算面积就行了.【详解】解法①:从图中可以看出,第一个黑色梯形的上底为1,下底为3,第2个黑色梯形的上底为5=1+4,下底为7=1+4+2,第3个黑色梯形的上底为9=1+2×4,下底为11=1+2×4+2,则第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2, ∴第10个黑色梯形的上底=1+(10﹣1)×4=37,下底=1+(10﹣1)×4+2=39, ∴第10个黑色梯形面积S 10=12×(37+39)×2=76. 解法②根据图可知:S 1=4,S 2=12,S 3=20,以此类推得Sn =8n ﹣4,S 10=8×10﹣4=76.【点睛】本题是找规律题,找到第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2是解题的关键.16.如图,已知双曲线(0)k y x x =>经过矩形OABC 边AB 的中点,交BC 于点,且四边形OEBF 的面积为2,则k =_______.【答案】2【解析】【分析】如果设F (x ,y ),表示点B 坐标,再根据四边形OEBF 的面积为2,列出方程,从而求出k 的值. 【详解】解:∵双曲线(0)k y x x =>经过矩形OABC 边AB 中点 设F (x ,y ),E (a ,b ),那么B (x ,2y ),∵点E 在反比例函数解析式上,∴S △COE =12ab=12k , ∵点F 在反比例函数解析式上, ∴S △AOF =12xy=12k ,即xy=k ∵S 四边形OEBF =S 矩形ABCO -S △COE -S △AOF ,且S 四边形OEBF =2,∴2xy-12k-12xy=2, ∴2k-12k-12k=2, ∴k=2.故答案为:2.【点睛】本题的难点是根据点F 的坐标得到其他点的坐标.在反比例函数上的点的横纵坐标的积等于反比例函数的比例系数.三、解答题17.计算:101()(3)2cos 45221π--+-+-【答案】-2.【解析】【分析】原式利负指数幂法则,零指数幂,特殊角的三角函数,分母有理化,进行计算即可解答【详解】原式=2(21)12--+++=-2. 【点睛】此题考查了零指数幂,负整数指数幂,三角函数,解题关键在于掌握运算法则18.解方程:11322x x x-=---. 【答案】无解 【解析】【详解】解:方程两边同乘(2)x -,得1(1)3(2)x x =----.解这个方程,得2x =.检验:当2x =时,20x -=,所以2x =是增根,原方程无解.解分式方程步骤:去分母转化成一元一次方程即可,但需要特别注意,需要检验方程的根是否是原方程的增根19.我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长).直线MN 垂直于地面,垂足为点P ,在地面A 处测得点M 的仰角为60°,点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5米.且A 、B 、P 三点在一直线上,请根据以上数据求广告牌的宽MN 的长.(结果保留根号)535-米 【解析】【分析】设AP=NP=x ,在Rt △APM 中可以求出3,在Rt △BPM 中,∠MBP=30°,求得x ,利用MN =MP -NP 即可求得答案.【详解】解:∵在Rt △APN 中,∠NAP =45°,∴PA =PN ,在Rt△APM中,tan∠MAP=MP AP,设PA=PN=x,∵∠MAP=60°,∴MP=AP·tan∠MAP=3x,在Rt△BPM中,tan∠MBP=MP BP,∵∠MBP=30°,AB=5,∴33=3x5x+,∴x=52,∴MN=MP-NP=3x-x=5352-.答:广告牌的宽MN的长为5352-米.【点睛】本题考查解直角三角形在实际问题中的应用,将实际问题抽象为数学问题,选用适当的锐角三角函数解直角三角形是解题的关键,属于中考的必考点.20.当前,”精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要”建档立卡”.某初级中学七年级共有四个班,已”建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已”建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.【答案】(1)15人;(2)补图见解析 (3)1 2 .【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已”建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 .【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.21.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD交CD的延长线于点E,DA平分∠BDE.⑴求证:AE是⊙O的切线;⑵若AE=4cm,CD=6cm,求AD的长.【答案】(1)证明见解析;(2)AD=25.【解析】【分析】(1)根据等边对等角得出∠ODA=∠OAD,进而得出∠OAD=∠EDA,证得EC∥OA,从而证得AE⊥OA,即可证得AE是⊙O的切线;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE=4cm,根据垂径定理得出DF=12CD=3cm,在Rt△ODF中,根据勾股定理即可求得⊙O的半径,得出ED,根据勾股定理即可求得AD.【详解】(1)证明:连结OA.∵OA=OD,∴∠ODA=∠OAD.∵DA平分∠BDE,∴∠ODA=∠EDA.∴∠OAD=∠EDA,∴EC∥OA.∵AE⊥CD,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°∴四边形AOFE是矩形.∴OF=AE=4cm. EF=OA,又∵OF⊥CD,∴DF=12CD=3cm.在Rt△ODF中,22OF DF=5cm,即⊙O的半径为5cm,∴EF=OA=5cm,∴ED=EF-DF=5-3=2cm,在Rt△AED中,【点睛】此题考查等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用,熟练掌握性质定理和作辅助线是解题的关键.A B C三种品牌脐橙共100吨参加上海世博会,按计划,20辆汽车都要22.我市某镇组织20辆汽车装运完,,装运,每辆汽车只能装运用一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:从A,B两地运往甲,乙两地的费用如下表:(1)设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案?(3)若要使此次销售获利最大,应采用哪种安排方案?请求出最大利润的值【答案】(1)y=20-2x;(2)详见解析;(3)当装运A种脐橙4车、B种脐橙12车、C种脐橙4车时,获利最大,最大利润为14.08万元.【解析】【分析】(1)等量关系为:车辆数之和=20;(2)关系式为:装运每种脐橙的车辆数≥4;(3)总利润为:装运A种脐橙的车辆数×6×12+装运B种脐橙的车辆数×5×16+装运C种脐橙的车辆数×4×10,然后按x的取值来判定.【详解】解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20-x-y),则有:6x+5y+4(20-x-y)=100整理得:y=-2x+20(1≤x≤9且为整数);(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x,-2x+20,x.由题意得42204 xx⎧⎨-+⎩解得:4≤x≤8因x为整数,所以x的值为4,5,6,7,8,所以安排方案共有5种.方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;(3)设利润为W(百元)则:W=6x×12+5(-2x+20)×16+4x×10=-48x+1600∵k=-48<0∴W的值随x的增大而减小.要使利润W最大,则x=4,故选方案一W最大=-48×4+1600=1408(百元)=14.08(万元)答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元.【点睛】解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系.确定x的范围,得到装在的几种方案是解决本题的关键.23.如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B→A,B→C 运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M 也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=______厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;【答案】(1)34;(2)2∶3;(3)3<a≤6.【解析】【分析】(1)由题意可知,t =1秒时,BN=BM=1,又因为PM ⊥BC ,所以△ANB ∽△APM ,根据相似三角形的性质,即可求得PM ;(2)根据题意,当△PNB ∽△PAD 时,对应边之比等于高之比,即NB BM AD AM=,进而可以求出时间t 以及相似比;(3)设BN=t ,则0t 3≤≤,则BM=t ,再用t 表示出PM ,就可以用t 表示出两个梯形的面积,求出t 的值,进而求出a 的取值范围.【详解】解:(1)当t =1时,MB =1,NB =1,AM =4-1=3,∵PM ∥BN ,∴△ANB ∽△APM , ∴PM AM NB AB=, ∴PM =34. (2)作出△PNB 和△PAD ,则BM 和AM 分别是它们的高,若△PNB ∽△PAD ,则NB BM AD AM =, 即35t t t=-,解得t=2, 即t =2时,使得△PNB ∽△PAD ,∴相似比为2∶3.(3)∵PM ⊥AB ,CB ⊥AB ,∠AMP =∠ABC ,△AMP ∽△ABN , ∴PM AM NB AB =,即PM a t t a-=, ∴()PM t a t a -=,∴()QP 3t a t a -=-,当梯形PMBN 与梯形PQDA 的面积相等时,即()()()()()332222t a t t a t a t t t a QP AD DQ MP BN BM a ⎛⎫-⎛⎫-+- ⎪-+ ⎪++⎝⎭⎝⎭===, 化简得t =66a a +, ∵t3, ∴636a a≤+,则a6, ∴3a6.【点睛】本题是矩形中动点与相似三角形的的综合问题,难度一般,根据所求正确的找出相似三角形,再利用对应边成比例是解题的关键,是中考的重要考点.24.如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点抛物线L1向右平移2个单位得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.【答案】(1)y=-x2+2x+3;(2)存在,N(2,3),N′(-2,3);(3)点Q不在抛物线L2上.【解析】【分析】(1)由于是平移,所以抛物线的开口方向和开口大小不变,先求出L1与x轴的交点,再求出L2与x轴的交点,即可求出抛物线L2的解析式;(2)因为是平移,根据平移的性质,连接各组对应点的线段平行且相等,故存在符合条件的点N,即可求得N 点坐标;(3)先设出L1上的点(x1,y1),进而求得关于原点的对称点(-x1,-y1),再将(-x1,-y1)代入函数L2的解析式,成立则在图像上,不成立则不在图像上.【详解】解:(1)令y=0,得-x2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0) ,∵抛物线L1向右平移2个单位得抛物线L2,∴C(-1,0),D(3,0),a=-1,∴抛物线L 2为y =-(x +1)(x -3) .即y =-x 2+2x +3.(2)存在;令x =0,得y =3,∴M(0,3),∵抛物线L 2是L 1向右平移2个单位得到的,∴点N(2,3)在L 2上,且MN =2,MN ∥AC ,又∵AC =2,∴MN =AC ,∴四边形ACNM 为平行四边形.同理,L 1上的点N′(-2,3)满足N′M ∥AC ,N′M =AC ,∴四边形ACMN′是平行四边形.∴N(2,3)或N′(-2,3)即所求.(3)设P(x 1,y 1)是L 1上任意一点(y 1≠0),则点P 关于原点的对称点Q(-x 1,-y 1),且211123y x x =--+,将点Q 的横坐标代入L 2,得:2111123Q y x x y y =--+=≠-∴点Q 不在抛物线L 2上.【点睛】本题目是二次函数的综合题型,涉及的知识点有平移、平行四边形的判定、对称等相关知识,是中考的常考点,同学们需要熟练掌握解题技巧方能快速解题.。
2022年人教版九年级数学中考模拟试卷2套(含答案解析)
2022年人教版九年级数学中考模拟试卷1一.选择题(每题4分,共40分)1.在下列各数中,最小的数是()A.﹣1.5 B.﹣3 C.﹣1 D.﹣52.某几何体的三视图如图所示,则该几何体的名称是()A.正方体B.圆柱C.圆锥D.球3.2020年,新冠肺炎疫情席卷全球,截至2020年12月30日,累计确诊人数超过78400000人,抗击疫情成为全人类共同的战役,寒假要继续做好疫情防控.将“78400000”用科学记数法可表示为()A.7.84×105B.7.84×106C.7.84×107D.78.4×1064.在Rt△ABC中,∠C=90°,BC=6,sin A=,则AC的长为()A.4 B.6 C.8 D.105.下列计算正确的是()A.2a2+a3=3a5B.(﹣b2)5=﹣b10C.(2ab)2÷(ab)=2ab D.(﹣1﹣ab)2=1﹣2ab+a2b26.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速(km/h)50 55 60 65 70车辆数(辆) 5 4 8 2 1则上述车速的中位数和众数分别是()A.60,8 B.60,60 C.55,60 D.55,87.方程=的解为()A.x=1 B.x=2 C.x=3 D.x=48.如图,在△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接OD,CD,若CD =OD,则∠B的度数为()A .30°B .45°C .60°D .70°9.抛物线y =ax 2+bx +c (a >0)过点(1,0)和点(0,﹣3),且顶点在第三象限,设m =a ﹣b +c ,则m 的取值范围是( )A .﹣6<m <0B .﹣6<m <﹣3C .﹣3<m <0D .﹣3<m <﹣110.如图,正方形ABCD 内一点E ,满足△CDE 为正三角形,直线AE 交BC 于F 点,过E 点的直线GH ⊥AF ,交AB 于点G ,交CD 于点H .以下结论: ①∠AFC =105°;②GH =2EF ;③;④其中正确的有( )A .①②③B .①③④C .①④D .①②③④二.填空题(每题4分,共20分)11.若|a ﹣2|+(b +3)2=0,则a +b = .12.若A (﹣3,y 1),B (1,y 2),C (2,y 3)是反比例函数y =(k >0)图象上的三点,则y 1,y 2,y 3的大小关系是 (用“<”号连接).13.如图,在△ABC 中,AB =5,D ,E 分别是边AC 和AB 上的点,且∠AED =∠C ,若AD •BC =,则DE 的长为 .14.如图,在△ABC中,∠B=90°,sin A=,BD⊥AC,垂足为D,按如下步骤作图:①以A点为圆心,以大于AB的长度m为半径作弧;②以B点为圆心,以同样大小为半径作弧,两弧交点分别为E,F;③连接EF,直线EF与AC交于点G,则AB与DG的比是.15.如图.在矩形ABCD中,AD=2AB=6,点E是AD的中点.连接BE.点M是BE上一动点,取CM的中点为N.连接AN,则AN的最小值是.三.解答题(共7小题,共60分)16.(1)计算:﹣(4﹣π)0+(cos60°)﹣2﹣|﹣3|;(2)解不等式组:,并写出它的所有整数解.17.计算:(1﹣)÷.18.在学完锐角三角函数后,某班利用自制的测角仪和卷尺,测量校国旗杆的高度,他们制定了如下两种测量方案.方案一:第一步:在国旗杆前平地上选择一点A作为测量点,用自制的测角仪测出观察者看国旗杆顶端D的仰角α;第二步:在点A和国旗杆底端点C之间选择一点B,测出由点B看国旗顶端D的仰角β;第三步:测出AB两点间的距离;第四步:计算国旗杆的高度CD.方案二:第一步:在国旗杆前平地上选择一点A,用自制的测角仪测出观察者(竖直站立)看国旗杆顶端D的仰角α;第二步:测量观察者眼睛到地面的竖直高度AE;第三步:测量点A到国旗杆底端C的水平距离AC;第四步:在点A处重复上述操作,得到仰角及距离;第五步:计算国旗杆的高度CD.根据以上方案,测量信息汇总如下:课题测量校园旗杆的高度方案方案一方案二测量示意图测量数据测量项目αβAB的长测量项目αAE的长AC的长数据33°45° 5.99m数据第一次32.7°151cm17.47m第二次33.3°153cm17.45m平均值a152cm b(1)①填空:a=,b=;②请判断哪个方案更好,并说明理由.(2)根据你的判断,选择合适的数据计算出国旗杆的高度.(结果保留一位小数.参考数据:sin33°≈0.545,cos33°≈0.839,tan33°≈0.649)19.阳光中学为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如下两幅不完整的统计图.请根据以上信息,解答下列问题:(1)随机调查的学生人数是,并补全条形统计图;(2)求被调查的学生每人一周零花钱数额的中位数及众数;(3)为捐助贫困山区儿童学习,全校800名学生每人自发地捐出一周的零花钱,请估计全校学生共捐款钱数.20.由于疫情的影响,“地摊经济“成为了很多人经济来原的一种形式.李叔叔从市场得知如下信息:A商品B商品进价(元/件)35 5售价(元/件)45 8李叔叔计划购进A.B商品共100件进行销售,设购进A商品x件,A.B商品全部销售完后获得利润为y元.(1)求出y与x之间的函数关系式;(2)若李叔叔用不超过2000元资金一次性购进A.B两种商品,则如何进货,才能使得获利最大?并求出最大利润.21.在平面直角坐标系xOy中,对于两个点A,B和图形ω,如果在图形ω上存在点P、Q (P、Q可以重合),使得AP=2BQ,那么称点A与点B是图形ω的一对“倍点”.已知⊙O的半径为1,点B(3,0).(1)①点B到⊙O的最大值是,最小值是;②在点A(5,0),D(0,10)这两个点中,与点B是⊙O的一对“倍点”的是;(2)在直线y=x+b上存在点A与点B是⊙O的一对“倍点”,求b的取值范围;(3)已知直线y=x+b,与x轴、y轴分别交于点M、N,若线段MN(含端点M、N)上所有的点与点B都是⊙O的一对“倍点”,请直接写出b的取值范围.22.如图,已知抛物线y=x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式;(2)求线段BC所在直线的解析式;(3)在抛物线的对称轴上是否存在点P,使△ACP为等腰三角形?若存在,求出符合条件的P点坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵|﹣5|>|﹣3|>|﹣1.5|>|﹣1|,∴﹣5<﹣3<﹣1.5<﹣1,∴其中最小的数是﹣5.故选:D.2.解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.3.解:78400000=7.84×107.故选:C.4.解:sin A=,∴=,解得,AB=10,由勾股定理得,AC===8,故选:C.5.解:由于a2与a3不是同类项,不能加减,故选项A计算错误;(﹣b2)5=﹣b10,故选项B计算正确;(2ab)2÷(ab)=4ab≠2ab,故选项C计算错误;(﹣1﹣ab)2=1+2ab+a2b2≠1﹣2ab+a2b2,故选项D计算错误.故选:B.6.解:将这20辆车的车速从小到大排列后,处在中间位置的两个数都是60km/t,因此中位数是60km/t,这20辆车的车速出现次数最多的是60km/t,共出现8次,因此车速的众数是60km/t,故选:B.7.解:去分母得:x﹣2+x+2=2,解得:x=1,经检验x=1是分式方程的解.故选:A.8.解:∵CD=OD,OD=OC=OA=AC,∴CD=AC,∵AC为⊙O的直径,∴∠ADC=90°,∴∠A=30°,∵∠ACB=90°,∴∠B=90°﹣∠A=60°,故选:C.9.解:∵抛物线y=ax2+bx+c(a>0)过点(1,0)和点(0,﹣3),∴c=﹣3,a+b+c=0,即b=3﹣a,∵顶点在第三象限,∴﹣<0,<0,又∵a>0,∴b>0,∴b=3﹣a>0,即a<3,b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2>0∵a+b+c=0,∴a﹣b+c=﹣2b<0,∴a﹣b+c=﹣2b=2a﹣6,∵0<a<3,∴a﹣b+c=﹣2b=2a﹣6>﹣6,∴﹣6<a﹣b+c<0.故选:A.10.解:∵△CDE为正三角形,∴∠CDE=60°,∴∠ADE=90°﹣60°=30°,∵AD=DE=CD,∴∠DAE=∠DEA=(180°﹣30°)=75°,∴∠BAF=90°﹣75°=15°,∴∠AFC=90°+15°=105°,故①正确;过点H作HK⊥AB,则HK=AD,∵GH⊥AF,∴∠BAF+∠AGE=90°,又∵∠AGE+∠KHG=90°,∴∠BAF=∠KHG,在△ABF和△HKG中,,∴△ABF≌△HKG(AAS),∴AF=GH,∵△CDE为正三角形,∴点E在CD的垂直平分线上,根据平行线分线段成比例定理,点E是AF的中点,∴AF=2EF,∴GH=2EF,故②正确;∵GH⊥AF,∠DEA=75°,∴∠DEH=90°﹣75°=15°,∴∠CEH=60°﹣15°=45°,∴∠CEF=90°﹣45°=45°,过点F作FM⊥CE于M,过点H作HN⊥CE于N,则MF=EM,NH=EN,∵△CDE是等边三角形,∴∠DCE=60°,∴∠ECF=90°﹣60°=30°,∴CM=MF,NH=CN,∴CE=MF+MF=CN+CN,∴MF =CN , ∴CE =EF +EH ,∴CE =EF +EH ,故③正确;===,故④错误.综上所述,正确的结论是①②③. 故选:A .二.填空题(共5小题)11.解:根据题意得,a ﹣2=0,b +3=0, 解得a =2,b =﹣3, ∴a +b =2﹣3=﹣1. 故答案为:﹣1.12.解:∵k >0,故反比例函数图象的两个分支在一三象限,且在每个象限内y 随x 的增大而减小.∴A (﹣3,y 1)在第三象限,B (1,y 2),C (2,y 3)在第一象限,且1<2, ∴y 1<0,0<y 3<y 2,故y 1,y 2,y 3的大小关系为y 1<y 3<y 2. 故答案为y 1<y 3<y 2.13.解:∵∠AED =∠C ,∠EAD =∠CAB , ∴△ADE ∽△ABC , ∴,∴AD •BC =DE •AB ,且AD •BC =,AB =5,∴DE =, 故答案为:.14.解:由题意得,EF为AB的垂直平分线,∵∠B=90°,∴G为AB的中点,连接BG,∴AG=BG=CG,∵BD⊥AC,∴∠A=∠DBC,∴sin A=sin∠DBC=,∴=,设DC=x,则BC=2x,AC=4x,∴CG=2x,AB===2x,DG=CG﹣CD=x,∴.故答案为:2.15.解:取BC的中点N′,连接AN′、DN′,如图所示:∴BN′=CN′,∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠ABC=∠BCD=90°,∵AD=2AB=6,∴AB=BN′=CN′=CD=3,∴∠AN′B=∠DN′C=45°,AN′==3,∴∠AN′D=90°,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵E是AD的中点,N′是BC的中点,∴DE=BN′,DE∥BN′,∴四边形BEDN′是平行四边形,∴BE∥DN′,∴DN′平分CM,即CM的中点N在DN′上,∴当N与N′重合时,AN⊥DN′,根据垂线段最短定理知,AN′的值就是AN的最小值为3.故答案为:3.三.解答题(共7小题)16.解:(1)﹣(4﹣π)0+(cos60°)﹣2﹣|﹣3|=2﹣1+4+﹣3=3;(2),解不等式①得x≥﹣1,解不等式②得x<3,故原不等式组的解集为﹣1≤x<3,故它的所有整数解为﹣1,0,1,2.17.解:原式=•=.18.解:(1)①根据方案二的两次测量结果的平均数为a==33°,根据法案二的两次测量结果取平均值即可b==17.46(m),故答案为:33°,17.46m;②方案二更好,理由:方案一测量点A在水平地面上,不易观察,容易产生误差,方案二考虑测量点的位置,并多次测量求其平均值,减少误差,因此方案二更好;(2)方案二的数据进行计算:过点E作EF⊥CD,垂足为F,则AE=CF=1.52,AC=EF=17.46,∠DEF=33°,在Rt△DEF中,DF=EF•tan33°≈17.46×0.649≈11.33(m),∴CD=DF+FC=11.33+1.52≈12.9(m),答:旗杆CD的高度约为12.9m.19.解:(1)校团委随机调查的学生有:10÷25%=40(人),零花钱有20元的学生有:40×15%=6(人),补全统计图如下:故答案为:40;(2)把这些数从小到大排列,中位数是第20、21个数的平均数,则中位数是=30(元);30元出现的次数最多,则众数是30元;答:被调查的学生每人一周零花钱数额的中位数是30元,众数是30元;(3)根据题意得:800×=26400(元),答:估计全校学生共捐款26400元.20.解:(1)由题意可得:y=(45﹣35)x+(8﹣5)(100﹣x)=7x+300,∴y与x之间的函数关系式为y=7x+300;(2)由题意可得:35x+5(100﹣x)≤2000,解得:x≤50,又∵x≥0,∴0≤x≤50,∵y=7x+300,7>0,∴y随x的增大而增大,∴当x=50时,可获得最大利润,最大利润为:y=7×50+300=650(元),100﹣x=100﹣50=50(件).答:当购进A种商品50件,B种商品50件时,可使得A、B商品全部销售完后获得的利润最大,最大利润650元.21.解:(1)①点B到⊙O的最大值是BO+r=3+1=4;点B到⊙O的最小值是BO﹣r=3﹣1=2;②∵A到圆O的最大值6,最小值4;D到圆O的最大值11,最小值9;又∵点B到⊙O的最大值是4,最小值是2;在圆O上存在点P,Q,使得AP=2BQ,∴A与B是⊙O的一对“倍点”,故答案为2,4,A;(2)如图,设直线y=x+b与x轴交于点E,与y轴交于点C,过点O作OD⊥CE于D,∵点B到⊙O的最大值是4,最小值是2∴4≤2BQ≤8,∴O到直线y=x+b的最大距离是9,即OD=9,∵直线y=x+b与x轴交于点E,与y轴交于点C,∴点C(0,b),点E(﹣b,0),∴CO=|b|,OE=|﹣b|,∴CE==|b|,∴sin∠CEO=,∴|b|=15,∴﹣15≤b≤15;(3)如图,∵线段MN(含端点M、N)上所有的点与点B都是⊙O的一对“倍点”,∴2×2+1≤ON≤2×4+1,∴5≤|b|≤9,∴5≤b≤9或﹣9≤b≤﹣5.22.解:(1)将点A(﹣2,0)代入y=x2+bx+4中,得,解得:b=,∴抛物线的解析式为y=x2+x+4;(2)当x=0时,y=4,∴点C的坐标为(0,4),当y=0时,x2+x+4=0,解得:x1=﹣2,x2=6,∴点B的坐标为(6,0),设直线BC的解析式为y=kx+n,将点B(6,0),点C(0,4)代入解析式y=kx+n,得:,解得:,∴直线BC的解析式为y=﹣x+4;(3)∵抛物线y=x2+x+4与x轴相交于A(﹣2,0)、B(6,0)两点,∴抛物线的对称轴为x=,假设存在点P,设P(2,t),则AC==,AP==,CP==,∵△ACP为等腰三角形,故可分三种情况:①当AC=AP时,,解得:t=±2,∴点P的坐标为(2,2)或(2,﹣2);②当AC=CP时,,解得:t=0或t=8,∴点P的坐标为(2,0)或(2,8),设直线AC的解析式为y=mx+n,将点A(﹣2,0)、C(0,4)代入得,解得:,∴直线AC的解析式为y=2x+4,当x=2时,y=4+4=8,∴点(2,8)在直线AC上,∴A、C、P在同一直线上,点(2,8)应舍去;③当AP=CP时,,解得:t=,∴点P的坐标为(2,);综上可得,符合条件的点P存在,点P的坐标为:(2,2)或(2,﹣2)或(2,0)或(2,).2022年人教版九年级数学中考模拟试卷2一.选择题(共12小题,满分48分,每小题4分)1.计算|﹣2|+2﹣1的结果是()A.﹣1B.0C.1D.22.下面各式计算正确的是()A.(a5)2=a7B.a8÷a2=a6C.3a3•2a3=6a9D.(a+b)2=a2+b23.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°4.如图,在长方体中,AB=4,BC=3,AA1=5,若以BDD1B1为主(正)视平面,则该长方体左视图的面积为()A.12B.C.25D.245.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=6.在一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.77.某地近年来持续干旱,为了倡导节约用水,该地一家庭记录了去年12个月的月用水量如表,m取1≤m≤3的整数,用水量x/吨34567频数1254﹣m m下列关于用水量的统计量不会发生变化的统计量是()A.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差8.如图,A、B、C是⊙O上的三个点,∠AOB=58°,则∠BCA的度数是()A.58°B.42°C.32°D.29°9.如图,二次函数y=ax2+bx+c的对称轴是直线x=1,且经过点(﹣1,0),则下列结论:①abc<0;②2a﹣b=0;③a<﹣;④若方程ax2+bx+c﹣2=0的两个根为x1和x2,则(x1+1)(x2﹣3)<0,正确的有()个.A.1B.2C.3D.410.对于实数a,b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是通常的实数运算.例如:1⊗3==﹣,则方程x⊗(﹣1)=﹣1的解是()A.x=4B.x=5C.x=6D.x=711.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是()A.A、B两地之间的距离是450千米B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时C.甲车的速度是80千米/时D.点M的坐标是(6,90)12.如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC 上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G 处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5,正确的是()A.①②B.②③C.③④D.①②③④二.填空题(共6小题,满分24分,每小题4分)13.计算﹣﹣(﹣1)0的结果是.14.当代数式有意义时,x应满足的条件.15.一个正多边形的内角和大于等于540度而小于1000度,则这个正多边形的每一个内角可以是度.(填出一个即可)16.如图,一次函数y=kx+b与反比例函数y=的图象交于A(m,3),B(3,n)两点,当kx+b﹣>0时x的取值范围是.17.如图,在平面直角坐标系中,点A(0,8),点B(8,0),点C在线段AB上,AC =2,若以原点O为位似中心,把线段AB缩小为原来的,得到线段A′B′,则点C的对应点C′坐标为.18.已知:如图,在平面直角坐标系xoy中,点B1、点C1的坐标分别为(1,0),(1,),将△OB1C1绕原点O逆时针旋转60°,再将其各边都扩大为原来的m倍,使OB2=OC1,得到△OB2C2.将△OB2C2绕原点O逆时针旋转60°,再将其各边都扩大为原来的m倍,使OB3=OC2,得到△OB3C3,如此下去,得到△OB2011C2011,则点C2011的坐标:.三.解答题(共7小题,满分78分)19.先化简,再求值:(x﹣2+)÷,其中x=﹣.20.2020年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课,某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,“比较重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生3200人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.21.奇奇,妙妙等同学想用一些测量工具和所学的几何知识测量某景区景观塔的高EF.因景观塔前有一个山坡,故底部DE间的距离不易测得.经过研究,他们使用如下测量方法:如图,首先测得坡角∠MDE=22°,DM=10米.奇奇在塔顶F处用测角仪测得山坡上点M的俯角为45度,然后,妙妙站在段B处.同伴在妙妙和观景塔之间的直线BE 上放一平面镜.在镜面上做了一个标记,这个标记在直线BE上的对应位置为点C,移动平面镜,此时妙妙在平面镜内可以看到塔顶点F在镜面中的像与镜面上的标记重合.这时,测得妙妙眼睛与地面的高度AB=1.6米.BC=4.8米,CD=16.4米.已知AB、BE.EF ⊥BE.点B、C、D、E共线.其中,测量时使用的平面镜的厚度忽略不计.请你根据题中提供的相关信息,求出景观塔的高EF的长度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40.)22.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.23.如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.24.如图1,已知△ABC中,∠ACB=90°,AC=BC=6,点D在AB边的延长线上,且CD=AB.(Ⅰ)求BD的长度;(Ⅱ)如图2,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD'.①若α=30°,A'D'与CD相交于点E,求DE的长度;②连接A'D、BD',若旋转过程中A'D=BD'时,求满足条件的α的度数.(Ⅲ)如图3,将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A'CD',若点M 为AC的中点,点N为线段A'D'上任意一点,直接写出旋转过程中线段MN长度的取值范围.25.如图,已知抛物线y=ax2+bx﹣3的图象与x轴交于点A(1,0)和B(3,0),与y轴交于点C.D是抛物线的顶点,对称轴与x轴交于E.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE上求作一点M,使△AMC的周长最小,并求出点M 的坐标和周长的最小值.(3)如图2,点P是x轴上的动点,过P点作x轴的垂线分别交抛物线和直线BC于F、G.设点P的横坐标为m.是否存在点P,使△FCG是等腰三角形?若存在,直接写出m的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:|﹣2|+2﹣1=2+=2.故选:D.2.解:A、(a5)2=a5×2=a10;故本选项错误;B、a8÷a2=a8﹣2=a6;故本选项正确;C、3a3•2a3=2×3•a3+3=6a6;故本选项错误;D、(a+b)2=a2+2ab+b2;故本选项错误;故选:B.3.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.4.解:该长方体左视图为长方形ACC1A1.AC=,∴长方形ACC1A1的面积为:5×5=25.故选:C.5.解:∵∠BAC=∠D,,∴△ABC∽△DEA.故选:C.6.解:∵解不等式①得:x>﹣0.5,解不等式②得:x≤5,∴不等式组的解集为﹣0.5<x≤5,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C.7.解:∵6吨和7吨的和是4,∴频率之和是1+2+5+4=12,则这组数据的中位数是第6、7个数据的平均数,即=5吨,∴对于不同的正整数x,中位数不会发生改变;∵5出现的次数最多,出现了5次,∴众数是5吨,∴众数也不会发生改变;故选:B.8.解:如图,∵A、B、C是⊙O上的三个点,∠AOB=58°,∴∠BCA=∠AOB=29°,故选:D.9.解:由图象可知,a<0,b>0,c>0,﹣=1,∴abc<0,﹣b=2a,2a﹣b=4a≠0,故①正确,②错误;x=﹣1时,a﹣b+c=0,3a+c=0,c=﹣3a>2,a<﹣,故③正确;由对称轴直线x=1,抛物线与x轴左侧交点(﹣1,0),可知抛物线与x轴另一个交点(3,0),由图象可知,y=2时,x1>﹣1,x2<3,∴x1+1>0,x2﹣3<0,∴(x1+1)(x2﹣3)<0.故④正确.故选:C.10.解:根据题中的新定义化简得:=﹣1,去分母得:2=6﹣x+1,解得:x=5,经检验x=5是分式方程的解.故选:B.11.解:根据题意仔细观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,所以甲车的速度为90千米/时;所以A、B两地之间的距离为:90×5=450千米.故选项A不合题意;设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得:60x+90(x﹣6)=450,解得x=6.6,所以乙车从出发到与甲车返回时相遇所用的时间是6.6小时.故选项B不合题意;甲车的速度为90千米/时.故选项C符合题意;点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.故选:C.12.解:如图1,∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌Rt△CMD(HL),∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2所示:设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC===4,∴CQ=AC=2,∴QN==,∴MN=2QN=2.故③正确;当MN过点D时,如图3所示:=×4×4=4,此时,CN最短,四边形CMPN的面积最小,则S最小为S=S菱形CMPN当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=×5×4=5,∴4≤S≤5,故④错误.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:﹣﹣(﹣1)0==.故答案为:.14.解:∵代数式有意义,∴4﹣x≥0,x2﹣1≠0,解得,x≤4且x≠±1,故答案为:x≤4且x≠±1.15.解:设该多边形的边数为n,则540≤180(n﹣2)<1000,解得:5≤n<,∵n为正整数,∴n=5或6或7,若n=5,则每个内角度数为=108°,故答案为:108.16.解:∵A(m,3),B(3,n)两点在反比例函数y=的图象上,∴3=,n=解得m=2,n=2,∴A(2,3),B(3,2),由图象可知,kx+b﹣>0时x的取值范围是2<x<3或x<0,故答案为2<x<3或x<0.17.解:∵点A(0,8),点B(8,0),点C在线段AB上,AC=2,∴AB=8,∴点C坐标为(2,6),∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段A′B′,∴点C'的横坐标和纵坐标都变为C点的横坐标和纵坐标的一半,∴点C'的坐标为(1,3).在第三象限时,点C'的坐标为(﹣1,﹣3),故答案为:(1,3)或(﹣1,﹣3).18.解:如图,(此图,只反映旋转一周的次数)∵每一次的旋转角是60°,∴旋转6次后点C在射线OC1上,∴2011÷6=335…1,∴点C2011的坐标跟C1的坐标在同一条射线OC1上,∵第2次旋转后,各边长是原来的2倍,第3次旋转后,各边长是原来的22倍,∴点C2011的横纵坐标均为原来的2010倍.而C1(1,)故答案为:(22010,22010).三.解答题(共7小题,满分78分)19.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.20.解:(1)调查的学生人数为16÷20%=80(人),∴“比较重视”所占的圆心角的度数为360°×=162°,故答案为:162°,“重视”的人数为80﹣4﹣36﹣16=24(人),补全条形统计图如图:(2)由题意得:3200×=160(人),即估计该校对视力保护“非常重视”的学生人数为160人;(3)画树状图如图:共有12个等可能的结果,恰好抽到同性别学生的结果有4个,∴恰好抽到同性别学生的概率为=.21.解:过点M作MN⊥EF,垂足为M,MP⊥DE,垂足为P,在Rt△DMP中,∠MDE=22°,DM=10,∴PM=DM•sin22°≈10×0.37=3.7(m)=EN,PD=DM•cos22°≈10×0.93=9.3(m),在Rt△MNF中,∠MFN=45°,∴MN=FN=PE,设FN=x,则FE=FN+NE=(x+3.7)米,CE=CD+DP+PE=16.4+9.3+x=(25.7+x)米,由题意可得,△ABC∽△FEC,∴=,即,=,解得,x=7.3,∴FE=FN+NE=7.3+3.7=11(米),答:景观塔的高EF的高度约为11米.22.解:(1)设销售甲种特产x吨,则销售乙种特产(100﹣x)吨,10x+(100﹣x)×1=235,解得,x=15,∴100﹣x=85,答:这个月该公司销售甲、乙两种特产分别为15吨,85吨;(2)设利润为w万元,销售甲种特产a吨,w=(10.5﹣10)a+(1.2﹣1)×(100﹣a)=0.3a+20,∵0≤a≤20,∴当a=20时,w取得最大值,此时w=26,答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.23.解:(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴=,∴BD2=BF•BA=2×6=12.∴BD=2.解法二:利用勾股定理求出DF,再利用勾股定理求出BD即可.24.解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵∠ACB=90°,AC=BC=6,CH⊥AB,∴AB=CD=6,CH=BH=AB=3,∠CAB=∠CBA=45°,∴DH===3,∴BD=DH﹣BH=3﹣3;(Ⅱ)①如图2,过点E作EF⊥CD'于F,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴CD=CD'=6,∠DCD'=30°=∠CDA=∠CD'A',∴CE=D'E,又∵EF⊥CD',∴CF=D'F=3,EF=,CE=2EF=2,∴DE=DC﹣CE=6﹣2;②如图2﹣1,∵∠ABC=45°,∠ADC=30°,∴∠BCD=15°,∴∠ACD=105°,∵将△ACD绕点C逆时针旋转α(0°<α<360°)得到△A′CD′,∴AC=A'C,CD=CD',∠ACA'=∠DCD'=α,∴CB=CA',又∵A′D=BD′,∴△A'CD≌△BCD'(SSS),∴∠A'CD=∠BCD',∴105°﹣α=15°+α,∴α=45°;如图2﹣2,同理可证:△A'CD≌△BCD',∴∠A'CD=∠BCD',∴α﹣105°=360°﹣α﹣15°,∴α=225°,综上所述:满足条件的α的度数为45°或225°;(Ⅲ)如图3,当A'D'⊥AC时,N是AC与A'D'的交点时,MN的长度最小,∵∠A'=45°,A'D'⊥AC,∴∠A'=∠NCA'=45°,∴CN=A'N=3,∵点M为AC的中点,∴CM=AC=3,∴MN的最小值=NC﹣CM=3﹣3;如图4,当点A,点C,点D'共线,且点N与点D'重合时,MN有最大值,此时MN=CM+CN=6+3,∴线段MN的取值范围是3﹣3≤MN≤6+3.25.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)如下图,连接BC交DE于点M,此时MA+MC最小,又因为AC是定值,所以此时△AMC的周长最小.由题意可知OB=OC=3,OA=1,∴BC==3,同理AC=,∴此时△AMC的周长=AC+AM+MC=AC+BC=+3;∵DE是抛物线的对称轴,与x轴交点A(1,0)和B(3,0),∴AE=BE=1,对称轴为x=2,由OB=OC,∠BOC=90°得∠OBC=45°,∴EB=EM=1,又∵点M在第四象限,在抛物线的对称轴上,∴M(2,﹣1);(3)存在这样的点P,使△FCG是等腰三角形.∵点P的横坐标为m,故点F(m,﹣m2+4m﹣3),点G(m,m﹣3),则FG2=(﹣m2+4m﹣3+3﹣m)2,CF2=(m2﹣4m)2+m2,GC2=2m2,当FG=FC时,则(﹣m2+4m﹣3+3﹣m)2=m2+(m2﹣4m)2,解得m=0(舍去)或4;当GF=GC时,同理可得m=0(舍去)或3;当FC=GC时,同理可得m=0(舍去)或5或3(舍去),综上,m=5或m=4或或3.。
人教版中考模拟检测《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.下列图形是中心对称图形而不是轴对称图形是()A. B. C. D.2.下列事件中是必然事件的是()A. 从一个装有黄、白两色球的缸里摸出一个球,摸出的球是白球;B. 小丹的自行车轮胎被钉子扎坏;C. 小红期末考试数学成绩一定得满分;D. 将豆油滴入水中,豆油会浮在水面上.3.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )A. 40°B. 50°C. 70°D. 80°4.已知点A(m,n)在第二象限,则点B(|m|,﹣n)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为( )A. 20°B. 25°C. 30°D. 40°6.如图,若D、E分别为△ABC中AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为( )A. 94B.52C.185D. 47.抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA,求抛物线的解析式( )A. y=x2﹣2x﹣3B. y=x2﹣2x+3C. y=x2﹣2x﹣4D. y=x2﹣2x﹣58.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M 到坐标原点O 的距离是( )A. 10;B. 82;C. 413;D. 241;9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A. 1B. 2C. 3D. 410.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB 交于点中点E,若△OBD的面积为10,则k的值是( )A. 10B. 5C. 103D.203二.填空题11.若点A(2x﹣1,5)和点B(4,y+3)关于点(﹣3,2)对称,那么点A在第_____象限.12.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为____.13.若抛物线的顶点坐标为(2,9),且它在轴截得的线段长为,则该抛物线的表达式为________.14.如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则BC的长为______.15.已知a2+a﹣3=0,则a3+3a2﹣a+4的值为_____.16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________ m2.三.解答题17.解方程:2220x x+-=.18.关于x 的一元二次方程(m ﹣1)x 2﹣2mx +m +1=0有两个实数根,若方程的两个实数根都是正整数,求整数m 的值.19.正方形ABCD 的边长为1,AB 、AD 上各有一点P 、Q ,如果APQ ∆的周长为2,求PCQ ∠的度数.20.如图,△ABC 的三个顶点都在⊙O 上,直径AD =6cm ,∠DAC =2∠B ,求AC 的长.21.若n 是一个两位正整数,且n 个位数字大于十位数字,则称n 为”两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的”两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的”两位递增数”;(2)请用列表法或树状图,求抽取的”两位递增数”的个位数字与十位数字之积能被10整除的概率. 22.如图,在平面直角坐标系xOy 中,直线y =x+1与双曲线y =k x 的一个交点为P(m ,2). (1)求k 值;(2)M(20191009,a),N(n ,b)是双曲线上的两点,直接写出当a >b 时,n 的取值范围.23.在锐角△ABC 中,边BC 长为18,高AD 长为12(1)如图,矩形EFCH 边GH 在BC 边上,其余两个顶点E 、F 分别在AB 、AC 边上,EF 交AD 于点K ,求EF AK的值;(2)设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.24.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE =∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.答案与解析一.选择题1.下列图形是中心对称图形而不是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是中心对称图形,不是轴对称图形;故本选项正确;B、是中心对称图形,也是轴对称图形;故本选项错误;C、是中心对称图形,也是轴对称图形;故本选项错误;D、不是中心对称图形,是轴对称图形;故本选项错误;故选A.【点睛】考核知识点:轴对称图形与中心对称图形识别.2.下列事件中是必然事件的是()A. 从一个装有黄、白两色球的缸里摸出一个球,摸出的球是白球;B. 小丹的自行车轮胎被钉子扎坏;C. 小红期末考试数学成绩一定得满分;D. 将豆油滴入水中,豆油会浮在水面上.【答案】D【解析】【分析】必然事件就是一定会发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件.故选项错误;B、随机事件.故选项错误;C、是随机事件.故选项错误;D、正确.故选D.【点睛】本题考查随机事件和必然事件,理解概念是本题的解题关廉.3.如图,AB 是⊙O 的弦,OC ⊥AB ,交⊙O 于点C ,连接OA ,OB ,BC ,若∠ABC =20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°【答案】D【解析】分析】 根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【详解】∵∠ABC=20°, ∴∠AOC=40°, ∵AB 是⊙O 的弦,OC ⊥AB ,∴∠AOC=∠BOC=40°, ∴∠AOB=80°, 故选D .【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°. 4.已知点A(m ,n )在第二象限,则点B(|m|,﹣n )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,即可确定出m 、n 的正负,从而确定|m|,-n 的正负,即可得解.【详解】解:∵点A (,)m n 第二象限,∴m <0,n >0,∴|m|>0,-n <0,∴点B (,)m n 在第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,熟记各象限内点的坐标的符号是解题的关键.5.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为( )A. 20°B. 25°C. 30°D. 40°【答案】B【解析】【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=12∠DOC=25°.故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.6.如图,若D、E分别为△ABC中AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为( )A. 94B.52C.185D. 4【答案】D 【解析】【分析】根据相似三角形的判定首先证出△ADE∽△ACB,然后根据相似三角形的性质得出AEAB=ADAC,从而求出AE的长度.【详解】解:∵∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴AEAB=ADAC,又∵AD=3,AC=6,DB=5,∴AB=AD+DB=8,∴AE=8×3÷6=4.故选D.【点睛】本题主要考查了相似三角形判定及性质.有两角对应相等的两个三角形相似.相似三角形的三边对应成比例.7.抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA,求抛物线的解析式( )A. y=x2﹣2x﹣3B. y=x2﹣2x+3C. y=x2﹣2x﹣4D. y=x2﹣2x﹣5【答案】A【解析】【分析】由抛物线与y轴的交点坐标可求OC得长,根据OB=OC=3OA,进而求出OB、OA,得出点A、B坐标,再用待定系数法求出函数的关系式.【详解】解:在抛物线y=ax2+bx﹣3中,当x=0时,y=﹣3,点C(0,﹣3)∴OC=3,∵OB=OC=3OA,∴OB=3,OA=1,∴A(﹣1,0),B(3,0)把A(﹣1,0),B(3,0)代入抛物线y=ax2+bx﹣3得:a﹣b﹣3=0,9a+3b﹣3=0,解得:a=1,b=﹣2,∴抛物线的解析式为y=x2﹣2x﹣3,故选:A.【点睛】本题考查待定系数法求二次函数解析式;是一道二次函数综合题.8.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M 到坐标原点O 的距离是( )A. 10;B. 2;C. 13D. 41【答案】D【解析】【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在Rt△AOM中求出OM即可.【详解】解:如图连接BM、OM,AM,作MH⊥BC于H.已知⊙M与x轴相切于点A(8,0),可得AM⊥OA,OA=8,即可得∠OAM=∠MH0=∠HOA=90°,所以四边形OAMH是矩形,根据矩形的性质可得AM=OH,因MH⊥BC,由垂径定理得HC=HB=6,所以OH=AM=10,在RT△AOM中,由勾股定理可求得OM==241.故答案选D.【点睛】本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A. 1B. 2C. 3D. 4【答案】B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误.当x=1时,y=1+b+c=1,故②错误.∵当x=3时,y=9+3b+c=3,∴3b+c+6=0.故③正确.∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.综上所述,正确的结论有③④两个,故选B .10.已知四边形OABC 是矩形,边OA 在x 轴上,边OC 在y 轴上,双曲线与边BC 交于点D 、与对角线OB 交于点中点E ,若△OBD 的面积为10,则k 的值是( )A. 10B. 5C. 103D. 203【答案】D【解析】【分析】 设双曲线的解析式为:k y x=,E 点的坐标是(x ,y ),根据E 是OB 的中点,得到B 点的坐标,求出点E 的坐标,根据三角形的面积公式求出k . 【详解】解:设双曲线的解析式为:k y x =,E 点的坐标是(x ,y ), ∵E 是OB 的中点,∴B 点的坐标是(2x ,2y ),则D 点的坐标是(2k y,2y ), ∵△OBD 的面积为10, ∴12×(2x ﹣2k y )×2y =10, 解得,k =203, 故选:D .【点睛】本题考查反比例系数k 的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.二.填空题11.若点A (2x ﹣1,5)和点B (4,y +3)关于点(﹣3,2)对称,那么点A 在第_____象限.【答案】二.【解析】【分析】根据点A (2x ﹣1,5)和点B (4,y +3)关于点(﹣3,2)对称,列方程求得x ,y 的值,结果可得.【详解】解:∵点A (2x ﹣1,5)和点B (4,y +3)关于点(﹣3,2)对称,∴﹣3﹣(2x ﹣1)=4﹣(﹣3),解得:x =﹣92, ∴点A (﹣10,5),∴点A 在第二象限,故答案为:二.【点睛】本题考查轴对称及平面直角坐标系内点的坐标特征,熟练掌握相关知识是解题关键. 12.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为____.【答案】34. 【解析】 【详解】解:显然第三枚棋子随机放在其他格点上构成三角形,共有4种等可能的结果,且以这三枚棋子所在的格点为顶点的三角形是直角三角形的有3种情况,所以以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为34. 故答案为:34. 【点睛】此题考查了概率公式应用.注意概率=所求情况数与总情况数之比.13.若抛物线的顶点坐标为(2,9),且它在轴截得的线段长为,则该抛物线的表达式为________.【答案】2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a+ , ∴|x 1-x 2|=21212()46x x x x +-=即16-4×49a a+=36 解得:a=-1,y=-(x-2)2+9,故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.14.如图,在扇形AOB 中,AC 为弦,∠AOB =130°,∠CAO =60°,OA =6,则BC 的长为______.【答案】73π. 【解析】解:连接OC ,如图,∵OA =OC ,∴∠OCA =∠CAO =60°,∴∠AOC =60°,∴∠BOC =130°﹣60°=70°,∴BC 的长=706180π⨯=73π.故答案为73π.点睛:本题考查了弧长的计算:圆周长公式:C =2πR ;弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.15.已知a 2+a ﹣3=0,则a 3+3a 2﹣a +4的值为_____.【答案】10.【解析】【分析】已知a 2+a ﹣3=0,得出a 2=3﹣a ,a 3=a •a 2=a (3﹣a )=3a ﹣a 2=3a ﹣(3﹣a )=4a ﹣3,然后代入代数式求得即可.【详解】解:∵a 2+a ﹣3=0,∴a 2=3﹣a ,∴a 3=a •a 2=a (3﹣a )=3a ﹣a 2=3a ﹣(3﹣a )=4a ﹣3,∴a 3+3a 2﹣a +4=4a ﹣3+3(3﹣a )﹣a +4=10.故答案为10.【点睛】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用. 16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的饲养室面积最大为________ m 2 .【答案】75【解析】试题分析:首先设垂直于墙面的长度为x ,则根据题意可得:平行于墙面的长度为(30-3x),则S=x(30-3x)=-32(5)x -+75,,则当x=5时,y 有最大值,最大值为75,即饲养室的最大面积为75平方米.考点:一元二次方程的应用.三.解答题17.解方程:2220x x +-=.【答案】11=-x ,21=-x【解析】【分析】把常数项移到右边 ,然后利用配方法进行求解即可.【详解】2220x x +-=,222x x +=,22121x x ++=+,()213x +=,1x +=11=-x ,21=-x【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.配方法的步骤:先把常数项移到等号的右边,把二次项系数化1,然后方程两边同时加上一次项系数一半的平方,左边配成完全平方式,两边开平方进行求解.18.关于x 的一元二次方程(m ﹣1)x 2﹣2mx +m +1=0有两个实数根,若方程的两个实数根都是正整数,求整数m 的值.【答案】m =2或m =3.【解析】【分析】先求出方程的解,根据此方程的两个根都是正整数列出关于m 的不等式,解不等式即可求解.【详解】解:(m ﹣1)x 2﹣2mx +m +1=0,[(m ﹣1)x ﹣(m +1)](x ﹣1)=0,x 1=11m m +-,x 2=1, ∵此方程的两个实数根都是正整数, 由11m m +->0解得m <﹣1或m >1, ∴m =2或m =3.【点睛】本题考查了公式法解一元二次方程.要会熟练运用公式法求得一元二次方程的解.19.正方形ABCD 的边长为1,AB 、AD 上各有一点P 、Q ,如果APQ ∆的周长为2,求PCQ ∠的度数.【答案】45°. 【解析】【分析】首先从△APQ 的周长入手求出PQ=DQ+BP ,然后将△CDQ 逆时针旋转90°,使得CD 、CB 重合,然后利用全等来解.【详解】解:如图所示,△APQ 的周长为2,即AP+AQ+PQ=2①,正方形ABCD 的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①-②得,PQ-QD-PB=0,∴PQ=PB+QD .延长AB 至M ,使BM=DQ .连接CM ,△CBM ≌△CDQ (SAS ),∴∠BCM=∠DCQ ,CM=CQ ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ .在△CPQ 与△CPM 中,CP=CP ,PQ=PM ,CQ=CM ,∴△CPQ ≌△CPM (SSS ),∴∠PCQ=∠PCM=12∠QCM=45°. 【点睛】本题考查正方形的性质及全等三角形的判定与性质,熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算是本题的解题关键.20.如图,△ABC的三个顶点都在⊙O上,直径AD=6cm,∠DAC=2∠B,求AC的长.【答案】3cm.【解析】【分析】先连接OC,根据AO=AC=OC,判定△AOC是等边三角形,进而得到AC=AO=12AD=3cm.【详解】解:如图,连接OC,∵∠AOC=2∠B(圆周角定理),∠DAC=2∠B,∴∠AOC=∠DAC,∴AO=AC,又∵OA=OC,∴△AOC是等边三角形,∴AC=AO=12AD=3cm.【点睛】此题考查了圆周角定理以及等边三角形判定及性质.注意掌握辅助线的作法以及数形结合思想的应用.21.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为”两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的”两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的”两位递增数”;(2)请用列表法或树状图,求抽取的”两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】(1)15、25、35、45;(2)1 5 .【解析】【分析】(1)根据”两位递增数”定义可得;(2)画树状图列出所有”两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.【详解】解:(1)根据题意所有个位数字是5的”两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=31 155.【点睛】本题考查列表法与树状图法求概率,掌握概率公式是本题的解题关键.22.如图,在平面直角坐标系xOy中,直线y=x+1与双曲线y=kx的一个交点为P(m,2).(1)求k的值;(2)M(20191009,a),N(n,b)是双曲线上的两点,直接写出当a>b时,n的取值范围.【答案】(1)m=1,k=2;(2)n>20191009或n<0.【解析】【分析】(1)将点P坐标代入两个解析式可求m,k的值;(2)根据反比例函数图象性质可求解.【详解】(1)∵直线y=x+1与双曲线y=kx的一个交点为P(m,2).∴122 mkm+=⎧⎪⎨=⎪⎩∴m=1,k=2;(2)∵k=2,∴双曲线每个分支上y随x的增大而减小,当N在第一象限时,∵a>b∴n>2019 1009,当N在第三象限时,∴n<0综上所述:n>20191009或n<0.【点睛】本题考查了一次函数和反比例函数交点问题,函数图象的性质,熟练掌握函数图象上点的坐标满足函数解析式.23.在锐角△ABC中,边BC长为18,高AD长为12(1)如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;(2)设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.【答案】(1)32;(2)54.【解析】【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+54,可得当x=6时,S有最大值为54.【详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+54.当x=6时,S有最大值为54.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.24.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE =∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.【答案】(1)详见解析;(2)①CF=2CD;②FG 165.【解析】【分析】(1)如图1,连接OC,根据等边对等角得:∠OBC=∠OCB,由垂直定义得:∠OBC+∠BCD=90°,根据等量代换可得:∠OCB+∠BCE=90°,即OC⊥CE,可得结论;(2)①如图2,过O作OH⊥CF于点H,证明△COH≌△COD,则CH=CD,得CF=2CD;②先根据勾股定理求BC22CD BD+5CF=2CD=8,设OC=OB=x,则OD=x﹣2,根据勾股定理列方程得:x2=(x﹣2)2+42,可得x的值,证明△GFC∽△CBO,列比例式可得FG的长.【详解】(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵CD⊥AB,∴∠OBC+∠BCD=90°,∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(2)解:①线段CF与CD之间满足的数量关系是:CF=2CD,理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;②∵CD=4,BD=2,∴BC225①得:CF=2CD=8,CD BD设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴FG FC CB BO=,∴85 25FG=,∴FG=1655.【点睛】此题考查的知识点是垂直的定义、全等三角形的判定、勾股定理及相似三角形性的判定与性质,熟练掌握并运用是解题关键.。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2024年中考数学模拟考试试卷(附含答案)
三解答题:本大题共7个小题共78分解答应写出文字说明证明过程或演算步骤
19.计算
(1)计算: .
(2)化简: .
【答案】(1)
(2)
【解析】
【分析】(1)根据特殊角的锐角三角函数零指数幂绝对值化简计算即可;
(2)根据分式化简运算规则计算即可.
【小问1详解】
解:原式
;
【小问2详解】
解:原式
【点睛】本题考查了实数的混合运算与分式化简以及特殊角三角函数熟记运算法则是关键.
【详解】解:∵ 和 是以点 为直角顶点的等腰直角三角形
∴
∴
∴
∴ 故①正确;
设
∴
∴
∴ 故②正确;
当点 在 的延长线上时如图所示
∵
∴
∴
∵ .
∴
∴
∴ 故③正确;
④如图所示以 为圆心 为半径画圆
∵
∴当 在 的下方与 相切时 的值最小
∴四边形 是矩形
又
∴四边形 是正方形
∴
∵
∴
在 中
∴ 取得最小值时
∴
故④正确
故选:D.
【答案】
【解析】
【分析】连接 将 以 中心逆时针旋转 点的对应点为 由 的运动轨迹是以 为圆心 为半径的半圆可得: 的运动轨迹是以 为圆心 为半径的半圆再根据“圆外一定点到圆上任一点的距离在圆心定点动点三点共线时定点与动点之间的距离最短”所以当 三点共线时 的值最小可求 从而可求解.
【详解】解如图连接 将 以 中心逆时针旋转 点的对应点为
故选:C.
【点睛】本题考查科学记数法,按照定义,确定 与 的值是解决问题的关键.
人教版九年级中考数学模拟考试试题(含答案)(山东地区)
九年级中考数学二模考试试题满分150分 时间:120分钟一、单选题。
(每小题4分,共40分)1.在实数0,﹣2,﹣√6,﹣3中,最小是( )A.0B.﹣2C.﹣√6D.﹣3 2.下列四个几何体中,主视图与俯视图相同的是( )3.古语有云:水滴石穿,若水珠不断滴在一块石头上,经过40年,石头上形成一个深为0.0000052cm 的小洞,,其中“0.0000052”用科学记数法表示为( ) A.52×10﹣7B.5.2×10﹣7C.0.52×10﹣5D.5.2×10﹣64.如图,AB ∥CD ,AE 平分∠BAC ,∠AEC=58°,则∠C 的度数为( ) A.54° B.64° C.74° D.58°(第4题图) (第6题图)5.下列图形中是轴对称图形,但不是中心对称图形的是( )6.将一个棱长为4的正方体的表面涂成灰色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有灰色的概率为( ) A.12B.14C.18D.1167.若a+b=3,则代数式a -b b÷a 2-b 22b的值为( )A.23B.32 C.2 D.38.如图,在平面直角坐标系中,点A (﹣1,0),B (1,0),C (0,1),将△ABC 绕点B 顺时针,使点A 旋转至y 轴的正半轴上的A ’处,得到△A ’BC ’,则阴影部分面积为( ) A.52 B.2 C.3 D.72(第8题图) (第9题图)9.如图,在Rt △ABC 中,∠ACB=90°,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D ,E 两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF ,若AC=2,CG=√3,则CF 的长为( )A.158B.1C.32D.5410.若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点,若二次函数y=x 2-x+c 在﹣2<x <4的图象上存在两个二倍点,则c 的取值范围是( ) A.﹣2<c <14 B.﹣4<c <14 C.﹣4<c <94 D.﹣10<c <94二.填空题。
人教版九年级数学中考模拟试卷及答案解析
人教版九年级数学中考模拟试卷一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣35.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.1910.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣411.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= .15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= .18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .三、解答题(本大题2小题,每小题8分,共16分19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.(8分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.(10分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.23.(10分)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.24.(10分)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.26.(12分)如图,抛物线y=﹣x2+x+3 与 x 轴交于点 A,点 B,与 y 轴交于点C,点D 与点C关于 x 轴对称,点 P 是 x 轴上的一个动点,设点P 的坐标为(m,0),过点P 作 x 轴的垂线 l 交抛物线于点 Q.(1)求直线BD的解析式;(2)当点P在线段OB上运动时,直线 l 交 BD 于点M,当△DQB面积最大时,在x轴上找一点E,使QE+EB的值最小,求E的坐标和最小值.(3)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出5的绝对值.【解答】解:|5|=5,故选:A.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是解决本题的关键.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5400000用科学记数法表示为5.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,3﹣x>0,解得x<3.故选B.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a【考点】47:幂的乘方与积的乘方;35:合并同类项.【分析】合并同类项法则,积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,积的乘方的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°【考点】JA:平行线的性质;KH:等腰三角形的性质.【分析】根据AB∥CD,CP交AB于O,可得∠POB=∠C,再利用AO=PO,可得∠A=∠P,然后即可求得∠A的度数.【解答】解:∵AB∥CD,CP交AB于O,∴∠POB=∠C,∵∠C=50°,∴∠POB=50°,∵AO=PO,∴∠A=∠P,∴∠A=25°.故选:A.【点评】此题主要考查学生对平行线的性质,三角形外角的性质,等腰三角形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.要求学生应熟练掌握.7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【考点】M6:圆内接四边形的性质;M5:圆周角定理.【分析】先根据圆内接四边形的性质得到∠D=180°﹣∠B=50°,然后根据圆周角定理求∠AOC.【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:乘坐高铁对旅客的行李的检查适合采用全面调查,A错误;了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度适合采用全抽样调查,B正确;调查初2016级15班全体同学的身高情况适合采用全面调查,C错误;对新研发的新型战斗机的零部件进行检查适合采用全面调查,D错误,故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.19【考点】38:规律型:图形的变化类.【分析】仔细观察图形可知:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n 个图形有3n﹣3+1=3n﹣2个三角形;进一步代入求得答案即可.【解答】解:观察发现:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n个图形有3n﹣3+1=3n﹣2个三角形;则第7个图案中▲的个数为3×7﹣2=19.故选D.【点评】此题考查图形的变化规律,从简单情形入手,找到一般规律,利用规律,解决问题.10.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣4【考点】53:因式分解﹣提公因式法.【分析】首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣4=a(a+b)﹣4=0﹣4=﹣4.故选:D.【点评】此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.11.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k(米),AD=12k(米),则AB=13k(米).∵AB=13(米),∴k=1,∴BD=5(米),AD=12(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),∴BC=10.8﹣5≈5.8(米).故选:D.【点评】本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0【考点】B2:分式方程的解;CB:解一元一次不等式组.【分析】根据不等式组有解,可得m的范围,根据分式方程有非负整数解,可得5+m是3的倍数,根据有理数的加法,可得答案.【解答】解:不等式组整理得:,由不等式组有解,得到m﹣9<﹣2m+6,解得:m<5,分式方程整理得: +=2,去分母得:1+m﹣x=2x﹣4,解得:x=,由分式方程﹣=2有非负整数解,得5+m=0,m1=﹣5,5+m=3,m2=﹣2,5+m=6,m3=1(舍),5+m=9,m4=4,使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和﹣5+(﹣2)+4=﹣3,故选:B.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为4:9 .【考点】S7:相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为2:3,∴S△ABC:S△DEF=()2=4:9.故答案为:4:9.【点评】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= ﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=﹣2+1﹣2+1=﹣2,故答案为:﹣2【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.【考点】X4:概率公式;F7:一次函数图象与系数的关系.【分析】根据一次函数y=﹣3x+a不经过三象限得出a的符号,进而可得出结论.【解答】解:∵一次函数y=﹣3x+a不经过三象限,∴a≥0,∴五个数字中符合条件的数有:0,1,3,4共4个,∴一次函数y=﹣3x+a不经过三象限的概率=.故答案为:.【点评】本题考查的是概率公式,熟知概率=所求情况数与总情况数之比是解答此题的关键.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).【考点】MO:扇形面积的计算;KQ:勾股定理;MC:切线的性质.【分析】我们只要根据勾股定理求出AD的长度,再用三角形的面积减去扇形的面积即可.【解答】解:连接AD,∵⊙A与BC相切于点D,AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,AD⊥BC,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=1,△ABC的面积=2×1÷2=,扇形MAN得面积=π×12×=,所以阴影部分的面积=.【点评】解此题的关键是求出圆的半径,即三角形的高,再相减即可.17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= 192 .【考点】FH:一次函数的应用.【分析】由图象可以看出甲2秒跑了8米可以求出甲的速度为4米/秒,由乙跑的距离﹣甲跑的距离就可以得出结论.【解答】解:由图象,得甲的速度为:8÷2=4米/秒,乙走完全程时甲乙相距的路程为:b=600﹣4(100+2)=192,故答案为:192.【点评】此题考查了一次函数的应用,追击问题的运用,解答时求出甲的速度是解答本题的关键.18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】首先连接CC′,可以得到CC′是∠EC′D的平分线,所以CB′=CD,又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.【解答】解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.∴EC=EC′,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,在△CC′B′与△CC′D中,,∴△CC′B′≌△CC′D,∴CB′=CD,又∵AB′=AB,∴AB′=CB′,所以B′是对角线AC中点,即AC=2AB=8,所以∠ACB=30°,∴∠BAC=60°,∠ACC′=∠DCC′=30°,∴∠DC′C=∠1=60°,∴∠DC′F=∠FC′C=30°,∴C′F=CF=2DF,∵DF+CF=CD=AB=4,∴DF=.故答案为:.【点评】此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC′D的平分线是解题关键.三、解答题(本大题2小题,每小题8分,共16分19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是12 元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是36°.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?【考点】VB:扇形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)根据加权平均数的计算公式计算可得;(2)用样本中零花钱数额为20元的人数所占的比例乘以360°即可得;(3)用平均数乘以总人数,再乘以75%即可得.【解答】解:(1)平均数是×(5×10+10×15+15×20+20×5)=12元,故答案为:12;(2)一周内的零花钱数额为20元的人数所占的圆心角度数是360°×=36°,故答案为:36°;(3)1500×12×75%=13500元,答:估计该校学生每周在学校超市消费的零花钱总金额为13500元.【点评】此题考查了条形统计图、扇形统计图以及用样本估计总体,弄清题中的数据是解本题的关键.四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2017•开县一模)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】6C:分式的混合运算;4I:整式的混合运算.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.(10分)(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【考点】GB:反比例函数综合题.【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.【点评】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23.(10分)(2017•开县一模)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.【考点】AD:一元二次方程的应用.【分析】(1)可设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,根据等量关系:①买1件毛衣的钱数+买3件牛仔裤的钱数=500元;②买2件毛衣的钱数+买1件牛仔裤的钱数=500元,列出方程组求解即可;(2)根据等量关系:两件商品总的销售额为3960元,列出方程求解即可.【解答】解:(1)设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,依题意有,解得.答:买一件毛衣需要200元钱,买一件牛仔裤需要100元钱.(2)依题意有:200(1﹣a%)×10(1+2a%)+100(1﹣a%)×20=3960,解得a1=﹣10(舍去),a2=10.故a的值为10.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程(组),再求解.24.(10分)(2017•开县一模)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.【考点】#6:约数与倍数;1C:有理数的乘法.【分析】(1)设原数为ab=10a+b,其关联数为amb=100a+10m+b,根据关联数为原数的9倍即可得出b与a、m之间的关系,结合a、b、m的特点即可得出结论;(2)设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,找出原数的10倍,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),再根据m 和9均为3的倍数,由此即可证出结论.【解答】(1)解:设原数为ab=10a+b,其关联数为amb=100a+10m+b,∵amb=9ab,∴100a+10m+b=9×(10a+b),∴5a+5m=4b,∴5(a+m)=4b,∵b、m为整数,a为正整数,且a、b、m均为一位数,∴b=5,a+m=4,∴a=1,m=3;a=2,m=2;a=3,m=1;a=4,b=0.∴满足条件的三位关联数为135、225、315和405.(2)证明:设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,原数10倍为a1a2a3…a n﹣2a n﹣1a n0,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),∵m和9均为3的倍数,∴关联数与原数10倍的差一定能被3整除.【点评】本题考查了约数与倍数以及有理数的乘法,解题的关键是:(1)找出b与a、m(2)将关联数与原数的10做差得出m•﹣9×(…a n﹣1a n).本之间的关系;题属于中档题,难度不大,解决该题型题目时,设出合适的未知量是解题的关键.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)(2017•开县一模)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)如图1,过C作CD⊥AB于D,根据等腰直角三角形的性质得到∠ABC=∠BAC=45°,得到∠KBC=30°,根据直角三角形的性质得到BC=4,求得CD=BC=2,解直角三角形即可得到结论;(2)如图2,连接DF,CD,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,由全等三角形的性质得到BE=CF,CE=AF,推出△BDE≌△CDF,根据全等三角形的性质得到∠EDB=∠FDC,DE=DF,根据余角的性质得到∠EDF=90°,根据等腰直角三角形的性质得到EF=DE,于是得到结论.【解答】解:(1)如图1,过C作CD⊥AB于D,∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°,∵∠MBN=15°,∴∠KBC=30°,∵BK=8,∴BC=4,∴CD=BC=2,∵∠MCA=15°,∠BAC=45°,∴∠M=30°,∴CM=2CD=4;(2)如图2,连接DF,CD,∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF,∵AF⊥l于点F,∴∠AFC=90°,在△BCE与△ACF中,。
人教版九年级中考冲刺数学模拟卷3(附答案)
中考数学试卷一、单选题。
(共10题;共30分。
)1、如图.将四根长度相等的细木条首尾相连.用钉子钉成四边形.转动这个四边形.使它形状改变.当. 时. 等于()。
A. B. C. D.2、某种药品原价为元/盒.经过连续两次降价后售价为元/盒.设平均每次降价的百分率为.根据题意.所列方程正确的是()。
A. B.C. D.3、一个盒子装有除颜色外其它均相同的2个红球和1个白球.现从中任取2个球.则取到的是一个红球.一个白球的概率为()。
A.14B.12C.23D.344、下列各组线段单位: cm 中.成比例的是()。
A. 1.2.3.4B. 6.5.10.15C. 3.2.6.4D. 15.3.4.105、对于函数y=4x.下列说法错误的是()。
A.点(23.6)在这个函数图象上B.这个函数的图象位于第一、三象限C.这个函数的图象既是轴对称轴图形又是中心对称图形D.当x>0时.y随x的增大而增大6、计算sin30°·tan45°的结果是()。
A. 12B. √32C. √36D. √247、如图所示.⊙O的半径为10.弦AB的长度是16.ON垂直AB.垂足为N.则ON的长度为()。
A.5B.6C.8D.108、抛物线y=﹣2(x+6)2+5的顶点坐标()。
A.(﹣6.5)B.(6.5)C.(6.﹣5)D.(﹣2.5)9、sin45°+cos45°的值等于()。
A.√2B.√3+12C.√3D.110、已知抛物线y=ax2+bx+c中.4a﹣b=0.a﹣b+c>0.抛物线与x轴有两个不同的交点.且这两个交点之间的距离小于2.则下列结论:①abc<0.②c>0.③a+b+c >0.④4a>c.其中.正确结论的个数是()。
A.4B.3C.2D.1二、填空题。
(共8题;共24分。
)11、正方形、菱形、矩形的对角线都具有的共同特征是______.12、关于的方程有两个不相等的实数根.则的取值范围为________.13、甲、乙、丙、丁4名同学进行一次乒乓球单打比赛.要从中随机选出2名同学打第一场比赛.其中有乙同学参加的概率是_____________ .14、如图.已知DE∥BC.AD=3.AB=9.AE=2.5.则EC=.15、若y=是反比例函数.则m=________.16、已知Rt△ABC中.∠C=90°.AB=15.tanA=.则AC=____.17、如图.△ABC内接于⊙O.∠ABC=70°.∠CAB=50°.点D在⊙O上.则∠ADB的大小为.18、如图.抛物线y=ax 2+bx+c(a≠0)的对称轴为直线x=﹣1.下列结论中:①abc <0;②9a﹣3b+c<0;③b 2﹣4ac>0;④a>b.正确的结论是_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三中考水平测试数学模拟试题说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答案必须写在答题卡各题目指定区域内相应位置上,不按以上要求作答的答案无效.3.考试结束时,将答题卡上交, 试卷自己妥善保管,以便老师讲评. 一、单项选择题(每小题3分) 1.–3-是( ) A.3-B.3C.13D.13-2.下列运算正确的是( )A .x ·x 2 = x 2 B. (xy )2 = xy 2 C. (x 2)3 = x 6 D.x 2 +x 2 = x 43.下列左图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )4.在下列图形中,既是轴对称图形,又是中心对称图形的是( )5.若代数式21x -有意义,则x 的取值范围是( )A .12x ≠B .x ≥12C .x ≤12D .x ≠-126.在Rt △ABC 中,90C=∠,3AC=,4BC=,则sin A 的值为 ( )A .45B .43C .34D .357.. 如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,第3题图A B C DCBA则∠CAD 的度数是()A .25°B .60°C .65°D .75° 8.不等式组⎩⎨⎧≥->+125523x x 的解在数轴上表示为()9.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表: 尺码(厘米) 25 25.5 26 26.5 27购买量(双)1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为( ) A.25.5厘米,26厘米 B.26厘米,25.5厘米 C.25.5厘米,25.5厘米 D.26厘米,26厘米 10.如图,DE 与ABC △的边AB AC ,分别相交于D E ,两点,且DE BC ∥.若A D :BD=3:1, DE=6,则BC 等于().A. 8B.92C. 35 D. 2 二、填空题(每小题4分,满分20分)11.小明在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为5640000,这个数用科学记数法表示为.12.已知反比例函数5m y x-=的图象在第二、四象限,则m 取值范围是__________13.若方程2210x x --=的两个实数根为1x ,2x ,则=+2221x x .A B CD E1 02 A . 1 0 2 B . 1 0 2 C . 1 0 2D .A BCD E14.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm ,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为________cm 2.(结果保留π)15.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距33米,小聪身高AB 为1.7米,则这棵树的高度=米16.如果函数1()2f x x =+,那么(5)f = 三、解答题(共3个小题,每小题5分,满分15分)17.()1112 3.14tan 603π-⎛⎫---︒ ⎪⎝⎭. 18.先化简211()1122x x x x -÷-+-2,1,-1中选取一个你认为合适..的数作为x 的值代入求值.19.如图,在ABCD 中,E 为BC 边上一点,且AB AE =. (1)求证:ABC EAD △≌△.(2)若AE 平分DAB ∠,25EAC =∠,求AED ∠的度数.四、解答题(共3个小题,每小题8分,满分24分)20.已知关于x 的一元二次方程 (m -2)x 2 + 2mx + m +3 = 0 有两个不相等的实数根.(1)求m 的取值范围; (2)当m 取满足条件的最大整数时,求方程的根.21.如图,在边长均为1的小正方形网格纸中,△OAB 的顶点O 、A 、B 均在格点上,且O 是直ABC角坐标系的原点,点A 在x 轴上.(1)以O 为位似中心,将△OAB 放大,使得放大后的△11B OA 与△OAB 对应线段的比为2∶1,画出△11B OA .(所画△11B OA 与△OAB 在原点两侧). (2)求出线段11B A 所在直线的函数关系式.22.“校园手机”现象越来越受到社会的关注,小记者刘凯随机调查了某校若干学生和家长对中学生带手机现象的看法,制作了如下的统计图:(1)求这次调查的总人数,并补全图13-1;(2)求图13-2中表示家长“赞成”的圆心角的度数;(3)针对随机调查的情况,刘凯决定从初三一班表示赞成的3位家长中随机选择2位进行深入调查,其中包含小亮和小丁的家长,请你利用树状图或列表的方法,求出小亮和小丁的家长被同时选中的概率. 五、解答题(共3个小题,每小题9分,满分分)23.中山市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,该队提高了施工效率,实际工作效率比原计划每天提高了20%,结果提前两天完成.求实际平均每天修绿道的长度? 24. 如图,D 为O ⊙上一点,点C 在直径BA 的延长线上,CDA CBD ∠=∠. (1)求证:CD 是O ⊙的切线;(2)过点B 作O ⊙的切线交CD 的延长线于点E ,若BC=4,ta n ∠ABD=12求BE的长.25.如图,抛物线)0(322≠-+=m m mx mx y 的顶点为H ,与x 轴交于A 、B 两点(B 点在A 点右侧),点H 、B 关于直线l :333+=x y 对称,过点B 作直线BK ∥AH 交直线l 于K 点.AB CDEO学生及家长对中学生带手机的态度统计图家长学生无所谓反对赞成30803040140类别人数28021014070家长对中学生带手机的态度统计图20%反对无所谓赞成图22-1图22-2(1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求此抛物线的解析式;(3)将此抛物线向上平移,当抛物线经过K 点时,设顶点为N ,求出NK 的长.初三中考水平测试数学模拟试题参考答案一、选择题(每小题3分,共15分)1.A 2. C 3.C 4.C 5. B6.A 7. C 8. C 9. D 10. A 二、填空题(每小题4分,共20分)11.65.6410⨯ 12.m >5 13.614.270π 15.4.7 16. 5三、解答题(每小题5分,共15分)17. 解:解: 原式33……………………… 4分 3 ……………………… 5分 18.解:原式=22(x 1)(x 1)(x 1)(x 1)x+-⨯+-………………3分=2x……………………… 4分 当2时,上式222=……………………5分 19.证明:∵四边形ABCD 为平行四边形,∴AD BC AD BC =∥,. ∴DAE AEB =∠∠.………1分 又∵AB AE = ∴AEB B =∠∠AC∴B DAE =∠∠.………2分 ∴ABC EAD △≌△. ………3分 (2)∵AE 平分DAB ∠ ∴DAE BAE DAE AEB ==∠∠,∠∠, ∴BAE AEB B ==∠∠∠.∴ABE △为等边三角形.………4分 ∴60BAE =∠.∵25EAC =∠∴85BAC =∠ ∵ABC EAD △≌△∴85AED BAC ==∠∠.………5分 四、解答题(每小题8分,共24分)20.解:(1)∵方程有两个不相等的实数2m 根.∴=b 2-4ac=(2m)2-4 (m -2)( m +3)>0 ………2分 ∴m <6且m ≠2 ………4分 (2)∵m 取满足条件的最大整数∴m=5………5分把m=5代入原方程得:3x 2 + 10x + 8= 0………6分解得:124,23x x =-=-………8分21. (1)画图略…………………………………… 4分 (2) 设y=kx+b (k ≠0) ……… 5分把A 1(4,0)、B 1(2,-4)分别代入得: (6)0442k bk b =+⎧⎨-=+⎩ (7)解得:k=2, b=-8∴直线A 1 B 1的解析式为y=2x-8 (8)22.解:解:(1)学生人数是200人,家长人数是80÷20%=400人,……………1分所以调查的总人数是600人; …………………2分补全的统计图如图3所示: …………………3分(° . ……………(C 表示,列树状第一次选择 第二次选择……………7分 ∴P (小亮和小丁家长同时被选中)=29. …………………8分五、解答题(每小题9分,共27分)23.解:解:设原计划平均每天修绿道的长度为x 米,则………1分180018002(1.20%)x x-=+………4分 图3AB CB C DA C D AB D解得150=x ………6分经检验:150=x 是原方程的解,且符合实际 ………7分150×1.2=180………8分答:实际平均每天修绿道的长度为180米.………9分 24、1)证明:如图(13),连结OD ………1分∵OB OD =,∴OBD BDO ∠=∠. ………2分 ∵CDA CBD ∠=∠, ∴CDA ODB ∠=∠. 又AB 是O ⊙的直径,∴90ADO ODB ∠+∠=︒, ………3分 ∴9090ADO CDA CDO ∠+∠=︒∠=︒即 ∴CD 是O ⊙的切线. ………4分 (2).(2)解:∵CDA ABD ∠=∠ ∴1tan tan 2CDA ABD ∠=∠= ∴12AD BD =………5分 ∵C C CDA CBD ∠=∠∠=∠,CAD CDB ∴△∽△………6分12CD AD BC BD ∴==, ∵4BC =,∴2CD =. ………7分 ∵CE BE 、是O ⊙的切线,BE DE BE BC ∴=⊥,,222BE BC EC ∴+=B∴()22224BE BE +=+, ………8分 解得3BE =. ………9分25.解:1)依题意,得)0(0322≠=-+m m mx mx ,………1分 解得31-=x ,12=x ∵B 点在A 点右侧, ∴A 点坐标为(﹣3,0),B 点坐标为(1,0).………2分 证明:∵直线l :333+=x y 当3-=x 时,03)3(33=+-⨯=y ∴点A 在直线l 上.………3分(2)解:∵点H 、B 关于过A 点的直线l :333+=x y 对称, ∴4==AB AH ………4分过顶点H 作HC ⊥AB 交AB 于C 点, 则221==AB AC ,322422=-=HC ∴顶点)32,1(-H ………5分代入抛物线解析式,得m m m 3)1(2)1(322--⨯+-⨯= 解得23-=m ∴抛物线解析式为2333232+--=x x y ………6分 (3)连结HK ,可证得四边形HABK 是平行四边形 ∴HK ∥AB,HK=AB可求得K(3,23), ………7分 设向上平移K 个单位,抛物线经过点K∴2333232+--=x x y +K把K(3,)代入得:………8分 在Rt △NHK 中,∵,HK=4 由勾股定理得 NK 的长是134………9分。