因式分解是中学数学中最重要恒等变形之一

因式分解是中学数学中最重要恒等变形之一
因式分解是中学数学中最重要恒等变形之一

因式分解是中学数学中最重要地恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题地有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需地,而且对于培养学生地解题技能,发展学生地思维能力,都有着十分独特地作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.

⑴提公因式法①公因式:各项都含有地公共地因式叫做这个多项式各项地~.

②提公因式法:一般地,如果多项式地各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积地形式,这种分解因式地方法叫做提公因式法.

am+bm+cm=m

③具体方法:当各项系数都是整数时,公因式地系数应取各项系数地最大公约数;字母取各项地相同地字母,而且各字母地指数取次数最低地. 如果多项式地第一项是负地,一般要提出“-”号,使括号内地第一项地系数是正地.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b>(a-b>

②完全平方公式:a^2±2ab+b^2=(a±b>^2

※能运用完全平方公式分解因式地多项式必须是三项式,其中有两项能写成两个数(或式>地平方和地形式,另一项是这两个数(或式>地积地2倍.

③立方和公式:a^3+b^3=(a+b>(a^2-ab+b^2>.

立方差公式:a^3-b^3=(a-b>(a^2+ab+b^2>.

④完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b>^3

⑤a^n-b^n=(a-b>[a^(n-1>+a^(n-2>b+……+b^(n-2>a+b^(n-1>]

a^m+b^m=(a+b>[a^(m-1>-a^(m-2>b+……-b^(m-2>a+b^(m-1>](m为奇数>

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式地方法.

分组分解法必须有明确目地,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式地某一项拆开或填补上互为相反数地两项<或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等地原则进行变形.

⑸十字相乘法

①x^2+

这类二次三项式地特点是:二次项地系数是1;常数项是两个数地积;一次项系数是常数项地两个因数地和.因此,可以直接将某些二次项地系数是1地二次三项式因式分解:x^2+

②kx^2+mx+n型地式子地因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=

a \-----/

b ac=k bd=n

c /-----\

d ad+bc=m

※多项式因式分解地一般步骤:

①如果多项式地各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

(6>应用因式定理:如果f

经典例题:

1.分解因式(1+y>^2-2x^2(1+y^2>+x^4(1-y>^2

解:原式=(1+y>^2+2(1+y>x^2(1+y>+x^4(1-y>^2-2(1+y>x^2(1-y>-2x^2(1+y^2>

=[(1+y>+x^2(1-y>]^2-2(1+y>x^2(1-y>-2x^2(1+y^2>

=[(1+y>+x^2(1-y>]^2-(2x>^2

=[(1+y>+x^2(1-y>+2x]·[(1+y>+x^2(1-y>-2x]

=(x^2-x^2y+2x+y+1>(x^2-x^2y-2x+y+1>

=[(x+1>^2-y(x^2-1>][(x-1>^2-y(x^2-1>]

=(x+1>(x+1-xy+y>(x-1>(x-1-xy-y>

2.证明:对于任何数x,y,下式地值都不会为33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y>-(5x^3y^2+15x^2y^3>+(4xy^4+12y^5> =x^4(x+3y>-5x^2y^2(x+3y>+4y^4(x+3y>

=(x+3y>(x^4-5x^2y^2+4y^4>

=(x+3y>(x^2-4y^2>(x^2-y^2>

=(x+3y>(x+y>(x-y>(x+2y>(x-2y>

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数地积,所以原命题成立因式分解地十二种方法把一个多项式化成几个整式地积地形式,这种变形叫做把这个多项式因式分解.因式分解地方法多种多样,现总结如下:1、提公因法如果一个多项式地各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积地形式. 例1、分解因式x -2x -x(2003淮安市中考题> x -2x -x=x(x -2x-1> 2、应用公式法因为分解因式与整式乘法有着互逆地关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式. 例2、分解因式 a +4ab+4b (2003南通市中考题> 解: a +4ab+4b =+b(m+n>,又可以提出公因式m+n,从而得到(a+b>(m+n>

例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n

= (m -5m >+(-mn+5n> =m(m-5>-n(m-5>

=(m-5>(m-n>

4、十字相乘法对于mx +px+q形式地多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d>(bx+c>

例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19

解:7x -19x-6=<7x+2)(x-3> 5、配方法对于那些不能利用公式法地多项式,有地可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解. 例5、分解因式x +3x-40 解x +3x-40=x +3x+( > -( > -40 =(x+ > -( > =(x+ + >(x+ - > =(x+8>(x-5>

6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解. 例6、分解因式bc(b+c>+ca(c-a>-ab(a+b> 解:bc(b+c>+ca(c-a>-ab(a+b>=bc(c-a+a+b>+ca(c-a>-ab(a+b> =bc(c-a>+ca(c-a>+bc(a+b>-ab(a+b>

=c(c-a>(b+a>+b(a+b>(c-a>

=(c+b>(c-a>(a+b>

7、换元法有时在分解因式时,可以选择多项式中地相同地部分换成另一个未知数,然后进行因式分解,最后再转换回来. 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1>-x(x +1>-6x =x [2(x + >-(x+ >-6 令y=x+ , x [2(x + >-(x+ >-6 = x [2(y -2>-y-6] = x (2y -y-10> =x (y+2>(2y-5> =x (x+ +2>(2x+ -5> = (x +2x+1> (2x -5x+2> =(x+1> (2x-1>(x-2> 8、求根法令多项式f(x>=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x>=(x-x >(x-x >(x-x >……(x-x > 例8、分解因式2x +7x -2x -13x+6 解:令f(x>=2x +7x -2x -13x+6=0

通过综合除法可知,f(x>=0根为,-3,-2,1 则2x +7x -2x -13x+6=(2x-1>(x+3>(x+2>(x-1> 9、图象法令y=f(x>,做出函数y=f(x>地图象,找到函数图象与X轴地交点x ,x ,x ,……x ,则多项式可因式分解为f(x>= f(x>=(x-x >(x-x >(x-x >……(x-x > 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1>(x+3>(x-2> 10、主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解. 例10、分解因式 a (b-c>+b (c-a>+c (a-b> 分析:此题可选定a为主元,将其按次数从高到低排列解: a (b-c>+b (c-a>+c (a-b>=a (b-c>-a(b -c >+(b c-c b> =(b-c> [a -a(b+c>+bc] =(b-c>(a-b>(a-c>

11、利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当地组合,并将组合后地每一个因数写成2或10地和与差地形式,将2或10还原成x,即得因式分解式. 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数地积,即105=3×5×7 注意到多项式中最高项地系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时地值则x +9x +23x+15=(x +cx+d> = x +(a+c>x +(ac+b+d>x +(ad+bc>x+bd 所以解得则x -x -5x -6x-4 =(x +x+1>(x -2x-4>

代数式恒等变形及答案

代数式恒等变形 A 卷 1、若3265122-+ -+=+--x b x a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C 解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴?? ???-=--=++-=1 236051b a M b a M M ,解得:??? ??=-==831 b a M 提示:利用待定系数法解决问题。 2、(2002年重庆市初中竞赛题)若012192=+- x x ,则=+441 x x ( ) A 、411 B 、16121 C 、1689 D 、4 27 答案:C 解答:∵0≠x ∴2191= + x x ,411 122=+x x ∴16892112 2244 =-??? ? ?+=+x x x x 提示:本题的关键是利用2112 22 -??? ? ?+=+x x x x 进行化简。 3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D 解答:∵143=-x x ∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x 提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。

浅谈数学中的变形技巧

浅谈数学中的变形技巧 目录 摘要 ............................................................................................................................ I ABSTRACT ................................................................................................................ I I 第一章绪论. (1) 第二章数学变形的概述 (1) 2.1 什么是数学变形 (1) 2.2 在中学数学中常用的基本方法 (2) 第三章变形技巧在初等数学中的一些应用 (2) 3.1一元二次方程的变形技巧 (3) 3.2三角函数的变形技巧 (4) 3.3 “0”的变形技巧 (7) 3.4 “1”的变形技巧 (9) 第四章代数变形中常用的技巧 (11) 4.1 代数恒等式和恒等变形 (11) 4.2 代数中常见的变形 (12) 4.2.1 整式变形 (12) 4.2.2 分式变形 (13) 4.2.3 根式变形 (18) 4.2.4 指数变形 (21) 4.2.5 对数变形 (22) 4.2.6 复数变形 (23) 第五章结论 (24) 参考文献 (25) 致谢 (26)

浅谈数学中的变形技巧 浅谈数学中的变形技巧 学生:冯继东指导老师:郑宗剑 摘要变形是数学解题活动中最基本而又常用的方法,它既灵活又多变,一个公式,一个法则,它的表述形式是多种多样的。变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习数学的实践中反复操练才能把握,乃至灵活应用。在数学解题中,为了完成论证、求值、化简等的任务,常要对某些式子进行恒等变形,但是恒等变形又无一定之规,一个式子往往有多种可能的变形方向,因题而异,技巧性非常强。本文主要介绍了变形技巧在初等数学和代数中的一些应用。掌握好并灵活应用这些技巧,可以很快确定解题方向,减少解题的盲目性,提高解题效率。 关键词:初等数学;代数;变形;技巧 I

因式分解测试题(含答案)

八年级上册因式分解测试题(满分:120分,时间:60分钟) 题号一、填 空题 二、计 算题 三、简 答题 四、选 择题 总 分 得分 一、填空题 (每空2分,共24分) 1、已知xy>0,且x2-2xy-3y2=0,则=. 2、分解因式= ,。 3、分解因式:a3-a=. 4、阅读下列文字与例题 将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法。 例如:(1), (2)。 试用上述方法分解因式。 5、分解因式=_______________. 6、计算;分解因式:= ; 7、计算;分解因式:= ; 8、分解因式: = . 9、分解因式:16x2﹣4y2= . 10、因式分解:2m2n﹣8mn+8n= . 11、设有n个数x1,x2,…x n,其中每个数都可能取0,1,-2这三个数中的一个,且满足下列等式:x1+x2+…+x n =0,x12+x22+…+x n2=12,则x13+x23+…+x n3的值是. 二、计算题 (12、13、14题各3分,15题5分,共14分) 12、因式分解 13、因式分解 14、分解因式: 评卷人得分 评卷人得分

15、因式分解 三、简答题16题10分,17、18、19、20题各15分,共70分) 16、先因式分解在求值 17、在学习因式分解时,我们学习了“提公因式法”和“公式法”,事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解时,显然既无法用提公因式法,也无法用公式法,怎么办呢这时,我们可以采用下面的办法: -- -- -- ② -- -- -- ① = = =; =. 解决下列问题: (1)填空:在上述材料中,运用了(选填一项:“分类、转化、数形结合、方程”)的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法; (2)显然所给材料中因式分解并未结束,请在横线上继续完成因式分解过程; (3)请用上述方法因式分解. 18、阅读下列材料解决问题: 将下图一个正方形和三个长方形拼成一个大长方形,观察这四个图形的面积与拼成的大长方形的面积之间的关系. ∵用间接法表示大长方形 的面积为:x2+px+qx+pq, 用直接法表示面积为: (x+p)(x+q) ∴x2+px+qx+pq=(x+p)(x+q) ∴我们得到了可以进行因式分解的公式:x2+(p+q )x+pq=(x+p)(x+q) 评卷人得分

初中奥数恒等变形知识点及习题2019

初中奥数恒等变形知识点及习题2019 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个. 反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r 例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立

设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6 再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得出

初中奥数恒等变形知识点归纳整理.pdf

初中奥数恒等变形知识点归纳整理 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数 值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种 形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立 设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6

再设x=2,代入①,因为已得c=6,故有 22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得 由②得b=5 将b=5代入③得 1-5+c=2 c=6 ∴x2+3x+2=(x-1)2+5(x-1)+6 这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.

初中数学竞赛专题辅导因式分解一

因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4) =-2x n-1y n[(x2n)2-2x2n y2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5)

初一数学因式分解提高测试题

《因式分解》提高测试(100分钟,100分) 姓名 班级 学号 一 选择题(每小题4分,共20分): 1.下列等式从左到右的变形是因式分解的 是………………………………………( ) (A )(x +2)(x –2)=x 2-4(B )x 2-4+3x =(x +2)(x –2)+3x (C )x 2-3x -4=(x -4)(x +1)(D )x 2+2x -3=(x +1)2-4 2.分解多项式 bc c b a 2222+--时,分组正确的是………………………( ) (A )()2()222bc c b a --- (B )bc c b a 2)(222+-- (C ))2()(222bc b c a --- (D ))2(222bc c b a -+- 3.当二次三项式 4x 2 +kx +25=0是完全平方式时,k 的值是…………( ) (A )20 (B ) 10 (C )-20 (D )绝对值是20的数 4.二项式15++-n n x x 作因式分解的结果,合于要求的选是………………( ) (A ))(4n n x x x -+ (B )n x )(5x x - (C ))1)(1)(1(21-+++x x x x n (D ))1(41-+x x n 5.若 a =-4b ,则对a 的任何值多项式 a 2+3ab -4b 2 +2 的值………………( ) (A )总是2 (B )总是0 (C )总是1 (D )是不确定的值 二 把下列各式分解因式(每小题8分,共48分): 1.x n +4-169x n +2 (n 是自然数); 2.(a +2b )2-10(a +2b )+25; 解: 解: 3.2xy +9-x 2-y 2; 4.322)2()2(x a a a x a -+-; 解: 解:

代数变形中常用的技巧

代数变形中常用的技巧 数学与应用数学专业 摘要:代数变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活应用。代数变形技巧是学习掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。本文就初等代数变形中的解题技巧,作一些论述。关键词代数变形技巧 两个代数式A、B,如果对于其中所含字母的一切允许值它们对应的值都相等,则称这两个代数式恒等,记作A≡B或A=B,把一个代数式换成另一个和它恒等的代数式,叫做代数式的恒等变形。恒等变形是代数的最基本知识,是学好中学数学的基础,恒等变形的理论依据是运算律和运算法则,所以,恒等变形必须遵循各运算法则,并按各运算法则在其定义域内进行变形。 代数恒等变形技巧是学习与掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。代数恒等变形实质上是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活与综合应用。中学生在平时的学习中不善于积累和总结变形经验,在稍复杂的问题面前常因变形方向不清,而导致常规的化归、转化工作难以实施,甚至失败,其后果直接影响着应试的能力及效率。 代数的恒等变形包括的内容较多,本文着重阐述代数运算和解题中常见的变形技巧及应用。 一、整式变形 整式变形包括整式的加减、乘除、因式分解等知识。这些知识都是代数中的最基础的知识。有关整式的运算与化简求值,常用到整式的变形。 例1:化简(y+z-2x)2+(z+x-2y)2+(x+y-2z)2-3(y-z)2-3(z-x)2-3(x-y)2 分析:此题若按常规方法先去括号,再合并类项来进行恒等变形的话,计算会繁杂。而通过观察发现此题是一个轮换对称多项式,就其特点而言,若用换元法会使变形简单,从而也说明了换元法是变形的一种重要方法。 解:设y-z=a, z-x=b, x-y=c,则a+b+c=0,y+z-2x=b-c, x+z-2y=c-a, x+y-2z=a-b。于是原式=(b-c)2+(c-a)2+(a-b)2-3a2-3b2-3c2 =b2-2ac+c2+c2-2ac+a2+a2-2ab+b2-3a2-3b2-3c2 =-a2 -b2-c2-2ac-2ab-2bc =-(a+b+c)2 =0 例2:分解因式 ①(1-x2)(1-y2)-4xy ②x4+y4+ x2y2 分析:本题的两个小题,若按通则变形,则困难重重,不知从何下手,但从其含平方的项来研究,考虑应用配方法会使变形迎刃而解。①题先将括号展开,并把-4xy拆成-2xy和-2xy,再分组就可以配成完全平方式。②题用添项、减项法加上x2y2再减去x2y2,即可配方,然后再进行变形分解。 解:①原式= 1-y2-x2+x2y2-2xy-2xy =(1-2xy+x2y2)-( x2+2xy+ y2)

初中数学竞赛辅导资料之因式分解附答案

初中数学竞赛辅导资料之因式分解 甲内容提要和例题 我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。下面再介紹两种方法 1.添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式 例1因式分解:①x4+x2+1②a3+b3+c3-3abc ①分析:x4+1若添上2x2可配成完全平方公式 解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x) ②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2 解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2 =(a+b)3+c3-3ab(a+b+c) =(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-ac-bc) 例2因式分解:①x3-11x+20②a5+a+1 ①分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这里 16是完全平方数) ②解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4) =x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5) ③分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式 解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1 =a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1) 2.运用因式定理和待定系数法 定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a ⑵若两个多项式相等,则它们同类项的系数相等。 例3因式分解:①x3-5x2+9x-6②2x3-13x2+3

因式分解单元测试题共两套

第一章 因式分解单元测试题 一、选择题:(每小题3分,共18分) 1、下列运算中,正确的是( ) A 、x 2 ·x 3 =x 6 B 、(a b)3 =a 3b 3 C 、3a +2a =5a 2 D 、(x 3)2= x 5 2、下列从左边到右边的变形,是因式分解的是( ) A 、2 9)3)(3(x x x -=+- B 、))((2 2 3 3 n mn m n m n m ++-=- C 、)1)(3()3)(1(+--=-+y y y y D 、z yz z y z z y yz +-=+-)2(2242 3、下列各式是完全平方式的是( ) A 、4 1 2+ -x x B 、241x + C 、22b ab a ++ D 、122-+x x 4、下列多项式中能用平方差公式分解因式的是( ) A 、2 2 )(b a -+ B 、mn m 2052- C 、2 2 y x -- D 、92+-x 5、如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、–3 B 、3 C 、0 D 、1 6、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( ) A 、6cm B 、5cm C 、8cm D 、7cm 二、填空题:(每小题3分,共18分) 7、 在实数范围内分解因式=-62a 。 8、当x ___________时,()0 4-x 等于1; 9、() 2008 2009 2 1.53??-?= ??? ___________。 10、若3x = 21,3y =3 2,则3x -y 等于 。 11、若2 2 916x mxy y ++是一个完全平方式,那么m 的值是__________。 12、绕地球运动的是×103米/秒,则卫星绕地球运行8×105 秒走过的路程是 。 三、因式分解:(每小题5分,共20分) 13、)(3)(2x y b y x a --- 14、y xy y x 3522 +-- 15、2x 2 y -8xy +8y 16、a 2 (x -y)-4b 2(x -y)

1—1代数式的恒等变换方法与技巧

1—1 代数式的恒等变换方法与技巧 一、代数式恒等的一般概念 定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。字母的所有允许值组成的集合称为这个代数式的定义域。对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。 定义2 如果两个代数式A 、B ,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B 。 两个代数式恒等的概念是相对的。同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但 x =,在x≥0时成立,但在x<0时不成立。因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。 定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。 代数式的变形,可能引起定义域的变化。如lgx 2的定义域是(,0)(0,)-∞+∞U ,2lgx 的定义域是 (0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx 2=2lgx 。由lgx 2变形为2lgx 时, 定义域缩小了;反之,由2lgx 变形为lgx 2时,定义域扩大了。这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。 例1:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于222(0,0 x p x x x ?-=-??-≥≥?? 2 22222 (4)4448(2)441330440,0p x x p p x x x x p x ?-=??=+--?????≤≤?≤ ???? ≥??+-≤≥?? ? 222(4)8(2) 44,043p x p p x x ?-=??-??-?≤≤≥?? 由上式知,原方程有实根,当且仅当p 满足条件24(4)44 048(2)33 p p p p --≤≤?≤≤- 这说明原方程有实根的充要条件是4 03p ≤≤ 。这时,原方程有惟一实根x =。 二、恒等变换的方法与技巧 恒等变换的目的是使问题变得简单,便于求解。因此,式的恒等变换是根据需要进行的,根据不同问题的特点,有其不同的规律性。 1.分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。

八年级数学竞赛因式分解

第1讲:因式分解 一.因式分解的定义: 二.因式分解的方法: 1.提取公因式法:提取所有项的公共的因式,将多项式化成两个多项式的乘积的形式 例1:分解因式4121315242+-+---+-n n n n n n y x y x y x 例2:试说明139792781--能被45整除 例3:已知01234=++++x x x x ,求1200820092010+++++x x x x 2.运用公式法:运用公式法进行因式分解的关键是利用各公式的特点,建立运用公式的模型,以下公式都应该熟记. 例4:分解因式xyz z y x 68333--- 例5:分解因式:abc c b a 3333-++ 例6:分解因式:12131415++++++x x x x x 3.分组分解法:关键是如何分组,原则是:①各组能分解或部分组能分解,②组间能继续分解,从而达到分解的目的.常用的分组思路有,按系数分组,按符号分组,安某一字母一次或二次分组,联想公式分组,按项的次数分组等,对多项式分组的方法往往不唯一,但最终的结果是一致的。 例7:分解因式2105ax ay by bx -+- 例8:分解因式2222428x xy y z ++- 4.十字相乘法:对二次三项式分解的重要方法,即:()()22112c x a c x a c bx ax ++=++,其中a a a =21,c c c =21, b c a c a =+1221。十字相乘法通常借助画“十”字来分解系数。 例9:分解因式(1)2524x x +-;(2)226x xy y +-;(3)222 ()8()12x x x x +-++ 例10:分解因式(1)22y 8x y 6x 5-+;(2)22 5681812x xy y x y +++++ 例11:已知:,,a b c 为三角形的三条边,且222433720a ac c ab bc b ++--+= 求证:2b a c =+ 5.求根公式法:一般适合于对二次三项式的因式分解,如要对c bx ax ++2进行因式分解,可令02=++c bx ax ,若0≥?,则方程有两个实数根,可用一元二次方程的求根公式求出,设为21,x x ,则有()()212x x x x a c bx ax --=++ 例12:分解因式: 222(1)616 (2)44x x x xy y +-+- 例13:分解因式:422x +x +2ax+1-a 6.拆项、添项法:因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即

因式分解基础测试题含答案

因式分解基础测试题含答案 一、选择题 1.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=- D .244(2)(2)x x x x -+=+- 【答案】C 【解析】 【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底. 【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()2 1x xy x x x y ++=++,故B 选项错误; C. ()()()2 x x y y y x x y -+-=- ,故C 选项正确; D. 244x x -+=(x-2)2,故D 选项错误, 故选C. 【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底. 2.下列各式中,由等式的左边到右边的变形是因式分解的是( ) A .(x +3)(x -3)=x 2-9 B .x 2+x -5=(x -2)(x +3)+1 C .a 2b +ab 2=ab(a +b) D .x 2+1=x 1()x x + 【答案】C 【解析】 【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】 A 、是整式的乘法,故A 错误; B 、没有把一个多项式转化成几个整式积的形式,故B 错误; C 、把一个多项式转化成了几个整式积的形式,故C 正确; D 、没有把一个多项式转化成几个整式积的形式,故D 错误; 故选:C . 【点睛】 本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式. 3.下列各式分解因式正确的是( ) A .22()()()(1)a b a b a b a b +-+=++- B .236(36)x xy x x x y --=-

代数式的恒等变形

代数式的恒等变形 一、常值代换求值法——“1”的妙用 例1 、 已知ab=1,求2 211 11b a +++的值 [解] 把ab=1代入,得 22 11 11b a +++ =22 b ab ab a ab ab +++ =b a a b a b ++ + =1 例2 、已知xyzt=1,求下面代数式的值: 分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同. 同理 练习:1 111,1=++++++++=c ca c b b c b a ab a abc 证明:若 二、配方法 例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b + 之值。 [解] ∵a2b2+a2+b2-4ab+1 =(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴?? ?==-.1,0ab b a 解得?? ?==;1,1b a ?? ?-=-=.1,1b a 当a=1,b=1时,b a a b + =1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 例1 设a 、b 、 c 、 d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数 的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2

浅谈数学中的变形技巧

浅谈数学中的变形技巧 永城职业学院基础部 邮编476600 陈颂 地址:河南省永城市东城区学府路002号 摘要:在数学的解题过程中,我们经常需要对一些公式或者概念做一些变形。比如将等式变形,不等式变形,根据概念变形等等。本文针对这三个方面做一些讨论,对数学中几种题型的解题思路做一个总结,希望会对在迷茫中的学生们有一个启发作用。 关键词:等式;不等式;变形 在数学的解题过程中,我们经常需要对一些公式或者概念做一些变形。比如将等式变形,不等式变形,根据概念变形等等。本文针对这三个方面做一些讨论,对数学中几种题型的解题思路做一个总结,希望会对在迷茫中的学生们有一个启发作用。 一、等式变形 例如:1cos sin 22=+αα的变形 我们知道,1cos sin 22=+αα是三角函数中一个非常基础而且重要的公式。许多相关公式也可以与这个公式相互照应。 例如,由公式r y =αsin ,r x =αcos ,(知识点:角的概念的推广)我们把此代入公式得到: 122=?? ? ??+??? ??r x r y , 即222r y x =+,此式由勾股定理得出。 又若在一个直角三角形中,我们有c a = αsin ,c b =αcos ,则代入公式有 122=?? ? ??+??? ??c b c a 即222c b a =+,即为勾股定理。 二、不等式变形 例如:不等式ab b a 222≥+的变形。 以上不等式可以变形为:0222≥-+ab b a ,由完全平方公式得:()02≥-b a ,此式显然成立。故原不等式成立。 我们再将公式变形得:ab b a ≥+2 2 2,此式不太常用,但是我们可以熟悉一下这个形式。

初中数学竞赛专题辅导因式分解(一)

初中数学竞赛专题辅导因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

因式分解单元测试卷(附答案)

第3章 因式分解水平测试 (总分:120分,时间:90分钟) 学校 班级 座号 姓名 一、选择题(每题3分,共24分) 1.-(3a+5)(3a -5)是多项式( )分解因式的结果. A 、9a 2-25 B 、9a 2+25 C 、-9a 2-25 D 、-9a 2+25 2、多项式9x m y n - 1-15x 3m y n 的公因式是( ) -1 -1 3.已知54-1能被20~30之间的两个整数整除,则这两个整数是( ) A 、25,27 B 、26,28 C 、24,26 D 、22,24 4、如果多项式- 51abc +51ab 2-a 2b c 的一个因式是-5 1 ab ,那么另一个因式是( ) -b +5ac +b -5ac -b +51ac +b -5 1 ac 5、用提取公因式法分解因式正确的是( ) -9a 2b 2=3abc (4-3ab ) -3xy +6y =3y (x 2-x +2y ) C.-a 2+ab -ac =-a (a -b +c ) +5xy -y =y (x 2+5x ) 6、64-(3a -2b )2分解因式的结果是( ). A 、(8+3a -2b )(8-3a -2b ) B 、(8+3a+2b )(8-3a -2b ) C 、(8+3a+2b )(8-3a+2b ) D 、(8+3a -2b )(8-3a+2b ) 7、8a (x -y )2-4b (y -x )提取公因式后,剩余的因式是( ) +2ay+b +2ay-b +b 8、下列分解因式不正确的是( ). A 、4y 2-1=(4y +1)(4y -1) B 、a 4+1-2a 2=(a -1)2(a+1)2 C 、 2 291314923x x x ?? -+=- ??? D 、-16+a 4=(a 2+4) (a -2)(a +2) 二、填空题(每题3分,共24分) 1、将9(a+b )2-64(a -b )2分解因式为____________. 2、-xy 2(x +y )3+x (x +y )2的公因式是__ ______. 3、x 2+6x+9当x=___________时,该多项式的值最小,最小值是_____________. 4、5(m -n )4-(n -m )5可以写成________与________的乘积. 5、100m 2+(_________)mn 2+49n 4=(____________)2. 6、计算:36×29-12×33=________. 7、将多项式42 +x 加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式: , , . 8、)(22?=+++n n n n a a a a 三、解答题(共72分) 1、分解因式:(24分) (1)(x 2+y 2)2-4x 2y 2 (2)x 2-2xy +y 2-mx +my (3)a (x -a )(x +y )2-b (x -a )2(x +y ) (4)12ab -6(a 2+b 2) (5)196(a+2)2-169(a+3)2 (6) ()()2 2141m m m --- 2、若a =-5,a +b +c =-,求代数式a 2(-b -c )-(c +b )的值.(6分)

2代数式恒等变形

代数式的恒等变形 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫做代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,代数式的基本变形有配方、因式分解、换元、设参、拆项与逐步合并等方法。下面结合例题介绍恒等式证明中的一些常用方法与技巧. 一.设参数法 如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.如果题中的已知条件是以连比形式出现,可引入参数k ,用它表示连比的比值,以便把它们分割成几个等式. 例1.已知x y z a b b c c a == ---,求x+y+z 的值。 例2.已知 ()() 23a b b c c a a b b c c a +++==---,a ,b ,c 互不相等, 求证:8a+9b+5c=0. 二.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例3.已知x+y+z=xyz ,证明: x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz .

浅谈中学数学中若干变形技巧

浅谈中学数学中的若干变形技巧-中学数学论文 浅谈中学数学中的若干变形技巧 江苏高邮市三垛中学赵静 变形是数学解题的基石,变形能力的强弱直接制约着解题能力的高低。变形是为了达到某种目的而采用的“手段”,是化归、转化的准备阶段。本文旨在通过探讨变形技巧在数列问题、不等式问题、因式分解等问题中的若干应用,来揭示中学数学常见的一些变形技巧,帮助学生掌握变形的一般规律与特点,培养良好的发散性思维与创新精神。 一、掌握变形技巧的意义 在代数运算中变形是用来帮助解答疑难问题时,在原代数式基础之上进行转换的方法。我们在解题时,由于条件不充分或者不明显,常常需要求助于变形做适当的转换。变形的意义在于把题目中的已知与求解的有关性质联系起来,从而使题目中分散的元素集中,把问题转化为另一种形式,便于利用有关的定义、公理、定理等达到解题的目的;当题中的条件与结论之间的关系不够明确时,变形还可以把所需的关系揭露出来,使隐蔽的条件显现,把复杂的问题化简,从而找到解决问题的途径。 二、变形技巧在数列中的应用 (一)给定初始条件,数列的递推方程为:an+1=pan+q(p≠1)型

等形式的变形,在不等式中还可以通过变元与消元、增、减项变成“积”一定以及放缩法等形式来变形,在因式分解中还可以通过主元变形等,这里就不再一一叙述。总之变形是为了便于利用某些理论进行运算架设的桥梁,是把代数式中固有的但不很明显的性质得以明确地显示出来的催化剂。变形的用途很广,虽然题目千差万别,解题方法多种多样,变形也因题而异.只要我们大胆探索,深入

研究,就会找到其内在的规律。 参考文献: [1]马永传.递推数列通项公式求法及技巧[J].六安师专学报,1999. [2]郭立军.运用基本不等式的变形技巧[J].数学学习与研究(教研版),2008. [3]候有歧.运用均值不等式解题的变形技巧[J].中学数学杂志,2007. [4]李开丁.在证明不等式中几种常用的等价变形形式[J].高等数学研究,2004. [5]郭茂华.因式分解中常用的几类变形技巧[J].时代数学学习,1998.

数学竞赛题精讲复杂的因式分解问题

数学竞赛题精讲复杂的因 式分解问题 Prepared on 21 November 2021

轮换对称式的因式分解问题 林达 多元高次轮换对称式的因式分解问题往往是因式分解中的难点,很多初中学生感到棘手。但笔者却认为,这类问题往往是有迹可循的。我们今天就通过几个例子讲一讲把“求根”和“待定系数”相结合进行因式分解的方法。 例1分解因式: 【分析与解答】首先观察发现,当时,原式的值为0。即,如果将原式看作a的函数,将b看作常数,则是函数的一个根。故是原式的因式,同理及也是原式的因式。 故是原式的因式,观察发现原式是的三次式,也是三次式,故两式必然只差一个常数。 用待定系数法,设 代入,得到,故原式的因式分解结果是 例2分解因式: 【分析与解答】和例1类似,首先观察发现,当时,原式的值为0。故是原式的因式,同理及也是原式的因式。 故是原式的因式,观察发现原式是的五次式,是三次式。两者都是的轮换对称式,故原式一定可以表示成如下结果: 代入,得到 代入,得到 解得故原式的因式分解结果是 例3化简: 【分析与解答】这里虽然是化简而非因式分解,但我们发现分别展开以上四个式子太过复杂,耗时且易错,所以我们仿照例1和例2的方法首先用观察法“求根”以发现因式。 观察发现,当时,原式为 故,是原式的一个因式,同理也是原式的因式。 故是原式的因式。观察发现原式是的三次式,也是三次式,两式必然只差一个常数。 用待定系数法,设 代入,得到,故原式的化简结果是 配方法及其应用 林达 复杂的因式分解不仅可以是轮换对称式的因式分解,很多难以直接提出因式的高次多项式也难以分解。对于这类多项式,配方法往往能出奇效。相对于更一般的待定系数法,配方法的计算要简单很多。 配方法,顾名思义,就是将多项式或其中的某些项配成平方式或更高次方式(一般配成平方式,有时也可能直接配成三次方式,但更高次的配方很少出现)。下面我们看几道例题。 例1 分解因式:

相关文档
最新文档