利用导数研究方程的根和函数的零点--教案

合集下载

高考数学第3章导数及其应用6第6讲利用导数研究函数零点问题教案理高三全册数学教案

高考数学第3章导数及其应用6第6讲利用导数研究函数零点问题教案理高三全册数学教案

第6讲 利用导数研究函数零点问题数形结合法研究零点问题[典例引领]已知f (x )=ax 2(a ∈R ),g (x )=2ln x . (1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.【解】 (1)F (x )=ax 2-2ln x , 其定义域为(0,+∞), 所以F ′(x )=2ax -2x=2(ax 2-1)x(x >0).①当a >0时,由ax 2-1>0,得x >1a,由ax 2-1<0,得0<x <1a,故当a >0时,F (x )在区间⎝⎛⎭⎪⎪⎫1a ,+∞上单调递增,在区间⎝⎛⎭⎪⎪⎫0,1a 上单调递减.②当a ≤0时,F ′(x )<0(x >0)恒成立. 故当a ≤0时,F (x )在(0,+∞)上单调递减.(2)原式等价于方程a =2ln xx2在区间[2,e]上有两个不等解.令φ(x )=2ln xx 2,由φ′(x )=2x (1-2ln x )x 4易知,φ(x )在(2,e)上为增函数,在(e ,e)上为减函数, 则φ(x )ma x =φ(e)=1e ,而φ(e)=2e 2,φ(2)=ln 22.由φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=ln e 4-ln 2e22e 2<ln 81-ln 272e 2<0, 所以φ(e)<φ(2). 所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e. 即f (x )=g (x )在[2,e]上有两个不相等的解时a 的取值范围为[ln 22,1e).含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数图象,根据图象特征求参数的范围. 利用函数性质研究函数零点[典例引领]已知函数f (x )=x ln x ,g (x )=(-x 2+ax -3)e x(a 为实数). (1)当a =4时,求函数y =g (x )在x =0处的切线方程; (2)如果关于x 的方程g (x )=2e xf (x )在区间⎣⎢⎡⎦⎥⎤1e ,e 上有两个不等实根,求实数a 的取值范围.【解】 (1)当a =4时,g (x )=(-x 2+4x -3)e x,g (0)=-3,g ′(x )=(-x 2+2x +1)e x ,g ′(0)=1,所以,所求的切线方程为y +3=x -0,即y =x -3. (2)由g (x )=2e xf (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x.设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x2, 所以x在⎣⎢⎡⎦⎥⎤1e ,e 上变化时,h ′(x ),h (x )的变化如下: x⎝ ⎛⎭⎪⎫1e ,11 (1,e) h ′(x ) - 0+ h (x )单调递减极小值(最小值)单调递增又h ⎝ ⎛⎭⎪⎫e =1e +3e -2,h (1)=4,h (e)=3e +e +2.且h (e)-h ⎝ ⎛⎭⎪⎫1e =4-2e +2e <0.所以实数a 的取值范围为4<a ≤e +2+3e ,即a的取值范围为⎝⎛⎦⎥⎤4,e +2+3e .利用函数性质研究函数的零点,主要是根据函数最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件. 构造函数法研究零点问题[典例引领]设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥1时,讨论函数f (x )与g (x )图象的交点个数.【解】 (1)函数f (x )的定义域为(0,+∞),f ′(x )=x -mx =x 2-mx, m ≤0时,f ′(x )>0,f (x )在(0,+∞)上递增,m >0时,f ′(x )=(x +m )(x -m )x,当0<x <m 时,f ′(x )<0,函数f (x )单调递减, 当x >m 时,f ′(x )>0,函数f (x )单调递增. 综上m ≤0时,f (x )在(0,+∞)上单调递增;m >0时,函数f (x )的单调增区间是(m ,+∞),单调减区间是(0,m ).(2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数,F ′(x )=-(x -1)(x -m )x,当m =1时,F ′(x )≤0,函数F (x )为减函数,注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时F ′(x )<0,1<x <m 时F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,注意到F (1)=m +12>0,F (2m +2)=-m ln (2m +2)<0,所以F (x )有唯一零点,综上,函数F (x )有唯一零点,即两函数图象只有一个交点.(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数g (x )的方法,把问题转化为研究构造的函数g (x )的零点问题,研究函数g (x )零点的策略:①如果函数g (x )在已知区间上是单调的,则其最多只有一个零点,再结合函数的零点存在定理,确定其零点是否存在.②如果函数g (x )在已知区间不是单调的,则求出这个函数的极值点和单调区间,再结合g (x )的极值与零的大小,以及函数g (x )的单调性、结合零点存在定理判断其零点的个数.(3)利用导数研究函数零点或方程根,通常有三种思路:①利用最值或极值研究;②利用数形结合思想研究;③构造辅助函数研究,具体操作方法见本节考点一、二、三的[规律方法]. 1.(2017·高考全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( ) A .-12B .13C .12D .1解析:选C.由f (x )=x 2-2x +a (ex -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e -(2-x )+1]=x 2-4x +4-4+2x +a (e 1-x +ex -1)=x 2-2x +a (ex -1+e-x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e 1-1+e-1+1)=0,解得a =12.故选C.2.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)解析:选B.f ′(x )=3ax 2-6x ,当a =3时,f ′(x )=9x 2-6x =3x (3x -2), 则当x ∈(-∞,0)时,f ′(x )>0;x ∈⎝⎛⎭⎪⎫0,23时,f ′(x )<0;x ∈⎝ ⎛⎭⎪⎫23,+∞时,f ′(x )>0,注意f (0)=1,f ⎝ ⎛⎭⎪⎫23=59>0,则f (x )的大致图象如图(1)所示: 不符合题意,排除A 、C.当a =-43时,f ′(x )=-4x 2-6x =-2x (2x +3),则当x ∈⎝ ⎛⎭⎪⎫-∞,-32时,f ′(x )<0,x ∈⎝ ⎛⎭⎪⎫-32,0时,f ′(x )>0,x ∈(0,+∞)时,f ′(x )<0,注意f (0)=1,f ⎝ ⎛⎭⎪⎫-32=-54,则f (x )的大致图象如图(2)所示. 不符合题意,排除D.3.函数f (x )=13x 3+ax 2+bx +c (a ,b ,c ∈R )的导函数的图象如图所示:(1)求a ,b 的值并写出f (x )的单调区间;(2)若函数y =f (x )有三个零点,求c 的取值范围. 解:(1)因为f (x )=13x 3+ax 2+bx +c ,所以f ′(x )=x 2+2ax +b .因为f ′(x )=0的两个根为-1,2,所以⎩⎪⎨⎪⎧-1+2=-2a ,-1×2=b ,解得a =-12,b =-2,由导函数的图象可知,当-1<x <2时,f ′(x )<0,函数单调递减,当x <-1或x >2时,f ′(x )>0,函数单调递增, 故函数f (x )在(-∞,-1)和(2,+∞)上单调递增, 在(-1,2)上单调递减.(2)由(1)得f (x )=13x 3-12x 2-2x +c ,函数f (x )在(-∞,-1),(2,+∞)上是增函数, 在(-1,2)上是减函数,所以函数f (x )的极大值为f (-1)=76+c ,极小值为f (2)=c -103.而函数f (x )恰有三个零点,故必有⎩⎪⎨⎪⎧76+c >0,c -103<0,解得-76<c <103.所以使函数f (x )恰有三个零点的实数c的取值范围是⎝ ⎛⎭⎪⎫-76,103.4.已知f (x )=1x +e xe -3,F (x )=ln x +exe -3x +2.(1)判断f (x )在(0,+∞)上的单调性;(2)判断函数F (x )在(0,+∞)上零点的个数. 解:(1)f ′(x )=-1x 2+e xe =x 2e x-ee x2, 令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 所以f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增.(2)F ′(x )=f (x )=1x +exe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0,即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增,而F (1)=0,x →0时,F (x )→-∞,x →+∞时,F (x )→+∞,画出函数F (x )的草图,如图所示. 故F (x )在(0,+∞)上的零点有3个.1.已知函数f (x )=(2-a )(x -1)-2ln x (a ∈R ). (1)当a =1时,求f (x )的单调区间;(2)若函数f (x )在⎝⎛⎭⎪⎫0,13上无零点,求a 的取值范围.解:(1)当a =1时,f (x )=x -1-2ln x , 则f ′(x )=1-2x =x -2x,由f ′(x )>0,得x >2, 由f ′(x )<0,得0<x <2,故f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)因为f (x )<0在区间⎝⎛⎭⎪⎫0,13上恒成立不可能,故要使函数f (x )在⎝⎛⎭⎪⎫0,13上无零点, 只要对任意的x ∈⎝ ⎛⎭⎪⎫0,13,f (x )>0恒成立,即对x ∈⎝ ⎛⎭⎪⎫0,13,a >2-2ln x x -1恒成立. 令h (x )=2-2ln x x -1,x ∈⎝⎛⎭⎪⎫0,13, 则h ′(x )=2ln x +2x -2(x -1)2, 再令m (x )=2ln x +2x -2,x ∈⎝⎛⎭⎪⎫0,13, 则m ′(x )=-2(1-x )x 2<0, 故m (x )在⎝⎛⎭⎪⎫0,13上为减函数, 于是,m (x )>m ⎝ ⎛⎭⎪⎫13=4-2ln 3>0, 从而h ′(x )>0,于是h (x )在⎝⎛⎭⎪⎫0,13上为增函数, 所以h (x )<h ⎝ ⎛⎭⎪⎫13=2-3ln 3, 所以a 的取值范围为[2-3ln 3,+∞).2.(2018·豫南九校联考)对于函数y =H (x ),若在其定义域内存在x 0,使得x 0·H (x 0)=1成立,则称x 0为函数H (x )的“倒数点”.已知函数f (x )=ln x ,g (x )=12(x +1)2-1. (1)求证:函数f (x )有“倒数点”,并讨论函数f (x )的“倒数点”的个数;(2)若当x ≥1时,不等式xf (x )≤m [g (x ) -x ]恒成立,试求实数m 的取值范围.解:(1)证明:设h (x )=ln x -1x(x >0), 则h ′(x )=1x +1x 2>0(x >0), 所以h (x )在(0,+∞)上为单调递增函数.而h (1)<0,h (e)>0,所以函数h (x )有零点且只有一个零点.所以函数f (x )有“倒数点”且只有一个“倒数点”.(2)xf (x )≤m [g (x )-x ]等价于2x ·ln x ≤m (x 2-1),设d (x )=2ln x -m ⎝ ⎛⎭⎪⎫x -1x ,x ≥1. 则d ′(x )=-mx 2+2x -m x 2,x ≥1, 易知-mx 2+2x -m =0的判别式为Δ=4-4 m 2.①当m ≥1时,d ′(x )≤0,d (x )在[1,+∞)上单调递减,d (x )≤d (1)=0,符合题意;②当0<m <1时,方程-mx 2+2x -m =0有两个正根且0<x 1<1<x 2,则函数d (x )在(1,x 2)上单调递增,此时d (x )>d (1)=0,不合题意;③当m=0时,d′(x)>0,d(x)在(1,+∞)上单调递增,此时d(x)>d(1)=0,不合题意;④当-1<m<0时,方程-mx2+2x-m=0有两个负根,d(x)在(1,+∞)上单调递增,此时d(x)>d(1)=0,不合题意;⑤当m≤-1时,d′(x)≥0,d(x)在(1,+∞)上单调递增,此时d(x)>d(1)=0,不合题意.综上,实数m的取值范围是[1,+∞).。

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根和函数的零点(说课稿)、教材分析:函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而函数的零点就是其中一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,得用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础。

因此本节内容具有承前启后的作用,地位至关重要。

1. 知识与技能:理解方程的根和函数的零点的关系,函数零点的定义,学会判断零点存在的条件。

2. 过程与方法:通过学习,培养学生自主探究和独立思考的能力。

培养学生函数和方程结合思想的能力。

3. 思想方法:培养学生数形结合的意识与思想。

『重点。

难点。

关键点』:1. 重点:理解方程的根和函数零点之间的联系,判断函数零点的存在及其个数的方法。

2. 难点:理解探究发现函数零点的存在性。

理解函数的零点就是方程的根及利用函数的图像和性质判别零点的个数。

3. 关键点:帮助学生寻找方程和函数图象之间的联系。

『教学方法和手段』:教学方法:探究式教学(“启发—探究—讨论”的教学模式)教学手段:教学软件PPT 和几何画板辅助教学。

『教学进程构思及说明』:置前作业:1、求下列方程的根并画出对应的函数的图像。

2(1)230x x --= 2(2)210x x -+= 2(3)230x x -+=通过观察,你能得到上面三个一元二次方程的根与其相应的二次函数的图象有什么关系吗?(表格见资料)课前完成,观察上面三个一元二次方程的根与其相应的二次函数的图象有什么关系吗?激发学生探究问题的兴趣。

(反馈课前作业,抽学生回答。

)分析:1. 方程0322=--x x 的 根为3,121=-=x x ,函数322--=x x y 与x 轴的交点坐标为(-1,0),(3,0),观察猜想方程0322=--x x 的两实根对应与函数与x 轴的交点坐标的横坐标。

第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)

第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)

第06讲利用导数研究函数的零点(方程的根)(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:判断、证明或讨论函数零点的个数高频考点二:证明唯一零点问题高频考点三:根据零点情况求参数①利用最值(极值)研究函数零点问题②利用数形结合法研究函数的零点问题③构造函数研究函数零点问题第四部分:高考真题感悟第五部分:第06讲利用导数研究函数的零点(方程的根)(精练)1、函数的零点(1)函数零点的定义:对于函数()y f x=,把使()0f x=的实数x叫做函数()y f x=的零点.(2)三个等价关系方程0)(=xf有实数根⇔函数)(xfy=的图象与x轴有交点的横坐标⇔函数)(xfy=有零点.2、函数零点的判定如果函数()y f x=在区间[,]a b上的图象是连续不断的一条曲线,并且有()()0f a f b⋅<,那么函数()y f x=在区间(,)a b内有零点,即存在(,)c a b∈,使得()0f c=,这个c也就是()0f x=的根.我们把这一结论称为函数零点存在性定理.注意:单调性+存在零点=唯一零点1.(2022·全国·高二)已知函数()f x的定义域为[]15-,,部分对应值如下表:()f x的导函数()y f x='的图象如图所示,则下列关于函数()f x的命题:① 函数()y f x=是周期函数;② 函数()f x在[]02,是减函数;③ 如果当[]1,x t∈-时,()f x的最大值是2,那么t的最大值为4;④ 当12a<<时,函数()y f x a=-有4个零点.其中真命题的个数是A.4个B.3个C.2个D.1个2.(2022·甘肃·金昌市教育科学研究所高三阶段练习(文))已知函数()2e1xf x x a=+-()a R∈有两个极值点,则实数a的取值范围为()A.1,0e⎛⎫- ⎪⎝⎭B.2,0e⎛⎫- ⎪⎝⎭C.1,e⎛⎫-+∞⎪⎝⎭D.2,e⎛⎫-+∞⎪⎝⎭3.(2022·全国·高二)若函数()3239f x x x x m =--+仅有一个零点,则实数m 的取值范围是( )A .()5,-+∞B .(,27)(5,)-∞-⋃+∞C .(,27)-∞D .(,5)(27,)-∞-⋃+∞4.(2022·甘肃武威·模拟预测(文))函数()326f x x x m =-+有三个零点,则实数m 的取值范围是( )A .(﹣4,4)B .[﹣4,4]C .(﹣∞,﹣4]∪[4,+∞)D .(﹣∞,﹣4)∪(4,+∞)5.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定高频考点一:判断、证明或讨论函数零点(根)的个数1.(2022·全国·高二)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间1(,1)e,(1,e )内均有零点 B .在区间1(,1)e,(1,e )内均无零点C .在区间1(,1)e 内有零点,在区间(1,e )内无零点D .在区间1(,1)e 内无零点,在区间(1,e )内有零点2.(2022·全国·高三专题练习(文))已知函数()()12xx e f x e=-+,其中e 为自然对数的底数, 2.7182818e =……,则()f x 的零点个数为( ) A .0B .1C .2D .33.(2022·全国·高三专题练习(理))函数()()1ln 03f x x x x =->的零点个数为( )A .0B .1C .2D .34.(2022·全国·高二课时练习)求函数3()231f x x x =-+零点的个数为( ) A .1B .2C .3D .45.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定6.(2022·江苏苏州·模拟预测)方程3269100x x x -+-=的实根个数是______ .7.(2022·全国·高三专题练习)函数()1x f x e x =-+的零点个数是__________.8.(2022·广东佛山·高二阶段练习)已知函数()()1ln 2af x x a x x=+---,其中R a ∈. (1)若()f x 存在唯一极值点,且极值为0,求a 的值; (2)若2e a <,讨论()f x 在区间2[1,e ]上的零点个数.9.(2022·新疆·乌苏市第一中学高二阶段练习(文))给定函数()()1e xf x x =+.(1)判断函数()f x 的单调性,并求出()f x 的极值; (2)求出方程()()f x a a R =∈的解的个数.高频考点二:证明唯一零点(根)问题1.(2022·山西省长治市第二中学校高二阶段练习)已知函数321()(1)3=-++f x x a x x .(1)若1a =,求()f x 的单调区间及相应区间上的单调性; (2)证明:()f x 只有一个零点.2.(2022·陕西渭南·高二期末(文))已知函数()ln x axf x x+=,R a ∈. (1)若0a =,求()f x 的最大值;(2)若01a <<,求证:()f x 有且只有一个零点.3.(2022·广西玉林·模拟预测(文))已知函数217()ln 4,()2ln 22f x x x xg x x x =-=++. (1)求函数()f x 的最小值;(2)证明:函数()()()h x f x g x =+仅有一个零点.高频考点三:根据零点(根)情况求参数①利用最值(极值)研究函数零点(根)问题1.(2022·重庆市万州第二高级中学高二阶段练习)已知函数32()34f x x ax bx =+++在1x =-时有极值0. (1)求函数()f x 的解析式;(2)记()()21g x f x k =-+,若函数()g x 有三个零点,求实数k 的取值范围.2.(2022·山东师范大学附中高二阶段练习)已知函数()21xx x f x e+-=. (1)求函数()f x 的单调区间;(2)若函数()y f x a =-(a 为常数)有3个不同的零点,求实数a 的取值范围.3.(2022·宁夏六盘山高级中学高二阶段练习(理))已知函数3()91f x ax x =-+,0a >. (1)若3a =,求函数()f x 的极值;(2)若函数()f x 恰有三个零点,求实数a 的取值范围.4.(2022·北京丰台·一模)已知函数()f x = (1)当1a =时,求曲线()y f x =的斜率为1的切线方程; (2)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围.5.(2022·广西桂林·二模(理))已知函数()()()211e 2xf x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.②利用数形结合法研究函数的零点(根)问题1.(2022·宁夏·银川二中高二期末(理))已知函数ln ()xf x x= (1)填写函数()f x 的相关性质;2.(2022·四川·阆中中学高二阶段练习(文))设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.3.(2022·全国·信阳高中高三阶段练习(理))已知函数()2e xf x a x =-(R a ∈,e 为自然对数的底数).(1)若()0f x =有两个不相等的实数根,求a 的取值范围;4.(2022·四川·雅安中学高二阶段练习(文))已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.5.(2022·全国·模拟预测(理))已知函数()()2x x f x e ae a =+∈R(1)讨论()f x 的单调性;(2)设()()21x g x a x e x =-+,若方程()()g x f x =有三个不同的解,求a 的取值范围.6.(2022·四川绵阳·二模(文))已知函数()2()ln 1R f x x ax a =+-∈(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 有且只有一个零点,求实数a 的取值范围.③构造函数研究函数零点(根)问题1.(2022·江苏宿迁·高二期末)已知函数()e xf x =(e 为自然对数的底数),()sing x a x =(,22x ππ⎡⎤∈-⎢⎥⎣⎦),a R ∈.(1)若直线:l y kx =与函数()f x ,()g x 的图象都相切,求a 的值; (2)若方程()()f x g x =有两个不同的实数解,求a 的取值范围.2.(2022·重庆南开中学高二期末)已知函数()()2ln ,f x x x g x x ax b ==++.(1)若()f x 与()g x 在1x =处有相同的切线,求实数,a b 的取值;(2)若2b =时,方程()()f x g x =在()1,+∞上有两个不同的根,求实数a 的取值范围.3.(2022·四川·成都七中高三阶段练习(理))已知函数()(1)f x a x =-,()e (1)x g x bx =-,R a ∈. (1)当2b =时,函数()()y f x g x =-有两个零点,求a 的取值范围; (2)当b a =时,不等式()()f x g x >有且仅有两个整数解,求a 的取值范围.4.(2022·全国·高三阶段练习)已知函数()()11ln e f x a x x=+++,()()e x g x x a a =++∈R .(1)试讨论函数()f x 的单调性;(2)若当1≥x 时,关于x 的方程()()f x g x =有且只有一个实数解,求实数a 的取值范围.5.(2022·河南·三模(理))已知函数()()ln 1f x x =+,()e 1xg x =-.(1)判断函数()()()h x f x g x =-的零点个数;6.(2022·江苏南京·高三开学考试)已知函数()(1)x f x e a x =+-,()sin cos g x ax x x =++ (1)求函数()f x 的最值;(2)令()()()h x f x g x =-,求函数()h x 在区间(,)4π-+∞上的零点个数,并说明理由.1.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)a x x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>;②10,22a b a <<≤.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b ex x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)一、单选题1.(2022·江苏·南京师大附中高三开学考试)已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为( )A .1B .2C .3D .与a 有关2.(2022·浙江省浦江中学高二阶段练习)已知函数()22x f x xe x x m =---在()0,∞+上有零点,则m 的取值范围是( )A .)21ln 2,-+∞⎡⎣B .)2ln 21,--+∞⎡⎣C .)2ln 2,-+∞⎡⎣D .21ln 2,2-+∞⎡⎫⎪⎢⎣⎭3.(2022·全国·高二)函数32()2f x x x x =-++-的零点个数及分布情况为( ) A .一个零点,在1,3⎛⎫-∞- ⎪⎝⎭内B .二个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,∞+内C .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,1,03⎛⎫- ⎪⎝⎭,()1,+∞内D .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,1,()1,+∞内4.(2022·全国·高二)直线y a =与函数33y x x =-的图象有三个不同的交点,则实数a 的取值范围为( ) A .(2,2)-B .[2,2]-C .[2,)+∞D .(,2]-∞-5.(2022·全国·高二)已知函数20()210x e x f x x x x -⎧≤=⎨--+>⎩,若函数()()g x f x kx =-有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .e -B .1-C .2D .2e6.(2022·河南·襄城高中高二阶段练习(理))已知函数()2ln f x x =,()322g x x ex ax =-+,其中e 为自然对数的底数,若方程()()f x g x =存在两个不同的实根,则a 的取值范围为( ) A .2,e ⎛⎫-∞ ⎪⎝⎭B .22,e e ⎛⎫-∞+ ⎪⎝⎭C .()2,e -∞D .22,e e ⎛⎫-∞- ⎪⎝⎭7.(2022·江西·高三阶段练习(理))已知函数22()2(2)e (1)e x x f x a a x x =+-++有三个不同的零点123,,x x x ,且1230x x x <<<,则3122312222e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( )A .3B .6C .9D .368.(2022·全国·高三专题练习)已知方程|ln |2x kx =+在区间()50,e 上恰有3个不等实数根,则实数k 的取值范围是( ) A .5331,e e ⎛⎫ ⎪⎝⎭B .5331,e e ⎡⎫⎪⎢⎣⎭C .4221,e e ⎛⎫ ⎪⎝⎭D .4221,e e ⎡⎫⎪⎢⎣⎭二、填空题9.(2022·河南焦作·二模(理))函数1()e ln 1x f x a x -=--在(0,)+∞上有两个零点,则实数a 的取值范围是_______. 10.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.11.(2022·浙江·镇海中学高二期末)已知不等式21e 0x x a +-≥有且只有两个整数解,则实数a 的范围为___________.12.(2022·全国·高二)已知函数3211()(2)1()32xf x ax ax e x a R =---+∈在区间1,22⎛⎫ ⎪⎝⎭上有3个不同的极值点,则实数a的取值范围是__________. 三、解答题13.(2022·河南·栾川县第一高级中学高二阶段练习(理))已知()2()e ()x f x x a a =+∈R .(1)若2是函数()f x 的极值点,求a 的值,并判断2是()f x 的极大值点还是极小值点; (2)若关于x 的方程()2ln e x f x x =在1,22⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.参考数据:ln 20.693≈14.(2022·陕西宝鸡·二模(文))已知函数()1e x f x ax =--,a ∈R . (1)讨论函数()f x 的单调性;(2)若方程()ln f x x x =在(1,e)上有实根,求实数a 的取值范围.15.(2022·河南·沈丘县第一高级中学高二期末(文))已知函数()ln f x x =. (1)当[)1,x ∞∈+时,证明:函数()f x 的图象恒在函数()322132=-g x x x 的图象的下方; (2)讨论方程()0f x kx +=的根的个数.16.(2022·吉林·长春外国语学校高二阶段练习)若函数()32113f x x ax bx =++-,当2x =时,函数()f x 有极值13-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个解,求实数k 的取值范围.17.(2022·浙江浙江·二模)已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.。

教案设计-方程的根与函数的零点

教案设计-方程的根与函数的零点

教案设计方程的根与函数的零点一、教学目标知识与技能:1. 理解方程的根与函数的零点的概念及其联系。

2. 学会使用数形结合的方法分析方程的根与函数的零点。

3. 掌握求解一元二次方程的方法,并能应用于实际问题中。

过程与方法:1. 通过观察、实验、探究等活动,培养学生的观察能力、思考能力和解决问题的能力。

2. 学会使用函数图像来分析方程的根的情况。

情感态度价值观:1. 培养学生的耐心和细心,对数学问题的探究兴趣。

2. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的概念。

2. 方程的根与函数的零点的联系。

3. 一元二次方程的解法。

4. 利用函数图像分析方程的根的情况。

5. 实际问题中的应用。

三、教学重点与难点重点:1. 方程的根与函数的零点的概念及其联系。

2. 一元二次方程的解法。

难点:1. 对方程的根的情况的分析。

2. 利用函数图像分析方程的根的情况。

四、教学准备1. 教学课件或黑板。

2. 练习题。

五、教学过程1. 导入:a. 引导学生回顾方程的解的概念。

b. 引入“方程的根”的概念,引导学生理解方程的根与方程的解的关系。

2. 探究方程的根与函数的零点的联系:a. 引导学生观察一元二次方程的解与对应函数的零点的关系。

b. 通过实验或探究活动,让学生体会方程的根与函数的零点的联系。

3. 学习一元二次方程的解法:a. 引导学生学习一元二次方程的解法,如因式分解法、配方法、求根公式等。

b. 通过练习题,巩固学生对一元二次方程解法的掌握。

4. 利用函数图像分析方程的根的情况:a. 引导学生学会绘制函数图像。

b. 引导学生通过观察函数图像,分析方程的根的情况。

5. 实际问题中的应用:a. 引导学生运用方程的根与函数的零点的知识解决实际问题。

b. 提供一些实际问题,让学生练习运用所学知识解决问题。

b. 引导学生反思自己在学习过程中的收获和不足,提出改进措施。

7. 布置作业:a. 根据学生的学习情况,布置一些巩固所学知识的练习题。

导数与不等式的证明及函数零点、方程根的问题

导数与不等式的证明及函数零点、方程根的问题

05 总结与展望
导数与不等式证明及函数零点、方程根问题的总结
导数与不等式证明
导数是研究函数性质的重要工具,通过导数可以研究函数的单调性、极值和最值等。不等 式证明则是数学中常见的题型,利用导数可以证明不等式,如AM-GM不等式、CauchySchwarz不等式等。
函数零点问题
函数的零点是指满足$f(x)=0$的$x$值。研究函数的零点对于理解函数的性质和解决方程 的根的问题具有重要意义。通过导数可以研究函数的零点个数和位置,以及零点附近的函 数性质。
感谢您的观看
• 应用领域的拓展:导数与不等式证明及函数零点、方程根的问题不仅在数学领 域有广泛应用,在其他学科和工程领域也有着重要的应用价值。例如,在经济 学、物理学和社会科学等领域,这些问题都可能成为重要的研究课题。
• 与其他数学分支的交叉融合:随着数学各分支之间的交叉融合,导数与不等式 证明及函数零点、方程根的问题可能会与其他数学分支产生更多的交叉点。例 如,与概率论、统计学和复分析等领域的结合可能会产生新的研究方向和应用 场景。
导数在求解函数零点、方程根中的注意事项
注意定义域
在使用导数研究函数性质 时,需要注意函数的定义 域,确保导数在定义域内 连续。
考虑多解情况
在求解函数零点或方程根 时,需要注意多解情况, 全面考虑所有可能的解。
注意函数的奇偶性
在利用导数研究函数性质 时,需要注意函数的奇偶 性,以便更准确地判断函 数的性质。
不等式
不等式是表示两个数或两个量之 间大小关系的数学表达式。
导数与不等式的性质
01
导数大于零,函数在该区间内单 调递增;导数小于零,函数在该 区间内单调递减。
02
不等式的基本性质包括传递性、 加法性质、乘法性质等。

利用导数研究零点问题及方程的根的问题(学生版)

利用导数研究零点问题及方程的根的问题(学生版)

利用导数研究零点问题及方程的根的问题1.已知函数f x =x cos x +14x 2,f ′x 为f x 的导函数.(1)若x ∈0,π2 ,f x ≥mx 2成立,求m 的取值范围;(2)证明:函数g x =f ′x +cos x 在0,π2 上存在唯一零点.2.已知函数f x =e x+ae x-a-1x-2a∈R(1)求函数f(x)的单调区间.(2)若a∈(-∞,2],求函数f(x)在区间(-∞,2]上的零点个数.3.设函数f x =x2-ax+2sin x.(1)若a=1,求曲线y=f x的斜率为1的切线方程;(2)若f x 在区间0,2π上有唯一零点,求实数a的取值范围.4.已知f x =e x-2x.(1)求f x 的单调区间;上无实数解(2)证明:方程f x =cos x在-π2,05.已知函数f(x)=e x+sin x-cos x,f (x)为f(x)的导数.(1)证明:当x≥0时,f (x)≥2;(2)设g x =f x -2x-1,证明:g(x)有且仅有2个零点.6.已知函数f x =x2e x-a ln x,a≠0.(1)若a=1e,分析f(x)的单调性;(2)若f(x)在区间(1,e)上有零点,求实数a的取值范围.7.已知函数f x =x -2 e x -ax +a ln x a ∈R .(1)当a =-1时,求函数f x 的单调区间;(2)当a <e 时,讨论f x 的零点个数.8.函数f x =x -2 e x ,g x =13ax 3-12x 2-x +4a sin x +x +1 ln x +1 ,a >0.(1)求函数f x 在x ∈-1,2 的值域;(2)记f x ,g x 分别是f x ,g x 的导函数,记max m ,n 表示实数m ,n 的最大值,记函数F x =max f x ,g x ,讨论函数F x 的零点个数.9.设函数f x =-12x2+a-1x+a ln x+a2,a>0.(1)若a=1,求函数f x 的单调区间和最值;(2)求函数f x 的零点个数,并说明理由.10.已知函数f x =x-2sin x.(1)求f x 在0,π的极值;(2)证明:函数g x =ln x-f x 在0,π有且只有两个零点.11.已知函数f(x)=ax2-x-ln x.(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在定义域内有两个不相等的零点x1,x2.①求实数a的取值范围;②证明:f x1+x2.>2-ln x1+x212.已知函数f x =e x-1-ln x-ax,a∈R.(1)当a=e-12时,求函数f x 的单调性;(2)当a>0时,若函数f x 有唯一零点x0,证明:1<x0<2.13.已知函数f x =sin x -x +a cos x ,函数g x =13x 3+12ax 2,其中a≥0.(1)判断函数f x 在0,π 上的单调性,并说明理由;(2)证明:曲线y =f x 与曲线y =g x 有且只有一个公共点.14.已知函数f x =3xx+3,g x =b sin x,曲线y=f x 和y=g x 在原点处有相同的切线l.(1)求b的值以及l的方程;(2)判断函数h x =f x -g x 在0,+∞上零点的个数,并说明理由.15.已知函数f (x )=ax ln x -2x .(1)若f (x )在x =1处取得极值,求f (x )的单调区间;(2)若函数h (x )=f (x )x-x 2+2有1个零点,求a 的取值范围.16.已知f x =x2-x,x≥-1x+3,x<-1,g x=ln x+a.(1)存在x0满足:f x0=g x0,f x0=g x0,求a的值;(2)当a≤4时,讨论h x =f x -g x 的零点个数.17.已知函数f(x)=ln x-a+1x,g(x)=a(x-2)e1-x-1,其中a∈R.(1)讨论f(x)的单调性;(2)当0<a<53时,是否存在x1,x2,且x1≠x2,使得f x i =g x i (i=1,2)?证明你的结论.18.设函数f x =ae x+sin x-3x-2,e为自然对数的底数,a∈R.(1)若a≤0,求证:函数f x 有唯一的零点;(2)若函数f x 有唯一的零点,求a的取值范围.19.已知函数f x =e x -2a x a >0 .(1)若a =e ,讨论f x 的单调性;(2)若x 1,x 2是函数f x 的两个不同的零点,证明:1<x 1+x 2<2ln a +ln2.20.已知函数f x =log a x-x-1x+1,a>0且a≠1.(1)若a=e,求曲线y=f x 在点1,f1处的切线方程;(2)讨论函数f x 的零点个数.21.已知函数f x =a ln x +x +1x,其中a >0.(1)当a =1时,求f x 的最小值;(2)讨论方程e x +e -x -a ln ax -1ax =0根的个数.22.已知函数f x =x +b e x -a .(b >0)在-1,f -1 处的切线l 方程为e -1x +ey +e -l =0.(1)求a ,b ,并证明函数y =f x 的图象总在切线l 的上方(除切点外);(2)若方程f x =m 有两个实数根x 1,x 2.且x 1<x 2.证明:x 2-x 1≤1+m 1-2e 1-e.23.已知函数f x =ax+ln x,其中a∈R.(1)讨论函数f(x)的单调性;(2)若过点P(1,0)且与曲线y=f x 相切的直线有且仅有两条,求实数a的取值范围.24.已知函数f (x )=(x -1)e x -ax 2+b .(1)讨论f (x )的单调性;(2)从下面两个条件中选一个,证明:f (x )只有一个零点①12<a ≤e 22,b >2a ;②0<a <12,b ≤2a .25.已知函数f x =e x 1+a ln x .(1)当f x 有两个极值点时,求a 的取值范围;(2)若a ≥32,且函数f x 的零点为x 1,证明:导函数f x 存在极小值点,记为x 2,且x 1>x 2.26.函数f(x)=x-sin x-cos x.上的极值;(1)求函数f(x)在-π,π2(2)证明:F(x)=f(x)-ln x有两个零点.27.已知函数f(x)=e x-a sin x-1在区间0,π2内有唯一极值点x1.(1)求实数a的取值范围;(2)证明:f(x)在区间(0,π)内有唯一零点x2,且x2<2x1.28.已知函数f(x)=e x-ax和g(x)=ax-ln x有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.29.已知函数f x =x3+bx 2x.(1)当b=0时,求f x 的单调区间;(2)设函数g x =2x f x +c在x=2处的切线与x轴平行,若g x 有一个绝对值不大于4的零点,证明:g x 所有零点的绝对值都不大于4.30.已知函数f(x)=ae2x-x2,a∈R.(1)设f(x)的导函数为g(x),讨论g(x)零点的个数;(2)设f(x)的极值点为x1,x2x1<x2,若ee-2x1+x2≥λx1x2恒成立,求实数λ的取值范围.31.已知函数f x =e mx +nx m ≠0 .当m =1时,曲线y =f x 在点0,f 0 处的切线与直线x -y +1=0垂直.(1)若f x 的最小值是1,求m 的值;(2)若A x 1,f x 1 ,B x 2f x 2 x 1<x 2 是函数f x 图象上任意两点,设直线AB 的斜率为k .证明:方程f x =k 在x 1,x 2 上有唯一实数根.32.已知函数f x =xe nx -nx (n ∈N *且n ≥2)的图象与x 轴交于P ,Q 两点,且点P 在点Q 的左侧.(1)求点P 处的切线方程y =g x ,并证明:x ≥0时,f x ≥g x .(2)若关于x 的方程f x =t (t 为实数)有两个正实根x 1,x 2,证明:x 1-x 2 <2t n ln n +ln n n.33.已知函数f x =xe x -a sin x a ∈R .(1)若∀x ∈0,π,f x ≥0,求a 的取值范围;(2)当a ≥-59时,试讨论f x 在0,2π 内零点的个数,并说明理由.34.已知函数f(x)=a ln x.(1)记函数g(x)=x2-(a+2)x+f(x),当a>2时,讨论函数g(x)的单调性;(2)设h(x)=f(x)-x2,若h(x)存在两个不同的零点x1,x2,证明:2e<a<x12 +x22(e为自然对数的底数).35.已知函数f x =3x -1 e x -32ax 2.其中实数a ∈0,+∞ .(1)讨论函数f x 的单调性;(2)求证:关于x 的方程f x +32=32ax 2-x 3有唯一实数解.。

高中数学人教A版必修1第三章3、1、1方程的根与函数的零点的近似值 - 教案

高中数学人教A版必修1第三章3、1、1方程的根与函数的零点的近似值 - 教案

3.1.1 方程的根与函数的零点第二课一、教学目标:① 进一步巩固函数零点的概念,会求基本初等函数的零点;② 掌握方程的根与函数零点之间的等价关系,体会函数方程的转化思想; ③ 对函数零点,零点所在的区间及零点个数各题型有所思有所为。

二、课前预习:(务必课前总结)1、我们学习过的那些函数?它们的图像特点?①一次函数()0y kx b k =+≠:0k >时,是一条递增的直线;0k <时,是一条递减的直线。

b 是图像与y 轴交点的纵坐标,如0b =时,直线过原点。

②二次函数 ③指数函数 ④对数函数 ⑤幂函数2、默写函数零点定理与函数零点存在性定理三、教学过程探讨1:求函数()324f x x x =--+的零点。

探讨2:解决下列两个问题,并试图发现问题中的共性①确定正整数k 的值,使得函数()324f x x x =--+在区间(),1k k +上存在零点。

②试画出函数3y x =与24y x =-+的图像,并分析两个图像交点情况。

你所发现的共性:找出一个数0x 作为函数()324f x x x =--+零点的近似值。

(精度为0.1) 课堂练习:判断下列函数的零点个数①()22f x x x =-+②()lg 2f x x x =-+ ③()2log 2xf x x =+④()()2ln 23f x x x =-- ⑤()32221f x x x x =--+ 课后练习: 1.函数6)(2-+=x x x f 的零点为2.函数2)(+=ax x f 在区间)2,1(-上有零点,则a 的取值范围是3.函数11ln )(--=x x x f 的零点的个数是 ( )A .0个B .1个C .2个D .3个4.设函数3y x =与22xy -=的图象的交点为00()x y ,,则0x 所在的区间是 ( )A .(01),B .(12),C .(23),D .(34),5.根据表格中的数据,可以判定方程20x e x --=的一个零点所在的区间为))(1,(N k k k ∈+,则k 的值为 ;6、函数()11f x x =-的图像与函数()31y x =-的图像所有交点的横坐标之和等于 ( ) A. 2 B.4 C.6 D8.7、已知函数()21log 2xf x x ⎛⎫=- ⎪⎝⎭,且实数0a b c <<<满足()()()0f a f b f c <,若实数0x 是函数()y f x =的一个零点,那么下列不等式中不可能成立的是 ( ) A. 0x a < B. 0x c < C. 0x b > D. 0x c >8、确定正整数k 的值,使得函数()237xf x x =+-在区间(),1k k +上存在零点,并确定零点的一个近似值。

《方程的根与函数零点》教案

《方程的根与函数零点》教案

《方程的根与函数零点》教案高一数学组:熊习锋一、教材分析“方程的根与函数的零点”中主要教学内容是函数零点的定义和零点存在性定理。

函数零点的定义将数与形,函数与方程有机地联系在一起,它的发现及应用过程是培养学生化归与转化思想、数形结合思想、函数与方程思想的优质载体。

而零点存在性定理的得出也要通过对这三种数学思想的应用来加以实现,所以本节课的学习,对于提高学生的直观感知、观察发现、归纳类比、抽象概括等数学思维能力有着重要的意义。

方程的根与函数零点的研究方法,符合从特殊到一般的认识规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了类似的方法,同时还使用了“数形结合思想”及“转化与化归思想”。

方程的根与函数零点的关系研究,不仅为“用二分法求方程的近似解”的学习做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要思想方法——“函数与方程思想”的理论基础.可见,函数零点概念在中学数学中具有核心地位。

二、学情分析学生之前已经学习了函数的图象和性质,理解了函数图象与性质之间的关系,已经能初步用数形结合思想解决简单问题,这为理解函数的零点提供了直观认识,并为判定零点是否存在和求出零点提供了支持;学生有一定的方程知识的基础,知道从特殊到一般的归纳方法,这为深入理解函数的零点及方程的根与函数零点的联系提供了依据。

但学生对于函数与方程之间的联系缺乏一定的认识,对于综合应用函数图象与性质尚不够熟练,这些都给学生在联系函数与方程、发现函数零点的存在性时造成了一定的难度,又加上这种函数零点存在性的判定方法表述较为抽象难以概括。

因此,教学中尽可能提供学生动手实践的机会,利用信息技术工具,让学生从亲身体验中掌握知识与方法,充分利用学生熟悉的二次函数图象和一元二次方程,通过直观感受发现并归纳出函数的零点概念;在函数零点存在性判定方法的教学时,应该为学生创设适当的问题情境,激发学生的思维,引导学生通过观察、计算、作图,思考,理解问题的本质。

专题20 利用导数研究零点问题(解析版)

专题20  利用导数研究零点问题(解析版)


【解析】 ①当 a 0 时, 3x2 1 0 时, x 3 ,所以此时不符合题意; 3
②当 a 0 时, f '(x) 3ax2 6x 3x(ax 2) ,当 f '(x) 0 时,解得 x 2 或 x 0 ,则 f (x) 在 (,0) 上单 a
调递增,因为 f (0) 1 , f (1) a 2 0 ,则存在一零点在 (,0) 上,所以此时不符合题意;
lnlnx
x,
0 2
x 1, x2 ,1
x
2, 分情况讨论:
ln x x2 6 , x 2.
当 0 x 1 时, f (x) g(x) 1有 1 个解 x 1 ,此时有一个根. e
当1 x 2 时, f (x) g(x) 单调递增,且 f (1) g(1) 1, f (2) g(2) 2 ln 2 1,此时有一个
∈ ,f(x)>0 恒成立,即对 x∈ ,a>2- 恒成立.
令 l(x)=2- ,x∈ ,则 l'(x)=-
=
.
再令 m(x)=2ln x+ -2,x∈ ,m'(x)=- + = <0,m(x)在 上为减函数,于是 m(x)>m =2-2ln 2>0,
从而 l'(x)>0,于是 l(x)在 上为增函数,l(x)<l =2-4ln 2,
咨询电话 18100655369 陈老师 18118913693 张老师 18112398139 叶老师
中高考数理化思维训练 尖子生培优 艺考生文化课辅导 三步作文法 全国名校名师 一对一 精品小班授课
=-e-x0,y0=k(x0-2)=e-x0=-e-x0(x0-2),解得 x0=1,k=-1e;因此,当 x<2 时,f(x)=

人教B版高中数学必修一教案-2.4.1 函数的零点

人教B版高中数学必修一教案-2.4.1 函数的零点

《函数的零点》教学设计一、教学内容分析本课题是普通高中课程标准实验教科书数学1(必修)人教B版第二章《函数》,第4节函数与方程的第一课时,本节课的主要内容是函数零点的定义,函数零点存在性的判定方法.其目的是使学生体会函数与方程之间的联系.为下一节《二分法》做准备.利用函数模型解决问题,作为一条主线贯穿了全章的始终,而方程的根与函数的零点的关系、用二分法求方程的近似解,是在建立和运用函数模型的大背景下展开的.本章主要渗透了“函数与方程”和“数形结合”的数学思想.二、教学目标分析知识与技能目标:理解函数零点的意义,了解函数的零点与方程根的关系,会求简单函数的零点,能判断二次函数零点的存在性,并能对零点存在定理进行简单的应用.过程与方法目标:引导学生学会用转化与数形结合思想方法研究问题,提高数学知识的综合应用能力.;体验函数零点存在定理的形成过程,初步感受零点存在定理在解题中的应用.情感态度与价值观目标:让学生初步体会事物间相互转化以及特殊到一般的辨证思想.三、教学基本条件分析1.学生条件:学生有较好的数学基础和数学理解能力,喜欢思考,乐于探究.2.前期内容准备:前面学习一次函数和二次函数时,教师对函数和方程的联系已经做了适当的渗透.3.教学媒体条件:支持幻灯片展示.四、教学重难点分析教学重点:函数零点的定义的理解.教学难点:正确理解函数零点的判定方法的不可逆性;函数与方程的联系及应用.五、教学过程设计(一)开门见山,揭示课题前几节课我们一起整理了一次函数和二次函数的图象与性质,初步学习了研究函数的一般方法,今天我们通过研究函数的另一个重要知识,来进一步感受函数与方程的联系.问题引入:已知二次函数y=x 2-x-6,试问x取什么值时,y=0?方程有几个根,y=f(x)的图象与x轴就有几个交点;方程的根就是图象与x轴交点的横坐标.-2、3在方程中称为实数根,对函数来说称为零点.(板书课题)函数的零点定义:如果函数在实数x0处的值等于零,即f(x0)=0,则x0叫做这个函数的零点.注意:零点不是点.设计意图:因为对这个定义的直观理解不难,所以直接给出,意为锻炼学生的数学阅读理解的能力,同时教师对这个概念暂时不加分析的处理为后面的设计作铺垫.由此得出:函数与方程的关系.(二)设问疑问,引导探究 例1:求出下列函数的零点,并作出函数的图象.(1)y =x 2-2x +1 (2)y =x 2+x +1解:过程略.设计意图:加深对概念的理解.让学生知道二重(二阶)零点的含义;不是所有的函数都有零点. (幻灯片展示)上面我们给出的三个函数都是一元二次函数,那么你能总结出对于一般的一元二次函数y=ax 2+bx +c (a ≠0),它的零点的情况与什么有关?预设答案:与方程的判别式有关.当△>0时,一元二次方程有两个不等的实数根x 1,x 2,相应的二次函数的图象与x 轴有两个交点 (x 1,0),(x 2,0),函数有两个零点x 1,x 2;【变号零点】当△=0时,一元二次方程有两个相等的实数根x 1= x 2,相应的二次函数的图象与x 轴有一个交点 (x 1,0),函数有一个二重零点x 1;【二阶零点】当△<0时,一元二次方程没有实数根,相应的二次函数的图象与x 轴没有交点,函数没有零点. 设计意图:让学生在总结二次函数零点情况的过程中,理清方程的根、函数图象与x 轴交点的横坐标和函数的零点之间的逻辑关系.通过图象看到函数零点的性质:①图象通过零点穿过x 轴时,函数值变号.——变号零点;②零点把x 轴分成的每个区间上函数值保持同号.研究函数的零点也就是研究相应方程的实数根,也就是研究函数的图象与x 轴的交点情况.(三)利用方程,研究函数例2.求函数y =x 3-2x 2-x +2的零点并画出函数的图象(简图).问题1:函数零点把x 轴分成了几部分?请考察在函数每个区间内函数值的符号.问题2:请仔细观察表格,你能发现哪些规律?(让学生观察发现)预设答案:零点两侧符号相反.问题3:是所有函数零点两侧函数值的符号都相反吗?预设答案:不是,譬如函数y =x 2-2x +1.只有变号零点两侧符号相反.设计意图:学生应用函数与方程的联系,通过方程研究函数的性质,做出函数的简图.同时,研究的过程也是在为后面发现零点存在定理作方法上的铺垫.(四) 探究发现“零点存在定理”1.探究发现例3:已知函数f (x )=x +b 在(-1,1)上存在零点,求b 的取值范围.解:法一:求零点;(由教师引导)法二:由题意:f (-1)·f (1)<0,解得b ∈(-1,1).通过以上分析,请同学们思考,函数在某区间(a ,b )上是否存在零点,与该区间的端点函数值的符号情况是否有某种关系?探究:若函数y =f (x ) 在区间(a , b )内满足f (a )·f (b )<0,则f (x ) 在区间(a , b )内是否存在零点?下面我们一起探究函数的零点存在的充分条件.学生先独立完成,再通过小组讨论,最后全班交流.探究①:观察图象,归纳函数y=f(x)在区间端点的函数值f(a),f(b)的正负情况.预设答案:f (a)·f (b)<0或f (a)·f (b)>0.探究②:函数y=f (x)具备了什么条件,就可确定函数在区间(a,b)上存在零点呢?预设答案:f (a)·f (b)<0.探究③:具备上述特征的函数y=f(x)是否在区间(a,b)上一定存在零点?预设答案:不是.反例:y=1x或画图验证.所以函数的图象在[a,b]上必须是连续不断的.探究④:如果连续函数f(x)满足f (a)·f (b)<0,则在区间(a,b)上存在唯一的零点吗?预设答案:不对.反例画图验证.应表述为“至少存在一个”.师生归纳总结:函数y=f(x)在(a,b)上存在零点的条件.预设答案:①函数图象连续不断;②区间端点函数值满足f (a)·f (b)<0.2.函数存在零点的条件如果函数y=f (x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f (a)·f (b)<0,那么,函数y=f (x)在区间(a,b)内至少存在一个零点,即存在c∈(a,b),使得f (c)=0.(五)总结升华问题:通过本节课的学习,你在知识、数学思想方法等方面有哪些收获?设计意图:通过小结,理清思路,归纳总结,更好的掌握知识技能,理解数学思想方法,提高解决问题的经验.学生活动,教师进行简要的概括和升华.(六)作业课本P72练习A 1、2;P75习题2-4A 3、4、5、6.六、板书设计(略)七、课后反思方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题.首先要让学生认识到学习函数的零点的必要性其次教学要把握内容结构,突出思想方法像这些中学新增内容的教学,教学就要取得成功的确不易,需要一个不断实践以及实践后的反思的过程,在实践与反思的过程中,不仅要妥善解决上述问题,还要不断地发现和解决新的问题,这样,教学效果才会逐步得到改善..。

高考数学科学复习创新方案:利用导数研究函数的零点问题

高考数学科学复习创新方案:利用导数研究函数的零点问题

利用导数研究函数的零点问题例1(2022·新高考Ⅰ卷改编)已知函数f(x)=e x-x,g(x)=x-ln x.(1)判断直线y=b与曲线y=f(x)和y=g(x)的交点分别有几个;(2)证明:曲线y=f(x)和y=g(x)有且只有一个公共点;(3)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.解(1)设S(x)=e x-x-b,S′(x)=e x-1,当x<0时,S′(x)<0,当x>0时,S′(x)>0,故S(x)在(-∞,0)上为减函数,在(0,+∞)上为增函数,所以S(x)min=S(0)=1-b.当b<1时,S(x)min=1-b>0,S(x)无零点;当b=1时,S(x)min=1-b=0,S(x)有1个零点;当b>1时,S(x)min=1-b<0,而S(-b)=e-b>0,S(b)=e b-2b,设u(b)=e b-2b,则当b>1时,u′(b)=e b-2>0,故u(b)在(1,+∞)上为增函数,故u(b)>u(1)=e-2>0,故S(b)>0,故S(x)=e x-x-b有两个不同的零点.,设T(x)=x-ln x-b,T′(x)=x-1x当0<x<1时,T′(x)<0,当x>1时,T′(x)>0,故T(x)在(0,1)上为减函数,在(1,+∞)上为增函数,所以T(x)min=T(1)=1-b.当b<1时,T(x)min=1-b>0,T(x)无零点;当b=1时,T(x)min=1-b=0,T(x)有1个零点;当b>1时,T(x)min=1-b<0,而T(e-b)=e-b>0,T(e b)=e b-2b>0,所以T(x)=x-ln x-b有两个不同的零点.综上可知,当b<1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是0;当b=1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是1;当b>1时,直线y=b与曲线y=f(x)和y=g(x)的交点个数都是2.(2)证明:由f(x)=g(x)得e x-x=x-ln x,即e x+ln x-2x=0,设h(x)=e x+ln x-2x,其中x>0,故h′(x)=e x+1x-2,设s(x)=e x-x-1,则当x>0时,s′(x)=e x-1>0,故s(x)在(0,+∞)上为增函数,故s(x)>s(0)=0,即e x>x+1,所以h′(x)>x+1x-1≥2-1>0,所以h(x)在(0,+∞)上为增函数,而h(1)=e-2>0,e1e3-3-2e3<e-3-2e3<0,故h(x)在(0,+∞)上有且只有一个零点x0,且1e3<x0<1,当0<x<x0时,h(x)<0,即e x-x<x-ln x,即f(x)<g(x),当x>x0时,h(x)>0,即e x-x>x-ln x,即f(x)>g(x),所以曲线y=f(x)和y=g(x)有且只有一个公共点.(3)证明:由(2)知,若存在直线y=b与曲线y=f(x),y=g(x)有三个不同的交点,则b=f(x0)=g(x0)>1,此时e x-x=b有两个不同的解x1,x0(x1<0<x0),x-ln x=b有两个不同的解x0,x2(0<x0<1<x2),故e x1-x1=b,e x0-x0=b,x2-ln x2-b=0,x0-ln x0-b=0,所以x2-b=ln x2,即e x2-b=x2,即e x2-b-(x2-b)-b=0,故x2-b为方程e x-x=b的解,同理x0-b也为方程e x-x=b的解,所以{x1,x0}={x0-b,x2-b},而b>10=x2-b,1=x0-b,即x1+x2=2x0.利用导数确定函数零点或方程根的个数的常用方法(1)构建函数g(x)(需g′(x)易求,g′(x)=0可解),转化为确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义域区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)利用函数零点存在定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.(2024·衡水模拟)已知函数f(x)=(x-2)e x.(1)求函数f(x)的单调区间和极值;(2)若g(x)=f(x)-a,讨论函数g(x)的零点个数.解(1)f(x)的定义域为R,f′(x)=e x+(x-2)e x=(x-1)e x,又e x>0恒成立,∴当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0,∴函数f(x)的单调递减区间为(-∞,1),单调递增区间为(1,+∞).函数f(x)的极小值为f(1)=-e,无极大值.(2)当x<2时,f(x)<0,当x>2时,f(x)>0,结合(1)中结论作出函数图象如图,∴g(x)的零点个数等价于f(x)的图象与直线y=a的交点个数.当a≥0时,f(x)的图象与直线y=a有且仅有一个交点;当-e<a<0时,f(x)的图象与直线y=a有两个不同的交点;当a=-e时,f(x)的图象与直线y=a有且仅有一个交点;当a<-e时,f(x)的图象与直线y=a无交点.综上所述,当a∈[0,+∞)∪{-e}时,g(x)有唯一零点;当a∈(-e,0)时,g(x)有两个不同的零点;当a∈(-∞,-e)时,g(x)无零点.例2(2022·全国乙卷)已知函数f(x)=ax-1x-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.解(1)当a=0时,f(x)=-1x -ln x(x>0),则f′(x)=1x2-1x=1-xx2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=-1.(2)由f(x)=ax-1x -(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).当a=0时,由(1)可知,f(x)不存在零点;当a<0时,f′(x)=x-1)x2,若x∈(0,1),f′(x)>0,f(x)单调递增,若x∈(1,+∞),f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;当a>0时,f′(x)=x-1)x2,若a=1,则f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点,若a>1,则f(x)(1,+∞)为f(1)=a-1>0,所以f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知,f(x)a>1满足条件.若0<a<1,则f(x)在(0,1)因为f(1)=a-1<0,所以f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知,f(x)0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数图象与x轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.(2024·南阳一中月考)设函数f(x)=(x-2)ln(x-1)-ax,a∈R.(1)若f(x)在(2,+∞)上单调递增,求a的取值范围;(2)若f(x)有两个不同的零点,求a的取值范围.解(1)∵f′(x)=ln(x-1)+1-1x-1-a(x>1),令H(x)=ln(x-1)+1-1x-1-a(x>1),则H′(x)=1x-1+1(x-1)2>0,∴f′(x)在(1,+∞)上单调递增,∵f(x)在(2,+∞)上单调递增,∴f′(2)≥0,∴-a≥0⇒a≤0.∴a的取值范围是(-∞,0].(2)f(x)=0⇒a=(x-2)ln(x-1)x,令g(x)=(x-2)ln(x-1)x,故g′(x)=1x-1-2·xx-1-ln(x-1)x2=(x-1)-1x-1+2ln(x-1)x2,令h(x)=(x-1)-1x-1+2ln(x-1),∴h′(x)=1+1(x-1)2+2x-1>0,∴h(x)在(1,+∞)上单调递增,又h(2)=0,∴当1<x<2时,h(x)<0,即g′(x)<0,当x>2时,h(x)>0,即g′(x)>0,∴g(x)在(1,2)上单调递减,在(2,+∞)上单调递增,∴g(x)≥g(2)=0,又由当x→1时,x-2x→-1,ln(x-1)→-∞,则g(x)→+∞;当x→+∞时,x-2x→1,ln(x-1)→+∞,则g(x)→+∞,若f(x)有两个不同的零点,则需满足a>0.∴a的取值范围为(0,+∞).例3(2023·泰州模拟)已知函数f(x)=e x-ax2+bx-1,其中a,b为常数,e 为自然对数的底数,e=2.71828….(1)当a=0时,若函数f(x)≥0,求实数b的取值范围;(2)当b=2a时,若函数f(x)有两个极值点x1,x2,现有如下三个命题:①7x1+bx2>28;②2a(x1+x2)>3x1x2;③x1-1+x2-1>2.请从①②③中任选一个进行证明.解(1)当a=0时,f(x)=e x+bx-1,f′(x)=e x+b,当b≥0时,因为f(-1)b<0,所以此时不符合题意;当b<0时,当x∈(-∞,ln(-b))时,f′(x)<0,f(x)单调递减,当x ∈(ln (-b ),+∞)时,f ′(x )>0,f (x )单调递增,所以f (x )min =f (ln (-b ))=-b +b ln (-b )-1,要使f (x )≥0,只需f (x )min =-b +b ln (-b )-1≥0,令g (x )=x -x ln x -1,则g ′(x )=-ln x ,当x ∈(0,1)时,g ′(x )>0,g (x )单调递增,当x ∈(1,+∞)时,g ′(x )<0,g (x )单调递减,所以g (x )≤g (1)=0,则由g (-b )=-b +b ln (-b )-1≥0,得-b =1,所以b =-1,故实数b 的取值范围为{-1}.(2)证明:当b =2a 时,f (x )=e x -ax 2+2ax -1,f ′(x )=e x -2ax +2a ,令φ(x )=f ′(x )=e x -2ax +2a ,则φ′(x )=e x -2a ,因为函数f (x )有两个极值点x 1,x 2,所以φ(x )=f ′(x )=e x -2ax +2a 有两个零点,若a ≤0,则φ′(x )>0,φ(x )单调递增,不可能有两个零点,所以a >0,令φ′(x )=e x -2a =0,得x =ln (2a ),当x ∈(-∞,ln (2a ))时,φ′(x )<0,φ(x )单调递减;当x ∈(ln (2a ),+∞)时,φ′(x )>0,φ(x )单调递增,所以φ(x )min =φ(ln (2a ))=4a -2a ln (2a ),因为φ(x )有两个零点,所以4a -2a ln (2a )<0,则a >12e 2.设x 1<x 2,因为φ(1)=e >0,φ(2)=e 2-2a <0,所以1<x 1<2<x 2,因为φ(x 1)=φ(x 2)=0,所以e x 1=2ax 1-2a ,e x 2=2ax 2-2a ,则e x 2e x 1=x 2-1x 1-1,取对数得x 2-x 1=ln (x 2-1)-ln (x 1-1),令x 1-1=t 1,x 2-1=t 2,则t 2-t 1=ln t 2-ln t 1,即t 2-ln t 2=t 1-ln t 1(0<t 1<1<t 2).若选择命题①:令u (t )=t -ln t ,则u (t 1)=u (t 2),u ′(t )=1-1t,当0<t <1时,u ′(t )<0,当t >1时,u ′(t )>0,所以u (t )=t -ln t 在(0,1)上单调递减,在(1,+∞)上单调递增,令v (t )=u (t )-u (2-t )=2t -ln t +ln (2-t )-2(0<t <2),则v ′(t )=2(t -1)2t (t -2)≤0,v (t )在(0,2)上单调递减,因为0<t 1<1,所以v (t 1)>v (1)=0,即u (t 1)-u (2-t 1)>0,亦即u (t 2)=u (t 1)>u (2-t 1),因为t 2>1,2-t 1>1,u (t )=t -ln t 在(1,+∞)上单调递增,所以t 2>2-t 1,则x 2-1>2-(x 1-1),整理得x 1+x 2>4,所以7x 1+bx 2=7x 1+2ax 2>7x 1+7x 2>28,故①成立,得证.若选择命题②:令u (t )=t -ln t ,则u (t 1)=u (t 2),u ′(t )=1-1t,当0<t <1时,u ′(t )<0,当t >1时,u ′(t )>0,所以u (t )=t -ln t 在(0,1)上单调递减,在(1,+∞)上单调递增,令v (t )=u (t )-t -1t -2ln t ,则v ′(t )=(t -1)2t2≥0,v (t )在(0,+∞)上单调递增,又v (1)=0,所以当t ∈(0,1)时,v (t )=u (t )-v (1)=0,即u (t )<因为0<t 1<1,所以u (t 2)=u (t 1)<因为t 2>1,1t 1>1,u (t )=t -ln t 在(1,+∞)上单调递增,所以t 2<1t 1,所以x 2-1<1x 1-1,即x 1x 2<x 1+x 2,所以x1x2<x1+x2<2312e2(x1+x2)<23a(x1+x2),所以2a(x1+x2)>3x1x2,故②成立,得证.若选择命题③:因为x1-1=t1,x2-1=t2,则t2-t1=ln t2-ln t1=2ln t2t1,因为0<t1<1<t2,所以t2t1>1.令F(t)=ln t-2(t-1)t+1,则当t>1时,F′(t)=(t-1)2t(t+1)2>0,所以F(t)=ln t-2(t-1)t+1在(1,+∞)上单调递增,则F(t)=ln t-2(t-1)t+1>F(1)=0,所以ln t>2(t-1)t+1,则t2-t1=2ln t2t1>4·t2-t1t2+t1,两边约去t2-t1后,化简整理得t1+t2>2,即x1-1+x2-1>2,故③成立,得证.(1)研究函数零点问题,要通过数的计算(函数性质、特殊点的函数值等)和形的辅助,得出函数零点的可能情况.(2)函数可变零点(函数中含有参数)性质的研究,要抓住函数在不同零点处函数值均为零,建立不同零点之间的关系,把多元问题转化为一元问题,再使用一元函数的方法进行研究.已知函数f(x)=a e-x+ln x-1(a∈R).(1)当a≤e时,讨论函数f(x)的单调性;(2)若函数f(x)恰有两个极值点x1,x2(x1<x2),且x1+x2≤2ln3,求x2x1的最大值.解(1)函数的定义域为(0,+∞),f ′(x )=-a e -x+1x =e x -ax x e x ,∵a ≤e ,∴e x -ax ≥e x -e x .设g (x )=e x -e x ,则g ′(x )=e x -e ,当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增,∴g (x )≥g (1)=0,∴f ′(x )≥0,f (x )在(0,+∞)上单调递增.∴当a ≤e 时,函数f (x )在(0,+∞)上单调递增.(2)依题意,f ′(x 1)=f ′(x 2)=0x 1=ax 1,x 2=ax 2,两式相除得,e x 2-x 1=x 2x 1,设x 2x 1=t ,则t >1,x 2=tx 1,e (t -1)x 1=t ,∴x 1=ln t t -1,x 2=t ln t t -1,∴x 1+x 2=(t +1)ln tt -1.设h (t )=(t +1)ln t t -1(t >1),则h ′(t )=t -1t -2ln t (t -1)2,设φ(t )=t -1t-2ln t (t >1),则φ′(t )=1+1t 2-2t =(t -1)2t 2>0,∴φ(t )在(1,+∞)上单调递增,则φ(t )>1-11-2ln 1=0,∴h ′(t )>0,则h (t )在(1,+∞)上单调递增,又x 1+x 2≤2ln 3,即h (t )≤2ln 3,又h (3)=2ln 3,∴t ∈(1,3],即x 2x 1的最大值为3.课时作业一、单项选择题1.(2023·全国乙卷)函数f (x )=x 3+ax +2存在3个零点,则a 的取值范围是()A .(-∞,-2)B .(-∞,-3)C .(-4,-1)D .(-3,0)答案B解析f (x )=x 3+ax +2,则f ′(x )=3x 2+a ,若f (x )存在3个零点,则f (x )存在极大值和极小值,则a <0.令f ′(x )=3x 2+a =0,解得x =--a3或x =-a 3,且当x ∈∞∪时,f ′(x )>0,当x ∈--a 3,f ′(x )<0,故f (x )的极大值为f,若f (x )存在3个零点,则,即a -a3+2>0,a -a3+2<0,解得a <-3.故选B.2.(2023·济宁二模)已知函数f (x ),x ≤0,ln x ,x >0,若函数g (x )=f (x )-f (-x )有5个零点,则实数a 的取值范围是()A .(-e ,0)-1e ,C .(-∞,-e)∞答案C解析y =f (-x )与y =f (x )的图象关于y 轴对称,且f (0)=0,要想g (x )=f (x )-f (-x )有5个零点,则当x >0时,-x =a ln x 要有2个根,结合对称性可知,x<0时也有2个零点,故满足有5个零点.当x =1时,-1=0,不符合题意;当x ≠1时,a =-x ln x ,令h (x )=-xln x ,定义域为(0,1)∪(1,+∞),h ′(x )=1-ln x (ln x )2,令h ′(x )>0得0<x <1,1<x <e ,令h ′(x )<0得x >e ,故h (x )=-xln x在(0,1),(1,e)上单调递增,在(e ,+∞)上单调递减,且当x ∈(0,1)时,h (x )=-x ln x>0恒成立,h (x )=-xln x在x =e 处取得极大值,其中h (e)=-e ,故a ∈(-∞,-e),此时直线y =a 与h (x )=-xln x的图象有两个交点.故选C.3.(2023·银川三模)已知函数f (x )=mx -ln x +m 在区间(e -1,e)上有唯一零点,则实数m 的取值范围为()A.-e e 2+1,e 2+1-1e +1,-ee +1,1,e 2+答案B解析函数f (x )=mx -ln x +m ,令f (x )=0,则ln x ,即m =x ln x x +1,令h (x )=x ln x x +1,则h ′(x )=x +1+ln x (x +1)2,令k (x )=x +1+ln x ,则k ′(x )=1+1x >0,所以函数y =k (x )在区间(e -1,e)上单调递增,故k (x )>k (e -1)=e -1>0,所以h ′(x )>0,故函数y =h (x )在区间(e -1,e)上单调递增,故h (e -1)<h (x )<h (e),即-1e +1<h (x )<e e +1,所以-1e +1<m <ee +1,故实数m -1e +1,故选B.4.(2023·邢台二模)已知函数f (x )=x -ln x +m (m ∈R ),若f (x )有两个零点x 1,x 2(x 1<x 2),则下列关系式不正确的是()A .m <-1B .x 1+x 2≤2C .0<x 1<1D .e x 1-x 2=x 1x 2答案B解析f ′(x )=1-1x =x -1x,令f ′(x )=0,解得x =1,故函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,如图,故f (x )min =f (1)=1+m <0,即m <-1,并且0<x 1<1,故A ,C 正确;由于x 1,x 2为f (x )的零点,故有x 1-ln x 1+m =0①,x 2-ln x 2+m =0②,两式相减得,x 1-x 2=lnx 1x 2,即e x 1-x 2=x 1x 2,故D 正确;由①②可知,m =ln x 1-x 1=ln x 2-x 2,令g (x )=ln x -x ,则g (x 1)=g (x 2),g ′(x )=1x -1=1-x x ,所以在(0,1)上,g ′(x )>0,g (x )单调递增,在(1,+∞)上,g ′(x )<0,g (x )单调递减,令h (x )=g (x )-g (2-x )=ln x -x -ln (2-x )+2-x =ln x -ln (2-x )-2x +2,则h ′(x )=1x+12-x -2=2x 2-4x +2x (2-x )=2(x -1)2x (2-x ),所以当0<x <1时,h ′(x )>0,所以h (x )在(0,1)上单调递增,所以h (x )<h (1)=0,所以g (x 1)<g (2-x 1),又因为g (x )在(1,+∞)上单调递减,且g (x 2)=g (x 1),所以x 2>2-x 1,即x 1+x 2>2,故B 不正确.故选B.二、多项选择题5.(2022·新高考Ⅰ卷)已知函数f (x )=x 3-x +1,则()A .f (x )有两个极值点B .f (x )有三个零点C .点(0,1)是曲线y =f (x )的对称中心D .直线y =2x 是曲线y =f (x )的切线答案AC解析因为f (x )=x 3-x +1,所以f ′(x )=3x 2-1,令f ′(x )=3x 2-1=0,得x=±33.由f ′(x )=3x 2-1>0,得x <-33或x >33;由f ′(x )=3x 2-1<0,得-33<x <33.所以f (x )=x 3-x +1∞在-33,f (x )有两个极值点,故A 正确;因为f (x )的极小值-33+1=1-239>0,f (-2)=(-2)3-(-2)+1=-5<0,所以函数f (x )在R 上有且只有一个零点,故B 错误;因为函数g (x )=x 3-x 的图象向上平移一个单位长度得函数f (x )=x 3-x +1的图象,函数g (x )=x 3-x 的图象关于原点(0,0)中心对称,所以点(0,1)是曲线f (x )=x 3-x +1的对称中心,故C 正确;假设直线y =2x 是曲线y =f (x )的切线,切点为(x 0,y 0),则f ′(x 0)=3x 20-1=2,解得x 0=±1.若x 0=1,则切点坐标为(1,1),但点(1,1)不在直线y =2x 上,若x 0=-1,则切点坐标为(-1,1),但点(-1,1)不在直线y =2x 上,所以假设不成立,故D 错误.故选AC.6.(2023·秦皇岛二模)已知函数f (x )=ln x -ax 有两个零点x 1,x 2,且x 1<x 2,则下列说法正确的是()A .aB .y =f (x )在(0,e)上单调递增C .x 1+x 2>6D .若a x 2-x 1<2-aa答案ABD解析由f (x )=ln x -ax ,可得f ′(x )=1x-a (x >0),当a ≤0时,f ′(x )>0,∴f (x )在x ∈(0,+∞)上单调递增,与题意不符;当a >0时,令f ′(x )=1x -a =0,解得x =1a ,∴当x f ′(x )>0,f (x )单调递增,当x f ′(x )<0,f (x )单调递减,∴当x =1a 时,f (x )取得极大值,又函数f (x )=ln x -ax 有两个零点x 1,x 2(x 1<x 2),∴ln 1a -1>0,可得0<a <1e .综上可得,0<a <1e ,故A 正确;当a →1e时,x 1+x 2→2e<6,故C 错误;∵当x f (x )单调递增,a ∴(0,e)B 正确;∵f (x )a 1,x 1,2a ,x 2f (1)=-a <0=f (x 1),∴x 1>1.∵ln 2a -2<ln e 2-2=0=f (x 2),∴x 2<2a ,∴x 2-x 1<2a -1=2-a a ,故D 正确.故选ABD.7.(2024·福建省名校联盟模拟)机械制图中经常用到渐开线函数inv x =tan x -x ,其中x 的单位为弧度,则下列说法正确的是()A .x ·inv x 是偶函数B .inv x -π2-k π,π2+k 2k +1个零点(k ∈N )C .inv x -π2-k π,π2+k 4k +1个极值点(k ∈N )D .当-π2<x <0时,inv x <x -sin x答案ABD解析函数inv x =tan x -x ∈R|x ≠n π+π2,n ∈显然y =x 和inv x 均为奇函数,因此x ·inv x 是偶函数,A 正确;当x -π2,令h (x )=inv x ,h ′(x )=1cos 2x -1≥0,函数inv x -π2,x =0时,inv x =0,即函数inv x -π2,x -π2+k 1π,π2+k 1k 1∈Z 时,令x=t +k 1π,t -π2,则tan x -x =tan(t +k 1π)-(t +k 1π)=tan t -t -k 1π,令y =tan t -t ,t -π2,y =tan t -t -π2,R ,直线y =k 1π(k 1∈Z )与y =tan t -t ,t -π2唯一交点,因此函数inv x 在-π2+k 1π,π2+k 1k 1∈Z 上有唯一零点,所以inv x -π2-k π,π2+k2k +1个零点(k ∈N ),B 正确;由B 项知,函数inv x -π2+k 1π,π2+k 1k 1∈Z 上为增函数,因此inv x 不存在极值点,C 错误;令函数f (x )=inv x -x +sin x ,求导得f ′(x )=1cos 2x -2+cos x ,当-π2<x <0时,设u =cos x ∈(0,1),g (u )=1u2-2+u ,求导得g ′(u )=1-2u 3<0,函数g (u )在(0,1)上单调递减,g (u )>112-2+1=0,即f ′(x )>0,因此f (x )π2,f (x )<f (0)=0,即inv x <x -sin x ,D 正确.故选ABD.8.(2024·日照模拟)已知函数f (x )=x 2+x -1e x ,则()A .函数f (x )只有两个极值点B .若关于x 的方程f (x )=k 有且只有两个实根,则k 的取值范围为(-e ,0)C .方程f (f (x ))=-1共有4个实根D .若关于x 的不等式f (x )≥a (x +1)的解集内恰有两个正整数,则a 的取值范,12e答案ACD解析对f (x )求导得f ′(x )=-x 2-x -2e x =-(x +1)(x -2)ex,当x <-1或x >2时,f ′(x )<0,当-1<x <2时,f ′(x )>0,即f (x )在(-∞,-1),(2,+∞)上单调递减,在(-1,2)上单调递增,因此f (x )在x =-1处取得极小值f (-1)=-e ,在x =2处取得极大值f (2)=5e 2,A 正确;由上述分析可知,曲线y =f (x )及直线y=k 如图所示,由图可知,当-e<k≤0或k=5e2时,直线y=k与曲线y=f(x)有2个交点,所以若方程f(x)=k有且只有两个实根,则k的取值范围为(-e,0]∪5e2,B错误;由f(x)=0,得x2+x-1=0,解得x=-1±52,令f(x)=t且f(t)=-1,由图可知,f(t)=-1有两解分别为-1-52<t1<-1,t2=0,所以f(x)=t1或f(x)=t2,而1+5<2e,则-1-52>-e,则f(x)=t1有两解.又t2=0,由图可知f(x)=t2也有两解.综上,方程f(f(x))=-1共有4个实根,C正确;因为直线y=a(x+1)过定点(-1,0),且f(1)=1e ,f(2)=5e2,f(3)=11e3,记k1=f(1)-01-(-1)=12e,k2=f(2)-02-(-1)=53e2,k3=f(3)-03-(-1)=114e3,所以k3<a≤k1,D正确.故选ACD.三、填空题9.(2024·长沙模拟)已知函数f(x)=e x-2ax+a,若f(x)恰有两个零点,则实数a的取值范围是________.答案12e32,+∞解析函数f(x)=e x-2ax+a,定义域为R,显然x=12不是f(x)的零点,令f(x)=0,得a=e x2x-1,设g(x)=e x2x-1,则g′(x)=(2x-3)e x(2x-1)2,令g′(x)<0,解得x<32且x≠12,令g ′(x )>0,解得x >32,故g (x )∞递增.当x <12时,g (x )<0,当x >12时,g (x )>0,当x =32时,g (x )取得极小值=12e 32,作出函数g (x )的大致图象如图所示,结合图象可知,实数a 的取值范围是e 32,+10.(2023·福州三模)如果两个函数分别存在零点α,β,满足|α-β|<n ,则称两个函数互为“n 度零点函数”.若f (x )=ln (x -2)与g (x )=ax 2-ln x 互为“2度零点函数”,则实数a 的最大值为________.答案12e解析因为函数f (x )的零点为3,所以设函数g (x )的零点为x 0,则|x 0-3|<2,解得1<x 0<5.g (x 0)=ax 20-ln x 0=0,a =ln x 0x 20(1<x 0<5),令h (x )=ln xx 2(1<x <5),求导得h ′(x )=1-2ln xx3,令h ′(x )=0,得x =e ,所以当x ∈(1,e)时,h ′(x )>0,h (x )单调递增;当x ∈(e ,5)时,h ′(x )<0,h (x )单调递减,所以h (x )max =h (e)=12e .所以实数a 的最大值为12e.四、解答题11.(2023·广州模拟)已知函数f (x )=e x -1+e -x +1,g (x )=a (x 2-2x )(a <0).(1)求函数f (x )的单调区间;(2)讨论函数h (x )=f (x )-g (x )的零点个数.解(1)由f (x )=ex -1+e-x +1,可得f ′(x )=ex -1-e-x +1=e 2(x -1)-1ex -1,令f ′(x )=0,解得x =1,当x <1时,则x -1<0,可得f ′(x )<0,f (x )在(-∞,1)上单调递减;当x >1时,则x -1>0,可得f ′(x )>0,f (x )在(1,+∞)上单调递增.故函数f (x )的单调递减区间是(-∞,1),单调递增区间是(1,+∞).(2)由h(x)=0,得f(x)=g(x),因此函数h(x)的零点个数等价于函数f(x)与g(x)图象的交点个数.因为g(x)=a(x2-2x)(a<0),所以g(x)的单调递增区间是(-∞,1),单调递减区间是(1,+∞),所以当x=1时,g(x)取得最大值g(1)=-a.由(1)可知,当x=1时,f(x)取得最小值f(1)=2,当-a<2,即-2<a<0时,函数f(x)与g(x)的图象没有交点,即函数h(x)没有零点;当-a=2,即a=-2时,函数f(x)与g(x)的图象只有一个交点,即函数h(x)只有一个零点;当-a>2,即a<-2时,函数h(x)有两个零点,理由如下:因为h(x)=f(x)-g(x)=e x-1+e-x+1-a(x2-2x),所以h(1)=2+a<0,h(2)=e+e-1>0,由函数零点存在定理,知h(x)在(1,2)内有零点.又f(x)在(1,+∞)上单调递增,g(x)在(1,+∞)上单调递减,所以h(x)=f(x)-g(x)在(1,+∞)上单调递增,所以h(x)=f(x)-g(x)在(1,+∞)上只有一个零点.又因为f(2-x)=e(2-x)-1+e-(2-x)+1=e1-x+e x-1=f(x),所以f(x)的图象关于直线x=1对称,因为g(x)的图象关于直线x=1对称,所以f(x)与g(x)的图象都关于直线x=1对称,所以h(x)=f(x)-g(x)在(-∞,1)上也只有一个零点.所以当a<-2时,函数h(x)=f(x)-g(x)有两个零点.ax2-ln x.12.(2024·镇江模拟)已知函数f(x)=12(1)若a=1,求f(x)的极值;(2)若方程f(x)=1在区间[1,2]上有解,求实数a的取值范围.解(1)当a=1时,f(x)=12x2-ln x,f′(x)=x2-1x,令f′(x)=0,得x=1,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极小值为f(1)=12,无极大值.(2)因为f′(x)=ax-1x =ax2-1x,①若a≥1,当x∈[1,2]时,f′(x)≥0恒成立,所以f(x)在[1,2]上单调递增,要使方程f(x)=1在[1,2]1)≤1,2)≥1,1,-ln2≥1,得1+ln22≤a≤2,因为1+ln22<1,所以1≤a≤2.②若a≤14,当x∈[1,2]时,f′(x)≤0恒成立,所以f(x)在[1,2]上单调递减,此时f(x)≤f(1)=a2≤18,不符合题意.③若14<a<1,当1≤x<1a时,f′(x)<0,当1a<x≤2时,f′(x)>0,所以f(x)在12上单调递增,此时f(1)=a2<12,f(1)<12,要使方程f(x)=1在[1,2]上有解,则需f(2)=2a-ln2≥1,解得a≥1+ln22,所以1+ln22≤a<1.综上可知,实数a的取值范围为1+ln22,2.13.(2021·全国甲卷)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x>0),f′(x)=x(2-x ln2)2x(x>0).令f′(x)>0,得0<x<2ln2;令f′(x)<0,得x>2ln2,故函数f(x)(2)要使曲线y=f(x)与直线y=1有且仅有两个交点,即方程x aa x =1(x>0)有两个不同的解,故方程ln xx=ln aa有两个不同的解.设g(x)=ln xx(x>0),则g′(x)=1-ln xx2(x>0).令g′(x)=1-ln xx2=0,解得x=e.令g′(x)>0,则0<x<e,此时函数g(x)单调递增.令g′(x)<0,则x>e,此时函数g(x)单调递减.故g(x)max=g(e)=1e,且当x>e时,g(x)又g(1)=0,故要使方程ln xx =ln aa有两个不同的解,则0<ln aa<1e.即0<g(a)<g(e),所以a∈(1,e)∪(e,+∞).综上,a的取值范围为(1,e)∪(e,+∞).14.(2023·济南模拟)已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2(x1<x2),证明:x41x2>e3(e=2.71828…为自然对数的底数).解(1)g(x)=f(x)x =ln x-ax-1,g′(x)=1x-a,①当a≤0时,g′(x)>0,g(x)在(0,+∞)上单调递增;②当a>0时,令g′(x)=0,解得x=1a,当x g′(x)>0,g(x)单调递增,当x g′(x)<0,g(x)单调递减.综上,当a≤0时,g(x)在(0,+∞)上单调递增;当a>0时,g(x)(2)证明:由题意知,f′(x)=ln x-2ax,x1,x2是f′(x)=0的两根,即ln x1-2ax1=0,ln x2-2ax2=0,解得2a=ln x1-ln x2x1-x2,(*)要证x41x2>e3,即证4ln x1+ln x2>3,即证4·2ax1+2ax2>3,把(*)式代入得ln x1-ln x2x1-x2(4x1+x2)>3,所以应证ln x1x2<3(x1-x2)4x1+x2=4·x1x2+1令t=x1x2,0<t<1,即证h(t)=ln t-3(t-1)4t+1<0(0<t<1)成立,而h′(t)=1t -15(4t+1)2=16t2-7t+1t(4t+1)2>0,所以h(t)在(0,1)上单调递增,h(t)<ln1-3×(1-1)4×1+1=0,不等式得证.。

利用导数求解函数的零点和方程的根的策略

利用导数求解函数的零点和方程的根的策略

利用导数求解函数的零点活方程的根【例题精讲】已知函数21()e xax bx f x ++=. (Ⅰ)当1a b ==时,求函数()f x 的极值;(Ⅱ)若()11f =,且方程()1f x =在区间()0,1内有解,求实数a 的取值范围.解:(Ⅰ)当1a b ==时,21()e x x x f x ++=,则2()ex x x f x -'=, 解不等式()0f x '>,得01x <<,所以,函数()f x 在()0,1上单调递增;解不等式()0f x '<,得0x <或1x >,所以,函数()f x 在(),0-∞和()1,+∞上单调递减,因此,函数()f x 的极小值为(0)1f =,极大值为3(1)ef =; (Ⅱ)由(1)1f =得e 1b a =--,由()1f x =,得2e 1x ax bx =++,设()2e 1x g x ax bx =---,则()g x 在()0,1内有零点,设0x 为()g x 在()0,1内的一个零点, 由()()010g g ==知,()g x 在()00,x 和()0,1x 上不单调,设()()h x g x '=,则()h x 在()00,x 和()0,1x 上均存在零点,即()h x 在()0,1上至少有两个零点. ()()e 2,e 2x x g x ax b h x a ''=--=-. 当12a ≤时,()0h x '>,()h x 在()0,1上单调递增,()h x 不可能有两个及以上的零点; 当e 2a ≥时,()0h x '<,()h x 在()0,1上单调递减,()h x 不可能有两个及以上的零点; 当1e 22a <<时,令()0h x '=,得()()ln 20,1x a =∈,所以,()h x 在()()0,ln 2a 上单调递减,在()()ln 2,1a 上单调递增,()h x 在()0,1上存在极小值()()ln 2h a ,若()h x 有两个零点,则有()()()()ln 20,00,10h a h h <>>,()()()1e ln 232ln 21e 22h a a a a a ⎛⎫=-+-<< ⎪⎝⎭, 设()()3ln 1e 1e2m x x x x x =-+-<<,则()1ln 2m x x '=-,令()0m x '=,得x 当1x <<()0m x '>,函数()m x e x <时,()0m x '<,函数()m x 单调递减.所以,()max 1e<0m x m ==-,所以,()()ln 20h a <恒成立,由()()01e+2>0,h 1e 20h b a a b =-=-=-->,得e 21a -<<.【方法归纳】(1)通过最值(极值)判断零点个数的方法.借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点.对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点.①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.【变式练习1】已知函数()()22x x f x ae a e x =+--.(1)讨论() f x 的单调性;(2)若() f x 有两个零点,求a 的取值范围.【解析】(1) ()()()()2'221121x x x x f x ae a e ae e =++-=-+, ①当0a ≤时, ()'0f x <,()f x 在(),-∞+∞上单调递减, ②当0a >时,f x 在(,ln )a -∞-上单调递减, (ln ,)a -+∞上单调递增.(2)因为()f x 有两个零点,所以必有0a >,否则()f x 在R 上单调递减,至多一个零点,与题意不符.当0a >时, ()f x 在(,ln )a -∞-上单调递减, ()f x 在(ln ,)a -+∞上单调递增,又()f x 有两个零点,所以必有()ln 0f a -<,即()2112ln 0a a a a a ⎛⎫⋅+-⋅-< ⎪⎝⎭, 又因为0a >,可得22ln 0a a -+<.令()22ln g a a a =-+()0a >),则()1'20g a a=+>, 所以()g a 在()0,+∞上单调递增.因为()10g =,所以由22ln 0a a -+<可得01a <<.综上所述01a <<.【变式练习2】已知函数()ln a f x x a x =-+在[]1,e x ∈上有两个零点,则a 的取值范围是( ) A.e ,11e ⎡⎫-⎪⎢-⎣⎭ B.e ,11e ⎡⎫⎪⎢-⎣⎭ C.e ,11e ⎡⎤-⎢⎥-⎣⎦D.[)1,e - 【解析】∵[]221'(),1,e a x a f x x x x x+=+=∈. 当1a ≥-时,()'0f x ≥,()f x 在[]1,e 上单调递增,不合题意. 当e a ≤-时,()'0f x ≤,()f x 在[]1,e 上单调递减,也不合题意. 当e 1a -<<-时,则,[)1x a ∈-时,()'0f x <,()f x 在[1,)a -上单调递减, ,e (]x a ∈-时,()'0f x >,()f x 在(],e a -上单调递增, 又()10f =,所以()f x 在e []1,x ∈上有两个零点, 只需(e)10e a f a =-+≥即可,解得e 11ea ≤<--. 综上,a 的取值范围是e ,11e ⎡⎫-⎪⎢-⎣⎭.故选A.【变式练习3】已知函数217()(2)ln 422f x x x x x =++-+,则函数()f x 的所有零点为 .【解析】函数)(x f 的定义域为),0(+∞, 且()2ln 3f x x x x'=++-. 设()2ln 3g x x x x =++-,则()()222221122()1x x x x g x x x x x+-+-'=-+==()0x >. 当01x <<时,()0g x '<;当1x >时,()0g x '>,即函数()g x 在()0,1上单调递减,在()1,+∞上单调递增, 所以当0x >时,()()10g x g ≥=(当且仅当1=x 时取等号). 即当0x >时,()0f x '≥(当且仅当1=x 时取等号). 所以函数()f x 在),0(+∞单调递增,至多有一个零点.因为(1)0f唯一的零点.f=,1=x是函数)(xf x的所有零点只有1=x.综上,函数()【答案】1.。

第09讲 利用导数研究函数的零点问题及方程的根(学生版) 备战2025年高考数学一轮复习学案(新高考

第09讲 利用导数研究函数的零点问题及方程的根(学生版) 备战2025年高考数学一轮复习学案(新高考

第09讲利用导数研究函数的零点问题及方程的根(6类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较大,分值为15-17分【备考策略】1能用导数证明函数的单调性2能结合零点的定义及零点存在性定理解决零点问题3能结合方程的根的定义用导数解决方程的根的问题【命题预测】导数的综合应用是高考考查的重点内容,也是高考压轴题之一近几年高考命题的趋势,是稳中求变、变中求新、新中求活,纵观近几年的高考题,导数的综合应用题考查多个核心素养以及综合应用能力,有一定的难度,一般放在解答题的最后位置,对数学抽象、数学运算、逻辑推理等多个数学学科的核心素养都有较深入的考查,需综合复习利用导数研究函数零点的方法(1)通过最值(极值)判断零点个数的方法借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.利用导数研究函数方程的根的方法(1)通过最值(极值)判断零点个数(方程的根)的方法借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数(方程的根)或者通过零点个数(方程的根)求参数范围.(2)数形结合法求解零点(方程的根)对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点(方程的根)①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数(方程的根)寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.1.(2024·湖北武汉·模拟预测)已知函数()()21ln R 2f x x ax a =-Î.(1)当1a =时,求()f x 的最大值;(2)讨论函数()f x 在区间21,e éùëû上零点的个数.2.(2024·湖南长沙·三模)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()h x 零点的个数.3.(2024·河北保定·二模)已知函数()sin cos f x a x x x =+.(1)若0a =,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()π,πx Î-,试讨论()f x 的零点个数.1.(2024·山东·模拟预测)已知函数()1e 4xf x =-(1)求曲线()y f x =在点()()1,1f 处的切线l 在y 轴上的截距;(2)探究()f x 的零点个数.2.(2024·浙江·模拟预测)已知函数()()e sin 1xf x a x x =+--.(1)当12a =时,求()f x 的单调区间;(2)当1a =时,判断()f x 的零点个数.3.(2024·河南·模拟预测)已知函数()()20,e x ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.1.(2022·全国·高考真题)已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.2.(2022·全国·高考真题)已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 的取值范围.3.(2024·湖南邵阳·三模)已知函数()32113f x x x =-++.(1)求函数()f x 的单调递增区间;(2)若函数()()()g x f x k k =-ÎR 有且仅有三个零点,求k 的取值范围.4.(2024·广东茂名·一模)设函数()e sin xf x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.1.(2024·广东汕头·三模)已知函数2)()(e x f x x ax =-.(1)若曲线()y f x =在=1x -处的切线与y 轴垂直,求()y f x =的极值.(2)若()f x 在(0,)+¥只有一个零点,求a .2.(2024·福建泉州·模拟预测)已知函数()32,f x x ax a =-+ÎR .(1)若2x =-是函数()f x 的极值点,求a 的值,并求其单调区间;(2)若函数()f x 在1,33éùêúëû上仅有2个零点,求a 的取值范围.3.(2024·全国·模拟预测)已知函数()ln f x x kx =+的单调递增区间为()0,1.(1)求函数()f x 的图象在点()()e,e f 处的切线方程;(2)若函数()()e xaxg x f x =-有两个零点,求实数a 的取值范围.4.(2024·安徽·三模)已知函数()e e (1),0x x f x a a x a -=--+>.(1)求证:()f x 至多只有一个零点;(2)当01a <<时,12,x x 分别为()f x 的极大值点和极小值点,若()()120f x kf x +>成立,求实数k 的取值范围.1.(2024·浙江温州·一模)已知()11e xf x -=(0x >).(1)求导函数()f x ¢的最值;(2)试讨论关于x 的方程()f x kx =(0k >)的根的个数,并说明理由.1.(2024·山西·模拟预测)已知函数()sin ln(1)f x x x ax =++-,且()y f x =与x 轴相切于坐标原点.(1)求实数a 的值及()f x 的最大值;(2)证明:当π,π6x éùÎêúëû时,1()22f x x +>;(3)判断关于x 的方程()0f x x +=实数根的个数,并证明.2.(2024·河南信阳·一模)已知函数()ln(1)3mf x x x =++.(1)若3m =-,求证:()0f x £;(2)讨论关于x 的方程2π()sin 03π2x f x +=在(1,2)-上的根的情况.1.(2024·贵州贵阳·二模)已知函数1()ln ,2f x ax x a x=+ÎR .(1)当1a =时.求()f x 在(1,(1))f 处的切线方程;(2)若方程31()2f x x x=+存两个不等的实数根,求a 的取值范围.2.(2024·山东烟台·三模)已知函数()()e xf x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.1.(2023·广东梅州·三模)已知函数()2e xf x ax =-,a ÎR ,()f x ¢为函数()f x 的导函数.(1)讨论函数()f x ¢的单调性;(2)若方程()()22f x f x ax ¢+=-在()0,1上有实根,求a 的取值范围.2.(2024·全国·模拟预测)已知函数e ()xf x ax b =+的图象在点(0,(0))f 处的切线方程为210x y ++=.(1)求,a b 的值;(2)若()21mf x x =-有两个不同的实数根,求实数m 的取值范围.1.(2021·全国·高考真题)已知0a >且1a ¹,函数()(0)ax x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2022·全国·高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.1.(2024·江苏·模拟预测)已知函数()2ln 3f x a x x =++在1x =处的切线经过原点.(1)判断函数()f x 的单调性;(2)求证:函数()f x 的图象与直线5y x =有且只有一个交点.2.(2024·陕西西安·二模)设函数21()(1)e 2x f x ax x =+-.(1)当1a £时,讨论()f x 的单调性;(2)若[2,2]x Î-时,函数()f x 的图像与e x y =的图像仅只有一个公共点,求a 的取值范围.3.(2024·云南昆明·模拟预测)已知函数()log a axf x x =.(1)当2a =时,求()f x 的单调区间;(2)证明:若曲线()y f x =与直线21y a =有且仅有两个交点,求a 的取值范围.1.(2023·全国·高考真题)函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A .(),2-¥-B .(),3-¥-C .()4,1--D .()3,0-2.(2024·全国·高考真题)(多选)设函数32()231f x x ax =-+,则( )A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心3.(2022·全国·高考真题)(多选)已知函数3()1f x x x =-+,则( )A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰 有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.1.(2024·四川绵阳·模拟预测)函数()e x f kx b x =--恰好有一零点0x ,且0k b >>,则0x 的取值范围是( )A .(,0)-¥B .(0,1)C .(,1)-¥D .(1,)+¥2.(2024·陕西铜川·模拟预测)已知0w >,若函数()ln ,0,3πsin ,π03x x x f x x x w ì->ïï=íæöï+-££ç÷ïèøî有4个零点,则w 的取值范围是( )A .47,33æùçúèûB .47,33éö÷êëøC .710,33æùçúèûD .710,33éö÷êëø3.(2024·全国·模拟预测)(多选)已知函数()31f x x ax =-+,a ÎR ,则( )A .若()f x 有极值点,则0a £B .当1a =时,()f x 有一个零点C .()()2f x f x =--D .当1a =时,曲线()y f x =上斜率为2的切线是直线21y x =-4.(2024·安徽·模拟预测)若关于x 的方程()eln e ln e xxm m x x +=+-有解,则实数m 的最大值为 .5.(2024·天津北辰·三模)若函数22()233(3)f x a x a x x =----有四个零点,则实数a 的取值范围为 .一、单选题1.(2023·陕西西安·模拟预测)方程e 1x a x -=+有两个不等的实数解,则a 的取值范围为( )A.æöç÷ç÷èøB .211,e æö--ç÷èøC .21,0e æö-ç÷èøD .1,0e æö-ç÷èø2.(2024·四川凉山·二模)若()sin cos 1f x x x x =+-,π,π2x éùÎ-êúëû,则函数()f x 的零点个数为( )A .0B .1C .2D .3二、多选题3.(2024·四川成都·模拟预测)已知函数3()1f x x x =++,则( )A .()f x 有两个极值点B .()f x有一个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线4.(2024·辽宁·模拟预测)已知函数()e xxf x =-,则下列说法正确的是( )A .()f x 的极值点为11,e æö-ç÷èøB .()f x 的极值点为1C .直线2214e e y x =-是曲线()y f x =的一条切线D .()f x 有两个零点三、填空题5.(2024·全国·模拟预测)方程()1ln 0x x k -++=有两个不相等的实数根,则实数k 的取值范围为 .6.(2024·山西·三模)已知函数12,0()e ,0x x x f x x x ì+>ï=íï£î,若函数()()()g x f x x m m =-+ÎR 恰有一个零点,则m 的取值范围是.7.(23-24高三上·四川内江·期末)已知函数()324f x x x t =+-,若函数()f x 的图象与曲线25y x =有三个交点,则t 的取值范围是 .四、解答题8.(2023·广西河池·模拟预测)已知函数()()22ln f x x x ax a =-+ÎR (1)当1a =时,求函数()f x 在()()1,1f 处的切线方程;(2)若函数()f x 与直线y ax a =-在1,e e éùêúëû上有两个不同的交点,求实数a 的取值范围.9.(23-24高三上·北京大兴·阶段练习)已知()ln f x x =,(1)求()f x x的极值;(2)若函数()y f x ax =-存在两个零点,求a 的取值范围.10.(2024·湖南邵阳·三模)已知函数()32113f x x x =-++.(1)求函数()f x 的单调递增区间;(2)若函数()()()g x f x k k =-ÎR 有且仅有三个零点,求k 的取值范围.一、单选题1.(2024·全国·模拟预测)已知过点(2,0)-的直线与函数2()e 2x f x x +=+的图象有三个交点,则该直线的斜率的取值范围为( )A .(,1)-¥-B .(,0)-¥C .(1,0)-D .(1,)-+¥2.(2024·贵州贵阳·一模)已知函数()e ,0e ,0x a x f x x x -ì+>ï=íï<î,若方程()e 0f x x +=存在三个不相等的实根,则实数a 的取值范围是( )A .(),e -¥B .(),e -¥-C .(),2e -¥-D .(),2e -¥二、填空题3.(2024·重庆·模拟预测)若函数e ()e x x f x a =+的图象与函数e ()e xxg x x =+的图象有三个不同的公共点,则实数a 的取值范围为.4.(2024·湖北黄冈·二模)已知函数()()e 1e kxf x k =--与函数()()1e ln 1xg x x--=的图象有且仅有两个不同的交点,则实数k 的取值范围为 .5.(2024·福建泉州·一模)已知函数()(1)e e x x f x x a =-+-有且只有两个零点,则a 的范围.三、解答题6.(2024·广东深圳·模拟预测)已知()sin cos f x x x a x =-在π2x =时取得极大值.(1)讨论()f x 在[]π,π-上的单调性;(2)令()24sin 4cos 4h x x x x x =--+,试判断()h x 在R 上零点的个数.7.(2024·全国·模拟预测)已知函数()2e =-+x f x x a ,x ÎR ,()()2x f x x x j =+-.(1)若()x j 的最小值为0,求a 的值;(2)当0.25a <时,证明:方程()2f x x =在()0,¥+上有解.8.(2024·广东梅州·二模)已知函数()e xf x =,()21g x x =+,()sin 1h x a x =+(0a >).(1)证明:当()0,x Î+¥时,()()f x g x >;(2)讨论函数()()()F x f x h x =-在()0,π上的零点个数.1.2.3.4.9.(2024·广西南宁·二模)已知函数()ln f x x ax =-(1)若()f x 在定义域内单调递增,求a 的取值范围,(2)若函数()()1g x f x x =-+恰有两个零点,求a 的取值范围,10.(2024·广西贺州·一模)已知函数()ln ,2a f x x x a x=++ÎR .(1)若12a >-,讨论()f x 的单调性;(2)若关于x 的方程2()ef x =有且只有一个解,求a 的取值范围.1.(2022·浙江·高考真题)设函数e ()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.(注:e 2.71828=L 是自然对数的底数)2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+.(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点①21,222e a b a <£>;②10,22a b a <<£.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+Î(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b e x x e b>+.(注: 2.71828e =×××是自然对数的底数)4.(2020·全国·高考真题)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.5.(2020·全国·高考真题)已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.6.(2020·全国·高考真题)已知函数()(2)x f x e a x =-+.(1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.7.(2019·全国·高考真题)已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.8.(2019·全国·高考真题)已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.9.(2019·全国·高考真题)已知函数()sin ln(1)f x x x =-+,()f x ¢为()f x 的导数.证明:(1)()f x ¢在区间(1,2p-存在唯一极大值点;(2)()f x 有且仅有2个零点.10.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+Î在()0,+¥内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为 .。

利用导数研究函数零点问题教案(2019年13日)

利用导数研究函数零点问题教案(2019年13日)

利用导数研究函数零点问题武胜中学 李开勇学习内容分析:导数是微积分的核心概念之一,它是研究函数的单调性、最值等问题最一般、最有效的工具,对我们描绘函数的图像带来极大的方便,高考对导数的考查重在导数的应用,如求函数的单调区间、极值最值、解决实际问题以及不等式的结合。

而利用导数对函数性质的研究有利于我们解决函数的零点问题。

近几年高考也出现了函数零点问题或者可转化为函数零点问题的题目,《考点一》利用最值(极值)判断零点个数已知函数f (x )=-12ax 2+(1+a )x -ln x (a ∈R). 当a =0时,设函数g (x )=xf (x )-k (x +2)+2.若函数g (x )在区间[12,+∞)上有两个零点,求实数k 的取值范围.【解】)g (x )=x 2-x ln x -k (x +2)+2在x ∈[12,+∞)上有两个零点,即关于x 的方程k =x 2-x ln x +2x +2在x ∈[12,+∞)上有两个不相等的实数根. 令函数h (x )=x 2-x ln x +2x +2,x ∈[12,+∞),则h ′(x )=x 2+3x -2ln x -4(x +2)2, 令函数p (x )=x 2+3x -2ln x -4,x ∈[12,+∞). 则p ′(x )=(2x -1)(x +2)x 在[12,+∞)上有p ′(x )≥0, 故p (x )在[12,+∞)上单调递增. 因为p (1)=0,所以当x ∈[12,1)时,有p (x )<0,即h ′(x )<0,所以h (x )单调递减; 当x ∈(1,+∞)时,有p (x )>0,即h ′(x )>0,所以h (x )单调递增.因为h ⎝ ⎛⎭⎪⎫12=910+ln 25,h (1)=1,所以k 的取值范围为⎝ ⎛⎦⎥⎤1,910+ln 25.利用函数的极值(最值)判断函数零点个数,主要是借助导数研究函数的单调性、极值后,通过极值的正负、函数单调性判断函数图象走势,从而判断零点个数或者利用零点个数求参数范围.《考点二》数形结合法研究零点问题[典例引领]已知f (x )=ax 2(a ∈R),g (x )=2ln x .(1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.【解】 (1)F (x )=ax 2-2ln x ,其定义域为(0,+∞),所以F ′(x )=2ax -2x =2(ax 2-1)x(x >0). ①当a >0时,由ax 2-1>0,得x >1a, 由ax 2-1<0,得0<x <1a , 故当a >0时,F (x )在区间⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在区间⎝⎛⎭⎪⎫0,1a 上单调递减. ②当a ≤0时,F ′(x )<0(x >0)恒成立.故当a ≤0时,F (x )在(0,+∞)上单调递减.(2)原式等价于方程a =2ln x x 2在区间[2,e]上有两个不等解. 令φ(x )=2ln x x 2,由φ′(x )=2x (1-2ln x )x 4易知,φ(x )在(2,e)上为增函数,在(e ,e)上为减函数, 则φ(x )max =φ(e)=1e ,而φ(e)=2e 2,φ(2)=ln 22. 由φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=ln e 4-ln 2e 22e 2<ln 81-ln 272e 2<0,所以φ(e)<φ(2).所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e. 即f (x )=g (x )在[2,e]上有两个不相等的解时a 的取值范围为[ln 22,1e). 《考点三》构造函数法研究零点问题[典例引领]设函数1()(01)ln f x x x x x=>≠且 (1) 求函数()f x 的单调区间;(2) 试确定a 的取值范围,讨论12=a x x 解的个数。

数学(文)一轮教学案:第三章第2讲 导数的应用 Word版含解析

数学(文)一轮教学案:第三章第2讲 导数的应用 Word版含解析

第2讲导数的应用考纲展示命题探究1函数的单调性与导数的关系2用充分必要条件来诠释导数与函数单调性的关系(1)f′(x)>0(或f′(x)<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或f′(x)≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件(f′(x)=0不恒成立).注意点应用导数解决函数单调性问题的原则方法(1)求函数f(x)的单调区间,也是求不等式f′(x)>0(或f′(x)<0)的解集,但单调区间不能脱离函数定义域而单独存在,求单调区间要坚持“定义域优先”的原则.(2)由函数f(x)在区间[a,b]内单调递增(或递减),可得f′(x)≥0(或f′(x)≤0)在该区间恒成立,而不是f′(x)>0(或f′(x)<0)恒成立,“=”不能少.必要时还需对“=”进行检验.1.思维辨析(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)f(x)在(a,b)上单调递增与(a,b)是f(x)的单调递增区间是相同的说法.()答案(1)×(2)√(3)×2.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0) B.(0,+∞)C.(-∞,-3)和(1,+∞) D.(-3,1)答案 D解析y′=-2x e x+(3-x2)e x=e x(-x2-2x+3),由y′>0⇒x2+2x-3<0⇒-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).故选D.3.函数f (x )=e x -2x 的单调递增区间是________.答案 (ln 2,+∞)解析 f ′(x )=e x -2,令f ′(x )=0得x =ln 2.当x ∈(ln 2,+∞)时,f ′(x )>0,∴f (x )=e x -2x 的单调递增区间为(ln 2,+∞).[考法综述] 单调性是导数几种应用中最基本也是最重要的内容,因为求极值和最值都离不开单调性.利用导数讨论函数单调性或求函数的单调区间是导数的重要应用,也是高考的热点,经常在解答题的分支问题中出现,难度一般.命题法 判断函数的单调性典例 已知函数f (x )=ln x -mx +m ,m ∈R .(1)已知函数f (x )在点(1,f (1))处与x 轴相切,求实数m 的值;(2)求函数f (x )的单调区间;(3)在(1)的结论下,对于任意的0<a <b ,证明:f (b )-f (a )b -a<1a -1. [解] 由f (x )=ln x -mx +m ,得f ′(x )=1x -m (x >0).(1)依题意得f ′(1)=1-m =0,即m =1.(2)当m ≤0时,f ′(x )=1x -m >0,函数f (x )在(0,+∞)上单调递增;当m >0时,f ′(x )=-m ⎝⎛⎭⎪⎫x -1m x ,由f ′(x )>0,得x ∈⎝ ⎛⎭⎪⎫0,1m ,由f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫1m ,+∞, 即函数f (x )在⎝ ⎛⎭⎪⎫0,1m 上单调递增,在⎝ ⎛⎭⎪⎫1m ,+∞上单调递减. (3)证明:由(1)知m =1,得f (x )=ln x -x +1,对于任意的0<a <b ,f (b )-f (a )b -a<1a -1可化为(ln b -b )-(ln a -a )b -a<1a -1,因为0<a <b ,所以有b -a >0,故不等式可化为(ln b -b )-(ln a -a )<⎝ ⎛⎭⎪⎫1a -1(b -a ),即ln b a <b a -1,令t =b a ,得ln t -t +1<0(t >1),令f (t )=ln t -t +1.由(2)知,函数f (x )在(1,+∞)上单调递减,且f (1)=0,即f (t )<f (1),于是上式成立,故对于任意的0<a <b ,f (b )-f (a )b -a <1a-1成立. 【解题法】 单调区间的求法及由单调性求参数取值范围的方法(1)利用导数求函数的单调区间的两个方法①方法一:a.确定函数y =f (x )的定义域;b .求导数y ′=f ′(x );c .解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;d .解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. ②方法二:a.确定函数y =f (x )的定义域;b .求导数y ′=f ′(x ),令f ′(x )=0,解此方程,求出在定义域内的一切实根;c .把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义域分成若干个小区间;d .确定f ′(x )在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.(2)由函数的单调性求参数的取值范围的方法①可导函数在某一区间上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)(f ′(x )在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围.②可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题.③若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.1.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1 B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1 答案 D解析 由题意可知存在唯一的整数x 0,使得e x 0(2x 0-1)<ax 0-a ,设g (x )=e x (2x -1),h (x )=ax -a ,由g ′(x )=e x (2x +1)可知g (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减,在⎝ ⎛⎭⎪⎫-12,+∞上单调递增,作出g (x )与h (x )的大致图象如图所示,故⎩⎪⎨⎪⎧ h (0)>g (0)h (-1)≤g (-1),即⎩⎨⎧ a <1-2a ≤-3e ,所以32e≤a <1,故选D.2.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)答案 A解析 令F (x )=f (x )x ,因为f (x )为奇函数,所以F (x )为偶函数,由于F ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,所以F (x )=f (x )x 在(0,+∞)上单调递减,根据对称性,F (x )=f (x )x 在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).故选A.3.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k <1k B .f ⎝ ⎛⎭⎪⎫1k >1k -1 C .f ⎝ ⎛⎭⎪⎫1k -1<1k -1 D .f ⎝ ⎛⎭⎪⎫1k -1>k k -1答案 C解析 构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数.∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0,∴g ⎝ ⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0, 即f ⎝ ⎛⎭⎪⎫1k -1>k k -1-1=1k -1, 所以选项C 错误,故选C.4.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)答案 C解析 (1)当a =0时,显然f (x )有两个零点,不符合题意.(2)当a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,解得x 1=0,x 2=2a .当a >0时,2a >0,所以函数f (x )=ax 3-3x 2+1在(-∞,0)与⎝ ⎛⎭⎪⎫2a ,+∞上为增函数,在⎝⎛⎭⎪⎫0,2a 上为减函数,因为f (x )存在唯一零点x 0,且x 0>0,则f (0)<0,即1<0,不成立.当a <0时,2a <0,所以函数f (x )=ax 3-3x 2+1在⎝ ⎛⎭⎪⎫-∞,2a 和(0,+∞)上为减函数,在⎝ ⎛⎭⎪⎫2a ,0上为增函数,因为f (x )存在唯一零点x 0,且x 0>0,则f ⎝ ⎛⎭⎪⎫2a >0,即a ·8a 3-3·4a 2+1>0,解得a >2或a <-2,又因为a <0,故a 的取值范围为(-∞,-2).选C.5.已知函数f (x )=-2(x +a )ln x +x 2-2ax -2a 2+a ,其中a >0.(1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.解 (1)由已知,函数f (x )的定义域为(0,+∞),g (x )=f ′(x )=2(x-a )-2ln x -2⎝ ⎛⎭⎪⎫1+a x , 所以g ′(x )=2-2x +2a x 2=2⎝ ⎛⎭⎪⎫x -122+2⎝ ⎛⎭⎪⎫a -14x 2当0<a <14时,g (x )在区间⎝ ⎛⎭⎪⎫0,1-1-4a 2,⎝ ⎛⎭⎪⎫1+1-4a 2,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫1-1-4a 2,1+1-4a 2上单调递减; 当a ≥14时,g (x )在区间(0,+∞)上单调递增.(2)证明:由f ′(x )=2(x -a )-2ln x -2⎝ ⎛⎭⎪⎫1+a x =0,解得a =x -1-ln x 1+x -1. 令φ(x )=-2⎝ ⎛⎭⎪⎫x +x -1-ln x 1+x -1ln x +x 2-2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -1x -2⎝ ⎛⎭⎪⎫x -1-ln x 1+x -12+x -1-ln x 1+x -1. 则φ(1)=1>0,φ(e)=-e (e -2)1+e -1-2⎝ ⎛⎭⎪⎫e -21+e -12<0. 故存在x 0∈(1,e),使得φ(x 0)=0.令a 0=x 0-1-ln x 01+x -10,u (x )=x -1-ln x (x ≥1). 由u ′(x )=1-1x ≥0知,函数u (x )在区间(1,+∞)上单调递增.所以0=u (1)1+1<u (x 0)1+x -10=a 0<u (e )1+e -1=e -21+e -1<1. 即a 0∈(0,1).当a =a 0时,有f ′(x 0)=0,f (x 0)=φ(x 0)=0.由(1)知,f ′(x )在区间(1,+∞)上单调递增,故当x ∈(1,x 0)时,f ′(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f ′(x )>0,从而f (x )>f (x 0)=0.所以,当x ∈(1,+∞)时,f (x )≥0.综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.6.设函数f (x )=3x 2+ax e x (a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围.解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x(e x )2=-3x 2+(6-a )x +a e x,因为f (x )在x =0处取得极值,所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x,故f (1)=3e ,f ′(1)=3e , 从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1),化简得3x-e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +a e x, 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366, x 2=6-a +a 2+366. 当x <x 1时,g (x )<0,即f ′(x )<0,故f (x )为减函数;当x 1<x <x 2时,g (x )>0,即f ′(x )>0,故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0,故f (x )为减函数.由f (x )在[3,+∞)上为减函数,知x 2=6-a +a 2+366≤3,解得a ≥-92, 故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞. 7.函数f (x )=ax 3+3x 2+3x (a ≠0).(1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.解 (1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ). ①若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1. 故此时f (x )在R 上是增函数.②由于a ≠0,故当a <1时,f ′(x )=0有两个根:x 1=-1+1-a a ,x 2=-1-1-a a. 若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时f ′(x )>0, 故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数;若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,0∪(0,+∞). 1 判断函数极值的方法一般地,当函数f (x )在点x 0处连续时,(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.2 求可导函数f (x )的极值的步骤(1)求导函数f ′(x );(2)求方程f ′(x )=0的根;(3)检验f ′(x )在方程f ′(x )=0的根的左右两侧的函数值的符号,如果左正右负,那么函数y =f (x )在这个根处取得极大值;如果左负右正,那么函数y =f (x )在这个根处取得极小值,可列表完成.3 函数的最值在闭区间[a ,b ]上的连续函数y =f (x ),在[a ,b ]上必有最大值与最小值.在区间(a ,b )上的连续函数y =f (x ),若有唯一的极值点,则这个极值点就是最值点.注意点 极值点的含义及极值与最值的关系(1)“极值点”不是点,若函数f (x )在x 1处取得极大值,则x 1即为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).(2)极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.1.思维辨析(1)导数为零的点不一定是极值点.( )(2)三次函数在R 上必有极大值和极小值.( )(3)函数的极大值不一定比极小值大.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )(6)函数f (x )=x sin x 有无数个极值点.( )答案 (1)√ (2)× (3)√ (4)× (5)√ (6)√2.函数y =x 4-4x +3在区间[-2,3]上的最小值为( )A .72B .36C .12D .0 答案 D解析 因为y ′=4x 3-4,令y ′=0即4x 3-4=0,解得x =1.当x <1时,y ′<0,当x >1时,y ′>0,所以函数的极小值为y |x =1=0,而在端点处的函数值y |x =-2=27,y |x =3=72,所以y min =0.3.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3 答案 A解析 ∵f ′(x )=3ax 2+b ,∴f ′(1)=3a +b =0.①又当x =1时有极值-2,∴a +b =-2.②联立①②解得⎩⎪⎨⎪⎧a =1,b =-3. [考法综述] 函数的极值与最值是高考热点内容,对极值的考查主要有2个命题角度:①判断极值的情况,②已知函数求极值.考查函数最值时必定涉及函数的单调性,还会涉及方程和不等式.题型有大题也有小题且有一定难度.另外已知函数的极值(最值)情况求参数的取值范围也是热点考查内容,涉及函数的单调性时,往往需要进行分类讨论,这类题综合性强,难度较大.命题法 求函数的极值与最值典例 已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2(x <1),a ln x (x ≥1). (1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.[解] (1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表: x(-∞,0) 0 f ′(x )- 0 + 0 -f (x )极小值 极大值 点为x =23.(2)①当-1≤x <1时,由(1)知,函数f (x )在[-1,0]和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎣⎢⎡⎦⎥⎤0,23上单调递增. 因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,f (0)=0,所以f (x )在[-1,1)上的最大值为2.②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增,则f (x )在[1,e]上的最大值为f (e)=a .故当a ≥2时,f (x )在[-1,e]上的最大值为a ;当a <2时,f (x )在[-1,e]上的最大值为2.【解题法】 求函数极值和最值的方法(1)求函数的极值应先确定函数的定义域,再解方程f ′(x )=0,再判断f ′(x )=0的根是否是极值点,可通过列表结合导函数与0的大小(或函数的单调性)进行分析,若遇极值点含参数不能比较大小时,则需分类讨论.(2)函数的最大值①若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.②若函数在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.③函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到.1.对二次函数f (x )=ax 2+bx +c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A .-1是f (x )的零点B .1是f (x )的极值点C .3是f (x )的极值D .点(2,8)在曲线y =f (x )上答案 A解析 由A 知a -b +c =0;由B 知f ′(x )=2ax +b,2a +b =0;由C 知f ′(x )=2ax +b ,令f ′(x )=0可得x =-b 2a ,则f ⎝ ⎛⎭⎪⎫-b 2a =3,则4ac -b 24a =3;由D 知4a +2b +c =8.假设A 选项错误,则⎩⎪⎨⎪⎧ a -b +c ≠0,2a +b =0,4ac -b 24a =3,4a +2b +c =8,得⎩⎪⎨⎪⎧ a =5,b =-10,c =8,满足题意,故A 结论错误.同理易知当B 或C 或D 选项错误时不符合题意,故选A.2.已知函数f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当x ∈(0,1)时,f (x )取得极大值,当x ∈(1,2)时,f (x )取得极小值,则⎝ ⎛⎭⎪⎫b +122+(c -3)2的取值范围是( )A.⎝ ⎛⎭⎪⎫372,5 B .(5,5) C.⎝ ⎛⎭⎪⎫374,25 D .(5,25)答案 D解析 因为f ′(x )=3x 2+2bx +c ,f ′(x )的两个根分别在(0,1)和(1,2)内,所以f ′(0)>0,f ′(1)<0,f ′(2)>0,即⎩⎪⎨⎪⎧ c >0,3+2b +c <0,12+4b +c >0,作出可行域如图中阴影部分所示(不包括b 轴),⎝ ⎛⎭⎪⎫b +122+(c -3)2表示可行域内一点到点P ⎝ ⎛⎭⎪⎫-12,3的距离的平方,由图象可知,P ⎝ ⎛⎭⎪⎫-12,3到直线3+2b +c =0的距离最小,即⎝ ⎛⎭⎪⎫b +122+(c -3)2的最小值为⎝ ⎛⎭⎪⎫|3-1+3|52=5,P ⎝ ⎛⎭⎪⎫-12,3到点A ⎝ ⎛⎭⎪⎫-92,6的距离最大,此时⎝ ⎛⎭⎪⎫b +122+(c -3)2=25,因为可行域的临界线为虚线,所以所求范围为(5,25),故选D.3.若函数f (x )=x 3-3x 在(a,6-a 2)上有最小值,则实数a 的取值范围是( )A .(-5,1)B .[-5,1)C .[-2,1)D .(-2,1)答案 C 解析 令f ′(x )=3x 2-3=0,得x =±1,且x =-1为函数f (x )的极大值点,x =1为函数f (x )的极小值点.函数f (x )在区间(a,6-a 2)上有最小值,则函数f (x )的极小值点必在区间(a,6-a 2)内,且左端点的函数值不小于f (1),即实数a 满足a <1<6-a 2且f (a )=a 3-3a ≥f (1)=-2,解得-5<a <1,且a ≥-2.故实数a 的取值范围是[-2,1).4.设函数f (x )=e x (sin x -cos x )(0≤x ≤2015π),则函数f (x )的各极小值之和为( )A .-e 2π(1-e 2015π)1-e 2πB .-e 2π(1-e 2015π)1-e πC .-1-e 2016π1-e 2πD .-e 2π(1-e 2014π)1-e 2π答案 D解析 因为f ′(x )=2e x sin x ,所以x ∈(2k π+π,2k π+2π)(k ∈Z )时,f ′(x )<0,f (x )单调递减,x ∈(2k π+2π,2k π+3π)(k ∈Z )时,f ′(x )>0,f (x )单调递增,故当x =2k π+2π(k ∈Z )时,f (x )取极小值,其极小值为f (2k π+2π)=-e 2k π+2π(k ∈Z ),又0≤x ≤2015π,所以f (x )的各极小值之和S =-e 2π-e 4π-…-e 2014π=-e 2π(1-e 2014π)1-e 2π,故选D. 5.已知点M 在曲线y =3ln x -x 2上,点N 在直线x -y +2=0上,则|MN |的最小值为________.答案 2 2解析 当点M 处的曲线的切线与直线x -y +2=0平行时|MN |取得最小值.令y ′=-2x +3x =1,解得x =1,所以点M 的坐标为(1,-1),所以点M 到直线x -y +2=0的距离为|1+2+1|2=22,即|MN |的最小值为2 2.6.函数f (x )=x 3-3x 2+6在x =________时取得极小值. 答案 2解析 依题意得f ′(x )=3x (x -2).当x <0或x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.因此,函数f (x )在x =2时取得极小值.7.设函数f (x )=(x +a )ln x ,g (x )=x 2e x .已知曲线y =f (x )在点(1,f (1))处的切线与直线2x -y =0平行.(1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值.解 (1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2,又f ′(x )=ln x +a x +1,所以a =1.(2)k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根.设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0,又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0.因为h ′(x )=ln x +1x +1+x (x -2)e x ,所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈[2,+∞)时,h ′(x )>0,所以当x ∈(1,+∞)时,h (x )单调递增.所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根.(3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0,且x ∈(0,x 0)时,f (x )<g (x ),x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎨⎧ (x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞).当x ∈(0,x 0]时,若x ∈(0,1],m (x )≤0;若x ∈(1,x 0],由m ′(x )=ln x +1x +1>0.可知0<m (x )≤m (x 0).故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x ,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增;x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减.可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e 2.8.设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a 3, x 2=-1+4+3a 3,x 1<x 2, 所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在(-∞,x 1)和(x 2,+∞)内单调递减,在(x 1,x 2)内单调递增.(2)因为a >0,所以x 1<0,x 2>0.①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增.所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减.所以f (x )在x =x 2=-1+4+3a 3处取得最大值. 又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0处和x =1处同时取得最小值;当1<a <4时,f (x )在x =0处取得最小值. 9.设函数f (x )=e x x 2-k ⎝ ⎛⎭⎪⎫2x +ln x (k …是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.解 (1)f ′(x )=e x ·x 2-2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x =(x -2)(e x -kx )x 3(x >0), 由k ≤0,知e x -kx >0,令f ′(x )=0,则x =2,当x ∈(0,2)时,f ′(x )<0,f (x )为减函数,当x ∈(2,+∞)时,f ′(x )>0,f (x )为增函数.综上,f (x )的减区间为(0,2),增区间为(2,+∞).(2)由题意知f ′(x )=0,即e x -kx =0在(0,2)内存在两个不等实根. 令g (x )=e x -kx ,g ′(x )=e x -k ,令g ′(x )=0,x =ln k ,则0<ln k <2,即1<k <e 2.当0<x <ln k 时,g ′(x )<0,g (x )为减函数.当ln k <x <2时,g (x )为增函数.∵g (0)=1>0,只需⎩⎪⎨⎪⎧g (2)>0,g (ln k )<0,即⎩⎪⎨⎪⎧e 2-2k >0,e ln k -k ·ln k <0,得e<k <e 22. 综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫e ,e 22 10.已知函数f (x )=ln x -a (x 2-x )(a ∈R ).(1)当a =1时,求f (x )在点(1,f (1))处的切线方程;(2)求f (x )在[1,2]上的最大值.解 (1)当a =1时,f (x )=ln x -x 2+x ,f ′(x )=1x -2x +1. ∴f (1)=0,f ′(1)=0,即所求切线方程为:y =0.(2)∵f ′(x )=1x -2ax +a =-2ax 2+ax +1x,x >0. ∴当a =0时,f ′(x )>0,f (x )在[1,2]上单调递增.∴f (x )max =f (2)=ln 2.当a ≠0时,可令g (x )=-2ax 2+ax +1,x ∈[1,2],g (x )的对称轴x =14且过点(0,1).∴当a <0时,f ′(x )>0在[1,2]上恒成立,f (x )在[1,2]上单调递增, ∴f (x )max =f (2)=ln 2-2a .当a >0时,若g (1)≤0,即a ≥1时,f ′(x )<0在[1,2]上恒成立. f (x )在[1,2]上单调递减,∴f (x )max =f (1)=0.若g (1)>0,g (2)<0,即16<a <1时,f ′(x )在⎣⎢⎡⎭⎪⎫1,a +a 2+8a 4a 上大于零, 在⎝ ⎛⎦⎥⎤a +a 2+8a 4a ,2上小于零, ∴f (x )在⎣⎢⎡⎦⎥⎤1,a +a 2+8a 4a 上单调递增, 在⎝ ⎛⎦⎥⎤a +a 2+8a 4a ,2上单调递减.∴f (x )max =f ⎝ ⎛⎭⎪⎫a +a 2+8a 4a =ln a +a 2+8a 4a +a 2+8a +a -48. 若g (1)>0,g (2)≥0,即0<a ≤16时,f ′(x )>0在[1,2]上恒成立,f (x )在[1,2]上单调递增,∴f (x )max =f (2)=ln 2-2a .综上:f (x )max =⎩⎪⎨⎪⎧ ln 2-2a ,a ≤16ln a +a 2+8a 4a +a 2+8a +a -48,16<a <10,a ≥1.11.已知函数f (x )=-x 3+ax 2-4(a ∈R ),f ′(x )是f (x )的导函数.(1)当a =2时,对于任意的m ∈[-1,1],n ∈[-1,1],求f (m )+f ′(n )的最小值;(2)若存在x 0∈(0,+∞),使f (x 0)>0,求a 的取值范围.解 (1)由题意得f (x )=-x 3+2x 2-4,f ′(x )=-3x 2+4x .令f ′(x )=0,得x =0或43.当x 在[-1,1]上变化时,f ′(x ),f (x )随x 的变化情况如下表:∵f ′(x )=-3x 2+4x 的对称轴为直线x =23,且抛物线开口向下,∴对于n ∈[-1,1],f ′(n )的最小值为f ′(-1)=-7.∴f (m )+f ′(n )的最小值为-11.(2)∵f ′(x )=-3x ⎝⎛⎭⎪⎫x -2a 3.①若a ≤0,当x >0时,f ′(x )<0,∴f (x )在(0,+∞)上单调递减.又f (0)=-4,则当x >0时,f (x )<-4.∴当a ≤0时,不存在x 0>0,使f (x 0)>0.②若a >0,则当0<x <2a 3时,f ′(x )>0;当x >2a 3时,f ′(x )<0.从而f (x )在⎝ ⎛⎦⎥⎤0,2a 3上单调递增,在⎣⎢⎡⎭⎪⎫2a 3,+∞上单调递减, ∴当x ∈(0,+∞)时,f (x )max =f ⎝ ⎛⎭⎪⎫2a 3=-8a 327+4a 39-4=427a 3-4. 根据题意,得4a 327-4>0,即a 3>27,解得a >3.综上,a 的取值范围是(3,+∞).1 利用导数证明不等式的常用技巧(1)利用给定函数的某些性质,如函数的单调性、最值、极值等,服务于所要证明的不等式.(2)当给出的不等式无法直接证明时,先对不等式进行等价转化后再进行求证.(3)根据不等式的结构特征构造函数,利用函数的最值进行求证,构造函数的方法较为灵活,要结合具体问题,平时要多积累.其一般步骤为:构造可导函数→研究其单调性求最值→得出不等关系→整理得出所证明的结论.2 导数在研究函数零点中的作用(1)研究函数图象的交点、方程的根、函数的零点归根到底是研究函数的性质,如单调性、极值等.(2)用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.3 利用导数求解实际问题中的优化问题生活中求利润最大、用料最省、效率最高等问题称之为优化问题.导数是解决生活中优化问题的有力工具,用导数解决优化问题的基本思路是:优化问题→用函数表示的数学问题→用导数解决数学问题→优化问题的答案.利用导数解决实际应用问题一般有如下几类:(1)给出了具体的函数关系式,只需研究这个函数的性质即可;(2)函数关系式中含有比例系数,根据已知数据求出比例系数得到函数关系式,再研究函数的性质;(3)没有给出函数关系,需要先建立函数关系,再研究函数的性质.注意点 函数定义域的重要性在函数的综合应用中,不论是研究函数的性质,还是构造函数,还是建立新的函数关系时,都要正确求出函数的定义域,再利用导数求解.1.思维辨析(1)2ax +e x≥x +1恒成立,可转化为a ≥x +1-e x2x 恒成立.( ) (2)对任意x ∈R ,f (x )≥g (x )恒成立,则f (x )min ≥g (x )max .( )(3)若函数y =f (x )与y =g (x )的图象有2个交点,则f (x )-g (x )有2个零点.( )答案 (1)× (2)× (3)√2.在区间(0,π)上,sin x 与x 的大小关系是________.答案 sin x <x解析 构造函数f (x )=sin x -x ,则f ′(x )=cos x -1≤0且不恒等于0,故函数f (x )在(0,π)上单调递减,所以f (x )<f (0)=0,故sin x <x .3.已知函数f (x )=x +1e x .(1)讨论函数f (x )的单调性,并求其最值;(2)若对任意的x ∈(0,+∞),有f (x )<ax 2+1恒成立,求实数a的取值范围.解 (1)f (x )=x +1e x ,f ′(x )=1-1e x =0,则x =0.当x ∈(-∞,0)时f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时f ′(x )>0,f (x )单调递增,所以f (x )的最小值为f (0)=1,无最大值.(2)由(1)知,若a =0,则当x >0时f (x )>1=ax 2+1,原不等式不成立.若a <0,则当x >0时,ax 2+1<1,原不等式不成立.若a >0,f (x )<ax 2+1等价于(ax 2-x +1)e x >1.设φ(x )=(ax 2-x +1)e x ,那么φ′(x )=[ax 2+(2a -1)x ]e x .若a ≥12,则φ(x )=(ax 2-x +1)e x 在(0,+∞)上单调递增,φ(x )的最小值大于φ(0)=1,因而(ax 2-x +1)e x >1恒成立.若0<a <12,则当x ∈⎝ ⎛⎭⎪⎫0,1a -2时φ(x )单调递减,φ(x )<φ(0)=1,原不等式不成立.综上所述,实数a 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞. [考法综述] 函数与导数的压轴试题,在每年的高考中属于必考内容,其命题方向主要有两个:一是围绕函数的性质考查函数的奇偶性、单调性、周期性、极值、最值,曲线的切线等问题展开,二是围绕函数与方程、不等式命制探索方程根的个数、不等式的证明、不等式恒成立等问题展开.此类压轴试题难度较大,逻辑推理能力较强,在今后的备考中不可小视.命题法1 利用导数证明不等式问题典例1 已知函数f (x )=e xx e x +1. (1)证明:0<f (x )≤1;(2)当x >0时,f (x )>1ax 2+1,求a 的取值范围. [解] (1)证明:设g (x )=x e x +1,则g ′(x )=(x +1)e x .当x ∈(-∞,-1)时,g ′(x )<0,g (x )单调递减;当x ∈(-1,+∞)时,g ′(x )>0,g (x )单调递增.所以g (x )≥g (-1)=1-e -1>0.又e x >0,故f (x )>0.f ′(x )=e x (1-e x )(x e x +1)2. 当x ∈(-∞,0)时,f ′(x )>0,f (x )单调递增;当x ∈(0,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )≤f (0)=1.综上,有0<f (x )≤1.(2)①若a =0,则x >0时,f (x )<1=1ax 2+1,不等式不成立. ②若a <0,则当0<x <1-a时,1ax 2+1>1,不等式不成立. ③若a >0,则f (x )>1ax 2+1等价于(ax 2-x +1)e x -1>0.(*) 设h (x )=(ax 2-x +1)e x -1,则h ′(x )=x (ax +2a -1)e x .若a ≥12,则当x ∈(0,+∞)时,h ′(x )>0,h (x )单调递增,h (x )>h (0)=0.若0<a <12,则当x ∈⎝ ⎛⎭⎪⎫0,1-2a a 时,h ′(x )<0,h (x )单调递减,h (x )<h (0)=0.不等式不恒成立.于是,若a >0,不等式(*)成立当且仅当a ≥12.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 【解题法】 利用导数证明不等式的方法(1)证明f (x )≥g (x )或f (x )≤g (x ),可通过构造函数h (x )=f (x )-g (x ),将上述不等式转化为求证h (x )≥0或h (x )≤0,从而利用求h (x )的最小值或最大值来证明不等式.(2)关于恒成立问题可以转化为求函数的最值.一般地,f (x )≥a 恒成立,只需f (x )min ≥a 即可;f (x )≤a 恒成立,只需f (x )max ≤a 即可.命题法2 利用导数研究函数的零点问题典例2 已知函数f (x )=4x -x 4,x ∈R .(1)求f (x )的单调区间;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ),求证:对于任意的实数x ,都有f (x )≤g (x );(3)若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-a 3+4 13 .[解] (1)由f (x )=4x -x 4,可得f ′(x )=4-4x 3.当f ′(x )>0,即x <1时,函数f (x )单调递增;当f ′(x )<0,即x >1时,函数f (x )单调递减.所以,f (x )的单调递增区间为(-∞,1),单调递减区间为(1,+∞).(2)证明:设点P 的坐标为(x 0,0),则x 0=4 13 ,f ′(x 0)=-12.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0).令函数F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)·(x -x 0),则F ′(x )=f ′(x )-f ′(x 0).由于f ′(x )=-4x 3+4在(-∞,+∞)上单调递减,故F ′(x )在(-∞,+∞)上单调递减.又因为F ′(x 0)=0,所以当x ∈(-∞,x 0)时,F ′(x )>0,当x ∈(x 0,+∞)时,F ′(x )<0,所以F (x )在(-∞,x 0)上单调递增,在(x 0,+∞)上单调递减,所以对于任意的实数x ,F (x )≤F (x 0)=0,即对于任意的实数x,都有f(x)≤g(x).(3)证明:由(2)知g(x)=-12(x-413).设方程g(x)=a的根为x2′,可得x2′=-a12+413.因为g(x)在(-∞,+∞)上单调递减,又由(2)知g(x2)≥f(x2)=a=g(x2′),因此x2≤x2′.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x.对于任意的x∈(-∞,+∞),有f(x)-h(x)=-x4≤0,即f(x)≤h(x).设方程h(x)=a的根为x1′,可得x1′=a4.因为h(x)=4x在(-∞,+∞)上单调递增,且h(x1′)=a=f(x1)≤h(x1),因此x1′≤x1.由此可得x2-x1≤x2′-x1′=-a3+413.【解题法】利用导数研究零点问题的方法利用导数研究方程根、函数的零点、图象交点问题的常用方法为:通过导数研究函数的单调性、最值、变化趋势等,根据题目的要求得出图象的走势规律,通过数形结合的思想分析问题,使问题的求解清晰、直观的整体展现.命题法3利用导数求解实际生活中的优化问题典例3某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元,设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.[解] (1)设容器的容积为V ,由题意知V =πr 2l +43πr 3, 又V =80π3,故l =V -43πr 3πr 2=803r 2-43r =43⎝ ⎛⎭⎪⎫20r 2-r . 由于l ≥2r ,因此43⎝ ⎛⎭⎪⎫20r 2-r ≥2r , 整理得40r 2≥5r ,故0<r ≤2.所以建造费用y =2πrl ×3+4πr 2c =2πr ×43⎝ ⎛⎭⎪⎫20r 2-r ×3+4πr 2c . 因此y =4π(c -2)r 2+160πr ,0<r ≤2.(2)由(1)得y ′=8π(c -2)r -160πr 2=8π(c -2)r 2⎝ ⎛⎭⎪⎫r 3-20c -2,0<r ≤2. 由于c >3,所以c -2>0,当r 3-20c -2=0时,r =320c -2. 令 320c -2=m ,则m >0, 所以y ′=8π(c -2)r 2(r -m )(r 2+rm +m 2).①当0<m <2,即c >92时,当r =m 时,y ′=0;当r ∈(0,m )时,y ′<0;当r ∈(m,2)时,y ′>0.所以r =m 是函数y 的极小值点,也是最小值点.②当m ≥2,即3<c ≤92时,当r ∈(0,2]时,y ′<0,函数单调递减,所以r =2是函数y 的最小值点.综合所述,当3<c ≤92时,建造费用最小时r =2;当c >92时,建造费用最小时r =320c -2. 【解题法】 利用导数解决实际生活中的优化问题的方法(1)分析实际问题中各变量之间的关系,建立实际问题的数学模型,写出相应的函数关系式y =f (x ).(2)求导数f ′(x ),解方程f ′(x )=0.(3)判断使f ′(x )=0的点是极大值点还是极小值点.(4)确定函数的最大值或最小值,还原到实际问题中作答.一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点.1.设f (x )是定义在R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,则关于x 的函数g (x )=f (x )+1x 的零点个数为( )A .1B .2C .0D .0或2答案 C 解析 由f ′(x )+f (x )x >0,得xf ′(x )+f (x )x>0,当x >0时,xf ′(x )+f (x )>0,即[xf (x )]′>0,函数xf (x )单调递增;当x <0时,xf ′(x )+f (x )<0,即[xf (x )]′<0,函数xf (x )单调递减.∴xf (x )>0f (0)=0,又g (x )=f (x )+x -1=xf (x )+1x ,函数g (x )=xf (x )+1x 的零点个数等价于函数y =xf (x )+1的零点个数.当x >0时,y =xf (x )+1>1,当x <0时,y =xf (x )+1>1,所以函数y =xf (x )+1无零点,所以函数g (x )=f (x )+x -1的零点个数为0.故选C.2.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2014)2f (x +2014)-4f (-2)>0的解集为________.答案 (-∞,-2016)解析 由2f (x )+xf ′(x )>x 2,x <0得2xf (x )+x 2f ′(x )<x 3,∴[x 2f (x )]′<x 3<0.令F (x )=x 2f (x )(x <0),则F ′(x )<0(x <0),即F (x )在(-∞,0)上是减函数,因为F (x +2014)=(x +2014)2f (x +2014),F (-2)=4f (-2),所以不等式(x +2014)2f (x +2014)-4f (-2)>0即为F (x +2014)-F (-2)>0,即F (x +2014)>F (-2),又因为F (x )在(-∞,0)上是减函数,所以x +2014<-2,∴x <-2016.3.已知f (x )=ax -cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.若∀x 1∈⎣⎢⎡⎦⎥⎤π4,π3,∀x 2∈⎣⎢⎡⎦⎥⎤π4,π3,x 1≠x 2,f (x 2)-f (x 1)x 2-x 1<0,则实数a 的取值范围为________. 答案 a ≤-32解析 f ′(x )=a +sin x .依题意可知f (x )在⎣⎢⎡⎦⎥⎤π4,π3上为减函数,所以f ′(x )≤0对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立,可得a ≤-sin x 对x ∈⎣⎢⎡⎦⎥⎤π4,π3恒成立.设g (x )=-sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,π3.易知g (x )为减函数,故g (x )min =-32,所以a ≤-32.4.已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,a 的取值范围是(0,1).5.设a >1,函数f (x )=(1+x 2)e x -a .(1)求f (x )的单调区间;(2)证明:f (x )在(-∞,+∞)上仅有一个零点;(3)若曲线y =f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行(O 是坐标原点),证明:m ≤ 3a -2e -1.解 (1)f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x ≥0,故f (x )是R 上的单调递增函数,其单调增区间是(-∞,+∞),无单调减区间.(2)证明:因为f (0)=(1+02)e 0-a =1-a <0,且f (ln a )=(1+ln 2 a )e ln a -a =(1+ln 2 a )a -a =a ln 2 a >0,由零点存在性定理知,f (x )在(-∞,+∞)上至少有一个零点. 又由(1)知,函数f (x )是(-∞,+∞)上的单调递增函数, 故函数f (x )在(-∞,+∞)上仅有一个零点.(3)证明:设点P (x 0,y 0),由曲线y =f (x )在点P 处的切线与x 轴平行知,f ′(x 0)=0,即f ′(x 0)=(x 0+1)2e x 0=0,(x 0+1)2=0,x 0=-1,即P (-1,2e -1-a ).由点M (m ,n )处的切线与直线OP 平行知,f ′(m )=k OP ,即(1+m )2e m =2e -1-a -0-1-0=a -2e . 由e m ≥1+m 知,(1+m )3≤(1+m )2e m=a -2e , 即1+m ≤ 3a -2e ,即m ≤ 3a -2e -1.6.已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).解 (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞).则F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意.当k >1时,对于x >1,有f (x )<x -1<k (x -1),则f (x )<k (x -1),从而不存在x 0>1满足题意.当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞),则G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x . 由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1. 当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增. 从而当x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x -1), 综上,k 的取值范围是(-∞,1). 7.设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 解 (1)由f (x )=x 22-k ln x (k >0),得 f ′(x )=x -k x =x 2-kx . 由f ′(x )=0,解得x =k .f (x )与f ′(x )在区间(0,+∞)上的情况如下:∞);f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. (2)证明:由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2. 因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e. 当k =e 时,f (x )在区间(1,e]上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.。

函数的零点教案及反思

函数的零点教案及反思

《函数的零点》教案及反思1 教材目标 知识与技能:1、了解函数零点的概念,能够结合具体方程,说明方程的根、函数的零点、函数图象与x 轴的交点三者的关系.2、理解函数零点存有性定理,了解图象不间断的意义及作用. 过程与方法:1、经历“类比—归纳—应用”的过程,感悟由具体到抽象的研究方法,培养归纳概括水平.2、初步体会函数方程思想,能将方程求解问题转化为函数零点问题. 情感、态度与价值观:1、体会函数与方程的“形”与“数”、“动”与“静”、“整体”与“局部”的内在联系.2、体验规律发现的快乐. 2 教材分析本节内容为苏教版《普通高中课程标准实验教科书》必修1第2章《函数与方程》的2.5.1,主要内容为函数零点概念、函数零点与相对应方程根的关系、函数零点存有性定理,是一节概念课.函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带.所以函数与方程在高一乃至整个高中数学教学中占有非常重要的地位.本节课不但为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 3 教学重点函数零点与方程根之间的关系;函数在某区间上存有零点的判定方法. 4 教学难点发现与理解方程的根与函数零点的关系;探究发现函数存有零点的方法. 5 教学结构设计(一)创设情境,以旧带新 1、你会解吗?(1)82=x;(2)x x=2.意图:通过纯粹靠代数运算无法解决的方程,引起学生认知冲突,激起探求的热情. 2、请你填空,探索一元二次方程的根与二次函数图象之间的关系.问题1:从该表你能够得出什么结论?意图:让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系. (二)启发引导,形成概念.问题2:方程的根与函数图象与x 轴交点的横坐标之间有什么关系? 意图:为引出函数零点的概念做准备.问题3:其他的函数与方程之间也有类似的关系吗?请举例.师生互动,在学生提议的基础上,老师加以改善,现场用几何画板展示类似如下函数的图象:1+=x y ,12-=x y ,)3ln(+=x y ,x x y 33-=.比较函数图象与x 轴的交点和相对应方程的根的关系,从而得出一般的结论:方程f (x )=0有几个根,y =f (x )的图象与x 轴就有几个交点,且方程的根就是交点的横坐标.意图:通过各种函数,将结论推广到一般函数,为零点概念做好铺垫.引导学生给出函数零点的定义,并引导学生仔细体会这段文字,感悟其中的思想方法. 概念:对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点.问题4:你能说说方程的根、函数图象与x 轴的交点、函数的零点三者之间的关系吗?(学生讨论,教师补充归纳)说明:①函数零点不是一个点,而是具体的自变量的取值. ②求函数零点就是求方程f (x )=0的根. 即兴练习:函数f (x )=x (x 2-16)的零点为 ( ) A .(0,0),(4,0) B .0,4 C .(–4,0),(0,0),(4,0) D .–4,0,4 设计意图:即时矫正“零点是交点”这个误解.(二)逐层推动,深化概念.讨论:函数的零点与方程的根有什么共同点和区别?(1)联系:①数值上相等:求函数的零点能够转化成求对应方程的根;②存有性一致:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (2)区别:零点对于函数来说,根对于方程来说.以上关系说明:函数与方程有着密切的联系,函数问题有时可转化为方程问题,同样,有些方程问题能够转化为函数问题来求解,这正是函数与方程思想的基础.练习:求下列函数的零点:(1)43)(2++-=x x x f , (2)4lg )(-+=x x x f .意图:(1)使学生熟悉零点的求法(即求相对应方程的实数根),(2)产生认知冲突,激发学生求知欲.引导学生据练习题(2)提出问题:如何判断函数4lg )(++=x x x f 有没有零点? (三)实例探究,归纳定理. 零点存有性定理的探索.问题5:在怎样的条件下,函数y =f (x )在区间[a ,b ]上一定有零点?探究:(1)观察二次函数f (x )=x 2-2x -3的图象: 在区间[-2,1]上有零点______; f (-2)=_______,f (1)=_______,f (-2)·f (1)_____0(“<”或“>”). 在区间(2,4)上有零点______;f (2)·f (4)____0(“<”或“>”).(2)观察函数的图象:①在区间(a ,b )上___(有/无)零点;f (a )·f (b ) ___ 0(“<”或“>”②在区间(b ,c )上___(有/无)零点;f (b )·f (c ) ___ 0(“<”或“>”)③在区间(c ,d )上___(有/无)零点;f (c )·f (d ) ___ 0(“<”或“>”)间有什么关系得出不严密的结论:函数在区间端点处函数值乘积小于0,函数在该区间上有零点.练习:下列函数在相对应区间内是否存有零点? (1)f (x )=log 2x ,x ∈[12,2]; (2)f (x )=e x -1+4x -4,x ∈[0,1];意图:通过简单的练习适合定理的使用.(3)]1,1[,1-∈=x xy . 意图:由该问题发现刚才结论的不严密性.从而培养学生思维的严谨性. 零点存有性定理:如果函数y =f (x )在区间[a ,b ]上的图象是不间断一条曲线,且f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点.(四)正反例证,臧息相辅例1 求证:函数1)(23++=x x x f 在区间)1,2(--上存有零点. 意图:巩固函数零点存有定理.思考:判断函数4lg )(-+=x x x f 是否有零点?若有在哪里?有几个?例2判断下列结论是否准确,若不准确,请使用函数图象举出反例: (1)已知函数y=f (x )在区间[a ,b ]上图象是不间断的,且f (a )·f (b )<0,则f (x )在区间(a ,b )内有且仅有一个零点. ( × )(2)已知函数y=f (x )在区间[a ,b ]上图象是不间断的,且f (a )·f (b )≥0,则f (x )在区间(a ,b )内没有零点.( × )(3)已知函数y=f (x )在区间[a ,b ]满足f (a )·f (b )<0,则f (x )在区间(a ,b )内存有零点. ( × ) 请一位学生板书反例,其他学生补充评析,例如:归纳:定理不能确零点的个数;定理中的“图象不间断”是必不可少的条件;不满足定理条件时依然可能有零点.意图:通过对定理中条件的改变,将几种容易产生的误解正面给出,在第一时间加以纠正,从而促动对定理本身的准确理解.(四)课堂小结,作业布置小结:本节课你学到了什么?除此外,你还有什么收获?作业:书第81页题1、2教后反思本节课自始至终都使用了新课标理念,按照创设情境――组织探索――知识应用的基本模式展开教学,整个课堂显得生机勃勃.1、将教学科研融入教学中,改变学生的学习方式探究式创造性思维教学法是新课程理念下的一个科研课题.本节课就是以这个理论为指导,借助多媒体手段创设问题情境,指导学生研究式学习和体验式学习.如,函数零点与方程根之间的关系是这节课的一个重点,为了突破这一重点,在教学中利用多媒体教学,调动了学生学习的积极性,几何画板画图象,准确、直观、易于学生理解,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验知识的形成过程,变静态教学为动态教学.2、渗透数学思想方法重在平时当学生有一天不再学习数学了,我们给他们留下了什么?我想应该是学生遇到具体问题时那种思考问题的方式,和解决问题的方法.本节课始终是注意数学思想方法和数学探索方式的合理渗透,如特殊一般,数形结合,类比归纳等的交叉运用.3、问题设计合理通过层层深入,由浅入深,由特殊到一般的阶梯式问题,有效的降解了本课的难点,帮助学生实现了思维的腾飞.美中不足的是教学重点不是太突出,零点的引入部分可以简化改进,使之更趋合理,零点存在性定理引入部分略显生硬,应该有更艺术的方式.高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位.函数与方程相联系的观点的建立,函数应用的意识的初步树立,应该是本节课必须承载的重要任务.在这一任务的达成度方面,本课还需更加浓墨重彩的予以突出.另外,课堂上教师怎样引导学生也是值得我深思的一个问题,还有少讲多学方面也是我今后教学中努力的方向.。

第5讲 第3课时 利用导数研究函数的零点

第5讲 第3课时 利用导数研究函数的零点

24
突破核心命题 11拓展提能 12拓展提能 限时规范训练
考 点 三 构造函数法研究函数的零点 例 3 (2021·全国甲卷节选)已知 a>0 且 a≠1,函数 f(x)=axax(a>0).若
曲线 y=f(x)与直线 y=1 有且仅有两个交点,求 a 的取值范围.
解:曲线 y=f(x)与直线 y=1 有且仅有两个交点, 可转化为方程axax=1(x>0)有两个不同的解, 即方程lnx x=lnaa有两个不同的解.
当 x→0+时,h(x)→-∞,当 x→+∞时,h(x)→0, 作出函数 h(x)的图象与直线 y=kx-1 如图所示.
6
突破核心命题 11拓展提能 12拓展提能 限时规范训练
当直线 y=kx-1 与函数 h(x)的图象相切时,设切点坐标为(x0,lnx20x0), 则 k=1-2x30ln x0=lnx20xx00+1,即 3ln x0+x20-1=0,易得 x0=1,∴当直线 y= kx-1 与函数 h(x)的图象相切时,k=1.由图象知,当 0<k<1 时,直线 y=kx -1 与函数 h(x)的图象恰有两个交点,即函数 f(x)恰有两个零点,∴实数 k 的取值范围为(0,1).
11
突破核心命题 11拓展提能 12拓展提能 限时规范训练
当x∈(3,+∞)时,φ′(x)<0.
∴φ(x)在(-∞,3)上单调递增,在(3,+∞)上单调递减,且 φ(x)max=φ(3) =e13,
又 x→+∞时,φ(x)→0, x→-∞时,φ(x)→-∞, ∴φ(x)的图象如图所示.
12
突破核心命题 11拓展提能 12拓展提能 限时规范训练
29
突破核心命题 11拓展提能 12拓展提能 限时规范训练

函数零点与方程的根--集体备课教案 薛树英

函数零点与方程的根--集体备课教案 薛树英
一定在区间(a,b)上。若交点
不在(a,b)上,则它不是函数图象。
设计意图:让学生体验从现实生活中抽象成数学模型时,需要一定修正。加强学生对函数动态的感受,对函数的定义有进一步的理解。
通过上述探究,让学生自己概括出零点存在性定理:
一般地,我们有:
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
2.求下列函数的零点:
(1) (2) ;
(3) (4)
3.求下列函数的零点,图象顶点的坐标,画出各自的简图,并指出函数值在哪些区间上大于零,哪些区间上小于零:
(1) (2) .
4.已知 .
(1) 为何值时,函数的图象与 轴有两个零点;
(2)如果函数至少有一个零点在原点右侧,求 的值.
选做题:设函数 .
例题2求函数 的零点个数.
分析:用计算器或计算机作出x, 的对应值表和图象。
1
2
3
4
5
6
7
8
9
-4.0
-1.3
1.1
3.4
5.6
7.8
9.9
12.1
14.2
由表可知,f(2)<0,f(3)>0,则 ,这说明函数 在区间
(2,3)内有零点。结合函数 的单调
性,进而说明 零点是只有唯一一个.
设计意图:学生应用例题1方法来解决例题2的零点存在性问题,并结合函数的单调性,从图象的直观上去判断零点的个数问题。
设计意图:从现实生活中的问题,让学生体会动与静的关系,系统与局部的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数研究方程的根和函数的零点--教案
利用导数研究方程的根和函数的零点
总结:①方程()0=x f的根()的零点

y=
f
函数x
()轴的交点的恒坐标

f
y=
x
函数x
的图像与
②方程()()x g
f=的根
x
()()的根
f
x
x
h-

=
g
=
x
方程0
-
⇔x
f()()()的零点
x
g
()()。

g
y=
x

=
的图象的交点的横坐标

函数x
f
y
1.设a为实数,函数
()a
3,当a什么范
-
f+
-
=2
x
x
x
x
围内取值时,曲线()x f
y=
与x轴仅有一个交点。

2、已知函数f(x)=-x2+8x,g(x)=6ln x+m
(Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t); (Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。

解:(I)22
=-+=--+
()8(4)16.
f x x x x
当14,t +<即3t <时,
()
f x 在[],1t t +上单调递增,22
()(1)(1)8(1)67;h t f t t t t t =+=-+++=-++
当41,t t ≤≤+即34t ≤≤时,()(4)16;h t f ==当4t >时,()f x 在[],1t t +上单调递减,2
()()8.
h t f t t
t ==-+综上,
2267,3,
()16,34,
8,4t t t h t t t t t ⎧-++<⎪
=≤≤⎨⎪-+>⎩
(II )函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数
()()()x g x f x φ=-的图象与x 轴的正半轴有且只有三
个不同的交点。

22()86ln ,
62862(1)(3)
'()28(0),
x x x x m x x x x x x x x x x
φφ=-++-+--∴=-+==>Q
当(0,1)x ∈时,'()0,()x x φφ>是增函数;当(0,3)x ∈时,
'()0,()x x φφ<是减函数;
当(3,)x ∈+∞时,'()0,()x x φφ>是增函数;
当1,x =或3x =时,'()0.x φ= ()(1)7,()(3)6ln 315.
x m x m φφφφ∴==-==+-最大值最小值
Q
当x 充分接近0时,()0,x φ<当x 充分大时,()0.x φ>

要使()x φ的图象与x 轴正半轴有三个不同的交
点,必须且只须
()70,()6ln 3150,
x m x m φφ=->⎧⎪⎨=+-<⎪⎩最大值最小值 即7156ln3.m <<-所以存在
实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m 的取值范围为(7,156ln 3).- 3、已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4-上的最大值是12。

(I )求()f x 的解析式;
(II )是否存在自然数,m 使得方程37()0f x x +=在区间(,1)m m +内有且只有两个不等的实数根?若存在,求出m 的取值范围;若不存在,说明理由。

恒成立问题:
4:已知函数()()0ln 2
>+-=a a x a x x f 在()∞+,
0满足()0≥x f 恒成立,求a 的取值范围。

5:已知函数
()(),
ln 2,22
x x x g x
a x x f +-=+=其中0>a ,若对于
(),
,0,21+∞∈∀x x
都有()()2
1
x g x f ≥恒成立,求a 的取值范围。

课后练习
2、已知函数3
()31,0
f x x
ax a =--≠
()I 求()f x 的单调区间;
()II 若()f x 在1x =-处取得极值,直线
y=m 与()y f x =的
图象有三个不同的交点,求m 的取值范围。

.解析:(1)'22()333(),f x x a x a =-=-
当0a <时,对x R ∈,有'
()0,f x >
当0a <时,()f x 的单调增区间为(,)-∞+∞ 当0a >时,由'
()0f x >解得x a <x a >
由'
()0f x <解得a x a
<
当0a >时,()f x 的单调增区间为(,),(,)
a a -∞+∞;()f x 的
单调减区间为(,)a a 。

(2)因为()f x 在1x =-处取得极大值, 所以'
2
(1)3(1)
30, 1.
f a a -=⨯--=∴=
所以3
'2()31,()33,
f x x
x f x x =--=-
由'
()0f x =解得1
21,1
x
x =-=。

由(1)中()f x 的单调性可知,()f x 在1x =-处取得极大值(1)1f -=,
在1x =处取得极小值(1)3f =-。

因为直线y m =与函数()y f x =的图象有三个不同的交点,又(3)193f -=-<-,(3)171f =>,
结合()f x 的单调性可知,m 的取值范围是(3,1)-。

3、设函数3
29
()62
f x x
x x a =-+-.
(1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值;
(2)若方程()0f x =有且仅有一个实根,求a 的取值范围.
解:(1) '
2
()3963(1)(2)
f x x
x x x =-+=--,
因为(,)x ∈-∞+∞,'
()f x m ≥, 即 2
39(6)0
x x m -+-≥恒
成立, 所以 8112(6)0m ∆=--≤, 得34m ≤-,即m 的最大值为34
- (2) 因为 当1x <时, '
()0f x >;当12x <<时, '
()0f x <;当2x >时, '
()0f x >;
所以 当1x =时,()f x 取极大值 5(1)2
f a =-; 当2x =时,()f x 取极小值 (2)2f a =-; 故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52
a >.
4、方程0
76223
=+-x x
,在()2,1内根的个数。

相关文档
最新文档