2008年华中科技大学高等代数考研试题
2008年数四 考研数学真题及解析
2008年全国硕士研究生入学统一考试数学四试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设0a b <<,则()10lim nnnn ab--→+( )()A a .()B 1a -. ()C b .()D 1b -.(2)设函数()f x 在区间[1,1]-上连续,则0x =是函数0()()x f t dt g x x=⎰的( )()A 跳跃间断点. ()B 可去间断点.()C 无穷.()D 振荡.(3)设()f x 是连续奇函数,()g x 是连续偶函数,区域{(,)01,D x y x y =≤≤≤≤则正确的( )()A ()()0Df yg x dxdy =⎰⎰.()B ()()0D f x g y d x d y =⎰⎰.()C [()()]0Df xg y dxdy +=⎰⎰.()D [()()]0Df yg x dxdy +=⎰⎰.(4)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分'0()axf x dx ⎰( )()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫⎪-⎝⎭ ()B 2112-⎛⎫ ⎪-⎝⎭ ()C 2112⎛⎫ ⎪⎝⎭()D 1221-⎛⎫⎪-⎝⎭. (7)随机变量,X Y 独立同分布且X 的分布函数为()F x ,则{}max ,Z X Y =的分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)随机变量()0,1X N ,()1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数21,()2,x x cf x x c x ⎧+≤⎪=⎨>⎪⎩在(,)-∞+∞内连续,则c = .(10)已知函数()f x 连续且0()lim2x f x x→=,则曲线()y f x =上对应0x =处切线方程为 . (11)2113ln y dx x xdy =⎰⎰ .(12)微分方程2()0x y x e dx xdy -+-=通解是y = .(13)设3阶矩阵A 的特征值互不相同,若行列式0A =,则A 的秩为 .(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限201sin limln x x x x→. (16) (本题满分10分) 设()()1f x t t x dt =-⎰,01x <<,求()f x 的极值、单调区间和凹凸区间.(17)(本题满分10分)求函数222u x y z =++在在约束条件22z x y =+和4x y z ++=下的最大和最小值.(18)(本题满分10分)设(),z z x y =是由方程()22x y z x y z ϕ+-=++所确定的函数,其中ϕ具有2阶导数且1ϕ'≠-时,求(1)dz (2)记()1,z z u x y x y x y ⎛⎫∂∂=- ⎪-∂∂⎝⎭,求u x ∂∂.(19)(本题满分10分)()f x 是周期为2的连续函数,(1)证明对任意实数都有()()22t tf x dx f x dx +=⎰⎰(2)证明()()()202x t t g x f t f s ds dt +⎡⎤=-⎢⎥⎣⎦⎰⎰是周期为2的周期函数. (20)(本题满分11分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程AX B =,其中()1,,T n X x x = ,()1,0,,0B = ,(1)求证()1nA n a =+(2)a 为何值,方程组有唯一解(3)a 为何值,方程组有无穷多解 (21)(本题满分11分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+,证明(1)123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.(22)(本题满分9分)设随机变量X 与Y 相互独立,X 概率分布为{}()11,0,13P X i i ===-,Y 概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭(2)求Z 的概率密度(23)(本题满分9分)设某企业生产线上产品合格率为0.96,不合格产品中只有34产品可进行再加工且再加工的合格率为0.8,其余均为废品,每件合格品获利80元,每件废品亏损20元,为保证该企业每天平均利润不低于2万元,问企业每天至少生产多少产品?.。
华中科技大学数学分析部分考研真题PDF
b
x
5.设 f n ( x)( n = 1,2,...) 是区间 [a, b] 上的连续函数,当 n → +∞ 时, f n ( x) 在 [a, b] 上 一致收敛于函数 f ( x ) ,每个 f n ( x) 在 [a, b] 上均有零点,证明: f ( x) 在 [a, b] 上 至少有一个零点.
上一致收敛于 f ( x). 证明:至少存在一点 x0 ∈ [a, b], 使得 f ( x0 ) ≥ 0. 二.2005 年数学分析真题
eA − eA 1.设 an > 0 ( n = 1,2,...), ∑ an = 1, An = ∑ ak , 求极限 lim e . n →∞ A − Ae n =1 k =1 n n −1
∞ n
n n −1
2.设 f ( x) 在区间 [0,1] 上有二阶连续导数,f (0) = f (1) = 0, f ′( x) ≤
8 8 , f ′′( x) ≤ , 试给出 5 5
f ( x ) (0 ≤ x ≤ 1) 的一个估计.
3. 设 f ( x ) 在区间 [0,∞ ) 上可微且恒大于零, f (0) = 1,
2.设 f (t ) 为连续函数,证明: 3.设反常积分
1
∫
b
a
dy ∫ ( y − x) n f ( x) dx =
a x →∞
y
1 b (b − x ) n +1 f ( x ) dx. ∫ a n +1
∞ 0
∫
∞
0
f ( x) dx 绝对收敛且 lim f ( x ) = 0, 证明 ∫ f 2 ( x) dx 收敛. x df ( x) 存在且有限,证明: dx
2008年全国硕士研究生入学统一考试数学二真题及答案
(Ⅱ)记 则 可逆,
即 .
【难易度】★★
【详解】
解析:
则 。记 ,则
则 ,正、负惯性指数相同,故选
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(9)已知函数 连续,且 ,则
【答案】2
【考点】等价无穷小
【难易度】★★
【详解】
解析:利用等价无穷小因子替换有
.
(10)微分方程 的通解是 .
【答案】y=Cx-xe-x,其中C为任意常数
2个无穷间断点
2个跳跃间断点
【答案】
【考点】函数间断点的类型
【难易度】★★
Hale Waihona Puke 【详解】解析: 的间断点为 ,而 ,故 是可去间断点;
, ,故 是跳跃间断点
故选 .
(5)设函数 在 内单调有界, 为数列,下列命题正确的是( )
若 收敛,则 收敛. 若 单调,则 收敛.
若 收敛,则 收敛. 若 单调,则 收敛.
【详解】
解析:令
得方程组 即 ,解得 或
得 .
.
(22)(本题满分11分)
设 元线性方程组 ,其中 , , .
(Ⅰ)证明行列式 ;
(Ⅱ)当 为何值时,该方程组有唯一解,求 ;
(Ⅲ)当 为何值时,该方程组有无穷多解,求通解.
【考点】行列式的基本性质,非齐次线性方程组解的判定
【难易度】★★★
【详解】
解析:(Ⅰ)证明:消元法.记
.
(Ⅱ)由克莱姆法则, 时方程组有唯一解,故 时方程组有唯一解.
由克莱姆法则,将 得第一列换成 ,得行列式为
所以, .
(Ⅲ)当 时,方程组为
此时方程组系数矩阵的秩和增广矩阵的秩均为 ,所以方程组有无穷多组解,其通解为 ,其中 为任意常数.
2008—数二真题、标准答案及解析
( B) E − A 不可逆, E + A 可逆.
(C ) E − A 可逆, E + A 可逆.
( D) E − A 可逆, E + A 不可逆.
(8)设
A
=
⎛ ⎜ ⎝
1 2
2 1
⎞ ⎟ ⎠
,则在实数域上与
A
合同的矩阵为(
)
(
A)
⎛ ⎜ ⎝
−2 1
1⎞
−2
⎟ ⎠
.
(
B)
⎛ ⎜ ⎝
2 −1
−1⎞
2
本题的难度值为 0.537.
(6)【答案】 A
【详解】用极坐标得
( ) 所以 ∂F = vf u2 ∂u
本题的难度值为 0.638.
(7) 【答案】 C
∫∫ ( ) ∫ ∫ ∫ ( ) F
u, v
=
D
f
u2 + v2 u2 + v2
dudv =
v
dv
0
u 1
f
(r r
2
)rdr
=v
u 1
f
(r2 )dr
⎟ ⎠
.
(C
)
⎛ ⎜ ⎝
2 1
1⎞
2
⎟ ⎠
.
(
D
)
⎛ ⎜ ⎝
1 −2
−2 ⎞
1
⎟. ⎠
二、填空题:9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.
(9)
已知函数
f
(
x)
连续,且
lim
x→0
1− cos[xf (ex2 −1) f
( x)] (x)
856高等代数考研真题答案08
河南科技大学2008年攻读硕士学位研究生入学考试试题答案及评分标准科目代码: 856 科目名称: 高等代数一、(15分)计算下列各题:1、(5分)已知4阶行列式D 的第3行元素分别为 1,0,2,4-,第4行元素对应的余子式依次是5,10,,4a ,求a 的值。
2、(5分)已知矩阵B A ,满足关系A B AB =-,其中⎪⎪⎪⎭⎫⎝⎛-=200012021B ,求矩阵A 。
3、(5分)设*A 为3阶方阵A 的伴随矩阵,A =2,计算行列式|21)3(|*1A A --。
解:1、因为 31413242334334440a A a A a A a A +++=,(3)L L分这里ij a 和ij A 分别是第i 行第j 列处的元素和该元素的代数余子式,所以有 150102440a -⨯+⨯+⨯-+⨯=(-)(),可得212a =。
(5)L L 分 2、 因为B A AB =-,所以B E B A =-)(,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=-=-20001210211)(1E B B A ,(5)L L 分 3、|21)3(|*1A A --=111||3A A ---=12||3A --=312()||3A --=427-。
(5)L L 分二、(15分)计算)3(≥n n 阶行列式:0111101010n x xD x x x x =L L LM M M OM L。
(注释:该行列式主对角线上元素都是0,第一行和第一列除去第一个位置的元素是0外,其余的都是1,行列式中其余的元素都是x 。
要求写出解题步骤,也可以用语言叙述)。
解(法一):0111101010n x x D x x x x =L L LM M M O M L1(),(2,3,,)i r x r i n ⨯-+=L 0111100100100x x x---L L L M M M O M L(6)L L 分当0x ≠时,再把第j 列的1x倍加到第1列(2,3,,j n =L ),就把n D 化成了上三角行列式 121111000(1)(1)000000n n n n x x D n x x x----==----L LL M M M O M L, (12)L L 分当0x =时,显然有0n D =。
线性代数华中科技大学历年考试试卷及答案
线性代数试卷一、单项选择题(每题3分,共15分)1. 向量组s ααα,,, 21)2(≥s 线性无关,且可由向量组s βββ,,, 21线性表示, 则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α)0(s j ≤≤,向量组s j ββα,,,2线性相关; (C) 存在一个j α)0(s j ≤≤,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。
2. 设三阶矩阵⎪⎪⎪⎭⎫⎝⎛=a b b b a b b b a A ,已知伴随矩阵*A 的秩为1,则必有(A) 02≠+≠b a b a 且; (B) 02=+≠b a b a 且; (C) 02≠+b a b a 或=; (D) 02=+=b a b a 或。
3. 设α是n 维非零实列向量,矩阵T E A αα+=,3≥n ,则___________(A) A 至少有n -1个特征值为1; (B) A 只有1个特征值为1;(C) A 恰有1-n 个特征值为1; (D) A 没有1个特征值为1。
4. ______________)()(,则,且,阶方阵为设B r A r n B A = (A) 0)(=-B A r ; (B) )(2)(A r B A r =+; (C) )(2)(A r B A r =,; (D) )()()(B r A r B A r +≤,。
5. 设A 为n m ⨯实矩阵,n A r =)(,则(A) A A T 必合同于n 阶单位矩阵; (B) T AA 必等价于m 阶单位矩阵;(C) A A T 必相似于n 阶单位矩阵; (D) T AA 是m 阶单位矩阵。
二、填空题(每题3分,共15分)1.已知B A ,为n 阶方阵,1±=λ不是B 的特征值,且E B A AB =--,则=-1A 。
2. 若三阶方阵A 有特征值 2,1,1,则行列式=+*-A A 21 。
2008年数二真题及标准答案及解析
2008年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设2()(1)(2)f x x x x =--,则'()f x 的零点个数为( )()A 0 ()B 1. ()C 2 ()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分()at af x dx ⎰( )()A 曲边梯形ABCD 面积. ()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积。
(3)在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是( ) (5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛。
()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛。
()D 若{}()n f x 单调,则{}n x 收敛。
(6)设函数f 连续,若22(,)uvD F u v =,其中区域uv D 为图中阴影部分,则F∂= (7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵。
若30A =,则( ()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +()C E A -可逆,E A +可逆.()D E A -可逆,E A +(8)设1221A ⎛⎫=⎪⎝⎭,则在实数域上与A 合同的矩阵为( ) ()A 2112-⎛⎫ ⎪-⎝⎭。
()B 2112-⎛⎫ ⎪-⎝⎭。
()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭。
30676 77D4 矔 29252 7244 牄27551 6B9F 殟-25596 63FC 揼:二、填空题:9—14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9) 已知函数()f x 连续,且21cos[()]lim1(1)()x x xf x e f x →-=-,则(0)____f =.(10)微分方程2()0x y x e dx xdy -+-=的通解是____y =。
2008年考研数学二试题答案与解析
(B) E − A 不可逆, E + A可逆. (D) E − A 可逆, E + A不可逆.
[C]
(8)
设
A
=
⎛ ⎜ ⎝
1 2
2 1
⎞ ⎟ ⎠
,则在实数域上与
A
合同的矩阵为
(A)
⎛ −2
⎜ ⎝
1
1 −2
⎞ ⎟ ⎠
.
(B)
⎛2
⎜ ⎝
−1
−1⎞
2
⎟ ⎠
.
(C)
⎛2
⎜ ⎝
1
1⎞
2
⎟ ⎠
.
(D)
⎛1
⎜ ⎝
NBF 辅导,真正为考研人着想的辅导!
由定积分性质,有
m(b
−
a)
≤
b
∫a
f
(
x )dx
≤
M
(b
−
a)
即
m
≤
b
1 −
a
b
∫a
f
(
x)dx
≤
M
由连续函数介值定理可知,至少存在一点η ∈[a,b] ,使得
f
(η
)
=
b
1 −
a
b
∫a
f
( x)dx
即
b
∫a
f
( x)dx
=
f
(η )(b − a)
x = ln (1+ t2 )
dy dx
=
dy
dt dx
=
ln (1+ t2 ) ⋅ 2t
2t
=
(1+ t2 ) ln (1+ t2 )
dt
2008考研数学2真题
文登考研高质量高水平高信誉2008 年研究生入学考试数学二试题及分析一、选择题:1~8 小题,每小题 4 分,共 32 分. 在每小题给出的四个选项中,只有一项符 合题目要求,把所选项前的字母填在题后的括号内. (1)设函数 f ( x ) = x2( x − 1)( x − 2 ) ,则 f ′ ( x ) 的零点个数为[ ](A)0 (B)1 (C)2 (D)3 【分析】先求导函数,然后判断. 【详解】 f ′ ( x ) = 2 x ( x − 1)( x − 2 ) + x2( x − 2 ) + x 2 ( x − 1)= 2 x ( 2 x 2 − 3x + 1) = 2 x ( 2 x − 1)( x − 1) ,则 f ′ ( x ) 的零点个数为 3. 故选(D). 【评注】易看出 f ( x ) 的零点个数为 3,由罗尔定理能得出 f ′ ( x ) 在 ( 0,1) , (1, 2 ) 两区间内 至少有两个零点,又 x = 0 是 f ( x ) 的二重零点,所以 x = 0 是 f ′ ( x ) 的零点. 故选(D). 类似例题见文登强化班讲义《高等数学》第 6 讲【例 15】. (2)如图,曲线段的方程为 y = f ( x ) ,函数 f ( x ) 在区间[0, a ] 上有连续的导数,则定积分 ∫0 xf ′ ( x )dx 等于a(A)曲边梯形 ABOD 的面积 (B)梯形 ABOD 的面积 (C)曲边三角形 ACD 的面积 (D)三角形 ACD 的面积 [ ] 【分析】 先利用分部积分法变换积分, 然后结合定积分的几何 意义即可看出. 【详解】∫a0xf ′ ( x )dx = ∫ xdf ( x ) = af ( a ) − ∫ f ( x )dx ,a a 0 0 a a 0 0而∫ f ( x )dx 表示曲边梯形 OBAD 的面积,故可知 ∫ ∫b axf ′ ( x )dx 应为曲边三角形ACD 的面积,故选(C).【评注】定积分f ( x)dx 表示曲线 y = f ( x) 与直线 x = a, x = b 及 x 轴所围成的曲边梯形 xf ′ ( x )dx = ∫ xdf ( x ) = af ( a ) − ∫ f ( x )dx ,然后才能解出.a a 0 0位于 x 轴上方的图形面积减去位于 x 轴下方的图形面积的差值. 本题必须先利用 分部积分法∫a0本题考查定积分的几何意义和分部积分法,相关结论见 08 版《数学复习指南》 (理—1—文登考研高质量高水平高信誉工类)P77.知识点精讲一(2) 、四(3) ,类似例题见 08 版《数学复习指南》 (理工类)P180 精选习题六 1(5). (3)在下列微分方程中,以 y = C1e + C2 cos 2 x + C3 sin 2 x ( C1 , C2 , C3 是任意常数)为x通解的是 (A) y′′′ + y′′ − 4 y′ − 4 y = 0 (C) y′′′ − y′′ − 4 y′ + 4 y = 0 (B) y′′′ + y′′ + 4 y′ + 4 y = 0 (D) y′′′ − y′′ + 4 y′ − 4 y = 0 [ ]【分析】本题已知微分方程的通解,反求微分方程的形式,一般根据通解的形式分析出特征 值,然后从特征方程入手. 【详解】因为 y = C1e + C2 cos 2 x + C3 sin 2 x ( C1 , C2 , C3 是任意常数)为通解,x所以微分方程的特征值为 1, ±2i . 于是特征方程为 ( λ − 1)( λ − 2i )( λ + 2i ) = 0 ,即λ 3 − λ 2 + 4λ − 4 = 0 .故微分方程为 y′′′ − y′′ + 4 y′ − 4 y = 0 ,故选(D). 【评注】本题考查微分方程解的结构. 因为常系数齐次线性微分方程与其特征方程一一对 应,所以本题的关键是要能够从所给的解中分析出特征方程的根. 完全类似例题见 08 版《数学复习指南》 (理工类)P144【例 5.17】 ,文登强化班讲 义《高等数学》第 7 讲【例 9】【例 10】. ,(4)设函数 f ( x ) =ln x sin x ,则 f ( x ) 有 x −1(A)有 1 个可去间断点,1 个跳跃间断点 (B)有 1 个跳跃间断点,1 个无穷间断点 (C)有两个无穷间断点 (D)有两个跳跃间断点 【分析】利用间断点的定义. 【详解】 f ( x ) =[]ln x sin x 在 x = 0 , x = 1 无定义, x −1 ln x sin x = 0 ,所以 x = 0 为可去间断点; x −1而 lim f ( x ) = limx →0 x →0lim f ( x ) = limx →1ln 1 + x − 1 x −1 sin x = lim sin x , x →1 x →1 x − 1 x −1而 lim +x →1x −1 x −1 sin x = sin1, lim sin x = − sin1 , x →1− x − 1 x −1—2—文登考研高质量高水平高信誉所以 x = 1 为跳跃间断点,故选(A). 【评注】首先确定间断点,然后利用如下的间断点的类型进行判断. 第一类间断点: x = x0 为函数 f ( x) 的间断点,且 lim− f ( x)与 lim+ f ( x) 均存在,则称x → x0 x → x0x = x0 为函数 f ( x) 的第一类间断点. 其中:(1)跳跃型间断点: lim− f ( x) ≠ lim+ f ( x) .x → x0 x → x0(2)可去型间断点: lim− f ( x) = lim+ f ( x) ≠ f ( x0 ) .x → x0 x → x0第二类间断点: x = x0 为函数 f ( x) 的间断点,且 lim− f ( x)与 lim+ f ( x) 之中至少有一个不x → x0 x → x0存在,则称 x = x0 为函数 f ( x) 的第二类间断点. 其中: (1)无穷型间断点: lim− f ( x)与 lim+ f ( x) 至少有一个为 ∞ .x → x0 x → x0(2)振荡型间断点: lim f ( x ) 为振荡型,极限不存在.x → x0本题为常规题型,类似例题见 08 版《数学复习指南》 (理工类)P31【例 1.42】 ,文登 强化班讲义《高等数学》第 1 讲【例 4】. (5)设函数 f ( x ) 在 ( −∞, +∞ ) 内单调有界, { xn } 为数列,下列命题正确的是 (A)若 { xn } 收敛,则 f (C) f 若n({ x }) 收敛n n(B)若 { xn } 单调,则 f (D) f 若n({ x }) 收敛n n则 ({ x }) 收敛, { x } 收敛则 ({ x }) 单调, { x } 收敛[]【分析】利用单调有界数列必收敛. 【详解】若{ xn } 单调,而由题设可知函数 f ( x ) 在 ( −∞, +∞ ) 内单调有界,则 f ({ xn }) 单调有界,故收敛,故选(B) 【评注】本题为基础题型. 定理可见各教材和辅导讲义.(6)设函数 f 连续,若 F ( u , v ) =Duv∫∫f ( x2 + y2 ) x2 + y2dxdy ,其中区域 Duv 为图中阴影不分,则∂F = ∂u—3—文登考研高质量高水平高信誉(A) vf u( )2(B) vf ( u )(C)v v f ( u 2 ) (D) f ( u ) u u[]【分析】本题中二重积分的积分域由图形表示,易联想到需变换为极坐标形式,然后再求偏 导. 【详解】 F ( u , v ) = 所以Duv∫∫2 f ( x2 + y 2 ) v u f (r ) u rdr = v ∫ f ( r 2 ) dr , dxdy = ∫ dθ ∫ 0 1 1 r x2 + y2∂F = vf ( u 2 ) ,故选(A). ∂u【评注】本题考查了二重积分的坐标变换,变上限积分的求导. 类似例题见 08 版《数学复习指南》 (理工类)P310【例 12.11】 ,文登强化班讲义《高 等数学》第 10 讲【例 4】. (7)设 A 为 n 阶矩阵, E 为 n 阶单位矩阵,若 A = O ,则3(A) E − A 不可逆, E + A 不可逆 (C) E − A 可逆, E + A 可逆 【分析】从 A = O 入手.3(B) E − A 不可逆, E + A 可逆 (D) E − A 可逆, E + A 不可逆[]【详解】 A = O ⇒ A + E = E ⇒ ( A + E ) A − A + E = E ,所以 A + E 可逆,3 3 2()A3 = O ⇒ A3 − E = − E ⇒ ( E − A ) ( A2 + A + E ) = E ,所以 E − A 可逆,故选(C). 【评注】也可这么求解:A 是幂零矩阵, 只有零是其特征值, 所以 ±1 不是其特征值, E − A 和 E + A 都可逆 . 故完全类似例题见 08 版《数学复习指南》 (理工类)P367【例 2.27】 ,文登强化班讲 义《线性代数》第 2 讲【例 4】.—4—文登考研高质量高水平高信誉(8)设 A = ⎢⎡1 2⎤ ⎥ ,则在实数域上与 A 合同的矩阵为 ⎣2 1⎦(B) ⎢(A) ⎢⎡ −2 1 ⎤ ⎥ ⎣ 1 −2 ⎦⎡ 2 −1⎤ ⎥ ⎣ −1 2 ⎦ ⎡ 1 −2 ⎤ ⎥ ⎣ −2 1 ⎦[ ](C) ⎢⎡2 1⎤ ⎥ ⎣1 2⎦(D) ⎢【分析】实对称矩阵必可对角化,求出题中每个矩阵的特征值,然后根据实对称矩阵合同的 充要条件是对应的二次型有相同的正负惯性指数进行判断. 【详解】因为 A = ⎢⎡1 2⎤ T 为实对称矩阵, A 的特征值为 −1,3 , x Ax 的正负惯性指数为 1, 2 1⎥ ⎣ ⎦1; ⎢⎡ 2 −1⎤ ⎡2 1⎤ ⎡ −2 1 ⎤ 的特征值为 −1, −3 ; ⎢ 的特征值为 1,3 ; ⎢ ⎥ ⎥ ⎥ 的特征值为 −1, −3 , ⎣ 1 −2 ⎦ ⎣ −1 2 ⎦ ⎣1 2⎦⎡ 1 −2 ⎤ ⎢ −2 1 ⎥ 的特征值为 −1,3 ;故选(D). ⎣ ⎦【评注】本题为基础题型. 完全类似例题见《数学复习指南》 (理工类)P454【例 6.1】. 二、填空题:9~14 小题,每小题 4 分,共 24 分. 把答案填在题中横线上. (9)已知函数 f ( x ) 连续,且 lim1 − cos ⎡ xf ( x ) ⎤ ⎣ ⎦ = 1 ,则 f 0 = __________. ( ) x2 x →0 e −1 f ( x)()【分析】利用等价无穷小代换及函数 f ( x ) 的连续性即可.1 2 2 x f ( x) 1 − cos ⎡ xf ( x ) ⎤ 1 1 ⎣ ⎦ = 1 = lim 2 【详解】 1 = lim = lim f ( x ) = f ( 0 ) , 2 x2 x →0 x →0 x →0 2 2 x f ( x) e −1 f ( x)()则 f ( 0) = 2 . 【评注】 本题已知极限和函数的连续性,求函数点的值,为基础题型. 类似例题见 08 版《数学复习指南》 (理工类)P31【例 1.43】. (10)微分方程 y + x e(2 −x) dx − xdy = 0 的通解是______.【分析】本题变换后可为全微分方程. 【详解】 y + x e(2 −x) dx − xdy = 0 ,即( ydx − xdy ) + x 2e− x dx = 0 ,—5—文登考研高质量高水平高信誉当 x ≠ 0 时,ydx − xdy − x y ⎛ y⎞ + e dx = 0 ⇒ d ⎜ − ⎟ − d ( e− x ) = 0 ⇒ − − e − x = −C 2 x x ⎝ x⎠−x即 y = x C−e(). (−x显然 x = 0, y = 0 满足微分方程,且满足上述解,故所求通解为 y = x C − e 【评注】本题为基础题型. 类似例题见 08 版《数学复习指南》 (理工类)P135【例 5.11】. (11)曲线 sin ( xy ) + ln ( y − x ) = x 在点 ( 0,1) 的切线方程为__________. 【分析】本题实质上为隐函数方程求导. 【详解】 sin ( xy ) + ln ( y − x ) = x 两边对 x 求导得).cos ( xy )( y + xy′ ) +y′ − 1 = 1 ,则 y′ y−x( 0,1)= 1 ,所以切线方程为y − 1 = x ,即 y = x + 1 .【评注】注意隐函数求导时记住 y 是 x 的函数. 类似例题见 08 版《数学复习指南》P48(理工类) 【例 2.20】 ,精选习题二 1(9). (12)函数 f ( x ) = ( x − 5 ) x 的拐点坐标为________. 【分析】利用判断拐点的充分条件求解. 【详解】 f ′ ( x ) = ( x − 5 ) x 3 =2 2 35 2 10 − 1 x3 − x 3 , 3 3f ′′ ( x ) =10 − 1 10 − 4 10 − 4 x 3 + x 3 = x 3 ( x + 1) . 9 9 910 − 1 ⎛ 1 ⎞ x 3 ⎜1 + ⎟ = 0 ,得 x = −1 9 ⎝ x⎠令 f ′′ ( x ) =f ′′ ( x )x =0⎛ 10 − 1 10 − 4 ⎞ =⎜ x 3 + x 3⎟ 9 ⎝9 ⎠x =0不存在.f ′′ ( x ) 经过 x = 0 时不变号,而经过 x = −1 时由负变正,且 f ( −1) = −6故拐点坐标为 −1, f ( −1) ,即 ( −1, −6 ) . 【评注】拐点的判别定理 1 若在点 x0 处有 f ′′( x0 ) = 0(或 f ′′( x0 ) 不存在) ,当 x 经过 x0 时,()—6—文登考研高质量高水平高信誉f ′′( x) 变号,则 ( x0 , f ( x0 )) 为函数 y = f ( x) 的图形的拐点.拐点的判别定理 2 设函数 f ( x ) 在 x0 的某邻域内有三阶导数,且 f ′′( x0 ) = 0 ,f ′′′( x0 ) ≠ 0 ,则 ( x0 , f ( x0 )) 为函数 y = f ( x) 的图形的拐点.本题为基础题型,类似例题见 08 版《数学复习指南》 (理工类)P167【例 6.30】.x∂z ⎛ y ⎞y (13)已知 z = ⎜ ⎟ ,则 ∂x ⎝x⎠x ⎛ y⎞ ln ⎜ ⎟ y ⎝ x⎠(1,2 )=【分析】本题求幂指函数的偏导数,应先对数化处理,然后再求偏导.【详解】∂z ∂x(1,2 )=∂e∂x(1,2 )⎧ ⎡ ⎤⎫ y ⎪ x ln ⎛ x ⎞ ⎢ 1 ⎛ y ⎞ x 1 ⎛ y ⎞ ⎥ ⎪ ⎜ ⎟ ⎪ ⎪ = ⎨e y ⎝ ⎠ ⋅ ⎢ ln ⎜ ⎟ + ⋅ − y ⎜ x2 ⎟⎥ ⎬ ⎝ ⎠⎥ ⎪ ⎪ ⎢y ⎝ x⎠ y ⎪ x ⎣ ⎦⎪ ⎩ ⎭(1,2 )=2 ( ln 2 − 1) . 2【评注】多元函数对一个变量求偏导时,需将其他变量看作常数. 类似例题见 08 版《数学复习指南》 (理工类)P236【9.6】 【例 9.10】. (14) 阶矩阵 A 的特征值是 2,3, λ , 3 其中 λ 未知, 若行列式 2 A = −48 , λ = 则 【分析】因为 A = 2 ⋅ 3 ⋅ λ ,联合 2 A = −48 可解出. 【详解】 2 A = −48 ⇒ 2 A = 8 ⋅ λ ⋅ 2 ⋅ 3 = −48 ⇒ λ = −1 .3.【评注】本题利用行列式求特征值.. 类似例题见 08 版《数学复习指南》 (理工类)P446【例 5.25】 ,文登强化班讲义《线 性代数》第 5 讲【例 16】.三、解答题:15~23 小题,共 94 分. 解答应写出文字说明、证明过程或演算步骤. (15) (本题满分 9 分) 求极限 lim⎡sin x − sin ( sin x ) ⎤ sin x ⎣ ⎦ . x →0 x4 ⎡sin x − sin ( sin x ) ⎤ sin x sin x − sin ( sin x ) ⎣ ⎦ = lim x →0 x →0 x4 x3—7—【分析】利用等价无穷小代换和洛必达法则即可. 【详解】 lim文登考研高质量高水平高信誉= limcos x − cos ( sin x ) ⋅ cos x x →0 3x 2cos x ⎡1 − cos ( sin x ) ⎤ ⎣ ⎦ 3x 2= limx →01 2 sin x 1 − cos ( sin x ) 1 = lim = lim 2 2 = . 2 x →0 x →0 3x 3x 6【评注】本题为基础题型. 类似例题见 08 版《数学复习指南》 (理工类)P25【例 1.24】 ,文登强化班讲义《高 等数学》第 1 讲【例 17】. (16) (本题满分 10 分)⎧ x = x (t ) ⎪ 设函数 y = y ( x ) 由参数方程 ⎨ 确定,其中 x ( t ) 是初值问题 t2 ⎪ y = ∫0 ln (1 + u ) du ⎩⎧ dx −x d2 y ⎪ − 2te = 0 dt 的解,求 2 . ⎨ dx ⎪ x t =0 = 0 ⎩ ⎧ dx −x ⎪ − 2te = 0 求出 x ( t ) ,然后利用参数方程的求导公式求解. 【分析】先根据 ⎨ dt ⎪ x t =0 = 0 ⎩【详解】由dx − 2te− x = 0 得 e x dx = 2tdt , 积 分 并 由 条 件 x dtt =0= 0 , 得 ex = 1 + t 2 , 即x = ln (1 + t 2 ) .dy 2 dy dt ln (1 + t ) ⋅ 2t = = = (1 + t 2 ) ln (1 + t 2 ) , 2t dx dx dt 1+ t2 d 2 y d ⎛ dy ⎞ d ⎛ dy ⎞ 1 = ⎜ ⎟ = ⎜ ⎟⋅ dx 2 dx ⎝ dx ⎠ dt ⎝ dx ⎠ dx dt= d ⎡(1 + t 2 ) ln (1 + t 2 ) ⎤ ⎣ ⎦ dx dt—8—文登考研高质量高水平高信誉2t ln (1 + t 2 ) + 2t = = (1 + t 2 ) ⎡ ln (1 + t 2 ) + 1⎤ . ⎣ ⎦ 2t 1+ t2【评注】本题为一道参数方程求导和一阶微分方程求解的综合题. 求d2 y 时要注意 dx 2d 2 y d ⎛ dy ⎞ d ⎛ dy ⎞ 1 . = ⎜ ⎟ = ⎜ ⎟⋅ dx 2 dx ⎝ dx ⎠ dt ⎝ dx ⎠ dx dt类似例题见 08 版《数学复习指南》 (理工类)P45【例 2.11】 ,文登强化班讲义《高等 数学》第 7 讲【例 15】. (17) (本题满分 9 分) 求积分∫1x 2 arcsin x01 − x2dx .【分析】本题需做变量代换 arcsin x = t . 【详解】由于 lim −x →1x 2 arcsin x1 − x2= +∞ ,故 ∫ ⎡ π⎞ ⎟. ⎣ 2⎠1x 2 arcsin x01 − x2dx 是反常积分.令 arcsin x = t ,有 x = sin t , t ∈ ⎢ 0,∫1x 2 arcsin x01 − x2dx = ∫π2 0t sin 2 t cos tdt cos t1 − cos 2t t2 dt = 2 4 t sin 2t 4π2 0= ∫2t⋅0ππ2 0−1 π ∫02 t ⋅ d sin 2t 4=π216−+1 π 2 sin 2tdt 4 ∫0cos 2t = − 16 8π2π2 0=π216+1 . 4【评注】本题虽然是一道反常积分,但由于无穷间断点在端点,所以可按通常定积分求解. 类似例题见 08 版《数学复习指南》 (理工类)P80【例 3.27】 ,文登强化班讲义《高等 数学》第 5 讲【例 15】.(18) (本题满分 11 分)—9—文登考研高质量高水平高信誉计算∫∫ max ( xy,1) dxdy ,其中 D = {( x, y ) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2} .D【分析】被积函数为 max ( xy ,1) ,为非初等函数,实质为求分区域积分. 【详解】曲线 xy = 1 将区域 D 分成如图所示的两个区域 D1 和 D2 .∫∫ max ( xy,1) dxdyD= ∫∫ xydxdy + ∫∫ dxdyD1 D2= ∫1 dx ∫1 xydy + ∫ 2 dx ∫ dy + ∫1 dx ∫ x dy2x2212210020=15 19 − ln 2 + 1 + 2 ln 2 = + ln 2 . 4 4【评注】 对分段函数 max { x, y} , min { x, y} 及带绝对值符号的被积式须将积分域 D 作分析 处理. 完全类似例题见 08 版《数学复习指南》 (理工类)第一篇第十章【例 10.4】 ,文登强 化班讲义《高等数学》第十讲【例 12】 (19) (本题满分 11 分) 设 f ( x ) 是区间 [ 0, +∞ ) 上具有连续导数的单调增加函数,且 f ( 0 ) = 1 . 对任意的t ∈ [ 0, +∞ ) ,直线 x = 0, x = t ,曲线 y = f ( x ) 以及 x 轴所围成的曲边梯形绕 x 轴旋转一周生成一旋转体. 若该旋转体的侧面面积在数值上等于其体积的 2 倍,求函数 f ( x ) 的表达式. 【分析】 本题为微分方程的应用题, 需先利用平面图形绕坐标轴旋转后所得的旋转体的体积 和表面积公式列出方程,然后求解. 【详解】旋转体的体积 V = π 条件知∫t0f 2 ( x ) dx ,侧面积 S = 2π ∫ f ( x ) 1 + f ′2 ( x )dx ,由题设t0∫t0f 2 ( x ) dx = ∫ f ( x ) 1 + f ′ 2 ( x ) d x ,t0上式两端对 t 求导得 f 由分离变量法解得2(t ) = f (t )1 + f ′2 ( t ) ,即 y′ = y 2 − 1 .ln y + y 2 − 1 = t + C1 ,即 y+()y 2 − 1 = Ce t—10—文登考研高质量高水平高信誉将 y ( 0 ) = 1 代入知 C = 1 ,故 y + 于是所求函数为 y = f ( x ) =y 2 − 1 = et , y =1 t −t (e + e ) , 21 x −x (e + e ) . 2【评注】由曲线 y = f ( x) > 0 和直线 x = a, x = b 及 x 轴围成的图形 (1) 绕 x 轴旋转一周所成的旋转体的体积为: Vx = π∫bbaf 2 ( x)dx ;侧面积公式为S = 2π ∫ f ( x ) 1 + f ′2 ( x )dx .b a(2) 绕 y 轴旋转一周所成的旋转体的体积为: Vy = 2π∫axf ( x)dx .类似例题见 08 版《数学复习指南》 (理工类)P176【例 6.45】 ,精选习题六 3(4),文 登强化班讲义《高等数学》第 6 讲【例 3】 【例 4】.(20) (本题满分 11 分) (Ⅰ)证明积分中值定理:若函数 f ( x ) 在闭区间 [ a, b ] 上连续,则至少存在一点ξ ∈ [ a, b ] ,使得∫ f ( x ) dx = f (η )( b − a ) .b a(Ⅱ)若函数 ϕ ( x ) 具有二阶导数,且满足 ϕ ( 2 ) > ϕ (1) , ϕ ( 2 ) > 一点 ξ ∈ (1,3) 使得 ϕ ′′ (ξ ) < 0 .∫ ϕ ( x )dx ,则至少存在3 2【分析】 (Ⅰ)利用闭区间上连续函数的介值定理; (Ⅱ)利用(Ⅰ)的结论及拉格朗日中值 定理证明. 【详解】 (Ⅰ)设 M 和 m 分别是 f ( x ) 在区间 [ a, b ] 上的最大值和最小值,则有m ( b − a ) ≤ ∫ f ( x ) dx ≤ M ( b − a ) ,b a不等式各除以 b − a ,得m≤1 b f ( x ) dx ≤ M , b − a ∫a根据闭区间上连续函数的介值定理,在 [ a, b ] 至少存在一点η ,使得f (η ) =1 b f ( x ) dx ,两端各乘以 b − a ,即得 b − a ∫a∫ f ( x ) dx = f (η )( b − a ) .b a(Ⅱ)由(Ⅰ)的结论,可知至少存在一点η ∈ [ 2,3] ,使得—11—文登考研高质量高水平高信誉∫ ϕ ( x )dx = ϕ (η )( 3 − 2 ) = ϕ (η ) .3 2又由 ϕ ( 2 ) >∫ ϕ ( x )dx = ϕ (η ) 知, 2 < η ≤ 3 .3 2对 ϕ ( x ) 在 [1, 2] 和 [1, 2] 上 分 别 应 用 拉 格 朗 日 中 值 定 理 , 并 注 意 到 ϕ (1) < ϕ ( 2 ) ,ϕ (η ) > ϕ ( 2 ) ,得ϕ ′ (ξ1 ) =ϕ ′ (ξ 2 ) =ϕ ( 2 ) − ϕ (1)2 −1> 0 , 1 < ξ1 < 2 ,ϕ (η ) − ϕ ( 2 ) < 0 , 2 < ξ2 < η ≤ 3 . η −1在 [ξ1 , ξ 2 ] 上对导函数 ϕ ′ ( x ) 应用拉格朗日中值定理,有ϕ ′′ (ξ ) =ϕ ′ (ξ 2 ) − ϕ ′ (ξ1 ) < 0 , ξ ∈ (ξ1 , ξ 2 ) ⊂ (1,3) . ξ 2 − ξ1【评注】 (Ⅰ)为教材中定理,证明教材中均有; (Ⅱ)中证明 ϕ ′′ (ξ ) < 0 需两次运用拉格朗日中值定理. 类似例题见 08 版《数学复习指南》 (理工类)P317【例 12.26】 ,文登强化班讲义《高 等数学》第 8 讲§2【例 2】.(21) (本题满分 11 分) 求函数 u = x + y + z 在约束条件 z = x + y 和 x + y + z = 4 下的最大值和最小值.2 2 2 2 2【分析】本题求多元函数的条件最值,利用拉格朗日乘数法求解. 【详解】设 F ( x, y, z; λ , µ ) = x + y + z + λ x + y − z + µ ( x + y + z − 4 ) ,2 2 2 2 2()⎧∂F ⎪ ∂x = 2 x + 2λ x + µ = 0 ⎪ ⎪ ∂F 令⎨ = 2 y + 2λ y + µ = 0 联合 z = x 2 + y 2 , x + y + z = 4 可解得 ⎪ ∂y ⎪ ∂F = 2z − λ + µ = 0 ⎪ ⎩ ∂x—12—文登考研高质量高水平高信誉⎧ x = −2 ⎧ x = 1 ⎪ ⎪ ⎨ y = −2 , ⎨ y = 1 ⎪z = 8 ⎪z = 2 ⎩ ⎩而 x +y +z2 2(2)(−2, −2,8 )= 72 , ( x 2 + y 2 + z 2 )(1,1,2 )=6.故所求的最大值为 72,最小值为 6. 【评注】 类似例题见 08 版《数学复习指南》 (理工类)P253【例 9.36】 ,文登强化班讲义《高 等数学》第 8 讲【例 17】.(22) (本题满分 12 分) 设 n 元线性方程组 Ax = b ,其中⎡ 2a 1 ⎢ a 2 2a ⎢ 矩阵 A = ⎢ ⎢ ⎢0 0 ⎢0 0 ⎣0⎤ 0 0⎥ ⎥ ⎥ , x = ( x1 , x2 , ⎥ 2a 1 ⎥ a 2 2a ⎥ n×n ⎦ 0n, xn ) , b = (1, 0,T, 0) ,(Ⅰ)证明行列式 A = ( n + 1) a ; (Ⅱ)当 a 为何值时,该方程组有惟一解,并求 x1 ; (Ⅲ)当 a 为何值时,该方程组有无穷多解,并求通解. 【分析】 (Ⅰ)为 n 阶行列式的求解,可利用递推法; (Ⅱ) (Ⅲ)利用通常的方法.2a 1 a 2 2a【详解】 (Ⅰ) Dn = A =0 00 0 = 2aDn −1 − a 2 Dn − 2 .0 00 02a 1 a 2 2a现用数学归纳法证明.n = 2 时, D2 =2a 1 = 3a 2 = ( 2 + 1) a 2 . 2 a 2ak假设 n ≤ k 时, Dk = ( k + 1) a , 则 n = k + 1 时,有.Dk +1 = 2aDk − a 2 Dk −1= 2a ( k + 1) a k − a 2 ka k −1 = ( k + 2 ) a k +1 ,综上可得, A = ( n + 1) a .n—13—文登考研高质量高水平高信誉(Ⅱ) A = ( n + 1) a ≠ 0 ,即 a ≠ 0 时,方程组有惟一解,设将 A 的第一列用 b 替换后所n得矩阵为 A1 ,根据克莱姆法则可得A1 Dn −1 na n −1 n . x1 = = = = n n A (n + 1)a (n + 1)a ( n + 1) a(Ⅲ)当 a = 0 时,方程组有无穷多解. 此时⎡0 ⎢0 ⎢ A=⎢ ⎢ ⎢0 ⎢0 ⎣1 0 0 00 0 0 00⎤ ⎧ x2 = 0 0⎥ ⎪x = 0 ⎥ ⎪ ⎥ ,则 Ax = 0 的同解方程组为 ⎨ 3 . ⎥ ⎪ 1⎥ ⎪ xn = 0 ⎩ 0 ⎥ n×n ⎦ , 0) .T易求得 Ax = 0 的基础解系为 (1, 0,⎡0 1 ⎡0⎤ ⎢ ⎢1 ⎥ ⎢ 0 0 因为 A ⎢ ⎥ = ⎢ ⎢ ⎥ ⎢ ⎢ ⎥ ⎢0 0 ⎣0⎦ ⎢ ⎣0 0 从而 Ax = b 的通解为 x = k (1, 0,T0 0 0 0 , 0 ) + ( 0,1,0⎤ ⎡ 0 ⎤ ⎡1 ⎤ ⎡0⎤ 0⎥ ⎢ ⎥ ⎢ ⎥ ⎢1 ⎥ ⎥ 1 0 ⎥ ⎢ ⎥ = ⎢ ⎥ ,所以 ⎢ ⎥ 是 Ax = b 的特解, ⎢ ⎥ ⎥ ⎢ ⎥ ⎢ ⎥ 1⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣0⎦ ⎣0⎦ ⎣0⎦ 0 ⎥ n×n ⎦ , 0 ) ,其中 k 为任意常数.T【评注】n 阶方阵的求解见 08 版《数学复习指南》 (理工类)P346【例 1.18】 ,方程组求解 类似例题见《数学复习指南》 (理工类)P411【例 4.9】 ,文登强化班讲义《线性代数》第 4 讲【例 4】. (23) (本题满分 10 分) 设 A 为 3 阶矩阵,α1 , α 2 为 A 的分别属于特征值 −1,1 的特征向量,向量 α 3 满足Aα 3 = α 2 + α 3 ,(Ⅰ)证明: α1 , α 2 , α 3 线性无关. (Ⅱ)令 P = (α1 , α 2 , α 3 ) ,求 P AP .−1【分析】 (Ⅰ)利用线性无关的定义; (Ⅱ)利用题设条件将 A (α1 , α 2 , α 3 ) 变换成矩阵乘积—14—文登考研高质量高水平高信誉⎡ −1 0 0 ⎤ ⎢ ⎥ 的形式,即 A (α1 , α 2 , α 3 ) = ( Aα1 , Aα 2 , Aα 3 ) = (α1 , α 2 , α 3 ) 0 1 1 . ⎢ ⎥ ⎢ 0 0 1⎥ ⎣ ⎦【详解】 (Ⅰ)由题设可知,向量 α1 , α 2 是属于 A 的特征值 −1,1 的特征向量,则 α1 , α 2 线性 无关, 且 Aα1 = −α1 , Aα 2 = α 2 . 假设存在数 k1 , k2 , k3 ,使得 k1α1 + k2α 2 + k3α 3 = 0 , 则等式两边乘以 A ,可得 ①A ( k1α1 + k2α 2 + k3α 3 ) = k1 Aα1 + k2 Aα 2 + k3 Aα 3 = − k1α1 + k2α 2 + k3 (α 2 + α 3 ) = − k1α1 + ( k2 + k3 ) α 2 + k3α 3 = 0②①-② 2k1α1 − k3α 2 = 0 ,因为 α1 , α 2 是 A 的分别属于不同特征值的特征向量,所以 α1 , α 2 线性无关,从而 k1 = k3 = 0 ,代入①式可得 k2α 2 = 0 ,又由于 α 2 ≠ 0 ,所以 k2 = 0 , 故 α1 , α 2 , α 3 线性无关. (Ⅱ)令 P = (α1 , α 2 , α 3 ) ,则 P = (α1 , α 2 , α 3 ) 可逆.⎡ −1 0 0 ⎤ ⎢ ⎥ 因为 A (α1 , α 2 , α 3 ) = ( Aα1 , Aα 2 , Aα 3 ) = (α1 , α 2 , α 3 ) 0 1 1 , ⎢ ⎥ ⎢ 0 0 1⎥ ⎣ ⎦ ⎡ −1 0 0 ⎤ ⎢ ⎥ 所以 P AP = 0 1 1 . ⎢ ⎥ ⎢ 0 0 1⎥ ⎣ ⎦−1【评注】抽象的向量线性无关的证明一般用定义. 类似例题见 08 版《数学复习指南》 (理工类)P380【例 3.5】 【例 3.6】 ,文登强化 班讲义《线性代数》第 3 讲【例 4】【例 14】. ,—15—。
高等代数考研试题及答案
高等代数考研试题及答案一、选择题(每题3分,共30分)1. 下列矩阵中,哪个不是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [1, -1; 2, 2]2. 设线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) 由矩阵 \( A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) 给出,那么 \( T(1, 2, 3) \) 的结果是:A. (3, 5, 3)B. (5, 3, 3)C. (1, 2, 3)D. (2, 3, 1)3. 多项式 \( p(x) = x^3 - 6x^2 + 11x - 6 \) 的根的个数是:A. 1B. 2C. 3D. 44. 设 \( V \) 是所有 \( n \) 次多项式的向量空间,\( T: V\rightarrow V \) 是一个线性变换,且 \( T(p(x)) = p'(x) \)。
如果 \( T \) 的特征值为 \( k \),那么 \( k \) 等于:A. 0B. 1C. -1D. \( n \)5. 下列哪个命题是正确的?A. 每个线性映射都可以用一个矩阵来表示。
B. 矩阵的乘积总是可交换的。
C. 两个相似矩阵必定是同阶矩阵。
D. 行列式的值总是正数或零。
6. 设 \( A \) 是一个 \( n \) 阶方阵,如果 \( A \) 的所有特征值的和等于 \( 0 \),那么 \( A \) 必定是:A. 正交矩阵B. 对角矩阵C. 零矩阵D. 反对称矩阵7. 如果一个 \( n \) 阶方阵 \( A \) 的所有元素都等于 \( 1 \),那么 \( A^n \) 的迹(trace)是:A. \( n \)B. \( n^n \)C. \( n! \)D. \( 0 \)8. 对于任意 \( n \) 阶方阵 \( A \),下列哪个选项是正确的?A. \( \det(A^2) = (\det A)^2 \)B. \( \det(A^T) = \det A \)C. \( \det(A + I) = \det A + 1 \)D. \( \det(A) = \det(A^T) \)9. 设 \( V \) 是一个向量空间,\( T: V \rightarrow V \) 是一个线性变换,如果 \( T \) 的一个特征向量 \( v \) 满足 \( T(v) = \lambda v \),那么 \( T \) 的逆变换 \( T^{-1} \)(如果存在)将 \( v \) 映射到:A. \( \lambda^{-1} v \)B. \( \frac{1}{\lambda} v \)C. \( v \)D. \( v + \lambda v \)10. 下列哪个矩阵是正交矩阵?A. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)B. \( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \)D. \( \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \)二、填空题(每题4分,共20分)11. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det A \) 等于 _______。
华中科技大学历年考研真题
华中科技大学数学系数学分析1997,2000——2007(2004有答案)数值分析1999,2001——2002高等代数1997——2002,2004——2007概率统计2001——2002综合课程(应用数学、计算数学、概率统计专业)2003C语言程序设计(数学系计算数学专业)2002常微分方程2001——2002数理方程与泛函分析2001——2002专业英语翻译(概率论与数理统计、应用数学、计算数学专业)2006物理系数学(含高等数学线性代数)(物理系各专业)2007数学(物理类)2001,2003——2006数学(工科)(单考)2005数学(工科各专业)2003数学(理、工科类)(单)2002数学(单考)(工科各专业)2004数学(理工科)2006数学(理工类)(单考)2007高等数学(物理系)2002量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007统计物理2001——2002电动力学2001力学与电磁学2001——2004化学系物理化学2000——2007(2000——2002有答案)化学综合2007化工基础2007生物化工基础2007有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002机械科学与工程学院机械设计1997——2002(1997——2001有答案)机械设计基础2002——2007机械原理1999——2002机械原理及机械零件2001液压传动2000——2002液压流体力学2000——2001画法几何与机械制图2001机械工程控制基础2006信号与线性系统1996——2002,2006——2007(1997有答案)信号与系统2002——2006控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007电子技术基础(测试计量技术及仪器专业)2001电子技术基础(电磁场与微波技术、电路与系统、电力电子与电力传动、微电子学与固体电子学、半导体芯片系统与工艺、软件工程、模式识别与智能系统、信息安全、光学工程、光电信息工程、物理电子学、机械工程、仪器科学与技术专业)2007电子技术基础(电机与电器、电力电子与电力传动、微电子学与固体电子学、动力机械及工程、轮机工程、车辆工程专业)2000电子技术基础(电机与电器、电力电子与电力传动专业)1999电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电气学院各专业、模式识别、精密仪器、测试计量、光学工程、物理电子学、微电子学专业)2002电子技术基础(光学工程、物理电子学、固体力学、流体力学、微电子学与固体电子学、模式识别与智能系统专业)1999电子技术基础(光学工程、物理电子学、光电信息工程、机械学院各专业)2005 电子技术基础(光学工程、物理电子学、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程专业)2004电子技术基础(光学仪器、物理电子学与光电子学、固体力学、流体力学、电子材料与元器件、模式识别与智能控制、内燃机、汽车设计制造专业)1998电子技术基础(光学仪器、物理电子学与光电子学、固体力学、汽车设计制造、电子材料与元器件、模式识别与智能控制、内燃机专业)1997电子技术基础(化工过程机械专业)2005——2006电子技术基础(精密仪器及机械专业)2003电子技术基础(轮机工程、车辆工程、精密仪器及机械、测试计量技术及仪器专业)2005电子技术基础(生物医学工程、生物物理学、生物材料与组织工程专业)2005——2006电子技术基础(生物医学工程、生物物理学专业)2003——2004电子技术基础(生物医学工程专业)2002电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2005电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2006电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2003电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2004电子技术基础(物理电子学、光信息科学与技术、光学工程专业)2006电子技术基础(物理电子学、光学工程、模式识别与智能系统、流体力学专业)2000电子技术基础(物理电子学、光学工程、模式识别与智能系统专业)2001电子技术基础(物理电子学与光电子学专业)1995数据结构1999——2001,2006——2007数据结构及程序设计技术2004——2006数据结构与算法分析2006——2007数据库系统原理1996——2002,2004计算机组成原理(计算机科学与技术、模式识别与智能系统、机械工程、仪器科学与技术、建筑技术科学专业)1992——2002,2006——2007(另有模拟试题一份)计算机组成原理(生物医学工程、生物信息技术专业)2007C语言程序设计(计算机软件与理论专业)2001——2002操作系统1995——2002程序设计基础1995——2002程序设计语言及编译1999——2002互换性与技术测量2000——2007工业设计史2004——2005工业设计史论2006——2007工业设计综合考试2004——2007微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(含C语言程序设计、数据结构)(计算机应用技术专业)2001综合考试(含计算机系统结构、计算机网络、数据结构)(计算机系统结构专业)2002综合考试(计算机应用技术专业)(数据结构、C语言程序设计)1999——2001 通信原理(电路与系统、通信与信息系统、信号与信息处理专业)2001通信原理(通信与信息系统、信号与信息处理专业)2002通信原理(物理电子学、光学工程专业)2001汽车理论2004——2006汽车理论和设计2001——2002汽轮机原理2001——2002发动机原理2001综合考试(1)(脉冲与数字电路、微机、高频电路)(电信系各专业、模式识别与智能系统专业)2000综合考试(含程序设计技术、数据结构、计算机组成原理、离散数学)(计算机学院各专业、机械学院各专业、模式识别与智能系统专业)2003综合考试(含数字电路、微机原理)(通信与信息系统、信号与信息处理、模式识别与智能系统专业)2002综合考试二(含通信原理、高频电子线路)(电信系各专业、模式识别与智能系统专业)2000综合考试一(传感器原理、数字电子技术)(控制、机械各专业、建筑技术科学、模式识别专业)2005综合考试(含数据结构、计算机组成原理、离散数学)2004——2005光电检测技术2001——2003,2005综合考试(含信号与线性系统、数字信号处理)2005综合考试(一)(含信号与线性系统、数字信号处理)2003——2004(2004有答案)专业英语翻译(计算机体系结构、软件与理论、应用技术、信息安全专业)2006 专业英语翻译(模式识别与智能系统专业)2006英语专业翻译(机械工程、工业工程、仪器科学与技术、管理科学与工程专业)2006材料科学与工程学院量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007物理化学2000——2007(2000——2002有答案)计算机图形学2002化学综合2007化工基础2007生物化工基础2007塑性成形原理2002有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002材料成形原理2003——2007材料科学基础2002——2003,2005——2007材料学基础2001微机原理及接口技术(材料加工工程、数字化材料成形、环境科学与工程专业)2007微机及接口技术(生物医学工程、生物物理学专业)2001微机接口与技术(生物医学工程专业)2003微机原理及接口技术(生物医学工程专业)2002微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(材料加工工程专业)2001——2002陶瓷材料2005——2006陶瓷材料学2001——2002,2004金属材料2004金属材料学2001——2002金属塑性成形原理1997,1999,2001金属学及热处理2001——2002铸件形成理论2002铸件形成理论基础1998,2001铸造金属学及热处理1998,2001专业英语(材料学、纳米材料及技术专业)2006能源与动力工程学院传热学1999,2000,2001(第1种),2001(第2种),2003——2007(1999,2000,2001(第1种)有答案)锅炉原理2001——2002,2005流体机械原理2002内燃机原理2001——2002离心压缩机原理2001工程流体力学2002,2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001不可压缩流体力学2001——2006低温原理与设备2000——2002(2000有答案)电工电子技术2001,2003电站锅炉原理2004化工原理2001,2005制冷原理与设备2001——2002热工自动化2002工程热力学2001(第1种),2001(第2种),2002——2006专业英语翻译(动力机械及工程专业)2006电气与电子工程学院电路理论(电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动、环境工程专业)2001——2003电路理论(电气工程、环境科学与工程专业)2007电路理论(电气工程学科所有专业、环境工程、机械制造及自动化、精密制造、数字化设计专业)2005电路理论(电气工程学科所有专业、环境工程等专业)2006电路理论(电气工程学科所有专业、机械制造及自动化、环境工程、机械电子工程、机械设计及其理论、精微制造工业等专业)2004电路理论(光学工程、物理电子学、控制理论与控制工程、检测技术与自动化装置、系统工程、模式识别与智能系统专业)2002电路理论(光学工程、物理电子学专业)1999——2001电路理论(物理电子学与光电子学、光学仪器专业)1998电磁场2002,2007电磁场与电磁波2001——2006电磁学与热学2005电机学2001——2002电力电子技术2000——2001电力电子学2001——2002电力系统分析1999——2002发电厂及电力系统1998高电压技术2001——2002高压电器2001电子器件2002力学与电磁学2001——2004英语(电力系统及其自动化、电力电子与电力传动、电工理论与新技术、电气信息检测技术专业)2006交通科学与工程学院交通工程2001——2002,2004交通工程学2003,2005——2007综合考试(轮机工程专业)2004高级语言程序设计(C语言)2001——2002城市道路规划与设计2002,2006——2007城市道路设计2001——2005船舶力学基础2007船舶设计原理2001——2002船舶原理2001——2002控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001专业英语翻译(船舶与海洋结构物设计制造、轮机工程、交通工程专业)2006力学系材料力学(船舶与海洋结构物设计制造专业)2003——2004材料力学(船舶与海洋结构物设计制造、化工过程机械专业)2001——2002材料力学(船舶与海洋结构物设计制造、水下工程专业)2005——2006材料力学(固体力学、工程力学、材料加工工程专业)2001——2002材料力学(力学系所有专业)2002,2005——2006材料力学(岩土工程、道路与铁道工程、化工过程机械专业)2005——2006材料力学(岩土工程、道路与铁道工程专业)2003——2004材料力学(岩土工程专业)2001——2002材料力学一(固体力学、工程力学、动力机械及工程专业)2004理论力学1997——2006(1997——2001有答案)(另有《理论力学》考研复习内部资料,含理论力学课程考研基本要求、考研试题内容及题型的分析,10元。
2008年考研数学一真题及答案
2008年考研数学一真题一、选择题(18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)设函数,则的零点个数为(A)0 (B)1(C)2 (D)3【答案】B。
【解析】且,则是唯一的零点综上所述,本题正确答案是B。
【考点】高等数学—一元函数积分学—积分上限的函数及其导数(2)函数在点处的梯度等于(A) (B)(C) (D)【答案】A。
【解析】所以综上所述,本题正确答案是A。
【考点】高等数学—多元函数微分学—方向导数和梯度(3)在下列微分方程中,以为通解的是(A) (B)(C) (D)【答案】D。
【解析】由通解表达式可知其特征根为可见其对应特征方程为故对应微分方程为综上所述,本题正确答案是D。
【考点】高等数学—常微分方程—高于二阶的某些常系数齐次线性微分方程(4)设函数在内单调有界,为数列,下列命题正确的是(A)若收敛,则收敛(B)若单调,则收敛(C)若收敛,则收敛(D)若单调,则收敛【答案】B。
【解析】【方法一】由于单调,单调有界,则数列单调有界,根据单调有界准则知数列收敛。
【方法二】排除法:若取,,则显然单调,收敛,但,显然不收敛,排除A。
若取,显然收敛且单调,但不收敛,排除C和D。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—函数的有界性、单调性、周期性和奇偶性,极限存在的两个准则:单调有界准则和夹逼准则(5)设为阶非零矩阵,为阶单位矩阵,若,则(A)不可逆,不可逆(B)不可逆,可逆(C)可逆,可逆(D)可逆,不可逆【答案】C。
【解析】因为所以可知可逆,可逆综上所述,本题正确答案是C。
【考点】线性代数—矩阵—矩阵的概念和性质,矩阵可逆的充分必要条件(6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如右图所示,则的正特征值的个数为(A) (B)1(C)2 (D)3【答案】B。
【解析】所给图形为双叶双曲线,标准方程为二次型正交变换化为标准形时,其平方项的系数就是的特征值,可知的正特征值的个数为1综上所述,本题正确答案是B。
2008—数三真题、标准答案及解析
(22) (本题满分 11 分) 设 随 机 变 量 X 与 Y 相 互 独 立 , X 的 概 率 分 布 为 P X i
1 i 1, 0,1 , Y 的 概 率 密 度 为 3
1 0 y 1 fY y ,记 Z X Y 0 其它
(1)求 P Z
梅花香自苦寒来,岁月共理想,人生齐高飞! 第 - 2 - 页 共 14 页
(1)证明对任意实数 t ,有 (2)证明 G x
t 2
t
f x dx f x dx ;
0
2
x
0
2 f t t 2 f s ds dt 是周期为 2 的周期函数. t
所以 f y (0, 0) 存在.故选 B . (4)【答案】 A 【详解】用极坐标得
02 y 4
1
y
e y 1 y2 lim lim 0 y 0 y 0 y y
2
F u, v
D
f u 2 v2 u 2 v2
dudv dv
0
v
u f (r2 ) r 1
2 2
dxdy ,其中 Duv 为图中阴影部分,则
(D)
F ( u
)
(A) vf (u )
2
(B)
v f (u 2 ) u
(C) vf (u )
3
v f (u ) u
)
(5)设 A 为阶非 0 矩阵 E 为阶单位矩阵若 A 0 ,则(
A E A 不可逆, E A 不可逆. C E A 可逆, E A 可逆.
x c
x c x c
2 2 x c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 设 α1 为线性变换 T 的特征向量, (T − λ E )α1 = 0 ,这里 E 为恒等变换, 且 向 量 组 α1 , α 2 ,L , α r 满 足 (T − λ E )α i +1 = α i , i = 1, 2,L , r − 1. 证 明 : 向 量
3
−1 −1 假设 n × n 实对称矩阵 A, B 以及 A − B 均是正定矩阵,证明: B − A
也是正定矩阵 4 证明:向量 α1 = (1,1, Λ 1), α 2 = (1,1, Λ 1,0), Λ α n = (1,0, Λ 0) 是 n 维向量空间 的一组基。 5 设 A,B 分别为 n 阶正定和半正定矩阵,证明: A + B ≤ A + B , 且仅 当 B=0 时取等号 6 设 A 与 B 是 n 阶矩阵,证明 AB 与 BA 有相同的特征值。 7 设 A 为 m × n 实矩阵,秩 ( A) = n ,证明:
α1 , α 2 ,L , α r 线性无关.
9 设 V 和 W 都是数域 F 上向量空间, L(V ) 和 L(W ) 分别是 V 和 W 的线性 变换组成的向量空间, f 是 V 到 W 的同构映射。
−1 1. 证明: ∀σ ∈ L(W ) ,有 f σ f ∈ L(V ) ;
2. 证明: L(W ) ≅ L(V ) ,这里 ≅ 表示同构。
华中科技大学 08 硕士研究生考试高等代数试题
1 1 1 0 1 1 * * 1 若矩阵 A 的伴随矩阵 A = 0 0 1 ,求 A 的逆
2 2 2 假设 A, B 都是 2 × 2 的实矩阵,并且 A = B = E , AB + BA = O ,证明:存在可
1 0 −1 0 1 P −1 AP = , P BP = 0 −1 1 0 . 逆矩阵 P ,使得
−1 10 设 A, B 都是 n 阶矩阵,且 ABA = B43; 秩 ( E + AB ) = n.