四川省2020年上学期成都七中高三数学文入学考试试题答案
【081115】成都七中20202020学年度高三年级考试doc高中数学
【081115】成都七中20202020学年度高三年级考试doc高中数学理科综合试卷2018.11.15 本试卷分第一卷和第二卷两部分。
第一卷第1至4页,第二卷5至12页。
共300分,考试时刻150分钟。
第一卷(选择题共126分)本卷须知:1.答第一卷前,考生务必将自己的姓名、学号、考试科目涂写在答题卡上。
考试终止,将答题卡交回。
2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦洁净后,再选涂其它答案标号,不能答在试题卷上。
可能用到的原子量:H-1,C-12,O-16,Na-23,K-23,S-32,Cu-64一、本大题共13题,每题6分,共78分。
在以下各题的四个选项中,只有一个选项是符合题目要求的。
1.以下关于玉米、蓝藻和变形虫细胞结构和生理功能的正确表达是:A. 都能进行细胞分裂,都有细胞周期B. 遗传物质差不多上DNA,细胞内都有转录和翻译过程C. 细胞内都有核糖体,但都不含中心体D. 三者的原生质层都有选择透过性,都能选择性的吸取和排出物质2.将一植物放在密闭的玻璃罩内置于室外进行培养,假定玻璃罩内植物的生理状态与自然环境中相同。
用CO2浓度测定仪测定该玻璃罩内一天中CO2浓度的变化情形,绘制成如右图的曲线。
由图获得的正确信息是:A. d点时CO2浓度最低,讲明现在植物光合作用最强B. a点时叶肉细胞中产生ATP的部位只有线粒体C. 植物进行光合作用开始于b点之前D. c点时植物的光合作用强度等于呼吸作用强度3. 以下图表示人体和人体细胞内某些信息传递机制的模式图,图示中箭头表示信息传递的方向。
以下有关表达中,正确的选项是:A.假如该图表示反射弧,那么其中的信息是以局部电流的形式传导的B.假如该图中的a为下丘脑、b为垂体、c为甲状腺,那么c分泌的甲状腺激素增加到一定程度后,对a分泌d、b分泌e具有抑制作用C.假如该图表示细胞中遗传信息传递过程,那么d过程只发生于细胞核中D.假如该图为细胞免疫过程,a为效应T细胞,b为靶细胞,c代表抗体4.以下关于基因工程的表达中正确的选项是:A.源于原核生物的目的基因不能导入真核细胞B.用质粒做运载体是由于所有生物都有质粒C.DNA连接酶的作用是催化碱基对之间的氢键形成D.只要露出的黏性末端相同,就能够用不同的限制酶分不切取质粒和目的基因5.右图为哺乳动物某组织示意图,其中①是毛细血管壁,②是成熟红细胞,③是血浆,④是细胞内液,⑤是组织液。
四川省成都市第七中学2020届高三上学期期中考试 数学(文)
成都七中19-20学年度上期高2017级期中考试数学试题(文)考试时间:120分钟 满分150分一.选择题(共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案集中填写在答题卷上.)1.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则=N M ( ) A.{}22x x -≤<B.{}2x x ≥-C.{}2x x <D.{}12x x ≤<2. 0225sin 的值为( )A. C. 3.已知i 是虚数单位,则复数37iz i+=的实部和虚部分别是( ) A.7-,3B.7,3i -C.7,3-D.7-,3i4.设R x ∈,向量(,1)a x =,(1,2)b =-,且b a⊥,则a b +=( )C. 5.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论中不一定...正确的是( ) (注:90后指1990年及以后出生,80后指19801989-年之间出生,80前指1979年及以前出生.)A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多6.已知函数2log ,0()3,0x x x f x x >⎧=⎨≤⎩,则1(())8f f =( )A.27-B.27C.127-D.1277.已知()13ln2a =,()13ln3b=,2log 0.7c =,则c b a ,,的大小关系是( )A.a b c <<B.c a b <<C.b a c <<D.c b a << 8.函数()sin(),(,0,π)f x A x A ωφωϕ=+><的部分图象如右图, 则()f x =( )A.π()2sin(4)3f x x =+B.π()2sin(4)3f x x =-C.48π()2sin()39f x x =-D.48π()2sin()39f x x =+ 9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于 解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过 程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学 史上第一道数列题. 其规律是:偶数项是序号平方再除以2,奇数项是序号 平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50, …,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个 判断框中,可以先后填入( )A.n 是偶数?,100n ≥?B.n 是奇数?,100n ≥?C.n 是偶数?, 100n >?D.n 是奇数?,100n >? 10.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,其中1b =,sin sin sin sin a b c Cb A B C-+=+-,若2A B =,则ABC △的周长为( )A.3B.4C.2+D.3+11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若1245F MF ∠=︒,则双曲线的离心率为( )B.212.已知偶函数()f x 满足(4)(4)f x f x +=-,且当(0,4]x ∈时,ln(2)()x f x x=,关于x 的不等式2()()0f x af x +>在区间[200200],-上有且只有300个整数解,则实数a 的取值范围是( ) A.13ln 2(ln 6)34--,B.]42ln 3,6ln 31(-- C.1(ln 2ln 6)3--,D.1(ln 2ln 6]3--,二.填空题(共4小题,每小题5分,满分20分.请把答案填写在答题卷上.)13.设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程 为 ▲ .14.已知实数x ,y 满足不等式组20,250,20,x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩且2z x y=-的最大值为 ▲ .15.已知某几何体的三视图如图所示,则该几何体的外接球的半径为 ▲ . 16.设n S 为数列{}n a 的前n 项和,已知112a =,112n n n n n a a ++=+, 则=n a ▲ , 100S = ▲ .三.解答题(共6题,满分70分.解答应写出文字说明,证明过程或验算步骤.请将解答过程写在答题卷相应题号的下面.)17.(本小题满分12分)已知数列{}n a 的前n 项和144()33n n S n +=-∈*N . (1)求数列{}n a 的通项公式; (2)若2log n n n b a a =+,求数列{}n b 的前n 项和n T .18.(本小题满分12分) 自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:(1)现随机抽取1名顾客,试估计该顾客年龄在[)30,50且未使用自由购的概率;(2)从被抽取的年龄在[]50,70使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[)50,60的概率;(3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?19. (本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PAD ∆为等边三角形,平面PAD ⊥平面PCD .(1)证明:平面PAD ⊥平面ABCD ;(2)若2AB =,Q 为线段PB 的中点,求三棱锥Q PCD -的体积.20. (本小题满分12分)已知椭圆222:12x y C a+=过点()2,1P . (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A P '与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由.21. (本小题满分12分)设函数()()22ln 0a xf x x a x a x -=-+>. (1)求函数()f x 的单调区间; (2)记函数()f x 的最小值为()g a ,证明:()1g a <.22. (本小题满分10分)在平面直角坐标系中,曲线1C 的参数方程为2cos sin x r y r ϕϕ=+⎧⎨=⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点6P π⎛⎫⎪⎝⎭,曲线2C 的极坐标方程为()22cos26ρθ+=.(1)求曲线1C 的极坐标方程;(2)若1,6A πρα⎛⎫- ⎪⎝⎭,2,3B πρα⎛⎫+ ⎪⎝⎭是曲线2C 上两点,求2211OA OB +的值.四川省成都市第七中学2020届高三上学期期中考试 数学(文)。
成都七中高三上期文科数学上学期半期考试试卷【附答案】
(1)证明:平面 ECD 定平中面 EAD ;
(2)求直线 BD 与州直康线 EC 所成角的余弦值.
孜
甘
省
川
图①
图②
四
供
仅
第 3页 共5页
19.2019 年电商“双十一”大战即将开始.某电商为了尽快占领市场,抢占今年“双十 一”的先机,对成都地区年龄在 15 到 75 岁的人群“是否网上购物”的情况进行了调查,随 机抽取了 100 人,其年龄频率分布表和使用网上购物的人数如下所示:(年龄单位:岁)
A. (0, 2]
B. (1, 2)
C. (1, )
2.已知 i 为虚数单位,若复数 z 3 i ,则| z | ( ) 1 i
A.1
B.2
C. 2
3.若 a b ,则下列不等式恒成立的是( )
A. 2a 2b
B. ln(a b) 0
1
1
C. a 3 b3
D. 5
ex cos x sin xex ex 2
cos
x ex
sin
x
,
x
,
2
.………….2
分
当 f ' x 0,即 cos x sin x 0 时, 3 x 或 5 x 2 .
4
44
当 f ' x 0,即 cos x sin x 0时, x 3 或 x 5 .
32 7
,
由参数的几何意义得
AM BM = t1 t2
32 . 7
………….10 分
23.解:(1) 2x 1 2 x m 2 恒成立,即 x 1 x m 1 , 2
四川省成都市成都七中2020届高三语文热身考试试题(数学文)
2020 年普通高等学校招生成都七中统一热身考试文科数学本试题卷共4页,24题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上.2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、本次考试结束后,不用..将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B ⋃=()(A )3(3,)2--(B )3(3,2-(C )3(1,)2(D )(1,)+∞(2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是()(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--,(3)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()(A )13(B )12(C )23(D )34(4)设向量)2,1(),1,(==b m a =,则=m ()(A )1(B )2(C )1-(D )2-(5)若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(24)题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.(13)已知函数()(2+1),()x f x x e f x '=为()f x 的导函数,则(0)f '的值为__________.(14)若,x y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为_____________.(15)在ABC ∆中,60=∠A ,32=BC ,D 为BC 中点,则AD 最长为(16)抛物线)0(22>=p px y 上点A 与焦点F 距离为2,以AF 为直径的圆与y 轴交于点)1,0(H ,则=p 三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
四川省成都市第七中学2022-2023学年高三上学期期中考试文科数学试题(解析版)
成都七中2022~2023学年度(上)高三年级半期考试数学试卷(文科)(试卷总分:150分,考试时间:120分钟)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}0,1,2,3,4,5,6U =,集合{}1,2,4A =,{}1,3,5B =,则()U A B = ð( )A. {}0,6 B. {}1,4 C. {}2,4 D. {}3,5【答案】C【解析】【分析】根据交集、补集的定义,即得解【详解】由题意,全集{}0,1,2,3,4,5,6U =,集合{}1,2,4A =,{}1,3,5B =,故{0,2,4,6}U B =ð则(){2,4}U A B =∩ð故选:C2. 复数43i 2i z -=+(其中i 为虚数单位)的虚部为( )A. 2- B. 1- C. 1 D. 2【答案】A【解析】【分析】根据复数除法的运算法则,求出复数z ,然后由虚部的定义即可求解.【详解】解:因为复数()()()()2243i 2i 43i 510i 12i 2i 2i 2i 21z ----====-++-+,所以复数z 的虚部为2-,故选:A .3. 青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图中右下角12名青少年的视力测量值()1,2,3,,12i a i =⋅⋅⋅(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】依题意该程序框图是统计这12名青少年视力小于等于4.3人数,结合茎叶图判断可得;【详解】解:根据程序框图可知,该程序框图是统计这12名青少年视力小于等于4.3的人数,由茎叶图可知视力小于等于4.3的有5人,故选:B4. 抛物线()220y px p =≠上的一点()9,12P -到其焦点F 的距离PF 等于( )A. 17B. 15C. 13D. 11【答案】C【解析】【分析】由点的坐标求得参数p ,再由焦半径公式得结论.【详解】由题意2122(9)p =⨯-,解得8p =-,所以4(9)132P p PF x =--=--=,故选:C .5. 奥运会跳水比赛中共有7名评委给出某选手原始评分,在评定该选手的成绩时,去掉其中一个最高分和一个最低分,得到5个有效评分,则与7个原始评分(不全相同)相比,一定会变小的数字特征是( )A. 众数B. 方差C. 中位数D. 平均数【答案】B【解析】的【分析】根据题意,由数据的中位数、平均数、方差、众数的定义,分析可得答案.【详解】对于A:众数可能不变,如8,7,7,7,4,4,1,故A错误;对于B:方差体现数据的偏离程度,因为数据不完全相同,当去掉一个最高分、一个最低分,一定使得数据偏离程度变小,即方差变小,故B正确;对于C:7个数据从小到大排列,第4个数为中位数,当首、末两端的数字去掉,中间的数字依然不变,故5个有效评分与7个原始评分相比,不变的中位数,故C错误;对于C:平均数可能变大、变小或不变,故D错误;故选:B6. 已知一个几何体的三视图如图,则它的表面积为()A. 3πB. 4πC. 5πD. 6π【答案】B【解析】【分析】由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同,根据题干三视图的数据,以及圆锥的侧面积和球的表面积公式,即得解【详解】由三视图可知,该几何体是圆锥和半球拼接成的组合体,且圆锥的底面圆和半球的大圆面半径相同底面圆的半径1r =,圆锥的母线长2l ==记该几何体的表面积为S 故211(2)4422S r l r πππ=+⨯=故选:B7. 设平面向量a ,b 的夹角为120︒,且1a = ,2b = ,则()2a a b ⋅+= ( )A. 1B. 2C. 3D. 4【答案】A【解析】【分析】利用向量数量积的运算律以及数量积的定义,计算即得解【详解】由题意,()22222112cos120211a ab a a b ⋅+=+⋅=⨯+⨯⨯=-= 则()21a a b ⋅+= 故选:A8. 设x ,y 满足240220330x y x y x y +-≤⎧⎪-+≤⎨⎪++≥⎩,则2z x y =+的最大值是( )A. 2- B. 1- C. 1 D. 2【答案】D【解析】【分析】画出不等式组表示的平面区域,如图中阴影部分所示, 转化2z x y =+为2y x z =-+,要使得2z x y =+取得最大值,即直线2y x z =-+与阴影部分相交且截距最大,数形结合即得解【详解】画出不等式组表示的平面区域,如图中阴影部分所示转化2z x y =+为2y x z=-+要使得2z x y =+取得最大值,即直线2y x z =-+与阴影部分相交且截距最大由图像可知,当经过图中B 点时,直线的截距最大240220x y x y +-=⎧⎨-+=⎩,解得(0,2)B 故2022z =⨯+=故2z x y =+的最大值是2故选:D9. “α为第二象限角”是“sin 1αα>”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据条件sin 1αα->求出α的范围,从而可判断出选项.【详解】因为1sin 2sin 2sin 23πααααα⎛⎫⎛⎫-==- ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由sin 1αα>,得2sin 13πα⎛⎫-> ⎪⎝⎭,即1sin 32πα⎛⎫-> ⎪⎝⎭,所以522,636k k k Z ππππαπ+<-<+∈,即722,26k k k Z πππαπ+<<+∈,所以当α为第二象限角时,sin 1αα>;但当sin 1αα>时,α不一定为第二象限角,故“α为第二象限角”是“sin 1αα>”的充分不必要条件.故选:A .10. 已知直线()100,0ax by a b +-=>>与圆224x y +=相切,则22log log a b +的最大值为( )A. 3B. 2C. 2-D. 3-【答案】D【解析】【分析】由直线与圆相切可得2214a b +=,然后利用均值不等式可得18ab ≤,从而可求22log log a b +的最大值.【详解】解:因为直线()100,0ax by a b +-=>>与圆224x y +=相切,2=,即2214a b +=,因为222a b ab +≥,所以18ab ≤,所以22221log log log log 38a b ab +=≤=-,所以22log log a b +的最大值为3-,故选:D .11. 关于函数()sin cos 6x x f x π⎛⎫=-⎪⎝⎭的叙述中,正确的有( )①()f x 的最小正周期为2π;②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦内单调递增;③3f x π⎛⎫+ ⎪⎝⎭是偶函数;④()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称.A. ①③B. ①④C. ②③D. ②④【答案】C【解析】【分析】应用差角余弦公式、二倍角正余弦公式及辅助角公式可得()11sin(2)264f x x π=-+,再根据正弦型函数的性质,结合各项描述判断正误即可.【详解】()211sin cos sin sin )cos sin 622x f x x x x x x x x π⎛⎫=-=+=+= ⎪⎝⎭11112cos 2sin(2)44264x x x π-+=-+,∴最小正周期22T ππ==,①错误;令222262k x k πππππ-≤-≤+,则()f x 在[,63k k ππππ-+上递增,显然当0k =时,63ππ⎡⎤-⎢⎥⎣⎦,②正确;1111sin(2)cos 2322424f x x x ππ⎛⎫+=++=+ ⎪⎝⎭,易知3f x π⎛⎫+ ⎪⎝⎭为偶函数,③正确;令26x k ππ-=,则212k x ππ=+,Z k ∈,易知()f x 的图象关于1,124π⎛⎫ ⎪⎝⎭对称,④错误;故选:C12. 攒尖在中国古建筑(如宫殿、坛庙、园林等)中大量存在,攒尖式建筑的屋面在顶部交汇成宝顶,使整个屋顶呈棱锥或圆锥形状.始建于1752年的廓如亭(位于北京颐和园内,如图)是全国最大的攒尖亭宇,八角重檐,蔚为壮观.其檐平面呈正八边形,上檐边长为a ,宝顶到上檐平面的距离为h ,则攒尖的体积为( )A.B.C.D. 【答案】D【解析】【分析】攒尖是一个正八棱锥,由棱锥体积公式计算可得.【详解】如图底面正八边形ABCDEFGH 的外接圆圆心是O (正八边形对角线交点),设外接圆半径为R ,在OAB 中,4AOB π∠=,AB a =,由余弦定理得222222cos (24a R R R R π=+-=-,22R ==,正八边形的面积为218sin 24S R π=⨯22(1a =,所以攒尖体积13V Sh ==.故选:D .二、填空题:本大题共4小题,每小题5分,共20分.13. 命题“x N ∃∈,22x x <”的否定是_______________________.【答案】2,2x x N x ∀∈≥【解析】【分析】根据命题的否定的定义求解.【详解】特称命题的否定是全称命题.命题“x N ∃∈,22x x <”的否定是:2,2x x N x ∀∈≥.故答案为:2,2x x N x ∀∈≥.14. 函数()ln f x x =-在1x =处的切线方程为_______________________.(要求写一般式方程)【答案】230x y +-=【解析】【分析】利用导函数求出斜率,即可写出切线方程.【详解】()ln f x x =-的导函数是()1f x x'=,所以()111122f '=-=-.又()11f =,所以函数()ln f x x =-在1x =处的切线方程为()1112y x -=--,即230x y +-=.故答案为:230x y +-=.15. 已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为1F 、2F ,且两条渐近线互相垂直,若C 上一点P 满足213PF PF =,则12F PF ∠的余弦值为_______________________.【答案】13【解析】【分析】由题意可得b a =,进而得到c =,再结合双曲线的定义可得123,PF a PF a ==,进而结合余弦定理即可求出结果.【详解】因为双曲线()2222:10,0x y C a b a b -=>>,所以渐近线方程为b y x a =±,又因为两条渐近线互相垂直,所以21b a ⎛⎫-=- ⎪⎝⎭,所以1b a =,即b a =,因此c =,因此213PF PF =,又由双曲线的定义可知122PF PF a -=,则123,PF a PF a ==,所以在12F PF △中由余弦定理可得222122112121cos 23PF PF F F F PF PF PF +-∠===⋅,故答案为:13.16. 已知向量(),a x m = ,()32,2b x x =-+ .(1)若当2x =时,a b ⊥ ,则实数m 的值为_______________________;(2)若存在正数x ,使得//a b r r,则实数m 取值范围是__________________.【答案】①. 2- ②. (),0[2,)-∞⋃+∞【解析】【分析】(1)由2x =时,得到()2,a m = ,()4,4b = ,然后根据a b ⊥ 求解;(2)根据存在正数x ,使得//a b r r,则()22320x m x m +-+=,()0,x ∈+∞有解,利用二次函数的根的分布求解.【详解】(1)当2x =时,()2,a m = ,()4,4b = ,因为a b ⊥ ,所以2440m ⨯+=,解得2m =-,所以实数m 的值为-2;(2)因为存在正数x ,使得//a b r r,所以()()232x x m x +=-,()0,x ∈+∞有解,即()22320x m x m +-+=,()0,x ∈+∞有解,所以()223022380m m m -⎧->⎪⎨⎪∆=--≥⎩或230220m m -⎧-≤⎪⎨⎪<⎩,解得2m ≥或0m <,所以实数m 的取值范围是(),0[2,)-∞⋃+∞.故答案为:-2,(),0[2,)-∞⋃+∞三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个题目考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 某企业有甲、乙两条生产线,其产量之比为4:1.现从两条生产线上按分层抽样的方法得到一个样本,其部分统计数据如表(单位:件),且每件产品都有各自生产线的标记.的产品件数一等品二等品总计甲生产线2乙生产线7总计50(1)请将22⨯列联表补充完整,并根据独立性检验估计;大约有多大把握认为产品的等级差异与生产线有关?()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.0722.7063.8415.0246.6357.87910.828参考公式:()()()()()22n ad bc K a b c d a c b d -=++++(2)从样本的所有二等品中随机抽取2件,求至少有1件为甲生产线产品的概率.【答案】(1)列联表见解析,有97.5%的把握认为产品的等级差异与生产线有关; (2)710【解析】【分析】(1)完善列联表,计算出卡方,再与观测值比较即可判断;(2)记甲生产线的2个二等品为A ,B ,乙生产线的3个二等品为a ,b ,c ,用列举法列出所有可能结果,再根据古典概型的概率公式计算可得;小问1详解】解:依题意可得22⨯列联表如下:产品件数一等品二等品总计甲生产线38240乙生产线7310总计45550所以()225038327 5.5561040545K ⨯-⨯=≈⨯⨯⨯,因为5.024 5.556 6.635<<,所以有97.5%的把握认为产品的等【级差异与生产线有关;【小问2详解】解:依题意,记甲生产线的2个二等品为A ,B ,乙生产线的3个二等品为a ,b ,c ;则从中随机抽取2件,所有可能结果有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,ab ,ac ,bc 共10个,至少有1件为甲生产线产品的有AB ,Aa ,Ab ,Ac ,Ba ,Bb ,Bc 共7个,所以至少有1件为甲生产线产品的概率710P =;18. 如图,在正三棱柱111ABC A B C -中,D 是BC 的中点.(1)求证:平面1ADC ⊥平面11BCC B ;(2)已知1AA =,求异面直线1A B 与1DC 所成角的大小.【答案】(1)证明见解析; (2)6π【解析】【分析】(1)证得AD ⊥平面11BCC B ,结合面面垂直的判定定理即可证出结论;(2)建立空间直角坐标系,利用空间向量的夹角坐标公式即可求出结果.【小问1详解】因为正三棱柱111ABC A B C -,所以AB AC =,又因为D 是BC 的中点,所以AD BC ⊥,又因为平面ABC ⊥平面11BCC B ,且平面ABC ⋂平面11BCC B BC =,所以AD ⊥平面11BCC B ,又因为AD ⊂平面1ADC ,所以平面1ADC ⊥平面11BCC B ;【小问2详解】取11B C 的中点E ,连接DE ,由正三棱柱的几何特征可知,,DB DA DE 两两垂直,故以D 为坐标原点,分以,,DA DB DE 所在直线为x 轴,y 轴,z 轴建立如图所示空间直角坐标系,设2AB =,则1AA =,所以()()(11,0,1,0,0,0,0,0,1,A B D C -,则((11,0,1,A B DC =-=-u u u r u u u r,所以111111cos ,A B DC A B DC A B DC ⋅===⋅u u u r u u u ru u u r u u u r u u u r u u u r 由于异面直线成角的范围是0,2π⎛⎤⎥⎝⎦,所以异面直线1A B 与1DC ,因此异面直线1A B 与1DC 所成角为6π.19. 已知n N *∈,数列{}n a 的首项11a =,且满足下列条件之一:①1122n n n a a +=+;②()121n n na n a +=+.(只能从①②中选择一个作为已知)(1)求{}n a 的通项公式;(2)若{}n a 的前n 项和n S m <,求正整数m 的最小值.【答案】(1)22n nn a = (2)4【解析】【分析】(1)若选①,则可得11222n n n n a a ++⋅-⋅=,从而可得数列{}2nn a ⋅是以2为公差,2为首项的等差数列,则可求出2nn a ⋅,进而可求出n a ,若选②,则1112n n a a n n +=⋅+,从而可得数列n a n ⎧⎫⎨⎬⎩⎭是以12为公比,1为首项的等比数列,则可求出na n,进而可求出n a ,(2)利用错位相减法求出n S ,从而可求出正整数m 的最小值【小问1详解】若选①,则由1122n n n a a +=+可得11222n n n n a a ++⋅-⋅=,所以数列{}2n n a ⋅是以2为公差,1122a ⋅=为首项的等差数列,所以222(1)2nn a n n ⋅=+-=,所以22n nn a =,若选②,则由()121n n na n a +=+,得1112n n a a n n +=⋅+,所以数列n a n ⎧⎫⎨⎬⎩⎭是以12为公比,1111a a ==为首项的等比数列,所以1112n n a n -⎛⎫=⨯ ⎪⎝⎭,所以1222n n nnn a -==【小问2详解】因为12312462(1)222222n n n n n S --=+++⋅⋅⋅++,所以234112462(1)2222222n n n n nS +-=+++⋅⋅⋅++,所以23112222122222n n n n S +=+++⋅⋅⋅+-2311112()2222n nn=+++⋅⋅⋅+-111[1]42121212n nn -⎛⎫- ⎪⎝⎭=+⨯--222n n +=-,所以2442n nn S +=-,所以4n S <,所以正整数m 的最小值为4,20. 已知椭圆()2222:10x y C a b a b+=>>的短轴长为,左顶点A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)依题意可得b =、3a c +=,再根据222c a b =-,即可求出a 、c ,从而求出椭圆方程、离心率;(2)设直线l 为y kx m =+,()11,M x y ,()22,N x y ,联立直线与椭圆方程,消元列出韦达定理,依题意可得12AM AN k k ⋅=-,即可得到方程,整理得到225480m k km --=,即可得到m 、k 的关系,从而求出直线过定点;【小问1详解】解:依题意b =、3a c +=,又222c a b =-,解得2a =,1c =,所以椭圆方程为22143x y +=,离心率12c e a ==;【小问2详解】解:由(1)可知()2,0A -,当直线斜率存在时,设直线l 为y kx m =+,联立方程得22143y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 整理得()2223484120k xkmx m +++-=,设()11,M x y ,()22,N x y ,所以122834km x x k +=-+,212241234m x x k-=+;因为直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,所以12AM AN k k ⋅=-;即()()22121212121212121212222242AM ANk x x km x x m y y kx m kx m k k x x x x x x x x +++++⋅=⋅=⋅==-+++++++所以2222222241281343441282243434m km k km m k k m km k k -⎛⎫+-+ ⎪++⎝⎭=--⎛⎫+-+ ⎪++⎝⎭,即22221231164162k m k m km -+=-+-,所以225480m k km --=,即()()2520m k m k -+=,所以2m k =或25m k =-,当2m k =时,直线l :2y kx k =+,恒过定点()2,0-,因为直线不过A 点,所以舍去;当25m k =-时,直线l :25y kx k =-,恒过定点2,05⎛⎫ ⎪⎝⎭;当直线斜率不存在时,设直线0:l x x =,()00,M x y ,()00,N x y -,则00001222AM AN y y k k x x -⋅=⋅=-++,且2200143x y +=,解得025x =或02x =-(舍去);综上可得直线l 恒过定点2,05⎛⎫⎪⎝⎭.21. 已知函数()sin xf x e k x =-,其中k 为常数.(1)当1k =时,判断()f x 在区间()0,∞+内的单调性;(2)若对任意()0,x π∈,都有()1f x >,求k 的取值范围.【答案】(1)判断见解析 (2)(,1]k ∈-∞【解析】【分析】小问1:当1k =时,求出导数,判断导数在()0,∞+上的正负,即可确定()f x 在()0,∞+上的单调性;小问2:由()1f x >得sin 10x e k x -->,令()sin 1x g x e k x =--,将参数k 区分为0k ≤,01k <≤,1k >三种情况,分别讨论()g x 的单调性,求出最值,即可得到k 的取值范围.【小问1详解】当1k =时,得()sin xf x e x =-,故()cos xf x e x '=-,当()0,∞+时,()0f x '>恒成立,故()f x 在区间()0,∞+为单调递增函数.【小问2详解】当()0,x π∈时,sin (0,1]x ∈,故()1f x >,即sin 1x e k x ->,即sin 10x e k x -->.令()sin 1x g x e k x =--①当0k ≤时,因为()0,x π∈,故sin (0,1]x ∈,即sin 0k x -≥,又10x e ->,故()0f x >在()0,x π∈上恒成立,故0k ≤;②当01k <≤时,()cos x g x e k x '=-,()sin x g x e k x ''=+,故()0g x ''>在()0,x π∈上恒成立,()g x '在()0,x π∈上单调递增,故0()(0)0g x g e k ''>=->,即()g x 在()0,x π∈上单调递增,故0()(0)10g x g e >=-=,故01k <≤;③当1k >时,由②可知()g x '在()0,x π∈上单调递增,设()0g x '=时的根为0x ,则()g x 在0(0,)x x ∈时为单调递减;在0(,)x x π∈时为单调递增又0(0)10g e =-=,故0()0g x <,舍去;综上:(,1]k ∈-∞【点睛】本题考查了利用导数判断函数单调性,及利用恒成立问题,求参数的取值范围的问题,对参数做到不重不漏的讨论,是解题的关键.(二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22. 在平面直角坐标系xOy 中,伯努利双纽线1C (如图)的普通方程为()()222222x y x y +=-,曲线2C 的参数方程为cos sin x r y r θθ=⎧⎨=⎩(其中r ∈(,θ为参数).的(1)以O 为极点,x 轴的非负半轴为极轴建立极坐标系,求1C 和2C 的极坐标方程;(2)设1C 与2C 的交于A ,B ,C ,D 四点,当r 变化时,求凸四边形ABCD 的最大面积.【答案】(1)1:C 2222cos 2sin ρθθ=-;2:C r ρ=(2)2【解析】【分析】(1)根据直角坐标方程,极坐标方程,参数方程之间的公式进行转化即可;(2)设点A 在第一象限,并且设点A 的极坐标,根据题意列出点A 的直角坐标,表示出四边形ABCD 的面积进行计算即可.小问1详解】1:C ()()222222x y x y +=-,由cos ,sin x y ρθρθ==,故222222()2(cos sin )ρρθρθ=-,即2222cos 2sin ρθθ=-2:C cos sin x r y r θθ=⎧⎨=⎩,即222x y r +=,即22r ρ=,rρ=【小问2详解】由1C 和2C 图象的对称性可知,四边形ABCD 为中心在原点处,且边与坐标轴平行的矩形,设点A 在第一象限,且坐标为(,)ρα(02πα<<,又r ρ=,则点A 的直角坐标为(cos ,sin )r r αα,又2222cos 2sin ραα=-,即2222cos 2sin 2cos 2r ααα=-=故S 四边形ABCD =22cos 2sin 2sin 2r r r ααα⋅==22cos 2sin 22sin 4ααα⋅⋅=又02πα<<,故042απ<<,因此当42πα=,即8πα=时,四边形ABCD 的面积最大为2.[选修4—5:不等式选讲](10分)【23. 设M 为不等式1431x x ++≥-的解集.(1)求集合M 的最大元素m ;(2)若a ,b M ∈且a b m +=,求1123a b +++的最小值.【答案】(1)3m = (2)12【解析】【分析】(1)分类讨论13x ≥,1x ≤-,113x -<<,打开绝对值求解,即得解;(2)由题意1,3,3a b a b -≤≤+=,构造11(2)(3)132([11]2328113823a b b a a b a b a b ++++++=+⨯=+++++++++,利用均值不等式即得解【小问1详解】由题意,1431x x ++≥-(1)当13x ≥时,1431x x ++≥-,解得3x ≤,即133x ≤≤;(2)当1x ≤-时,1413x x --+≥-,解得1x ≥-,即=1x -;(3)当113x -<<时,1413x x ++≥-,解得1x ≥-,即113x -<<综上:13x -≤≤故集合{|13}M x x =-££,3m =【小问2详解】由题意,1,3,3a b a b -≤≤+=,故(2)(3)8a b +++=故11(2)(3)132()[112328113823a b b a a b a b a b ++++++=+⨯=+++++++++由于1,3a b -≤≤,故20,30a b +>+>由均值不等式,113211[11[1123823821b a a b a b +++=+++≥++=++++当且仅当3223b a a b ++=++,即2,1a b ==时等号成立故求1123a b +++的最小值为12。
四川省成都七中2021届高三上学期入学考试数学文试题及答案
成都七中2020~2021学年度上期2021届高三入学考试数学试卷(文科)考试时间:120分钟 总分:150分一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求.把答案涂在答题卷上.)1.已知集合(){},21A x y y x ==-,(){}2,B x y y x ==,则AB =( )A .∅B .{}1C .(){}1,1D .(){}1,1-2.复数z = )A .1BC .2D3.已知命题():,0p x ∃∈-∞,23x x <;命题:0,2q x π⎛⎫∀∈ ⎪⎝⎭,sin x x <,则下列命题为真命题的是( ) A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()p q ∧⌝4.抛物线2:4C y x =的焦点为F ,点A 在抛物线上,且点A 到直线3x =-的距离是线段AF 长度的2倍,则线段AF 的长度为( ) A .1B .2C .3D .45.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( ) A .55.2,3.6 B .55.2,56.4C .64.8,63.6D .64.8,3.66.设2323a ⎛⎫=⎪⎝⎭,2313b ⎛⎫= ⎪⎝⎭,1313c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c a b >>D .b c a >>7.若α,β为锐角,且满足4cos 5α=,()5cos 13αβ+=,则sin β的值为( ) A .1665-B .3365C .5665D .63658.要做一个圆锥形漏斗,其母线为20,要使其体积最大,则其高为( ) AB .100C .20D .2039.一空间几何体的三视图如图,则该几何体的体积可能为( )A .12π+B .22π+C .1π+D .2π+10.已知数列{}n a 满足132n n a -=⨯,*n ∈N ,现将该数列按下图规律排成蛇形数阵(第i 行有i 个数,*i ∈N ),从左至右第i 行第j 个数记为(),i j a (i ,*j ∈N 且j i ≤),则()21,20a =( ).A .21132⨯B .21232⨯C .23032⨯D .23132⨯11.已知函数()()sin f x x ωϕ=+,其中0ω>,0ϕπ<<,()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间0,4π⎛⎫⎪⎝⎭上恰有两个零点,则ω的取值范围是( ) A .()6,10B .()6,8C .()8,10D .()6,1212.己知函数()212ln x f x x -=的定义域为10,e ⎛⎤ ⎥⎝⎦,若对任意的1x ,210,x e ⎛⎤∈ ⎥⎝⎦,()()()1212221212f x f x m x x x x x x -+>-恒成立,则实数m 的取值范围为( ) A .(],3-∞B .(],4-∞C .(],5-∞D .(],6-∞二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.)13.在空间直角坐标系O xyz -中,记点()1,2,3A 在xOz 平面内的正投影为点B ,则OB =________.14.已知x ,y 满足22x y x x y ≤⎧⎪≤⎨⎪+≥⎩,则2z x y =-+的最大值为________.15.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,且cos cos 2B bC a c=-+,若b =4a c +=,则a 的值为________.16.已知椭圆2222:1x y a b Γ+=与双曲线2222:1x y m nΩ-=共焦点,1F 、2F 分别为左、右焦点,曲线Γ与Ω在第一象限交点为P ,且离心率之积为1.若1212sin 2sin F PF PF F ∠=∠,则该双曲线的离心率为________. 三、解答题(共70分,22与23题二选一,各10分,其余大题均为12分)17.(本题12分)设数列{}n a 的前n 项和为n S ,且1a =,121n n a S +=+,数列{}n b 满足11a b =,点()1,n n P b b +在直线20x y -+=上,*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)设nn nb c a =,求数列{}n c 的前n 项和n T . 18.(本题12分)如图,四棱锥P ABCD -中,平面PDC ⊥底面ABCD ,PDC △是等边三角形,底面ABCD 为梯形,且60DAB ∠=︒,ABCD ,22DC AD AB ===.(Ⅰ)证明:BD PC ⊥; (Ⅱ)求A 到平面PBD 的距离.19.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()g y 与尺寸()mm x 之间近似满足关系式by c x =⋅(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间(0.302,0.388)内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率;(2)根据测得数据作了初步处理,得相关统计量的值如下表:根据所给统计量,求y 关于x 的回归方程. 附:对于样本()(),1,2,,6i i v u i =,其回归直线u b v a =⋅+的斜率和截距的最小二乘法估计公式分别为:()()()1122211nniii i i i nniii i v v u u v u nvub v v vnv====---==--∑∑∑∑,a u bv =-, 2.7183e ≈.20.(本题12分)设函数()()24143xf x ax a x a e ⎡⎤=-+++⎣⎦.(1)若曲线()y f x =在点()()1,1f处的切线与x 轴平行,求a ; (2)若()f x 在2x =处取得极小值,求a 的取值范围.21.(本题12分)如图,设椭圆()222210x y a b a b +=>>的左、右焦点分别为1F ,2F ,点D 在椭圆上,112DF F F ⊥,121F F DF =12DF F △的面积为2.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由. (22题与23题为选做题,二选一)22.(本题10分)在直角坐标系xOy 中,曲线C 的参数方程为22114x t ty t t ⎧=+⎪⎪⎨⎪=+-⎪⎩(t 为参数).(1)求曲线C 的普通方程;(2)以O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为6πθ=,()ρ∈R ,直线l与曲线C 交于A ,B 两点,求线段AB 的长度AB . 23.(本题10分)已知函数()1144f x x x =-++,M 为不等式()2f x ≤的解集. (1)求M ;(2)证明:当a ,b M ∈时,a b ≥-.成都七中2020-2021学年度上期2021届高三入学考试数学试卷(理科)答案1-5:CBCBD 6-10:BBABA 11-12:AB 1314.1- 15.1或3 1617.【答案】(Ⅰ)1321n n n a b n -==- (Ⅱ)1133n n n T -+=-【解析】(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥. 又21213a S =+=,所以213a a =.故{}n a 是首项为1,公比为3的等比数列.所以13n n a -=.由点()1,n n P b b +在直线20x y -+=上,所以12n n b b +-=.则数列{}n b 是首项为1,公差为2的等差数列.则()11221n b n n =+-⋅=-. (Ⅱ)因为1213n n n n b n c a --==,所以0121135213333n n n T --=++++. 则12311352133333n nn T -=++++, 两式相减得:21222221133333n n n n T --=++++-11113321121313n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦=+⨯--1121233n n n --⎛⎫=-- ⎪⎝⎭∴21112113323233n n n n n nT ----+=--=-⋅⋅ 18.【答案】(Ⅰ)见解析;(Ⅱ)2h =. 【解析】(Ⅰ)由余弦定理得BD == ∴222BD AB AD +=,∴90ABD ∠=︒,BD AB ⊥,∵AB DC ,∴BD DC ⊥.又平面PDC ⊥底面ABCD ,平面PDC底面ABCD DC =,BD ⊂底面ABCD ,∴BD ⊥平面PDC ,又PC ⊂平面PDC ,∴BD PC ⊥. (Ⅱ)设A 到平面PBD 的距离为h .取DC 中点Q ,连结PQ ,∵PDC △是等边三角形,∴PQ DC ⊥. 又平面PDC ⊥底面ABCD ,平面PDC 底面ABCD DC =,PQ ⊂平面PDC ,∴PQ ⊥底面ABCD ,且PQ =由(Ⅰ)知BD ⊥平面PDC ,又PD ⊂平面PDC ,∴BD PD⊥. ∴APBD P ABD V V --=,即1111213232h ⨯⨯=⨯⨯ 解得h =19.【答案】(1)15;(2)0.5y ex =. 【解析】由已知,优等品的质量与尺寸的比()0.302,0.388yx∈ 则随机抽取的6件合格产品中,有3件为优等品,记为a ,b ,c ,有3件为非优等品,记为d ,e ,f ,现从抽取的6件合格产品中再任选2件,基本事件为:(),a b ,(),a c ,(),a d ,(),a e ,(),a f ,(),b c ,(),b d ,(),b e ,(),b f ,(),c d ,(),c e ,(),c f ,(),d e ,(),d f ,(),e f ,选中的两件均为优等品的事件为(),a b ,(),a c ,(),b c , 所求概率为31155=. (Ⅱ)对by c x =⋅两边取自然对数得ln ln ln y c b x =+ 令ln i i v x =,ln i i u y =,则u b v a =⋅+,且ln a c = 由所给统计量及最小二乘估计公式有:11222175.324.618.360.271101.424.660.542ni i nii v u nuvb vnv==--⨯÷====-÷-∑∑118.324.6216a u bv ⎛⎫-⨯ ⎪⎝⎭=-==,由ln a c =得c e =,所以y 关于x 的回归方程为0.5y ex=.20.【答案】(1)a 的值为1;(2)a 的取值范围是1,2⎛⎫+∞⎪⎝⎭. 【解析】(1)因为()()24143xf x ax a x a e ⎡⎤=-+++⎣⎦,所以()()()()22414143x xf x ax a e ax a x a e x '⎡⎤=-++-+++∈⎡⎤⎣⎦⎣⎦R ()2212xax a x e ⎡⎤=-++⎣⎦.()()11f a e '=-.由题设知()10f '=,即()10a e -=,解得1a =.此时()130f e =≠. 所以a 的值为1.注:没验证()130f e =≠要酌情扣分(2)由(1)得()()()()221212x xf x ax a x e ax x e '⎡⎤=-++=--⎣⎦.若12a >,则当1,2x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当()2,x ∈+∞时,()0f x '>. 所以()0f x <在2x =处取得极小值. 若12a ≤,则当()0,2x ∈时,20x -<,11102ax x -≤-<,所以()0f x '>. 所以2不是()f x 的极小值点. 综上可知,a 的取值范围是1,2⎛⎫+∞⎪⎝⎭. 21.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()1,0F c -,()2,0F c ,其中222c a b =-,由121F F DF =得12DF ==从而1221121222DF F S DF F F =⋅==△,故1c =.从而12DF =,由112DF F F ⊥得222211292DF DF F F =+=,因此22DF =.所以122a DF DF =+=a =2221b a c =-=因此,所求椭圆的标准方程为:2212x y +=(2)如图,设圆心在y 轴上的圆C 与椭圆2212x y +=相交,()111,P x y ,()222,P x y 是两个交点,10y >,20y >,11F P ,22F P 是圆C 的切线,且1122F P F P ⊥由圆和椭圆的对称性,易知21x x =-,12y y =1212PP x =.由(1)知()11,0F -,()21,0F ,所以()11111,F P x y =+,()22111,F P x y =--,再由1122F P F P ⊥ 得()221110x y -++=,由椭圆方程得()2211112x x -=+,即211340x x +=, 解得143x =-或10x = 当10x =时,1P ,2P 重合,此时题设要求的圆不存在. 当143x =-时,过1P ,2P 分别与11F P ,22F P 垂直的直线的交点即为圆心C ,设()00,C y 由111CP F P ⊥,得1011111y y y x x -⋅=-+,而11113y x =+=,故053y = 圆C的半径1CP == 综上,存在满足条件的圆,其方程为:2253239x y ⎛⎫+-= ⎪⎝⎭.22.【答案】(1)26y x =-(2x ≤-或2x ≥);(2. 【解析】(1)曲线C 的参数方程为221,14,x t ty t t ⎧=+⎪⎪⎨⎪=+-⎪⎩①②(t 为参数),将①式两边平方,得22212x t t =++③, ③-②,得26x y -=,即26y x =-,因为112x t t t t =+=+≥=,当且仅当1t t =,即1t =±时取“=”,所以2x ≥,即2x ≤-或2x ≥,所以曲线C 的普通方程为26y x =-(2x ≤-或2x ≥).(2)因为曲线C 的直角坐标系方程为26y x =-(2x ≤-或2x ≥), 所以把cos sin x y ρθρθ=⎧⎨=⎩代入得:22sin cos 6ρθρθ=-,()cos 2ρθ≥,则曲线C 的极坐标方程为22sin cos 6ρθρθ=-,()cos 2ρθ≥设A ,B 的极坐标分别为1,6A πρ⎛⎫ ⎪⎝⎭,2,6B πρ⎛⎫ ⎪⎝⎭,由226sin cos 6πθρθρθ⎧=⎪⎨⎪=-⎩ 得22sincos 666ππρρ=-,即232240ρρ--=,且ρ≥因为44324473∆=+⨯⨯=⨯,∴ρ=ρ=,满足3ρ≥,不妨设113ρ-=,213ρ=所以12AB ρρ=-=注:没考虑3ρ≥要酌情扣分 23.【解析】(1)()12,,411111,,4424412,4x x f x x x x x x ⎧-≤-⎪⎪⎪=-++=-<<⎨⎪⎪≥⎪⎩所以不等式的解集为[]1,1M =-.(2)要证a b -,只需证a b ≥-,即证()241ab a b -≥-,只需证22442ab a ab b -≥-+,即2242a ab b ≥++,即证()24a b ≥+,只需证2a b ≥+ 因为a ,b M ∈,所以2a b +≤, 所以所证不等式成立.。
成都七中高三上期文科数学上学期半期考试试卷
成都七中2019—2020学年度上期高2020届高三半期考试数学试卷(文科)考试时间:120分钟 满分:150分一. 选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合2{|log (1)}A x y x ==-,2{|}B y y x ==,则A B =( )A. (0,2]B. (1,2)C. (1,)+∞D. (1,2]2.已知i 为虚数单位,若复数31iz i-=+,则||z =( ) A .1B .2CD3.若b a >,则下列不等式恒成立的是( )A.ba 22< B.0)ln(>-b a C.3131b a > D.||||b a > 4.已知点(1,1),(1,2),(2,1),(3,4)A B C D ---,则向量CD 在AB 方向上的投影为( ) A.2B.C.2-D.-5.成都七中星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:55~8:35,课间休息10分钟.某同学请假后返校,若他在8:55~9:35之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为( )A .15B .14C .13D .126.已知数列{}n a 的前n 项和为n S ,则“{}n a 是等差数列”是“n S n ⎧⎫⎨⎬⎩⎭是等差数列”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7. 已知()()sin f x x ωϕ=+,0>ω,2πϕ<,()f x 是奇函数,直线1y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π,则( )A. ()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B. ()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 仅供四川省甘孜州康定中学使用四川省甘孜州康定中学使用仅供15.在棱长为1的正方体1111D C B A ABCD -中,平面α与正方体每条棱所成的角均相等.则平面α截正方体所形成的三角形截面中,截面面积最大值为____________.16.已知函数()323f x x x bx c -=++有极值,且导函数'()f x 的极值点是()f x 的零点,给出命题:①1;c>- ②若0c >,则存在00x <,使得()00f x =;③若()f x 有两个极值点12,x x ,则()()12+0;f x f x >④若1<0c -<,且y kx =是曲线()()0C y f x x =<:的一条切线,则k 的取值范围是27,2;4⎛⎫-- ⎪⎝⎭则以上命题正确序号是____________.三. 解答题(本大题共7小题,17-21题各12分,22或23题10分. 解答应写出文字说明、证明过程或演算步骤)17.已知函数2())4sin 26y f x x x π==-+-.(1)用“五点作图法”作出()f x 在一个周期内的图像;(2)在ABC ∆中,若函数()f x 在角A 处取得最大值,且BC 求ABC ∆周长的最大值.18.如图①,是由矩形ABCD ,Rt EAB ∆和Rt FAD ∆组成的一个平面图形,其中3,4AB AE AF AD ====.将其沿,AB AD 折起使得,AE AF 重合,连结EC 如图②. (1)证明:平面ECD ⊥平面EAD ;(2)求直线BD 与直线EC 所成角的余弦值.图① 图②仅供四川省甘孜州康定中学使用19.2019年电商“双十一”大战即将开始.某电商为了尽快占领市场,抢占今年“双十一”的先机,对成都地区年龄在15到75岁的人群“是否网上购物”的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用网上购物的人数如下所示:(年龄单位:岁)(1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“网上购物”与年龄有关?(2)若从年龄在[55,65)的样本中随机选取2人进行座谈,求选中的2人中恰好有1 人“使用网上购物”的概率. 参考数据:参考公式:()()()()22()n ad bc K a b c d a c b d -=++++仅供四川省甘孜州康定20.已知抛物线2:2(0)C y px p =>过点(1M -,,直线l 经过抛物线的焦点F 与抛物线交于,A B 两点.(1)若直线l 的方程为2y x =-,求AB 的值;(2)若直线,OA OB 的斜率为12,k k ,且122k k +=,求直线l 的方程.21.已知函数()sin x x f x e = ,()16g x ax =+,[],2x ππ∈-,其中a 为正实数, e 为自然对数的底数.(1)求函数()f x 的单调区间;(2)是否存在实数a ,使得对任意给定的[]0,2x ππ∈-,在区间[],2ππ-上总存在两个不同的12,x x ,使得()()()120f x f x g x ==成立?若存在,求出正实数a 的取值范围;若不存在,请说明理由.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一个题目计分.请考生用2B 铅笔将答题卡上所做题目的题号涂黑. 22. 选修4-4:坐标系与参数方程在直角坐标系中,曲线的方程为221416x y += ,直线恒过定点M ()12,,倾斜角为α.(1)求曲线和直线的参数方程; (2)当=3πα时,若直线交椭圆于,A B 两点,求AM BM ⋅的值. 23. 选修4-5:不等式选讲已知函数()21f x x x m =+++,m R ∈. (1)若不等式()+2f x x m +≥对x R ∀∈恒成立,求实数m 的取值范围; (2)当1m >时,求不等式()2f x m -<的解集.xOy C l C ll 仅供四川省甘孜州康定中学使用。
成都七中2021届高三文科数学上期入学考试试卷答案
注:没验证 | | 4 3 要酌情扣分 3
2x,
23.【解析】
2
பைடு நூலகம்
9 ,因此 2
DF2
3 2. 2
所以 2a DF1 DF2 2 2 ,故 a 2, b2 a2 c2 1
因此,所求椭圆的标准方程为: x2 y2 1 2
(2)如图,设圆心在
y
轴上的圆 C
与椭圆
x2 2
y2
1相交, P1 x1,
y1 , P2
x2,
y2
是两个
交点, y1 0, y2 0 , F1P1 , F2P2 是圆 C 的切线,且 F1P1 F2P2 由圆和椭圆的对称性,易
75.3 24.6 18.3 6 101.4 24.62 6
0.27 0.54
1 2
i 1
aˆ
u
bˆv
18.3
1 2
24.6
,
1
6
由 aˆ ln cˆ 得 cˆ e,
所以 y 关于 x 的回归方程为 yˆ ex0.5 .
20.【答案】(1) a 的值为 1;(2) a 的取值范围是 ( 1 , ) . 2
所求概率为 3 1 . 15 5
(2)对 y c xb 两边取自然对数得 ln y ln c b ln x
令 vi ln xi ,ui ln yi ,则 u b v a ,且 a ln c
由所给统计量及最小二乘估计公式有:
n
bˆ
v1ui nuv
i 1 n
vi2 nv 2
1 2 ,即 3x12
4x1
0,
解得
x1
4 3
或
x1
0
.
当 x1 0 时, P1, P2 重合,此时题设要求的圆不存在.
四川省成都七中2020年普通高等学校招生全国统一考试数学模拟测试文科卷
2020年普通高等学校招生全国统一考试数学(文科)模拟试题一、选择题:本题共12小题,每小题5分,共60分. 1.复数z 的实部是虛部的两倍,且满足15i1iz a ++=+,则实数a =( ) A.1-B.5C.1D.92.已知集合{}230A x x x =-≤,{}*23,B x x n n ==-∈N ,则A B =I ( )A.{}3,1--B.{}1,3C.{}0,1,3D.{}0,1,2,33.已知点()1,1A ,()1,2B -,点C 在直线20x y +=上,若AC AB ⊥u u u r u u u r,则点C 的坐标是( )A.()2,1-B.()2,1-C.21,55⎛⎫-⎪⎝⎭D.21,55⎛⎫-⎪⎝⎭4.已知()3sin 24tan θπθ=+,且k θπ≠(k ∈Z ),则cos2θ等于( ) A.13-B.13C.14-D.145.设{}n a 为等差数列,公差2d =-,n S 为其前n 项和,若10111102S S +=,则6a =( ) A.8B.10C.12D.146.我国法定劳动年龄是16周岁至退休年龄(退休年龄一般指男60周岁,女干部身份55周岁,女工人50周岁).为更好了解我国劳动年龄人口变化情况,有关专家统计了2010~2025年我国劳动年龄人口和15~59周岁人口数量(含预测),得到下表:其中2010年劳动年龄人口是9.20亿人,则下列结论不正确的是( )A.2012年劳动年龄人口比2011年减少了400万人以上B.2011~2018这8年15~59周岁人口数的平均数是9.34亿C.2016~2018年,15~59周岁人口数每年的减少率都小于同年劳动人口每年的减少率D.2015~2020年这6年15~59周岁人口数的方差小于这6年劳动人口数的方差7.已知直线l :20kx y k +-=与双曲线C :2221y x b-=(0b >)的一条渐近线平行,且这两条平行线间的距离为43,则双曲线C 的焦距为( ) A.4B.6C.3D.88.已知函数()ln f x x x =-的图象在1x x =和2x x =处的切线互相垂直,且1212x x =,则12x x +=( ) A.2B.3C.4D.69.我国古代数学著作《九章算术》有如下问题:“今有圆亭,下周三丈,上周二丈,高一丈.问积几何?”题中的“圆亭”是一个几何体,其三视图如图所示,其中正视图和侧视图是高为1丈的全等梯形,俯视图中的两个圆的周长分别是2丈和3丈,取3π=,则该圆亭外接球的球心到下底面的距离为( ) A.512丈 B.1736丈 C.2972丈 D.3172丈 10.若函数()()2sin 23f x x ϕ=-(02πϕ<<)在,424ππ⎡⎤-⎢⎥⎣⎦上有两个零点,则ϕ的取值范围是( ) A.,63ππ⎡⎤⎢⎥⎣⎦B.5,412ππ⎡⎤⎢⎥⎣⎦C.5,612ππ⎡⎤⎢⎥⎣⎦ D.,62ππ⎡⎫⎪⎢⎣⎭11.已知函数()f x 是R 上的奇函数,当0x ≥时,()2211log log 12x f x x +=⋅+.若()02f x =,则0x =( ) A.12或3- B.1或12-C.3-D.1-12.如图,在长方体1111ABCD A B C D -中,E 是1AA 的中点,点F 是AD 上一点,12AB AA ==,3BC =,1AF =.动点P 在上底面1111A B C D 上,且满足三棱锥P BEF -的体积等于1,则线段1C P 的最大值为( ) 56C.22D.2二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数()31,0,1,0,1x x f x x x x +≤⎧⎪=-⎨>⎪+⎩,在区间[]1,2-上任取一个实数m ,则()0f m >的概率为______.14.已知实数x ,y 满足约束条件220,10,40,x y x y x y -+≤⎧⎪-+≥⎨⎪+-≤⎩则4x y +的最大值为______.15.各项均为正数的等比数列{}n a 的首项为1,其前n 项和为n S ,且2316a S +=.若数列{}n b 满足11223n n n a b a b a b n +++=⋅L ,则n b =______.16.椭圆C :22221x y a b +=(0a b >>)的右焦点为(),0F c ,直线0x -=与C 相交于A 、B 两点.若0AF BF ⋅=u u u r u u u r,则椭圆C 的离心率为______.三、解答题:共70分.17.(12分)在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,且()3cos b a C c -=.(1)若sin 2a A b =,求sin B ;(2)a =2sin sin B C =,求ABC ∆的面积.18.(12分)秉承“绿水青山就是金山银山”的发展理念,某市环保部门通过制定评分标准,先对本市的企业进行评估,评出四个等级,并根据等级给予相应的奖惩,如下表所示:环保部门对企业评估完成后,随机抽取了50家企业的评估得分(40≥分)为样本,得到如下频率分布表:其中a 、b 表示模糊不清的两个数字,但知道样本评估得分的平均数是73.8.(1)现从样本外的数百个企业评估得分中随机抽取1个,若以样本中频率为概率,求该家企业的奖励不少于40万元的概率;(2)现从样本“不合格”“合格”“良好”三个等级中,按分层抽样的方法抽取6家企业,再从这6家企业随机抽取2家,求这两家企业所获奖励之和不少于0万元的概率.19.(12分)如图,在四棱锥P ABCD -中,PD AD ⊥,90BAD ADC ∠=∠=︒,CD PA ⊥,2CD AB ==,2AD =,E 是BC 上一点,且3BC BE =.(1)求证:平面PDE ⊥平面PBC .(2)F 是PA 上一点,当PFAF为何值时,PC ∥平面DEF ?20.(12分)斜率为k 的直线l 过抛物线C :24y x =的焦点F ,且与抛物线C 交于M ,N 两点.(1)设点M 在第一象限,过M 作抛物线C 的准线的垂线,A 为垂足,且1tan 2MFA ∠=,直线1l 与直线l 关于直线AM 对称,求直线1l 的方程;(2)过F 且与l 垂直的直线2l 与圆D :()2233x y -+=交于P ,Q 两点,若MPQ ∆与NPQ ∆面积之和为k 的值.21.(12分)设函数()2e 2x f x kx =--,k ∈R .(1)讨论()f x 在()0,+∞上的单调性; (2)当2k >时,若存在正实数m ,使得对()0,x m ∀∈,都有()2f x x >,求k 的取值范围..(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(10分)已知极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线C 的极坐标方程是2sin 0a ρθ+=(304πθ≤≤,0ρ≥),直线l 的参数方程是3,54,5x t a y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)若2a =-,M 是圆C 上一动点,求点M 到直线l 的距离d 的最小值和最大值;(2)直线1l 与l 关于原点对称,且直线1l 截曲线C的弦长等于a 的值.23.已知函数()124f x x x =+--.(1)若关于x 的不等式()11f x m x ≤+-+的解集为R ,求实数m 的取值范围;(2)设(){}2min ,65f x x x -+表示()f x ,265x x -+二者中较小的一个,若函数()(){}2min ,65g x f x x x =-+(06x ≤<),求函数()g x 的值域.2019年普通高等学校招生全国统一考试数学模拟测试参考答案.1.A 本题考查复数的概念和运算.15i32i 1iz a a +=-=-++,由题意得1a =-. 2.B 本题考查集合的运算.{}03A x x =≤≤Q ,{}1,1,3,5,B =-L ,{}1,3A B ∴=I .3.D 本题考查向量的坐标运算.设点()2,C m m -,则()21,1AC m m =---u u u r ,()2,1AB =-u u u r Q ,AC AB ⊥u u u r u u u r,142105m m m ∴++-=⇒=-,∴C 的坐标是21,55⎛⎫- ⎪⎝⎭.4.B 本题考查余弦的倍角公式.由已知得22cos3θ=,21cos 22cos 13θθ∴=-=.5.B 本题考查等差数列.由10111102S S +=得11611110a a +=,即66511110a d a ++=,解得610a =.6.C 本题考查统计知识.2012年劳动年龄人口数比2011年减少了460万人,故A 项正确;通过计算可判断B 项正确;C 项不正确,计算后即可判断,应该是大于;D 项正确,由图得15~59周岁人口数减幅比较小,而劳动人口数的减幅比较大.7.B 本题考查双曲线的性质.设直线l 与渐近线0bx y -=平行,∵l过点),43=,解得28b =,29c ∴=,双曲线C 的焦距为6.8.A 本题考查导数的几何意义的应用.()11f x x '=-Q ,()1111f x x '∴=-,()2211f x x '=-,则1211111x x ⎛⎫⎛⎫--=- ⎪⎪⎝⎭⎝⎭,化简得()1212210x x x x +-+=,1212x x =Q ,122x x ∴+=. 9.D 本题考查数学史和三视图.由三视图可得,该几何体是一个圆台,其上、下底面的半径分别为13丈和12丈,高为1丈设球心到下底面的距离为x 丈,则()222211123x x ⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,解得3172x =.10.C本题考查三角函数的性质.()()2sin 2f x x ϕ=-,则当,424x ππ⎡⎤∈-⎢⎥⎣⎦,2,212x ππϕϕϕ⎡⎤-∈---⎢⎥⎣⎦,02πϕ<<Q ,又()f x 在,424ππ⎡⎤-⎢⎥⎣⎦上有两个零点,2,23,123ππϕππϕ⎧--≤-⎪⎪∴⎨⎪-≥-⎪⎩解得5612ππϕ≤≤. 11.C 本题考查函数的奇偶性的应用.当0x >时,()2log 10x +>,()()[]()222211log 1log (1)1log 1224f x x x x ⎡⎤∴=-++-=-+-+<⎢⎥⎣⎦,00x ∴<.当0x >时,由()2f x =-,得()2log 12x +=或1-,得3x =或12x =-(舍去),∵函数()f x 是奇函数,03x ∴=-.12.A 本题考查立体几何的综合应用.在底面ABCD 上取一点H ,使得三棱锥H BEF -的体积等于1,即三棱锥E BFH -的体积等于1,由已知条件得132BHF S S ∆==下底面,∴H 与C 重合,过C 作CM FE ∥,且交11B C 于M ,则11113B M B C =,过M 作MN BF ∥,且交11A D 于N ,则11113D N A D =.连接CN ,则平面CMN ∥平面BEF ,∴当点P 在MN 上运动时,满足三棱锥P BEF -的体积等于1,∴当点P 与N 重合时,1C P13.49本题考查几何概型.当10m -≤≤时,由310m +>得103m -<≤; 当02m <≤时,由101x x ->+得12m <≤.故所求概率为()1143219+=--. 14.10本题考查线性规划的应用.根据约束条件画出可行域(图略),当取直线220x y -+=和40x y +-=的交点()2,2时,4x y +取最大值10.15.21n +本题考查等比数列.数列{}n a 的公比为q ,则由已知得22150q q +-=,解得5q =-(舍去)或3q =,13n n a -∴=,11223n n n a b a b a b n +++=⋅Q L ①,()111221113n n n a b a b a b n ---∴+++=-⋅L ②,①-②得()1313n n n n a b n n -=⋅--⋅,即()11321321n n n n b n b n --=+⋅⇒=+.16.2本题考查椭圆的离心率.设()00,A y ,0AF BF ⋅=u u u r u u u r Q ,即AF BF ⊥u u u r u u u r ,OF OA ∴=u u u r u u u r ,则222008y y c +=,即229y c =①,又22002281y y a b +=,2220228a b y b a∴=+②,由①②得422481890c a c a -+=,即4281890e e -+=,234e =或232e =(舍去),解得e =17.解:本题考查解三角形.根据余弦定理及()3cos b a C c -=,得222332a b c b c a ab+--=⋅,2223332b c a bc ∴+-=,即22223b c a bc +-=,2221cos 23b c a A bc +-∴==.(1)sin 3A =Q ,sin 2a A b =,b a ∴=,即sin sin B A =,4sin 39B A ∴==.(2)a =Q 1cos 3A =, 222cos 11b c bc A ∴+-=2b c =Q ,211113b ∴=,即23b =,sin 3A =Q ,ABC ∴∆的面积21sin sin 2S bc A b A === 18.解:本题考查概率与统计.(1)∵样本评估得分的平均数是73.8,450.04550.086575850.16950.1273.8a b ∴⨯+⨯+++⨯+⨯=,即657542.6a b +=①,又0.6a b +=②,由①②解得0.24a =,0.36b =,则企业评估得分不少于70分的频率为0.64, ∴该家企业的奖励不少于40万元的概率0.64P =.(2)由(1)得,样本中评估得分“不合格”“合格”“良好”的企业分别有6家,12家,18家, 若按分层抽样的方法抽取6家企业, 则“不合格”企业抽取66136⨯=家.“合格”企业抽取126236⨯=家, “良好”企业抽取186336⨯=家. 设6家“不合格”“合格”“良好”的企业分别1A 、1B 、2B 、1C 、2C 、3C ,从中任取两家,有11A B ,12A B ,11A C ,12A C ,13A C ,12B B ,11B C ,12B C ,13B C ,21B C ,22B C ,23B C ,12C C ,13C C ,23C C 共15个基本事件,其中满足事件“这两家企业所获奖励之和不少于0万元”的基本事件有10个,. ∴所求概率102153P ==. 19.解:本题考查面面垂直和线面平行. (1)证明:90ADC ∠=︒Q ,CD AD ∴⊥.CD PA ⊥Q ,PA AD A =I ,CD ∴⊥平面PAD ,CD PD ∴⊥,PD AD ⊥Q ,CD AD D =I ,PD ∴⊥底面ABCD ,PD BC ∴⊥.过E 作EG CD ⊥,垂足为G ,2CD AB ==Q 2AD =,3BC BE =,2433EG AD ∴==,3DG =,3CG =,22222228DE CE EG DG CG CD ∴+=++==,即CE DE ⊥, PD DE D =Q I ,BC ∴⊥平面PDE ,BC ⊂Q 平面PBC ,∴平面PDE ⊥平面PBC .(2)当1PFAF=,即F 是PA 的中点时,PC ∥平面DEF .证明如下: 连接AC ,交DE 于O ,连接FO .延长线段DE ,交AB 的延长线于H ,3BC BE =Q ,12BE BH EC CD ∴==,即2CD BH =, 又2CD AB =Q ,AH CD ∴=,即四边形AHCD 是平行四边形, ∴O 是AC 的中点.∵F 是PA 的中点,PC FO ∴∥,FO ⊂Q 平面DEF ,PC ∴∥平面DEF .20.解:本题考查抛物线概念及其与直线的位置关系. (1)设抛物线C 的准线与x 轴的交点为B ,根据抛物线的定义得MA MF =,则MAF MFA ∠=∠.MAF AFB ∠=∠Q ,1tan 2MFA ∠=,2BF =, tan 1AB BF AFB ∴=∠=,4tan 3MFB ∠=, ∴点M 的坐标为1,14⎛⎫⎪⎝⎭,直线MN 的斜率为43-.∵直线1l 与直线l 关于直线AM 对称, ∴直线1l 的方程为41134y x ⎛⎫-=- ⎪⎝⎭,即4320x y -+=. (2)设直线l 的方程为()1y k x =-(0k ≠), 与24y x =联立得()2222240k x k x k -++=,令()11,M x y ,()22,N x y ,则12242x x k +=+,121x x ⋅=,2244k MN k +==. PQ MN ⊥Q ,∴直线PQ 的方程为()11y x k=--,即10x ky +-=, ∴圆心()3,0D 到直线PQ=,∵圆DPQ ∴==, MPQ ∴∆与NPQ ∆面积之和22114422k S MN PQ k +==⋅=, ∵直线PQ 与圆D有两个交点,(1k ∴-∈,且10k -≠, 令21t k =,则()0,3t ∈,由S ==2t =或0t =(舍去),212k∴=,得2k =± 21.解:本题考查导数的综合应用.(1)由()2e 2x f x kx =--,得()2e x f x k '=-,()0,x ∈+∞Q ,2e 2x ∴>,当2k >时,由()2e 0x f x k '=->,得ln 2k x >,即函数()f x 在ln ,2k ⎛⎫+∞ ⎪⎝⎭上单调递增, 由()0f x '<,得0ln 2k x <<,即函数()f x 在0,ln 2k ⎛⎫ ⎪⎝⎭上单调递减; 当2k ≤时,()0f x '>在()0,+∞上恒成立,即函数()f x 在()0,+∞上单调递增.(2)()00f =,当2k >时,由(1)结合函数()f x 图象知,00x ∃>,使得对任意()00,x x ∈,都有()0f x <,则由()2f x x >得()222e 0x k x -+->.设()()222e x t x k x =-+-,则()22e x t x k '=--,由()0t x '>得2ln 2k x -<,由()0t x '<得2ln 2k x ->. (Ⅰ)若24k <≤,则2ln02k -≤,故()020,ln ,2k x -⎛⎫⊆+∞ ⎪⎝⎭,即()t x 在()00,x 上单调递减, ()00t =Q ,∴对任意()00,x x ∈,都有()0t x <,不合题意;(Ⅱ)若4k >,则2ln 02k ->,故220,ln ,ln 22k k --⎛⎫⎛⎫⊆-∞ ⎪ ⎪⎝⎭⎝⎭, ()t x ∴在20,ln 2k -⎛⎫ ⎪⎝⎭上单调递增, ()00t =Q ,∴对任意20,ln 2k x -⎛⎫∈ ⎪⎝⎭,都有()0t x >,符合题意, 此时取020min ,ln 2k m x -⎧⎫<≤⎨⎬⎩⎭,可使得对()0,x m ∀∈,都有()2f x x >. 综上可得k 的取值范围是()4,+∞.22.解:本题考查直线和圆的极坐标与参数方程.(1)由2sin 0a ρθ+=(304πθ≤≤),得曲线C 是圆2240x y y +-=的34部分,如图所示,将直线l 的直角坐标方程化为4380x y ++=,由图得,当M 与()1,1A -重合时,d 取最小值75; 又曲线C 的圆心()0,2到直线l 的距离为145,半径1r =, max 1419155d ∴=+=.(2)∵曲线C :()222x y a a ++=,直线l :4340x y a ++=, ∴圆心C 到直线的距离3455a a a d -+== ∵由圆C 的半径为a ,直线l 截圆C的弦长等于,∴==52a =±. 经检验52a =±均合题意,52a ∴=±. 23.解:本题考查绝对值不等式.(1)由()11f x m x ≤+-+,得22241x x m +--≤+, ∵关于x 的不等式()11f x m x ≤+-+的解集为R22241x x m ∴+--≤+对任意x ∈R 恒成立.()()222422246x x x x +--≤+--=Q ,16m ∴+≥,解得7m ≤-或5m ≥,∴实数m 的取值范围是(][),75,-∞-+∞U .(2)()5,133,125,2x x f x x x x x -<-⎧⎪=--≤≤⎨⎪-+>⎩,设2165y x x =-+,在同一平面直角坐标系作出函数()y f x =和2165y x x =-+的图象,∵函数()(){}2min ,65g x f x x x =-+(06x ≤<), ∴函数()y g x =的图象是右图中的实线部分,则当3x =时,()g x 取最小值4-;当1x =或5时,()g x 取最大值0. ∴函数()g x 的值域为[]4,0-.。
2020届四川省成都市第七中学高三普通高等学校招生统一热身考试数学(文)试题(解析版)
2020届四川省成都市第七中学高三普通高等学校招生统一热身考试数学(文)试题一、单选题1.设集合{}2430A x x x =-+<,{}230B x x =->,则A B =( )A .33,2⎛⎫--⎪⎝⎭B .33,2⎛⎫- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .()1,+∞【答案】D【解析】先解不等式,化简集合A 、B ,再求并集,即可得出结果. 【详解】∵{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭, 所以{}1A B x x ⋃=>. 故选:D. 【点睛】本题主要考查求集合的并集,熟记并集的概念,以及一元二次不等式的解法即可,属于基础题型. 2.已知在复平面内对应的点在第四象限,则实数m 的取值范围是 A .B .C .D .【答案】A【解析】试题分析:要使复数对应的点在第四象限,应满足,解得,故选A.【考点】 复数的几何意义【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +bi复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +bi (a ,b ∈R )平面向量.3.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A .13B .12C .23D .34【答案】B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为201402=,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.4.设向量(),1a m =,()1,2b =,且222a b a b +=+,则m =( )A .1B .2C .1-D .2-【答案】D 【解析】先由222a b a b +=+得到0a b ⋅=,再由向量数量积的坐标表示列出方程,即可得出结果. 【详解】 因为222a ba b +=+,所以22222a b a b a b ++⋅=+,因此0a b ⋅=,又向量(),1a m =,()1,2b =, 所以20a b m ⋅=+=,解得2m =-. 故选:D. 【点睛】本题主要考查由向量数量积求参数,熟记向量数量积的坐标表示即可,属于基础题型. 5.若将函数y=2sin2x 的图像向左平移12π个单位长度,则平移后图像的对称轴为A .x=26k ππ-(k ∈Z ) B .x=26k ππ+(k ∈Z )C .x=212k ππ-(k ∈Z )D .x=212k ππ+(k ∈Z )【答案】B【解析】【详解】试题分析:由题意得,将函数2sin 2y x =的图象向左平移12π个单位长度,得到2sin(2)6y x π=+,由2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,即平移后的函数的对称轴方程为,26k x k Z ππ=+∈,故选B . 【考点】三角函数的图象与性质. 【方法点晴】本题主要考查了三角函数()sin()f x A wx ϕ=+的图象与性质,着重考查了三角函数的图象变换及三角函数的对称轴方程的求解,通过将函数2sin 2y x =的图象向左平移12π个单位长度,得到函数的解析式2sin(2)6y x π=+,即可求解三角函数的性质,同时考查了学生分析问题和解答问题的能力以及推理与运算能力.6.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是 ( )A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个 【答案】D【解析】【详解】试题分析:由图可知各月的平均最低气温都在0℃以上,A 正确;由图可知在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在10C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有7,8两个月,所以不正确.故选D . 【考点】 统计图 【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .7.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .2B .4C .6D .8【答案】C【解析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果. 【详解】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1、2,梯形的高为2,因此几何体的体积为()1122262⨯+⨯⨯=,选C. 【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等. 8.已知432a =,254b =,1325c =,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】【详解】因为4133216a ==,2155416b ==,1325c =,因为幂函数13y x =在R 上单调递增,所以a c <, 因为指数函数16xy =在R 上单调递增,所以b a <, 即b <a <c . 故选:A.9.在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A =( ) A .310B .10 C .1010-D .310-【答案】C【解析】试题分析:设22,2,5sin cos ,sin ,cos cos 55AD a AB a CD a AC a A ααββ=⇒===⇒====⇒10cos()10αβ=+=-,故选C.【考点】解三角形.10.已知P (x 0,y 0)是椭圆C :24x +y 2=1上的一点,F 1,F 2分别是椭圆C 的左、右焦点,若12PF PF ⋅<0,则x 0的取值范围是A .2626⎛ ⎝⎭B .2323⎛ ⎝⎭C .33⎛ ⎝⎭D .66⎛ ⎝⎭【答案】A【解析】将原问题转化为椭圆与圆的交点问题,求得临界值,然后求解x 0的取值范围即可. 【详解】如图,设以O 为原点、半焦距3c =为半径的圆x 2+y 2=3与椭圆交于A ,B 两点.由2222314x y x y ⎧+⎪⎨+⎪⎩==得263x ±=, 要使12PF PF ⋅<0,则点P 在A 、B 之间, ∴x 0的取值范围是2626,33⎛⎫- ⎪ ⎪⎝⎭.故选A .【点睛】本题考查了椭圆的方程、性质,向量的数量积的运算,属于中档题. 11.点P 是棱长为2的正四面体ABCD 的面ABC 内一动点,3DP =DP 与BC 所成的角α,则sin α的最大值为( ) A .1 B .33C .34D 62-【答案】A【解析】作DO ⊥平面BAC 于O , O 是ABC 的中心,DO OB ⊥,DO OP ⊥,计算出下在四面体的高是263,33OP =,从而平面ABC 内,P 在以O 为圆心,3为半径的圆上,P 运动时,DP 是圆锥的母线,BC 平移到圆锥底面圆直径位置,利用圆锥的性质,这个角的最大值是直角,由此可得结论. 【详解】如图1,作DO ⊥平面BAC 于O ,∵ABCD 是正四面体,∴O 是ABC 的中心,DO OB ⊥,DO OP ⊥,易知222326423DO DB BO ⎛⎫=-=-⨯= ⎪ ⎪⎝⎭,∴()22226333OP DP DO ⎛⎫=-=-= ⎪ ⎪⎝⎭,所以平面ABC 内,P 在以O 为圆心,3为半径的圆上,P 运动时,DP 是圆锥的母线,如图2,把圆锥PO 平移到四面体外部,不妨设//BC MN ,MN 是圆锥底面圆的一条直径,母线DP 与MN 所成角的最大值2π, 所以异面直线DP 与BC 所成的角的正弦的最大值是1. 故选:A .图1 图2 【点睛】本题考查异面直线所成的角,解题关键是找到在平面ABC 内P 点的轨迹.DP 所形成的空间图形,把BC 平移到圆直径位置,母线与底面直径所成角的最大值是2π,由此可得结论.12.定义在R 上的函数()[]22f x x x =--有( )个零点?(其中[]x 表示不大于实数x 的最大整数) A .0 B .1C .2D .3【答案】D【解析】令()[]220f x x x =--=,得[]22x x -=,令()212f x x =-,()[]1g x x =,在同一坐标系做出两函数的图像,由两函数图像的交点个数可得选项. 【详解】令()[]220f x x x =--=,得[]22x x -=,令()212f x x =-,()[]1g x x =,在同一坐标系做出两函数的图像如下图所示, 两函数图像有3个交点,所以函数()[]22f x x x =--有3个零点,即221x -=-或221x -=或222x -=, 解得1x =-或3x =或2x = 故选:D.【点睛】本题考查函数的零点,将函数的零点问题转化为两函数的交点问题是处理此类问题的常用方法,属于中档题.二、填空题13.已知函数()(2+1)e ,()x f x x f x ='为()f x 的导函数,则(0)f '的值为__________. 【答案】3【解析】试题分析:()(2+3),(0) 3.x f x x e f =∴'='【考点】导数【名师点睛】求函数的导数的方法:(1)连乘积的形式:先展开化为多项式的形式,再求导; (2)根式形式:先化为分数指数幂,再求导;(3)复杂公式:通过分子上凑分母,化为简单分式的和、差,再求导;(4)复合函数:确定复合关系,由外向内逐层求导;(5)不能直接求导:适当恒等变形,转化为能求导的形式再求导.14.若,x y满足约束条件10{20220x yx yx y-+≥-≤+-≤,则z x y=+的最大值为_____________.【答案】3 2【解析】试题分析:由下图可得在1(1,)2A处取得最大值,即max13122z=+=.【考点】线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型.考生应注总结解决线性规划问题的一般步骤(1)在直角坐标系中画出对应的平面区域,即可行域;(2)将目标函数变形为a zy xb b=-+;(3)作平行线:将直线0ax by+=平移,使直线与可行域有交点,且观察在可行域中使zb最大(或最小)时所经过的点,求出该点的坐标;(4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出z的最大(小)值. 15.在ABC中,60A∠=︒,23BC=D为BC中点,则AD最长为_________.【答案】3【解析】在ABD∆和ADC∆中,分别利用余弦定理,求得22262b c x+=+,再在ABC∆中,利用余弦定理和基本不等式,即可求解.【详解】如图所示,设AD x=,ADBθ∠=,则ADCπθ∠=-,在ABD∆中,由余弦定理,可得2222cosAB BD AD BD ADθ=+-⋅,即22323cos c x x θ=+-,①在ADC ∆中,由余弦定理,可得2222cos()AC CD AD CD AD πθ=+-⋅-, 即22323cos b x x θ=++,② 由①+②,可得22262b c x +=+,在ABC ∆中,由余弦定理,可得2222cos60BC AB AC AB AC =+-⋅,即22222222221(23)()322b c c b bc c b b c x +=+-≥+-=+=+,解得29x ≤,所以3x ≤,即AC 的最大值为3. 故答案为:3.【点睛】本题主要考查了余弦定理的应用,以及利用基本不等式求解最值问题,其中解答中熟练应用余弦定理得到22262b c x +=+,结合基本不等式求解是解答的关键,着重考查推理与运算能力.16.抛物线()220y px p =>上点A 与焦点F 距离为2,以AF 为直径的圆与y 轴交于点()0,1H ,则p =_________. 【答案】2【解析】法一:首先根据抛物线方程和焦半径公式表示点A 的坐标,再根据0HF HA ⋅=求解点A 的坐标和p 值;法二:利用以AF 为直径的圆与y 轴相切,利用切点为()0,1H ,求得点A 的坐标和p 值.【详解】 法一:根据,02p F ⎛⎫⎪⎝⎭,根据点A 与焦点F 距离为2,所以A 点横坐标为22p -,所以A 点纵坐标222242p y p p p ⎛⎫=-=- ⎪⎝⎭①;即,12p HF ⎛⎫=-⎪⎝⎭,2,12p HA y ⎛⎫=-- ⎪⎝⎭根据0HF HA ⋅=,得到24104p p y --+=从而根据①解得2y =,从而带入①解得2p =. 法二:设()00,A x y ,,02p F ⎛⎫⎪⎝⎭,由焦半径公式可知022p x +=则线段AF 的中点到y 轴的距离022122px d +===, 所以以AF 为直径的圆与y 轴相切,由题意可知切点为()0,1H , 则点A 的纵坐标为2,横坐标22p -, 则2242p p ⎛⎫-= ⎪⎝⎭,解得:2p =. 故答案为:2 【点睛】本题考查抛物线方程,几何性质,意在考查转化与化归的思想,计算能力,属于中档题型,本题的关键利用焦半径公式表示点A 的横坐标,以及点A 在抛物线上,建立方程求解.三、解答题17.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由.【答案】(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41. 【解析】【详解】(1)依题意,2,2,24d d ++成等比数列,故有()()22224d d +=+, ∴240d d -=,解得4d =或0d =. ∴()21442n a n n =+-⋅=-或2n a =.(2)当2n a = 时,不存在满足题意的正整数n ; 当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去), ∴最小正整数41n =.18.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率. 【答案】(1)3,2,2(2)(i )见解析(ii )521【解析】【详解】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )由题意列出所有可能的结果即可,共有21种.(ii )由题意结合(i )中的结果和古典概型计算公式可得事件M 发生的概率为P (M )=521. 详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 点睛:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力. 19.如图,ABCD 是块矩形硬纸板,其中222AB AD ==,E 为DC 中点,将它沿AE 折成直二面角D AE B --.(1)求证:AD ⊥平面BDE ; (2)求四棱锥D ABCE -体积. 【答案】(1)证明见解析;(2)1.【解析】(1)先证AE BE ⊥,由面面垂直(直二面角)得BE ⊥平面ADE ,再得线线垂直BE AD ⊥,然后可得线面垂直;(2)由直二面角即面面垂直,可求得D 到平面ABCE 的距离,从而可求得体积. 【详解】(1)由题意22(2)(2)2AE BE ==+=,所以222AE BE AB +=,所以AE BE ⊥,又二面角D AE B --是直二面角,即平面DAE ⊥平面ABE ,平面DAE平面ABE AE =,BE ⊂平面ABE ,所以BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥,又因为AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE ;(2)以AE 中点M ,连接DM ,因为AD DE =,所以DM AE ⊥,又平面DAE ⊥平面ABE ,平面DAE平面ABE AE =,DM ⊂平面ADE ,所以DM ⊥平面ABE ,直角三角形ADE 中,112DM AE ==,11()(222)2322ABCE S AB CE BC =+⋅=+⨯=,所以1131133D ABCE ABCE V S DM -==⨯⨯=.【点睛】本题考查证明线面垂直,考查求棱锥的体积,掌握线面垂直的判定定理和面面垂直的性质定理是解题关键.20.已知椭圆22221x y a b+=,O 为坐标原点,长轴长为4,离心率12e =.(1)求椭圆方程;(2)若点A ,B ,C 都在椭圆上,D 为AB 中点,且 2CO OD =,求ABC 的面积?【答案】(1)22143x y +=;(2)92. 【解析】(1)直接根据离心率和长轴长定义得到答案.(2)考虑斜率存在和不存在两种情况,联立方程根据韦达定理得到根与系数关系,根据向量运算和中点坐标公式得到CD 坐标,计算弦长和点到直线距离,代入面积公式得到答案. 【详解】(1)根据题意知:24a =,2a =,12c e a ==,故1c =,3b =22143x y +=. (2)①若直线AB 垂直于x 轴,则AB 中点在x 轴上,不妨取点()2,0C ,根据2CO OD =得()1,0D -,故31,2A ⎛⎫- ⎪⎝⎭,31,2B ⎛⎫-- ⎪⎝⎭,故3AB =,11933222ABCSAB CD =⋅=⨯⨯=. ②若直线斜率存在,设直线:AB y kx m =+,设()11,A x y ,()22,B x y ,联立椭圆得22143y kx m x y =+⎧⎪⎨+=⎪⎩,化简得到()()222438430k x kmx m +++-=,判别式()2204834k m ∆+->=,即22340k m +->,()12221228434343km x x k m x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩, AB 中点2243,4343km m D k k -⎛⎫⎪++⎝⎭,根据2CO OD =得到点2286,4343km m C k k -⎛⎫ ⎪++⎝⎭, 因为点C 在椭圆上,代入椭圆2222864343143km m k k -⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭+=,整理得22344k m +=.验证满足>0∆,则12x AB =-=3m ==,又原点O 到直线AB的距离d =所以1322ABO S d AB ==△,所以932ABC ABO S S ==△△. 综上所述:ABC 的面积为92. 【点睛】本题考查了椭圆的标准方程,椭圆内的面积问题,意在考查学生的计算能力和综合应用能力.21.已知()()1xf x e ax a R =--∈.(1)若()0f x ≥对x ∈R 恒成立,求实数a 的范围;(2)求证:对*n N ∀∈,都有111112311111n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭.【答案】(1){}1;(2)证明见解析.【解析】(1)求得函数()f x 的导数,分0a ≤和0a >两种情况讨论,利用导数分析函数()f x 的单调性,求得函数()f x 的最小值()min f x ,由题意得出()min 0f x ≥,解该不等式即可得出实数a 的取值范围;(2)由(1)知,当1a =时,1x x e +≤,可得出()()111n n x x e +++≤,令()11,2,3,,1kx k n n +==+,可推导出()111,2,3,,1n kn k e k n n e++⎛⎫<= ⎪+⎝⎭,进而可推导出()111123112311111n n n n n n n e ee e n n n n e+++++⎛⎫⎛⎫⎛⎫⎛⎫++++<++++ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭结合等比数列求和公式可证得所证不等式成立. 【详解】 (1)()1x f x e ax =--,则()x f x e a '=-.①当0a ≤时,()0f x '>对任意的x ∈R 恒成立,则()f x 在(),-∞+∞上单调递增, 由()1110f a e-=+-<,与题设矛盾; ②当0a >时,令()0xf x e a '=-=,得ln x a =. 由()0f x '<,得ln x a <;由()0f x '>,得ln x a >.∴函数()f x 在(),ln a -∞单调递减,在()ln ,a +∞单调递增,()()ln min ln ln 1ln 10a f x f a e a a a a a ∴==--=--≥,令()()ln 10g a a a a a =-->,()()1ln 1ln g a a a '∴=-+=-, 由()0g a '>,得01a <<;由()0g a '<,得1a >.()g a ∴在()0,1单调递增,在()1,+∞单调递减,()()max 10g a g ∴==,∴只有1a =适合题意,综上,实数a 的取值范围是{}1;(2)由(1)可知,当1a =时,()10xx e f x =--≥,则1x x e +≤,()()111n n x x e ++∴+≤,令()11,2,3,,1kx k n n +==+,则()()11n x k n +=-+,()()1111,2,3,,1n kk n n k e ek n n e+-++⎛⎫∴<== ⎪+⎝⎭,()111123112311111n n n n n n n e ee e n n n n e +++++⎛⎫⎛⎫⎛⎫⎛⎫++++<++++ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭()()1111111111nn n n n e e e e e e e e e e +++---=⋅==---, 由12n e e +>,知111n e e-<-,则1111ne e -<-,因此,111112311111n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭.【点睛】本题考查利用导数研究函数不等式恒成立,同时也考查了利用导数证明函数不等式,考查推理能力与计算能力,属于难题.22.在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2π⎡⎤θ∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.【答案】(1)[]1,0,.x cos y sin ααπα=+⎧∈⎨=⎩为参数;(2)3(2【解析】(1)先求出半圆C 的直角坐标方程,由此能求出半圆C 的参数方程; (2)设点D 对应的参数为α,则点D 的坐标为()1+cos ,sin αα,且[]0,απ∈ ,半圆C 的圆心是()1,0C 因半圆C 在D 处的切线与直线l 垂直,故直线DC 的斜率与直线l 的斜率相等,由此能求出点D 的坐标.【详解】(1)由ρ2cos θ=,得[]2220,01x y xy +-=∈, ,所以C 的参数方程为[]1,0,.x cos y sin ααπα=+⎧∈⎨=⎩为参数 (2)[]sin 0πtan 0,,,1+cos 12332D αααπαα⎛-=⇒=∈∴= -⎝⎭【点睛】本题主要考查参数方程与极坐标方程,熟记直角坐标方程与参数方程的互化以及普通方程与参数方程的互化即可,属于常考题型.23.若0,0a b >>,且11a b+= (1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.【答案】(1)(2)不存在.【解析】(1)由已知11a b+=,利用基本不等式的和积转化可求2ab ≥,利用基本不等式可将33+a b 转化为ab ,由不等式的传递性,可求33+a b 的最小值;(2)由基本不等式可求23a b +的最小值为6>,故不存在. 【详解】(111a b =+≥,得2ab ≥,且当a b ==故33+a b ≥≥a b ==所以33+a b 的最小值为;(2)由(1)知,23a b +≥≥由于6>,从而不存在,a b ,使得236a b +=成立. 【考点定位】 基本不等式.。
2020届四川省成都市第七中学高三上学期期中考试数学(文)试题(解析版)
2020届四川省成都市第七中学高三上学期期中考试数学(文)试题一、单选题1.设集合(){}{}22log 1A x y x B y y x==-==,,则A B =I( )A .(]02,B .()12,C .()1+∞,D .(]12, 【答案】C【解析】可以求出集合A ,B ,然后进行交集的运算即可. 【详解】解:(){}{}22log 1A x y x B y y x==-==Q ,{}{}|10|1A x x x x ∴=->=>,{|0}B y y =…, ()1,A B ∴=+∞I . 故选:C . 【点睛】本题考查了描述法、区间的定义,对数函数的定义域,交集的运算,考查了计算能力,属于基础题.2.已知i 为虚数单位,若复数31iz i-=+,则||z =()A .1B .2CD 【答案】D【解析】运用复数除法的运算法化简复数z ,再根据复数模的计算公式,求出||z ,最后选出答案. 【详解】因为3(3)(1)121(1)(1)i i i z i i i i --⋅-===-++⋅-,所以||z == D. 【点睛】本题考查了复数的除法运算法则和复数求模公式,考查了数学运算能力. 3.若a b >,则下列不等式恒成立的是( ) A .22a b <B .()ln 0a b ->C .1133a b >D .a b >【答案】C【解析】根据指数函数、对数函数、幂函数的单调性以及特殊值法来判断各选项中不等式的正误. 【详解】对于A 选项,由于指数函数2xy =为增函数,且a b >,22a b ∴>,A 选项中的不等式不成立;对于B 选项,由于对数函数ln y x =在()0,∞+上单调递增,a b >Q ,当01a b <-<时,()ln ln10a b -<=,B 选项中的不等式不恒成立;对于C 选项,由于幂函数13y x =在(),-∞+∞上单调递增,且a b >,1133a b ∴>,C 选项中的不等式恒成立;对于D 选项,取1a =,2b =-,则a b >,但a b <,D 选项中的不等式不恒成立. 故选C. 【点睛】本题考查不等式正误的判断,通常利用函数单调性、比较法、不等式的性质以及特殊值法来判断,考查推理能力,属于中等题.4.已知点(1,1),(1,2),(2,1),(3,4)A B C D ---,则向量CD uuu v 在AB u u u v方向上的投影为( )A .2B .C .2-D .-【答案】B【解析】先求出CD uuu r ,AB u u u r 的坐标,再根据投影公式:向量CD uuu r 在AB u u u r方向上的投影为||AB CD AB ⋅u u u r u u u r u u u r 即可求得。
2024届成都七中度高三(上)入学考试文数试题+答案
成都七中高2024届高三上入学考试数学试题文科
一、单选题(60分)
等可能地向左或向右移动一个单位,则移
11
.已知a b,是两个非零向量,设==
AB a CD b
,.给出定义:经过AB的起点,分别作CD所在
,则称向量A B
11,为a在b上的投影向量.已知==
a b
(1,0),(3,1),则a
在b上的投影向量为(
③⋅=
FS FT0
三、解答题(70分)
分)新冠状病毒严重威胁着人们的身体健康,我国某医疗机构为了调查新冠状病毒对我国公民的(1)求证:⊥
MN平面OAC;
(2)求此多面体体积V的最大值.
++<S n
11=f x a ln )(0,0)的直线与函数+x x 2
12)(
成都七中高2024届高三上入学考试数学文科试题 答案
一、单选题
C A C
D A B C D B A A B
二、填空题
13.R ∀∈-->x e x x ,10. 14.8 15.4 16.①②③④
三、解答题 因为=AE OE E ,因为=CE OE E ,因为=OA OC O , (2)根据图形的对称性可知,因为OCN 的面积为⋅ON NC 21的距离最大值时,三棱锥体积最大,此时平面OMC 平面
(2) 45
曲线
为45.。
2020年四川省成都七中高考数学一诊试卷(文科)
2020年四川省成都七中高考数学一诊试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数z=a+bi(a,b∈R)的虚部记作Im(z)=b,则Im()=()A.﹣2B.﹣1C.1D.22.(5分)执行如图所示的程序框图,输出的S值为()A.3B.﹣6C.10D.﹣153.(5分)关于函数f(x)=|tan x|的性质,下列叙述不正确的是()A.f(x)的最小正周期为B.f(x)是偶函数C.f(x)的图象关于直线x=(k∈Z)对称D.f(x)在每一个区间(kπ,kπ+)(k∈Z)内单调递增4.(5分)已知a>0,b>0,则“a≤1且b≤1”是“a+b≤2且ab≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π6.(5分)在约束条件:下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于()A.B.C.D.7.(5分)已知正项等比数列{a n}中,S n为其前n项和,且a2a4=1,S3=7,则S5=()A.B.C.D.8.(5分)双曲线﹣=1的渐近线与圆(x﹣3)2+y2=r2(r>0)相切,则r=()A.B.2C.3D.69.(5分)已知函数f(x)对∀x∈R都有f(x)=f(4﹣x),且其导函数f′(x)满足当x≠2时,(x﹣2)f′(x)>0,则当2<a<4时,有()A.f(2a)<f(2)<f(log2a)B.f(2)<f(2a)<f(log2a)C.f(log2a)<f(2a)<f(2)D.f(2)<f(log2a)<f(2a)10.(5分)对圆(x﹣1)2+(y﹣1)2=1上任意一点P(x,y),若点P到直线l1:3x﹣4y﹣9=0和l2:3x ﹣4y+a=0的距离和都与x,y无关,则a的取值区间为()A.[6,+∞)B.[﹣4,6]C.(﹣4,6)D.(﹣∞,﹣4]11.(5分)若,,满足,|,则的最大值为()A.10B.12C.D.12.(5分)点M,N分别是棱长为1的正方体ABCD﹣A1B1C1D1中棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动,且P A1∥面AMN,则P A1的长度范围为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上)13.(5分)命题“∀x∈N,x2>1”的否定为.14.(5分)在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为.15.(5分)设O、F分别是抛物线y2=2x的顶点和焦点,M是抛物线上的动点,则的最大值为.16.(5分)若实数a,b∈(0,1)且,则的最小值为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)设△ABC的内角A、B、C的对边分别为a、b、c,已知c=3,且sin(C﹣)•cos C=.(1)求角C的大小;(2)若向量=(1,sin A)与=(2,sin B)共线,求a、b的值.18.(12分)学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:古文迷非古文迷合计男生262450女生302050合计5644100(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:K2=,其中n=a+b+c+d.参考数据:P(K2≥k0)0.500.400.250.050.0250.010k00.4550.708 1.321 3.841 5.024 6.63519.(12分)如图,在三棱柱ABC﹣A1B1C1中,每个侧面均为正方形,D为底边AB的中点,E为侧棱CC1的中点.(1)求证:CD∥平面A1EB;(2)求证:AB1⊥平面A1EB;(3)若AB=2,求三棱锥A1﹣B1BE的体积.20.(12分)已知椭圆C:+=1(a>b>0)的两个焦点分别为F1(﹣,0),F2(,0),以椭圆短轴为直径的圆经过点M(1,0).(1)求椭圆C的方程;(2)过点M的直线l与椭圆C相交于A、B两点,设点N(3,2),记直线AN,BN的斜率分别为k1,k2,问:k1+k2是否为定值?并证明你的结论.21.(12分)已知函数f(x)=tx+lnx(t∈R).(1)当t=﹣1时,证明:f(x)≤﹣1;(2)若对于定义域内任意x,f(x)≤x•e x﹣1恒成立,求t的范围?请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一个题目计分.(本小题满分10分).[选修4-4:坐标系与参数方程]22.(10分)在极坐标系下,知圆O:ρ=cosθ+sinθ和直线.(1)求圆O与直线l的直角坐标方程;(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.[选修4-5:不等式选讲](本小题满分0分)23.已知函数f(x)=|2x+3|+|2x﹣1|.(Ⅰ)求不等式f(x)≤5的解集;(Ⅱ)若关于x的不等式f(x)<|m﹣1|的解集非空,求实数m的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)复数z=a+bi(a,b∈R)的虚部记作Im(z)=b,则Im()=()A.﹣2B.﹣1C.1D.2【答案】B2.(5分)执行如图所示的程序框图,输出的S值为()A.3B.﹣6C.10D.﹣15【答案】C3.(5分)关于函数f(x)=|tan x|的性质,下列叙述不正确的是()A.f(x)的最小正周期为B.f(x)是偶函数C.f(x)的图象关于直线x=(k∈Z)对称D.f(x)在每一个区间(kπ,kπ+)(k∈Z)内单调递增【答案】A4.(5分)已知a>0,b>0,则“a≤1且b≤1”是“a+b≤2且ab≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A5.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.36+12πB.36+16πC.40+12πD.40+16π【答案】C6.(5分)在约束条件:下,目标函数z=ax+by(a>0,b>0)的最大值为1,则ab的最大值等于()A.B.C.D.【答案】D7.(5分)已知正项等比数列{a n}中,S n为其前n项和,且a2a4=1,S3=7,则S5=()A.B.C.D.【答案】B8.(5分)双曲线﹣=1的渐近线与圆(x﹣3)2+y2=r2(r>0)相切,则r=()A.B.2C.3D.6【答案】A9.(5分)已知函数f(x)对∀x∈R都有f(x)=f(4﹣x),且其导函数f′(x)满足当x≠2时,(x﹣2)f′(x)>0,则当2<a<4时,有()A.f(2a)<f(2)<f(log2a)B.f(2)<f(2a)<f(log2a)C.f(log2a)<f(2a)<f(2)D.f(2)<f(log2a)<f(2a)【答案】D10.(5分)对圆(x﹣1)2+(y﹣1)2=1上任意一点P(x,y),若点P到直线l1:3x﹣4y﹣9=0和l2:3x ﹣4y+a=0的距离和都与x,y无关,则a的取值区间为()A.[6,+∞)B.[﹣4,6]C.(﹣4,6)D.(﹣∞,﹣4]【答案】A11.(5分)若,,满足,|,则的最大值为()A.10B.12C.D.【答案】B12.(5分)点M,N分别是棱长为1的正方体ABCD﹣A1B1C1D1中棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动,且P A1∥面AMN,则P A1的长度范围为()A.B.C.D.【答案】B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上)13.(5分)命题“∀x∈N,x2>1”的否定为∃x0∈N,x02≤1.14.(5分)在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为360.15.(5分)设O、F分别是抛物线y2=2x的顶点和焦点,M是抛物线上的动点,则的最大值为..16.(5分)若实数a,b∈(0,1)且,则的最小值为.。
2020届四川省成都市第七中学高三上学期一诊模拟数学(文)试题(解析版)
2020届四川省成都市第七中学高三上学期一诊模拟数学(文)试题一、单选题1.复数(,)z a bi a b R =+∈的虚部记作Im()z b =,则3Im 1i i +⎛⎫= ⎪+⎝⎭( )A .-1B .0C .1D .2【答案】A【解析】直接由复数代数形式的乘除运算化简31ii++,再根据题目中定义的复数的虚部,可得答案. 【详解】 解:3(3)(1)4221(1)(1)2i i i ii i i i ++--===-++-, 又复数(,)z a bi a b R =+∈的虚部记作()Im z b =, 3()11iIm i+∴=-+. 故选:A . 【点睛】本题考查了复数代数形式的乘除运算、虚部的定义,属于基础题. 2.执行如图所示的程序框图,输出的s 值为( )A .3B .6-C .10D .15-【答案】C【解析】程序框图的作用是计算22221234-+-+,故可得正确结果. 【详解】根据程序框图可知2222123410S =-+-+=,故选C. 【点睛】本题考查算法中的选择结构和循环结构,属于容易题.3.关于函数()tan f x x =的性质,下列叙述不正确的是( ) A .()f x 的最小正周期为2π B .()f x 是偶函数C .()f x 的图象关于直线()2k x k Z π=∈对称 D .()f x 在每一个区间(,)()2k k k Z πππ+∈内单调递增【答案】A【解析】试题分析:因为1()tan()()22tan f x x f x xππ+=+=≠,所以A 错;()tan()tan ()f x x x f x -=-==,所以函数()f x 是偶函数,B 正确;由()tan f x x=的图象可知,C 、D 均正确;故选A. 【考点】正切函数的图象与性质.4.已知0,0a b >>,则“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A【解析】试题分析:当01a <≤且01b <≤时,由不等式性质可得2a b +≤且1ab ≤;当31,22a b ==,满足2a b +≤且1ab ≤,但不满足1a ≤且1b ≤,所以“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的充分不必要条件,故选A. 【考点】1.不等式性质;2.充要条件.5.某几何体的三视图如图所示,则该几何体的表面积为( )A .3612π+B .3616π+C .4012π+D .4016π+【答案】C【解析】几何体为棱柱与半圆柱的组合体,作出直观图,代入数据计算. 【详解】解:由三视图可知几何体为长方体与半圆柱的组合体, 作出几何体的直观图如图所示:其中半圆柱的底面半径为2,高为4,长方体的棱长分别为4,2,2,∴几何体的表面积21122442424224222124022S πππ=⨯⨯+⨯⨯⨯+⨯+⨯⨯+⨯+⨯⨯=+.故选:C .【点睛】本题考查了几何体的常见几何体的三视图,几何体表面积计算,属于中档题.6.在约束条件:1210x y x y ≤⎧⎪≤⎨⎪+-≥⎩下,目标函数(0,0)z ax by a b =+>>的最大值为1,则ab 的最大值等于( ) A .12B .38C .14D .18【答案】D【解析】作出不等式组对应的平面区域,利用目标函数取得最大值,确定a ,b 的关系,利用基本不等式求ab 的最大值. 【详解】解:作出不等式组对应的平面区域如图:(阴影部分),由(0,0)z ax by a b =+>>,则a z y x b b =-+,平移直线a zy x b b=-+,由图象可知当直线a zy x b b=-+经过点(1,2)A 时直线的截距最大,此时z 最大为1. 代入目标函数z ax by =+得21a b +=. 则1222a b ab =+, 则18ab当且仅当122a b ==时取等号,ab ∴的最大值等于18,故选:D .【点睛】本题主要考查线性规划的应用,利用数形结合以及基本不等式是解决此类问题的基本方法.7.设{a n }是有正数组成的等比数列,n S 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A .152B .314C .334D .172【答案】B【解析】由等比数列的性质易得a 3=1,进而由求和公式可得q 12=,再代入求和公式计算可得. 【详解】由题意可得a 2a 4=a 32=1,∴a 3=1, 设{a n }的公比为q ,则q >0, ∴S 3211q q =++1=7,解得q 12=或q 13=-(舍去),∴a 121q ==4,∴S 551413121412⎛⎫⨯- ⎪⎝⎭==-故选B. 【点睛】本题考查等比数列的通项公式和求和公式,属基础题. 8.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .6【答案】A【解析】由圆心到渐近线的距离等于半径列方程求解即可. 【详解】双曲线的渐近线方程为y =±x ,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r ,即r =.答案:A 【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.9.定义域为R 的函数()f x 对任意x 都有()()4f x f x =-,且其导函数()f x '满足()()20x f x '->,则当24a <<时,有( )A .()()()222log a f f f a <<B .()()()222log af f f a << C .()()()22log 2a f f a f << D .()()()2log 22af a f f <<【答案】C【解析】试题分析:∵函数()f x 对任意R x ∈都有()()4f x f x =-,∴函数()f x 对任意R x ∈都有()()x f x f -=+22,∴函数()f x 的对称轴为2=x ,∵导函数()x f '满足()()20x f x '->,∴函数()f x 在()+∞,2上单调递增,()2,∞-上单调递减,∵42<<a ,∴1624<<a,∵函数()f x 的对称轴为2=x ,∴()()a f a f 22log 4log -=,∵42<<a ,∴2log 12<<a ∴3log 422<-<a ∴aa 2log 422<-<,∴()()()a f a f f 2log 422<-<,∴()()()22log 2af f a f <<,故选C.【考点】(1)函数的图象;(2)利用导数研究函数的单调性.10.对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,若点P 到直线1349:0l x y --=和2:340l x y a -+=的距离之和都与x ,y 无关,则a 的取值区间为( ) A .[6,)+∞ B .[4,6]-C .(4,6)-D .(,4]-∞-【答案】A【解析】由点到线的距离公式表示出点到直线1l 与2l 的距离之和,取值与x ,y 无关,即这个距离之和与P 无关,可知直线2l 平移时,P 点与直线1l ,2l 的距离之和均为1l ,2l 的距离,即此时与x ,y 的值无关,即圆夹在两直线之间,临界条件为直线2l 恰与圆相切,即可求出a 的取值范围. 【详解】解:点P 到直线1349:0l x y --=与直线2:340l x y a -+=距离之和d =取值与x ,y 无关,∴这个距离之和与P 无关,如图所示:可知直线2l 平移时,P 点与直线1l ,2l 的距离之和均为1l ,2l 的距离,即此时与x ,y 的值无关, 当直线2l 1=,化简得|1|5a -=,解得6a =或4a =-(舍去), 6a ∴故选:A .【点睛】本题考查了直线和圆的位置关系,以及点到直线的距离公式,属于中档题11.若a ,b ,c 满足,||||2||2a b c ===,则()()a b c b -⋅-的最大值为( ) A .10 B .12C .53D .62【答案】B【解析】设OA a =,OB b =,OC c =,表示出a b -,-c b 利用向量的数量积的定义求出最值. 【详解】解:设OA a =,OB b =,OC c =,则a b BA -=,c b BC -=()()cos a bc b BA BC BA BC ABC ∴--==⋅∠||||2||2a b c ===4BA ∴≤,3BC ≤当且仅当BA ,BC 同向时()()a b c b --取最大值12故()()max12a bc b --=故选:B 【点睛】本题考查向量的数量积的定义,属于中档题.12.点E ,F 分别是棱长为1的正方体1111ABCD A BC D -中棱BC ,1CC 的中点,动点P 在正方形11BCC B (包括边界)内运动,且1PA ∥面AEF ,则1PA 的长度范围为( )A .2⎡⎢⎣⎦B .4⎡⎢⎣⎦C .342⎡⎤⎢⎥⎣⎦D .31,2⎡⎤⎢⎥⎣⎦【答案】B【解析】分别取棱1BB 、11B C 的中点M 、N ,连接MN ,易证平面1//A MN 平面AEF ,由题意知点P 必在线段MN 上,由此可判断P 在M 或N 处时1A P 最长,位于线段MN 中点处时最短,通过解直角三角形即可求得. 【详解】 解:如下图所示:分别取棱1BB 、11B C 的中点M 、N ,连接MN ,连接1BC ,M 、N 、E 、F 为所在棱的中点,1//MN BC ∴,1//EF BC ,//MN EF ∴,又MN ⊂平面AEF ,EF ⊂平面AEF , //MN ∴平面AEF ;1//AA NE ,1AA NE =,∴四边形1AENA 为平行四边形, 1//A N AE ∴,又1A N ⊂/平面AEF ,AE ⊂平面AEF ,1//A N ∴平面AEF ,又1A NMN N =,∴平面1//A MN 平面AEF ,P 是侧面11BCC B 内一点,且1//A P 平面AEF ,则P 必在线段MN 上,在Rt △11A B M 中,1A M ===同理,在Rt △11A B N 中,求得1A N =∴△1A MN 为等腰三角形,当P 在MN 中点O 时1A P MN ⊥,此时1A P 最短,P 位于M 、N 处时1A P 最长,14AO ==,11A M A N ==,所以线段1A P 长度的取值范围是32[4,5]2. 故选:B .【点睛】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P 点位置.二、填空题13.命题“2,1x N x ∀∈>”的否定为__________.” 【答案】2,1x N x ∃∈≤【解析】全称命题“,()x M p x ∀∈”的否定是存在性命题“,()x M p x ∃∈⌝”,所以“2,1x N x ∀∈>”的否定是“2,1x N x ∃∈≤”. 14.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600, 则中间一组(即第五组)的频数为 ▲ . 【答案】360 【解析】略15.设、分别是抛物线的顶点和焦点,是抛物线上的动点,则的最大值为__________. 【答案】【解析】试题分析:设点的坐标为,由抛物线的定义可知,,则,令,则,,所以,当且仅当时等号成立,所以的最大值为.【考点】1.抛物线的定义及几何性质;2.基本不等式.【名师点睛】本题主要考查抛物线的定义及几何性质、基本不等式,属中档题;求圆锥曲线的最值问题,可利用定义和圆锥曲线的几何性质,利用其几何意义求之,也可根据已知条件把所求的问题用一个或两个未知数表示,即求出其目标函数,利用函数的性质、基本不等式或线性规划知识求之.16.已知,,则的最小值为.【答案】【解析】试题分析:因为,所以,则(当且仅当,即时,取等号);故填.【方法点睛】本题考查利用基本不等式求函数的最值问题,属于难题;解决本题的关键是消元、裂项,难点是合理配凑、恒等变形,目的是出现基本不等式的使用条件(正值、定积),再利用基本不等式进行求解,但要注意验证等号成立的条件.【考点】基本不等式.三、解答题17.设的内角、、所对的边分别为、、,已知,且.(1)求角的大小;(2)若向量与共线, 求的值.【答案】(1);(2)。
四川省成都市第七中学2022-2023学年高三上学期12月阶段性测试数学(文)试题(含答案解析)
四川省成都市第七中学2022-2023学年高三上学期12月阶段性测试数学(文)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B = ()A .∅B .{}1,2,3C .(]1,3D .{}2,32.在复平面内,复数212i(1i)z +=+(i 为虚数单位),则复数z 的共轭复数对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.设函数()()2log 4,22,2x x x f x x ⎧-+<=⎨>⎩,则()()24log 5f f -+=()A .5B .6C .7D .84.若实数x 、y 满足210104210x y x y x y +-⎧⎪--⎨⎪-+⎩,则z =x +3y 的最小值为()A .-9B .1C .32D .25.已知6log 2a =,sin1b =,12c =,则a ,b ,c 的大小关系为()A .a c b<<B .b a c <<C .c b a<<D .a b c<<6.某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .2337.将3个1和2个0随机排成一行,则2个0不相邻的概率为()A .0.3B .0.5C .0.6D .0.88.函数()()cos f x A x ωϕ=+(0A >,0ω>,02πϕ<<)的部分图象如图所示,则()A .3πϕ=,73πω=B .()2y f x =+是奇函数C .直线4x =-是()f x 的对称轴D .函数()f x 在[]3,4上单调递减9.在ABC 中,()()221tan 7π2:sin πcos cos 21tan 2Bp B C A B B -⎛⎫-⋅=-+⋅+ ⎪⎝⎭+,:q ABC 为直角三角形,则“p ”是“q ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是()A .14B .13C .12D .2311.双曲线2222:1(0,0)x y C a b a b-=>>与抛物线28y x =有共同的焦点2F ,双曲线左焦点为1F ,点P 是双曲线右支一点,过1F 向12F PF ∠的角平分线做垂线,垂足为,1N ON =,则双曲线的离心率是()A .2BC .43D112.已知函数()(),f x g x 的定义域均为()R,f x 为偶函数,且()()21f x g x +-=,()()43g x f x --=,下列说法正确的有()A .函数()g x 的图象关于1x =对称B .函数()f x 的图象关于()1,2--对称C .函数()f x 是以4为周期的周期函数D .函数()g x 是以6为周期的周期函数二、填空题13.已知()()()1,2,,3,2a b a b a λ==-⊥,则b = __________.14.已知抛物线22y x =的焦点为F ,准线为l ,点A 在抛物线上,点B 在l 上,若ABF △为等边三角形,则ABF △的面积为__________.15.ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC 的面积为__________.16.已知正方体1111ABCD A B C D -的棱长为2,P 是空间中任意一点.①若点P 是正方体表面上的点,则满足12AP =的动点轨迹长是π;②若点P 是线段1AD 上的点,则异面直线BP 和1B C 所成角的取值范围是,32ππ⎡⎤⎢⎥⎣⎦;③若点P 是侧面11BCC B 上的点,P 到直线BC 的距离与到点1C 的距离之和为2,则P 的轨迹是椭圆;④过点P 的平面α与正方体每条棱所成的角都相等,则平面α截正方体所得截面的最大面积是⑤设1BD 交平面11AC D 于点H ,则123BH HD =.以上说法正确的是__________.(填序号)三、解答题17.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,现给出下列三个条件:①1S ,2S ,4S 成等比数列;②416S =;③()8841S a =+.请你从这三个条件中任选两个解答下列问题.(1)求n a 的通项公式;(2)若()142n n n b b a n --=,且13b =,设数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T ,求证1132n T ≤≤.18.某省举办线上万人健步走活动,希望带动更多的人参与到全民健身中来,以更加强健的体魄、更加优异的成绩,向中国共产党百年华诞献礼.为了解群众参与健步走活动的情况,随机从参与活动的某支队伍中抽取了60人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)以各组的区间中点值代表各组取值的平均水平,求这60人年龄的平均数;(2)一支200人的队伍,男士占其中的38,40岁以下的男士和女士分别为30和70人,请补充完整22⨯列联表,并通过计算判断是否有95%的把握认为40岁以下的群众是否参与健步走活动与性别有关.40岁以下40岁以上合计男士30女士70合计200附:22()()()()()n ad bc K a b c d a c b d -=++++()20P K k ≥L 0.050.0250.0100.0050.0010k L3.8415.0246.6357.87910.82819.如图,在梯形ABCD 中,//AB CD ,1===AD DC CB ,120BCD ∠=︒,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,1BF =.(1)求证:BD ⊥平面AED ,AD ⊥平面BDEF ;(2)点P 在线段EF 上运动,求三棱锥C PBD -的体积.20.已知椭圆()2222:10x y C a b a b+=>>的焦距为2,左、右焦点分别为12,F F ,A 为椭圆C 上一点,且2AF x ⊥轴,1OM AF ⊥,M 为垂足,O 为坐标原点,且225OM AF =.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点2F 的直线l (斜率不为0)与椭圆交于,P Q 两点,G 为x 轴正半轴上一点,且22PGF QGF ∠=∠,求点G 的坐标.21.已知函数()()()e 21,R ,sin xf x ax a bg x x x =--∈=-.(1)当[)0,x ∈+∞对,求函数()g x 的最小值;(2)若()0f x ≥对x ∈R 恒成立,求实数a 取值集合;(3)求证:对*N n ∀∈,都有11111231sin sin sin sin 1111e 1n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++<⎪ ⎪⎪⎪++++-⎝⎭⎝⎭⎝⎭⎝⎭22.已知在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为4cos 1cos 2θρθ=-.(1)求曲线C 的直角坐标方程;(2)已知过点3,12M ⎛⎫⎪⎝⎭,倾斜角为α的直线l 与曲线C 交于A ,B 两点,若M 为线段AB的三等分点,求tan α的值.23.已知函数()21f x x x =-++.(1)求不等式()2f x x >+的解集;(2)若关于x 的不等式()1f x a x x >-+恒成立,求a 的取值范围.参考答案:1.D【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数.【详解】∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=.故选:D .2.A【分析】化简复数,求出z 的共轭复数,即可得到答案.【详解】()()212i i 12i 12i 2i 11i (1i)2i 2i i22z +++-+====-+-则z 的共轭复数为11i2+故选:A.3.D【分析】根据给定的分段函数,判断自变量取值区间,再代入计算作答.【详解】因23252<<,则22log 53<<,而()()2log 4,22,2x x x f x x ⎧-+<=⎨>⎩,所以()()2log 5224log 5log (44)2358f f -+=++=+=.故选:D 4.B【分析】做出可行域,由目标函数的几何意义求得最小值.【详解】有不等式组做出可行域,如图所示:由目标函数z =x +3y 的几何意义知,其在10(,)处取得最小值,此z =1+0=1.故选:B.5.A【分析】借助中间值12比较大小即可.【详解】661log 2log 2a =<,1sin1sin 62b π=>=,所以bc a >>.故选:A.6.C【分析】根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.【详解】解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为3221111152111232322V ⎛⎫=-⨯⨯⨯+⨯⨯⨯= ⎪⎝⎭,故选:C.7.C【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.8.C【分析】根据已知函数图象求得()f x 的解析式,再根据三角函数的奇偶性、对称性、以及单调性,对每个选项进行逐一判断,即可选择.【详解】根据()f x 的函数图象可知,()()cos f x A x ωϕ=+的最大值为2,又0A >,故2A =;又()01f =,即2cos 1ϕ=,则1cos 2ϕ=,又0,2πϕ⎛⎫∈ ⎪⎝⎭,故3πϕ=;又102f ⎛⎫= ⎪⎝⎭,即1cos 023πω⎛⎫+= ⎪⎝⎭,解得1,232k k Z ππωπ+=+∈,故可得2,3k k Z πωπ=+∈;又142T >,则ωπ<,又0ω>,故当0k =时,3πω=;故()2cos 33f x x ππ⎛⎫=+ ⎪⎝⎭对A :由上述求解可知,3πϕ=,3πω=,故A 错误;对B :()22cos 2cos 33f x x x πππ⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭,又2cos 2cos 33x x ππ⎛⎫⎛⎫--=- ⎪⎪⎝⎭⎝⎭,故()2f x +是偶函数,故B 错误;对C :当4x =-时,()()2cos 2f x π=-=-,即当4x =-时,()f x 取得最小值,故4x =-是()f x 的对称轴,故C 正确;对D :当[]3,4x ∈时,45,3333x ππππ⎡⎤+∈⎢⎥⎣⎦,而2cos y x =-在45,33ππ⎡⎤⎢⎥⎣⎦不单调,故D 错误.故选:C.9.D【分析】利用三角恒等变换公式,把p 中等式化为sin2sin 2B C =,从而()()cos sin 0B C B C +-=,得π2B C +=或0B C -=,然后结合充分条件和必要条件的定义进行判断.【详解】由()()221tan 7π2sin πcos cos 21tan2BB C A B B -⎛⎫-⋅=-+⋅+ ⎪⎝⎭+,得()222221π2s o in cos co c s π22sin os si c s 12n B B B C C B B -⎛⎫⋅=--⋅- ⎪⎝⎭+,即()2222π22s i in cos cos π22cos sin cos s 2n BBB C C BB -⎛⎫⋅=--⋅- ⎪⎝⎭+,即sin2sin 2B C =,即()()()()sin sin B C B C B C B C ++-=+--⎡⎤⎡⎤⎣⎦⎣⎦,()()()()sin cos cos sin B C B C B C B C +-++-()()()()sin cos cos sin B C B C B C B C =+--+-整理得()()cos sin 0B C B C +-=,则()cos 0B C +=或()sin 0B C -=,因为0πB <<,0πC <<,0πB C <+<,ππB C -<-<,则π2B C +=或0B C -=,即π2A =或B C =,所以由p 不能推出q ;当ABC 为直角三角形时,A 不一定为π2,,B C 也不一定相等,所以由q 不能推出p ,故“p ”是“q ”的既不充分也不必要条件.故选:D .10.C【分析】首先得到220()4f x x x m '=-≥+恒成立,则解出m 的范围,再根据其在[0,4]内取数,利用几何概型公式得到答案.【详解】22()4f x x x m '=-+ ,3221()233f x x x m x =-++在x ∈R 上是增函数22()40f x x x m '∴=-+≥恒成立21640m ∴∆=-≤解得2m ≥或2m ≤-又m 是区间[0,4]内任取的一个数24m ∴≤≤由几何概型概率公式得函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率42142P -==故选:C .11.A【分析】由抛物线的方程得焦点2(2,0)F ,延长1F N 交2PF 的延长线于点M ,由角平分线的性质得1PF PM =且1F N NM =,由中位线的性质得22F M =,根据双曲线的定义求得1a =,由双曲线的离心率公式即可得到答案.【详解】由抛物线28y x =的焦点2(2,0)F ,故2c =,延长1F N 交2PF 的延长线于点MPN 是12F PF ∠的角平分线,1F N PN ⊥于点N ,1PF PM ∴=且1F N NM=点O 是12F F 的中点,//ON PM∴212ON F M = 1ON =22F M ∴=由双曲线的定义得122PF PF a -=,故12222PF PF a F M -===1a ∴=故双曲线的离心率为221c e a ===故选:A.12.C【分析】根据题中所给条件可判断()g x 关于2x =和4x =对称,进而得()g x 的周期性,结合()g x 的周期性和()f x 的奇偶性即可判断()f x 的周期性,结合选项即可逐一求解.【详解】由()()21f x g x +-=得()()21f x g x -++=,又()f x 为偶函数,所以()()=f x f x -,进而可得()()22g x g x -=+;因此可得()g x 的图象关于2x =对称,又()()43g x f x --=可得()()843g x f x ---=,结合()f x 为偶函数,所以()()8g x g x =-,故()g x 的图象关于4x =对称,因此()()()44g x g x g x =-=+,所以()g x 是以4为周期的周期,故D 错误,由于()()()()()()223231322f x g x g x f x f x f x -=+-=--=--⇒=---,所以()()22f x f x -+-=-且()()()()224224f x f x f x f x =---=-----=-⎡⎤⎣⎦,因此()f x 的图象关于()1,1--对称,函数()f x 是以4为周期的周期函数,故C 正确,B 错误,根据()f x 是以4为周期的周期函数,由()()21f x g x +-=,()()43g x f x --=得()()24g x g x +-=,所以数()g x 的图象关于()1,2对称,故A 错误,故选:C 13.5【分析】根据()()()1,2,,3,2a b a b a λ==-⊥求出λ的值,然后再求b 【详解】()()()221,2,32,1a b λλ-=-=- 又()2a b a -⊥,220,4λλ∴-+=∴=()4,3,5b b ∴===故答案为:514【分析】先根据ABF △为等边三角形得到AF AB =,再设(A a ,表示出B 点坐标,再根据BF AB =,列出关于a 的方程,解出a ,解出三角形边长,利用面积公式即可得到答案.【详解】 ABF △为等边三角形AF AB∴=由题意得1,02F ⎛⎫⎪⎝⎭设(A a ,则12B ⎛- ⎝12BF AB a ∴==+解得32a =2AB ∴=∴ABF △是边长为2的等边三角形,122sin 602ABF S ︒∴=⨯⨯⨯=15.【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =解得c c ==-所以2a c ==11sin22ABC S ac B ∆==⨯=【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.④【分析】满足12AP =的动点P 的轨迹是以A 为圆心,以12为半径的3个14圆弧,求出动点轨迹长即可判断①,证明1B C ⊥面11ABC D ,可得1B C BP ⊥,判断②,若P 到直线BC 的距离与到点1C 的距离之和为2,则点P 在线段1CC 上可判断③作出平面α截正方体的正六边形求出其面积可判断④,利用111111D A DC D D A C V V --=,求出1D H ,再利用11BH BD D H =-在求出BH .【详解】对于①,满足12AP =的动点P 的轨迹是以A 为圆心,以12为半径的3个14圆弧,因此动点轨迹为11332424ππ⨯⨯⨯=.故①正确;对于②,连接1BC ,则11B C BC ⊥,AB ⊥Q 面11BCC B ,1B C ⊂面11BCC B 1AB B C∴⊥1AB BC B =Q I ,1,AB BC ⊂面11ABC D 1B C ∴⊥面11ABC D 点P 是线段1AD 上的点,BP ∴⊂面11ABC D 可得1B C BP⊥故直线BP 和1B C 所成角恒为2π.故②不正确对于③,过点P 作PM BC ⊥于点M ,则P 到直线BC 的距离与到点1C 的距离之和为,当点P 在线段1CC 上时,112PM PC PC PC +>+=此时不满足P 到直线BC 的距离与到点1C 的距离之和为2,所以P 的轨迹为线段1CC ,故③不正确.对于④,过点P 的平面α与正方体每条棱所成的角都相等,只需过同一顶点的三条棱所成的角相等即可.111A P A R AQ ==,则平面PQR 与正方体过点1A 的三条棱所成的角相等,若点,,,,,E F G H M N 分别为相应棱的中点,则平面//EFGHMN 面PQR ,且六边形EFGHMN 为正六边形,边长,故六边形的面积为264⨯=,故④正确.对于⑤1111111111111222323D A DC D D A C A DC V V SD H H --==⨯⨯⨯==13D H ∴=1BD =1133BH BD D H ∴=-=12BH HD ∴=故⑤错误故答案为:④.17.(1)21n a n =-(2)证明见详解【分析】(1)选择①②,①③或②③,利用等比中项的性质,等差数列的通项公式和前n 项和公式将已知条件转化为关于1a 和d 的关系式,求出1a 和d 的值即可得到n a 的通项公式;(2)由(1)知184n n b b n --=-,利用累加法求出n b 的通项,再由裂项求和即可证明12n T <,再根据1n T T ≥即可证明1132n T ≤≤.【详解】(1)解:由条件①得,因为1S ,2S ,4S 成等比数列,则2214S S S =,即()()2111246a d a a d +=+,又0d ≠,则12d a =,由条件②得414616S a d =+=,即1238a d +=,由条件③得()8841S a =+,可得()11828471a d a d +=++,即11a =.若选①②,则有112238d a a d =⎧⎨+=⎩,可得112a d =⎧⎨=⎩,则()1121n a a n d n =+-=-;若选①③,则122d a ==,则()1121n a a n d n =+-=-;若选②③,则123238a d d +=+=,可得2d =,所以()1121n a a n d n =+-=-.(2)证明:由()14842n n n b b a n n --==-,且13b =,所以当2n时,则有()()()()()()21213218412131220843412n n n n n b b b b b b b b n n --+-=+-+-++-=++++-=+=- ,又13b =也满足241n b n =-,故对任意的*n ∈N ,有241n b n =-,则()()11111212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,所以21111112111121233521121n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+++- ⎪ ⎪ ⎪⎢⎥-+⎝⎛⎫=-< ⎪+⎝⎭⎝⎭⎭⎝⎭⎣⎦L ,由于21n n T n =+单调递增,所以113n T T ≥=,综上:1132n T ≤<.18.(1)37;(2)列联表答案见解析,有95%的把握认为40岁以下的群众是否参与健步走活动与性别有关.【分析】(1)根据频率分布直方图及平均数的定义直接计算即可;(2)列出22⨯列联表,计算2K 与临界值比较即可得出结论.【详解】(1)这60人年龄的平均数为150.15250.2350.3450.15550.1650.05750.0537⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)由题意队伍中男士共75人,女士125人,则22⨯列联表如下:40岁以下40岁以上合计男士304575女士7055125合计10010010020022200(30557045) 4.810010075125K ⨯⨯-⨯=⨯⨯⨯=4.8 3.8> 所以,有95%的把握认为40岁以下的群众是否参与健步走活动与性别有关.19.(1)证明见解析;(2)12.【分析】(1)根据已知条件转化垂直关系,利用线面垂直的判断定理,即可证明;(2)根据C PBD P BCD V V --=计算棱锥的体积即可.【详解】(1)证明,在梯形ABCD 中,//AB CD ,1===AD DC CB ,120BCD ∠=︒,30CDB CBD ∴∠=∠=︒,120ADC DCB ∠=∠=︒,90ADB ∴∠=︒,AD BD ∴⊥.又四边形BDEF 是矩形,DE DB∴⊥又AD DE D ⋂=Q ,BD ∴⊥平面ADE平面BFED ⊥平面ABCD ,平面BFED ⋂平面ABCD BD =,DE ⊂平面BFED ,,又ED BD ⊥ ,ED ∴⊥平面ABCD ,ED AD ∴⊥ED BD D = ,AD ∴⊥平面BDEF .(2)//,EF DB EF ⊄ 平面ABCD ,DB ⊂平面ABCD ,//EF ∴平面ABCD ,∴P 到平面ABCD 的距离等于1BF =,41sin 111222BCD BC S B C D C D ∠=⨯⨯⋅⨯=⋅=△113412C PBD P BCD V V --∴==⨯⨯=.20.(1)22143x y +=(2)()4,0G 【分析】(1)利用△1F MO ∽△12F F A 构造齐次方程,求出离心率,再利用焦距即可求出椭圆方程;(2)将直线方程与椭圆方程联立利用韦达定理求出12y y +和12y y ,利用几何关系可知0GP GQ k k +=,即可得1201221my y x y y =++,将韦达定理代入化简即可求得点G 的坐标.【详解】(1)∵椭圆的焦距为2,∴22c =,即1c =,2AF x ⊥ 轴,∴22b AF a =,则22212222b a b AF a AF a a a-=-=-=,由212AF F F ⊥,1OM AF ⊥,则△1F MO ∽△12F F A ,∴121OM OF AF AF =,即22225ac a b =-,整理得22522ac a c =+,即22520e e -+=,解得12e =或2e =(舍去)∴2a =,∴2223b a c =-=,则椭圆C 的标准方程为22143x y +=,(2)设直线l 的方程为1x my =+,且()()()11220,,,0P x y Q x y G x ,,,将直线方程与椭圆方程221431x y x my ⎧+=⎪⎨⎪=+⎩联立得()2234690m y my ++-=,()()()22236493414410m m m ∆=-⨯-⨯+=+>,则122634m y y m -+=+,122934y y m -=+,∵22PGF QGF ∠=∠,∴0GP GQ k k +=,∴()()()()1202101210201020GP GQ y x x y x x y y k k x x x x x x x x -+-+=+=----0=,∴121021200y x y x y x y x -+-=,∴()()122112210121211y my y my y x y x x y y y y ++++==++121221my y y y =++229218341146634m m m m m m -⨯-+=+=+=--+,即()4,0G .21.(1)0(2)12⎧⎫⎨⎬⎩⎭(3)证明见解析【分析】(1)求导,得到函数单调性,从而求出最小值;(2)先根据()00f =,()00f '=得到12a =,再证明出充分性成立,而12a >与12a <均不合要求,从而得到答案;(3)由第一问结论得到11sin 11n n k k n n ++⎛⎫⎛⎫< ⎪⎪++⎝⎭⎝⎭,只需证明111112311111e 1n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++<⎪ ⎪ ⎪ ⎪++++-⎝⎭⎝⎭⎝⎭⎝⎭,由(2)可知,()e 10xf x x =--≥,得到()11e 1,2,3,,1en kn k k n n ++⎛⎫<=⋯ ⎪+⎝⎭,结合等比数列求和公式证明出1111111231e 1111e 1e 1n n n n n n n n n n ++++-⎛⎫⎛⎫⎛⎫⎛⎫++++<< ⎪ ⎪ ⎪ ⎪++++--⎝⎭⎝⎭⎝⎭⎝⎭.【详解】(1)()()1cos 0,g x x g x =≥'-在[)0,x ∈+∞上单调递增,所以()min ()00g x g ==.(2)()e 2xf x a '=-,由于()00f =,故()010e 21202f a a a '=-=-=⇒=,下证当12a =时,()e 10xf x x =--≥恒成立,此时令()e 10xf x '=->,解得:0x >,令()e 10xf x '=-<,解得:0x <,故()e 1xf x x =--在0x >上单调递增,在0x <上单调递减,故()e 1xf x x =--在0x =处取得极小值,也是最小值,且()()0min 0=e 010f f x =--=,故()0f x ≥对x ∈R 恒成立;当12a >时,()1e 21e x x f x ax x =-<---,则()0010e 0f -<-=,显然不合要求,舍去当12a <时,令()e 20xf x a '=->,解得:ln 2x a >,令()e 20xf x a '=-<,解得:ln 2x a <,其中ln 20a <,则()e 21xf x ax =--在ln 2x a <上单调递减,在ln 2x a >上单调递增,又()00f =,故当()ln 2,0x a ∈时,()0f x <,不合题意,舍去;综上:实数a 取值集合为12⎧⎫⎨⎬⎩⎭.(3)由(1)可知,11sin 11n n k k n n ++⎛⎫⎛⎫< ⎪ ⎪++⎝⎭⎝⎭,*N ,N k n *∈∈,所以1111123sin sin sin sin 1111n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭ 11111231111n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫<++++ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭故只需证明:111112311111e 1n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪ ⎪ ⎪++++-⎝⎭⎝⎭⎝⎭⎝⎭ 即可由(2)可知,()e 10x f x x =--≥,则1e x x +≤,()11(1)e n x n x ++∴+≤,令()11,2,3,,1k x k n n +==+ ,则()11e 1,2,3,,1e n k n k k n n ++⎛⎫<=⋯ ⎪+⎝⎭,()11112311231e e e e 1111e n n n n n n n n n n n +++++⎛⎫⎛⎫⎛⎫⎛⎫∴++++<++++ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭ ()()11111e 1e 1e e 1e e 1ee e 1e 1e 1n n n n n +++---=⋅==<----,11111231sin sin sin sin 1111e 1n n n n n n n n n ++++⎛⎫⎛⎫⎛⎫⎛⎫∴++++< ⎪ ⎪ ⎪ ⎪++++-⎝⎭⎝⎭⎝⎭⎝⎭ .【点睛】数学问题的转化要注意等价性,也就是充分性与必要性兼备,有时在探求参数的取值范围时,为了寻找解题突破口,从满足题意得自变量范围内选择一个数,代入求得参数的取值范围,从而得到使得问题成立的一个必要条件,这个范围可能恰好就是所求范围,也可能比所求的范围大,需要验证其充分性,这就是所谓的必要性探路和充分性证明,对于特殊值的选取策略一般是某个常数,实际上时切线的横坐标,端点值或极值点等.22.(1)22y x=(2)tan 2α=或2tan 3α=【分析】(1)利用二倍角公式化简已知式,两边同乘以ρ,结合极坐标与直角坐标的互化公式即可;(2)写出直线的参数方程,代入曲线C 的方程,得到关于参数t 的一元二次方程,由已知结合韦达定理以及参数t 的几何意义,可得关于tan α的方程,求解得答案.【详解】(1)由4cos 1cos 2θρθ=-,得2sin 2cos ρθθ=,所以22sin 2cos ρθρθ=所以曲线C 的直角坐标方程为22y x =.(2)设直线l 的参数方程为3,21x tcos y tsin αα⎧=+⎪⎨⎪=+⎩(t 为参数,t ∈R ),代入22y x =,得()()22sin 2cos sin 20t t ααα---=,0∆>恒成立,所以()22cos sin sin A B t t ααα-+=,22sin A B t t α-=.由M 为线段AB 的三等分点,且0A B t t <,故2A B t t =-.将2A B t t =-代入前式,得()24cos sin sin A t ααα-=,()22cos sin sin B t ααα--=,所以()2428cos sin 2sin sin αααα---=,224(cos sin )sin ααα-=,则23tan 8tan 40αα-+=解得:tan 2α=或2tan 3α=.23.(1){}13x x x 或(2)(),3-∞【分析】(1)首先分类讨论去绝对值,再求解不等式;(2)首先讨论0x =时,a 的范围,当0x ≠时,不等式化简为2212a x x-++>,利用含绝对值三角不等式求最值,即可求得a 的取值范围.【详解】(1)()21,1,3,12,21,2,x x f x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩不等式()2f x x >+等价于1,212x x x <-⎧⎨-+>+⎩或12,32x x -≤<⎧⎨>+⎩或2,212,x x x ≥⎧⎨->+⎩解得1x <或3x >.故原不等式的解集为{}13x x x 或.(2)当0x =时,不等式()1f x a x x >-+恒成立,即a R ∈.当0x ≠时,()1f x a x x >-+可化为2212a x x -++>,因为222212123x x x x -++≥-++=,当且仅当22120x x ⎛⎫⎛⎫-+≥ ⎪⎪⎝⎭⎝⎭时等号成立所以3a <,即a 的取值范围为(),3-∞.。
四川省成都市成都七中万达学校2020届高三上学期第一次月考数学(文)试题Word版含解析
【答案】略
20.( 12 分) 已知定点 A( 3,0), B (3,0) ,直线 AM,BM相交于点 M,且它们的斜率之积为
记动点 M的轨迹为曲线 C.
1 -,
9
(1)求曲线 C 的方程;
(2)过点 T 1,0 的直线 l 与曲线 C 交于 P.Q 两点,是否存在定点 S s,0 ,使得直线 SP 与
q
1) ,
所以 b1
1 , b2
2
1 , b3
8
1 . b1
1, 2
32 q 1 .
bn
n1
11 ?
24
4
2n 1
1
.
2
2n 1
1
(2)
cn a n bn = 3n 1
.
2
n
1
1
1
n 2 3n 1 2
4
Tn 2
1 1
4
n 3n 1 2 1
2
1 3
4n
18.随着科学技术的飞速发展, 手机的功能逐渐强大,很大程度上代替了电脑电视。为了了
解某高校学生平均每天使用手机的时间与性别有关,某调查小组随机抽取了
30 名男生, 20
名女生进行为期一周的跟踪调查,调查结果如表所示
;
平均每天使用手机超过 3 小时 平均每天使用手机不超过 3 小时 合计
男生 25
5
30
女生 10
10
20
合计 35
15
50
(1) 能否在犯错误的概率不超过 0.01 的前提下认为学生使用手机的时间长短与性别有关? (2) 在这 20 名女生中,调查小组发现共有 15 人使用国产手机,在未使用国产手机的人中, 平均每天使用手机不超过 3 小时的共有 2 人.从未使用国产手机的人中任意选取 3 人,求至 多有一人使用手机不超过 3 小时的概率。
四川省成都市第七中学2020届高三数学上学期入学考试试题理含解析
四川省成都市第七中学2020届高三数学上学期入学考试试题 理(含解析)一、选择题(本大题共12小题)1.已知集合{}1M x x =<,{}20N x x x =-<,则( ) A. {}1MN x x =<B. {}0MN x x =>C. M N ⊆D. N M ⊆【答案】D 【解析】 【分析】求解不等式20x x -<可得{}|01N x x =<<,据此结合交集、并集、子集的定义考查所给的选项是否正确即可.【详解】求解不等式20x x -<可得{}|01N x x =<<, 则:{}|01MN x x =<<,选项A 错误;{}|1M N x x ⋃=<,选项B 错误; N M ⊆,选项C 错误,选项D 正确;故选D .【点睛】本题主要考查集合的表示方法,交集、并集、子集的定义及其应用等知识,意在考查学生的转化能力和计算求解能力. 2.已知a R ∈,i 为虚数单位,若ai i+为实数,则a 值为 () A. 1 B. 2C. 3D. 4【答案】A 【解析】 【分析】利用复数代数形式的乘除运算化简,再由虚部为0求解可得答案. 【详解】解:()21a aii i a i i i+=+=-为实数, 10a ∴-=,即1a =.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( ) A. 15 B. 16C. 18D. 21【答案】C 【解析】分析:首先根据题意,先确定其为一个等差数列的问题,已知公差、项数与和,求某项的问题,在求解的过程中,经分析,先确定首项,之后根据其和建立等量关系式,最后再利用通项公式求得第五项,从而求得结果. 详解:设第一个人分到的橘子个数为1a , 由题意得515453602S a ⨯=+⨯=,解得16a =, 则51(51)361218a a =+-⨯=+=,故选C.点睛:该题所考查的是有关等差数列的有关问题,在求解的过程中,注意分析题的条件,已知的量为公差、项数与和、而对于等差数列中,1,,,,n n a d n a S 这五个量是知三求二的,所以应用相应的公式求得对应的量即可. 4.函数()()2xx f x xee -=-的大致图象为( )A. B.C. D.【答案】A 【解析】利用函数的奇偶性排除,B D ,利用函数的单调性排除C ,从而可得结果. 【详解】()()2x x f x x e e -=-,()()()()22()x x x x f x x e e x e e f x --∴-=--=--=-,()f x ∴为奇函数,其图象关于原点对称,故排除,B D ,2y x =在()0,+∞上是增函数且0y >, x x y e e -=-在()0,+∞上是增函数且0y >,所以()()2xx f x xee -=-在()0,+∞是增函数,排除C ,故选A .【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.5.5(2x +的展开式中,4x 的系数是( )A. 40B. 60C. 80D. 100【答案】C 【解析】 【分析】先写出二项展开式的通项,然后令x 的指数为4,解出相应参数的值,代入通项即可得出结果.【详解】5(2x +二项展开式的通项为5552155(2)2k k kkk kk T C x C x---+=⋅⋅=⋅⋅.令542k-=,得2k =. 因此,二项展开式中4x 的系数为235280C ⋅=,故选C .【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.6.按照如图的程序框图执行,若输出结果为15,则M 处条件为A. 16k ≥B. 8k <C. 16k <D. 8k ≥【答案】A 【解析】【详解】运行程序: S=0,k=1; S=1,k=2; S=3,k=4; S=7,k=8;S=15,k=16,此时退出循环,所以16k ≥,故选A.点睛:该题考查的是有关程序框图的问题,该题属于补充条件的问题,在求解的过程中,注意数列的项的大小,以及项之间的关系,从而求得正确结果.7.已知锐角△ABC 的内角A,B,C 的对边分别为a,b,c,23cos 2A+cos 2A=0,a=7,c=6,则b 等于( ) A. 10 B. 9C. 8D. 5【答案】D 【解析】【详解】由题意知,23cos 2A+2cos 2A-1=0, 即cos 2A=125, 又因△ABC 为锐角三角形,所以cosA=15. △ABC 中由余弦定理知72=b 2+62-2b×6×15, 即b 2-125b-13=0, 即b=5或b=-135(舍去),故选D.8.曲线4y x=与直线5y x =-围成的平面图形的面积为( ) A.152B.154C.154ln 24- D.158ln 22- 【答案】D 【解析】 【分析】先作出直线与曲线围成的平面图形的简图,联立直线与曲线方程,求出交点横坐标,根据定积分即可求出结果. 【详解】作出曲线4y x=与直线5y x =-围成的平面图形如下:由45y x y x⎧=⎪⎨⎪=-⎩解得:1x =或4x =, 所以曲线4y x=与直线5y x =-围成的平面图形的面积为 ()421441115S 5542084458ln21222x dx x x lnx ln x ⎛⎫⎛⎫⎛⎫=--=--=----=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰故选D【点睛】本题主要考查定积分的应用,求围成图形的面积只需转化为对应的定积分问题求解即可,属于常考题型.9.已知函数()ln f x x x =,若直线l 过点()0,e -,且与曲线()y f x =相切,则直线l 的斜率为( ) A. 2- B. 2C. e -D. e【答案】B 【解析】 【分析】求得()f x 的导数,设出切点(),m n ,可得切线的斜率,结合两点的斜率公式,解方程可得m ,从而可得结果.【详解】函数()ln f x x x =的导数为()'ln 1f x x =+, 设切点为(),m n ,则n mlnm =, 可得切线的斜率为1ln k m =+, 所以ln 1ln n e m m em m m+++==, 解得m e =,1ln 2k e =+=,故选B .【点睛】本题主要考查利用导数求切线斜率,属于中档题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x '=;(2) 己知斜率k 求切点()()11,,A x f x 即解方程()1f x k '=;(3) 巳知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,,A x f x 利用()()()10010f x f x k f x x x -'==-求解.10.巳知将函数()sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个単位长度后.得到函数()g x 的图象.若()g x 是偶函数.则3f π⎛⎫⎪⎝⎭=( ) A .12B.2C.2D. 1【答案】A 【解析】 【分析】先由题意写出()()sin 23g x x ϕ=+,根据()g x 是偶函数求出ϕ,即可得出结果. 【详解】由题意可得:()()sin 23g x x ϕ=+, 因为()g x 是偶函数,所以()32k k Z πϕπ=+∈,即()63k k Z ππϕ=+∈, 又02πϕ<<,所以0632k πππ<+<,解得112k -<<,所以0k =,故6πϕ=; 所以1sin 23362f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选A【点睛】本题主要考查三角函数的图像变换与三角函数的性质,熟记性质即可,属于常考题型.11.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则,A C 区域涂色不相同的概率为( )A.17B.27C.37D.47【答案】D 【解析】 【分析】利用分步计数原理求出不同涂色方案有420种,其中,,A C 区域涂色不相同的情况有120种,由此根据古典概型概率公式能求出,A C 区域涂色不相同的概率.【详解】提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,根据题意,如图,设5个区域依次为,,,,A B C D E,分4步进行分析:①,对于区域A,有5种颜色可选;②,对于区域B与A区域相邻,有4种颜色可选;③,对于区域E,与,A B区域相邻,有3种颜色可选;④,对于区域,D C,若D与B颜色相同,C区域有3种颜色可选,若D与B颜色不相同,D区域有2种颜色可选,C区域有2种颜色可选,则区域,D C有3227+⨯=种选择,则不同的涂色方案有5437420⨯⨯⨯=种,其中,,A C区域涂色不相同的情况有:①,对于区域A,有5种颜色可选;②,对于区域B与A区域相邻,有4种颜色可选;③,对于区域E与,,A B C区域相邻,有2种颜色可选;④,对于区域,D C,若D与B颜色相同,C区域有2种颜色可选,若D与B颜色不相同,D区域有2种颜色可选,C区域有1种颜色可选,则区域,D C有2214+⨯=种选择,不同的涂色方案有5434240⨯⨯⨯=种,,A C∴区域涂色不相同的概率为24044207p== ,故选D.【点睛】本题考查古典概型概率公式的应用,考查分步计数原理等基础知识,考查运算求解能力,是中档题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n,其次求出概率事件中含有多少个基本事件m,然后根据公式mPn=求得概率.12.如图,将边长为1的正方形ABCD 沿x 轴正向滚动,先以A 为中心顺时针旋转,当B 落在x 轴时,又以B 为中心顺时针旋转,如此下去,设顶点C 滚动时的曲线方程为()y f x =,则下列说法不正确的是 ()A. ()0f x ≥恒成立B. ()()8f x f x =+C. ()243(23)f x x x x =-+-<≤D. ()20190f =【答案】C 【解析】 【分析】根据正方形的运动关系,分别求出当0x =,1,2,3,4时对应的函数值()f x ,得到()f x 具备周期性,周期为4,结合图象,当23x <≤时,C 的轨迹为以()2,0为圆心,1为半径的14圆,即可判断所求结论. 【详解】解:正方形的边长为1,∴正方形的对角线2AC =,则由正方形的滚动轨迹得到0x =时,C 位于()0,1点,即()01f =, 当1x =时,C 位于(2点,即()12f =当2x =时,C 位于()2,1点,即()21f =, 当3x =时,C 位于()3,0点,即()30f =, 当4x =时,C 位于()4,1点,即()41f =,则()()4f x f x +=,即()f x 具备周期性,周期为4,由图可得()0f x ≥恒成立;()()8f x f x +=; 当23x <≤时,C 的轨迹为以()2,0为圆心,1为半径的14圆,方程为22(2)1(23,0)x y x y -+=<≤≥;()()()20195044330f f f =⨯+==,综上可得A ,B ,D 正确;C 错误. 故选:C .【点睛】本题主要考查函数值的计算和函数的解析式和性质,结合正方形的运动轨迹,计算出对应函数值,得到周期性是解决本题的关键. 二、填空题(本大题共4小题)13.已知等差数列{}n a ,且48a =,则数列{}n a 的前7项和7S =______ 【答案】56 【解析】 【分析】由等差数列的性质可得:1742.a a a +=利用求和公式即可得出数列{}n a 的前7项和7S . 【详解】解:由等差数列的性质可得:174216a a a +==.∴数列{}n a 的前7项和()177778562a a S +==⨯=.故答案为:56.【点睛】本题考查了等差数列的通项公式的性质及其求和公式,考查了推理能力与计算能力,属于中档题.14.若x ,y 满足约束条件202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩______.【解析】 【分析】作出不等式组对应的平面区域,根据点到直线的距离公式进行求解即可.【详解】解:作出不等式组对应的平面区域如图:22x y +的几何意义是平面区域内的点到原点的距离,由图象得O 到直线20x y ++=的距离最小, 此时最小值22d ==, 则22x y +的最小值是2,故答案为:2.【点睛】本题主要考查线性规划的应用,利用点到直线的距离公式结合数形结合是解决本题的关键.15.已知向量AB 与AC 的夹角为120︒,且32AB AC ==,,若AP AB AC λ=+,且AP BC ⊥则实数λ的值为__________.【答案】712【解析】 ∵⊥,∴·=(λ+)·(-)=-λ2+2+(λ-1)·=0,即-λ×9+4+(λ-1)×3×2×=0,解得λ=.点睛:平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a ·b =|a ||b |cos θ;二是坐标公式a ·b =x 1x 2+y 1y 2;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.16.若过抛物线24y x =上一点()4,4P ,作两条直线PA ,PB 分别与抛物线交于1122(,),(,)A x y B x y 两点,若它们的斜率之和为0,则直线AB 斜率为______.【答案】12- 【解析】 【分析】根据斜率公式可得121244044y y x x --+=--,利用221212,44y y x x ==化简可得128y y +=-,再根据斜率公式可得12AB k =-. 【详解】解:依题意有121244044y y x x --+=--, 又221212,44y y x x ==, 所以1222124404444y y y y --+=--, 所以1211044y y +=++, 所以128y y +=-, 所以12122212121241244AB y y y y k y y x x y y --====--+-, 【点睛】本题考查直线与抛物线的位置关系的综合应用,斜率公式的应用,考查了计算能力.属于基础题.三、解答题(本大题共6小题)17.已知等差数列{}n a 的前n 项和为n S ,且39S =,又12a =.()1求数列{}n a 的通项公式;()2若数列{}n b 满足n b 2na-=,求证:数列{}n b 的前n 项和12n T <. 【答案】(1)1n a n =+(2)证明见解析 【解析】 【分析】()1直接利用等差数列前n 项和公式求出数列的公差,进一步求出数列的通项公式.()2利用等比数列的求和公式和放缩法的应用求出数列的和.【详解】解:()1设{}n a 的公差为d ,因为39S =,又12a =. 所以3132392S a d ⨯=+=,解得1d =. 故()211n a n n =+-=+.()2证明:由于1n a n =+,所以11()2n n b +=,所以22111111111424()()()112222122n n n T +⎛⎫-⎪⎝⎭=++⋯+=<=-.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,等比数列的前n 项和的应用,放缩法的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 18.如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且14BF BC =.若将,AED CFD ∆∆ 分别沿,ED FD 折起,使,A C 两点重合于点M ,如图2.图1 图2(1)求证:EF ⊥平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值.【答案】(1)证明见解析;(2)5. 【解析】 【分析】(1)设正方形ABCD 的边长为4,由222DE EF DF +=,可得EF ED ⊥,结合MD EF ⊥,利用线面垂直的判定定理,即可得到EF ⊥平面MED .(2)建立空间直角坐标系,过点M 作MN ED ⊥,垂足为N ,求出向量EM 和平面MFD 的一个法向量,利用向量的夹角公式,即可求解. 【详解】(1)证明:设正方形的边长为4,由图1知,,,,,,即 由题意知,在图2中,,,平面,平面,且,平面,平面,. 又平面,平面,且,平面(2)由(1)知平面,则建立如图所示空间直角坐标系,过点作,垂足为,在中,,,从而,,,,,.设平面的一个法向量为,则,令,则,,.设直线与平面所成角为,则,.直线与平面所成角的正弦值为..【点睛】该题考查的是有关立体几何的有关问题,一是线面垂直的判定,一定要把握好线面垂直的判定定理的条件,注意勾股定理也是证明线线垂直的好方法,二是求线面角,利用空间向量来求解,即直线的方向向量和平面的法向量所成角的余弦值的绝对值等于线面角的正弦值,求得结果.19.2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调60,80内认定为满意,查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[)80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.()1求被调查者满意或非常满意该项目的频率;()2若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;()3已知在评分低于60分的被调查者中,老年人占1,现从评分低于60分的被调查者中按年3龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记ξ为群众督查员中老年人的人数,求随机变量ξ的分布列及其数学期望E ξ. 【答案】(1)0.78;(2)12125;(3)23. 【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是()10.0160.004100.25+⨯==,根据独立重复试验n 次发生k 次的概率公式可得结果;(3)随机变量ξ的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果.试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中, 评分在[]60,100的频率为:()0.0280.030.0160.004100.78+++⨯=;(2)根据频率分布直方图,被调查者非常满意的频率是()10.0160.004100.25+⨯==, 用样本的频率代替概率,从该市的全体市民中随机抽取1人, 该人非常满意该项目的概率为15, 现从中抽取3人恰有2人非常满意该项目的概率为:223141255125P C ⎛⎫=⋅⋅=⎪⎝⎭;(3)∵评分低于60分的被调查者中,老年人占13, 又从被调查者中按年龄分层抽取9人, ∴这9人中,老年人有3人,非老年人6人, 随机变量ξ的所有可能取值为0,1,2,()02362915036C C P C ξ⋅===()1136291811362C C P C ξ⋅====()2036293123612C C P C ξ⋅====ξ的分布列为:ξ的数学期望E ξ 15112012362123=⨯+⨯+⨯=. 20.已知椭圆2222:x y C a b+= ()10a b >>的焦点坐标分別为()11,0F -,()21,0F ,P 为椭圆C 上一点,满足1235PF PF =且123cos 5F PF ∠= (1) 求椭圆C 的标准方程:(2) 设直线:l y kx m =+与椭圆C 交于,A B 两点,点1,04Q ⎛⎫⎪⎝⎭,若AQ BQ =,求k 的取值范围.【答案】(1)22143x y +=;(2)11,,22k ⎛⎫⎛⎫∈-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【解析】分析:第一问首先根据题中条件将涉及到的量设出来,之后结合椭圆的定义以及对应的线段的倍数关系,求得对应的边长,利用余弦定理借用余弦值建立边之间的等量关系式,从而求得,a c 的值,借用椭圆中,,a b c 的关系,求得b 的值,从而求得椭圆的方程,第二问将直线的方程与椭圆的方程联立,求得两根和与两根积,从而求得线段的中点,利用条件可得垂直关系,建立等量关系式,借用判别式大于零找到其所满足的不等关系,求得k 的取值范围.详解:(1)由题意设11PF r =,22PF r =则1235r r =,又122r r a +=,154r a ∴=,234r a = 在 12PF F ∆中,由余弦定理得,12cos F PF ∠=2221212122r r F F r r +- = 2225324453244a a a a ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭⨯⨯35=, 解得2a =,1c =,2223b a c ∴=-=,∴所求椭圆方程为22143x y +=(2)联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()2234k x ++ 284120kmx m +-=, 则12x x += 2834km k -+,212241234m x x k-=+,且()2248340k m ∆=+->…① 设AB 的中心为()00,M x y ,则1202x x x +== 2434km k -+,002334my kx m k =+=+, AQ BQ =,AB QM ∴⊥,即,QM k k ⋅= 22334141344mk k km k +⋅=---+,解得2344k m k +=-…②把②代入①得22234344k k k ⎛⎫++>- ⎪⎝⎭,整理得4216830k k +->,即()()2241430k k -+>解得11,,22k ⎛⎫⎛⎫∈-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭点睛:该题考查的是有关直线与椭圆的综合题,涉及的知识点有椭圆的定义、余弦定理、椭圆的标准方程,以及直线与椭圆相交的有关问题,要会将题中条件加以转化,再者要会找对应的不等关系.21.已知函数()xf x xe =,()232g x x x =+-. ()1求证:()()215022f xg x x x-+->对()0,x ∞∈+恒成立;()2若()()()(0)32f x F x xg x x =>-+,若120x x <<,122x x +≤,求证:()()12.F x F x >【答案】(1)证明见解析(2)证明见解析 【解析】 【分析】(1)先对不等式左边进行化简整理,然后将整理后的表达式设为函数()h x ,对函数()h x 进行一阶导数和二阶导数的分析,得到()h x 在()0,∞+上单调递增,则当0x >时,()()0010.h x h e >=-=命题得证.(2)先对整理后的()F x 进行一阶导数的分析,画出函数()F x 大致图象,可知()10F x >,()20.F x >然后采用先取对数然后作差的方法比较大小,关键是构造对数平均数,利用对数平均不等式即可证明.【详解】证明:()1由题意,可知()()22221531511222222x x f x g x x e x x x e x x x-+-=--++-=---. 令()2112xh x e x x =---,0.x >则 ()'1x h x e x =--,()0.1x x h x e >"=-,当0x >时,()10xh x e "=->,()'h x ∴在()0,∞+上单调递增.∴当0x >时,()()''00h x h >=,()h x ∴在()0,∞+上单调递增.∴当0x >时,()()0010h x h e >=-=.故命题得证.()2由题意,()xe F x x =,0x >.()()21'x x e F x x-=,0x >.①令()'0F x =,解得1x =;②令()'0F x <,解得01x <<; ③令()'0F x >,解得1x >.()F x ∴在()0,1上单调递减,在()1,+∞上单调递增,在1x =处取得极小值()1F e =.()F x 大致图象如下:根据图,可知()10F x >,()20F x >.()()()()12121122121212.x x e e lnF x lnF x ln ln x lnx x lnx x x lnx lnx x x ∴-=-=---=---120x x <<,122x x +≤, ∴根据对数平均不等式,有12121212x x x xlnx lnx -+<≤-,()()121212121110lnF x lnF x lnx lnx x x x x --∴=-<-=--.120x x -<,()()120lnF x lnF x ∴->. ()()12.F x F x ∴>故得证.【点睛】本题主要考查函数的一阶导数和二阶导数对函数单调性分析的能力,数形结合法的应用,构造函数,构造对数平均数,利用对数平均不等式的技巧,本题属偏难题.22.在直角坐标系xOy 中,圆C 的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为()sin 3cos 33ρθθ=- 21 - (1)求C 的极坐标方程;(2)若射线11π:02OM θθθ⎛⎫=<< ⎪⎝⎭与圆C 的交点为,O P ,与直线l 的交点为Q ,求OP OQ ⋅的取值范围.【答案】(1)2cos ρθ=;(2)06OP OQ <<.【解析】试题分析:(1)圆C 的参数方程消去参数φ,能求出圆C 的普通方程,再由x=ρcosθ,y=ρsinθ,能求出圆C 的极坐标方程.(2)设P (ρ1,θ1),则有ρ1=cosθ1,Q (ρ2,θ1),则2ρ=,OP OQ =ρ1ρ2,结合tanθ1>0,能求出OP OQ 的范围.试题解析:(1)圆C 的普通方程是()2211x y -+=,又cos ,sin x y ρθρθ==,所以圆C 的极坐标方程是2cos ρθ=.(2)设()11,P ρθ,则有 11cos ρθ=,设()21,Q ρθ,且直线l的方程是()sin ρθθ=2ρ=所以12102OP OQ πρρθ⎫=⋅==<<⎪⎭ 因为1tan 0θ>,所以06OP OQ <<.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省2020年上学期成都七中高三数学文入学考试试题答案1-5:CBCBD 6-10:BBABA 11-12:AB 1314.1- 15.1或3 1617.【答案】(Ⅰ)1321n n n a b n -==- (Ⅱ)1133n n n T -+=-【解析】(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥. 又21213a S =+=,所以213a a =.故{}n a 是首项为1,公比为3的等比数列.所以13n n a -=. 由点()1,n n P b b +在直线20x y -+=上,所以12n n b b +-=.则数列{}n b 是首项为1,公差为2的等差数列.则()11221n b n n =+-⋅=-. (Ⅱ)因为1213n n n n b n c a --==,所以0121135213333n n n T --=++++. 则12311352133333n nn T -=++++, 两式相减得:21222221133333n n n n T --=++++-11113321121313n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦=+⨯--1121233n n n --⎛⎫=-- ⎪⎝⎭∴21112113323233n n n n n n T ----+=--=-⋅⋅18.【答案】(Ⅰ)见解析;(Ⅱ)h =【解析】(Ⅰ)由余弦定理得BD ==, ∴222BD AB AD +=,∴90ABD ∠=︒,BD AB ⊥,∵AB DC ,∴BD DC ⊥.又平面PDC ⊥底面ABCD ,平面PDC底面ABCD DC =,BD ⊂底面ABCD ,∴BD ⊥平面PDC ,又PC ⊂平面PDC ,∴BD PC ⊥. (Ⅱ)设A 到平面PBD 的距离为h .取DC 中点Q ,连结PQ ,∵PDC △是等边三角形,∴PQ DC ⊥. 又平面PDC ⊥底面ABCD ,平面PDC 底面ABCD DC =,PQ ⊂平面PDC ,∴PQ ⊥底面ABCD ,且PQ =,由(Ⅰ)知BD ⊥平面PDC ,又PD ⊂平面PDC ,∴BD PD ⊥.∴A PBD P ABD V V --=,即1111213232h ⨯⨯=⨯⨯.解得h =19.【答案】(1)15;(2)0.5y ex =. 【解析】由已知,优等品的质量与尺寸的比()0.302,0.388yx∈ 则随机抽取的6件合格产品中,有3件为优等品,记为a ,b ,c , 有3件为非优等品,记为d ,e ,f ,现从抽取的6件合格产品中再任选2件,基本事件为:(),a b ,(),a c ,(),a d ,(),a e ,(),a f ,(),b c ,(),b d ,(),b e ,(),b f ,(),c d ,(),c e ,(),c f ,(),d e ,(),d f ,(),e f ,选中的两件均为优等品的事件为(),a b ,(),a c ,(),b c , 所求概率为31155=. (Ⅱ)对by c x =⋅两边取自然对数得ln ln ln y c b x =+令ln i i v x =,ln i i u y =,则u b v a =⋅+,且ln a c = 由所给统计量及最小二乘估计公式有:11222175.324.618.360.271101.424.660.542nii n i i v unuvb v nv==--⨯÷====-÷-∑∑ 118.324.6216a u bv ⎛⎫-⨯⎪⎝⎭=-==,由ln a c =得c e =,所以y 关于x 的回归方程为0.5y ex=.20.【答案】(1)a 的值为1;(2)a 的取值范围是1,2⎛⎫+∞⎪⎝⎭. 【解析】(1)因为()()24143x f x ax a x a e ⎡⎤=-+++⎣⎦,所以()()()()22414143x xf x ax a e ax a x a e x '⎡⎤=-++-+++∈⎡⎤⎣⎦⎣⎦R ()2212xax a x e ⎡⎤=-++⎣⎦.()()11f a e '=-.由题设知()10f '=,即()10a e -=,解得1a =.此时()130f e =≠. 所以a 的值为1.注:没验证()130f e =≠要酌情扣分(2)由(1)得()()()()221212x xf x ax a x e ax x e '⎡⎤=-++=--⎣⎦. 若12a >,则当1,2x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当()2,x ∈+∞时,()0f x '>. 所以()0f x <在2x =处取得极小值. 若12a ≤,则当()0,2x ∈时,20x -<,11102ax x -≤-<,所以()0f x '>. 所以2不是()f x 的极小值点.综上可知,a 的取值范围是1,2⎛⎫+∞⎪⎝⎭. 21.【答案】(1)2212x y +=;(2)存在满足条件的圆,其方程为2253239x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()1,0F c -,()2,0F c ,其中222c a b =-,由121F F DF =得12DF c ==从而1221121222DF F S DF F F c =⋅==△,故1c =.从而12DF =,由112DF F F ⊥得222211292DF DF F F =+=,因此22DF =.所以122a DF DF =+=a =2221b a c =-=因此,所求椭圆的标准方程为:2212x y +=(2)如图,设圆心在y 轴上的圆C 与椭圆2212x y +=相交,()111,P x y ,()222,P x y 是两个交点,10y >,20y >,11F P ,22F P 是圆C 的切线,且1122FP F P ⊥由圆和椭圆的对称性,易知21x x =-,12y y = 1212PP x =.由(1)知()11,0F -,()21,0F ,所以()11111,F P x y =+,()22111,F P x y =--,再由1122F P F P ⊥ 得()221110x y -++=,由椭圆方程得()2211112x x -=+,即211340x x +=,解得143x =-或10x = 当10x =时,1P ,2P 重合,此时题设要求的圆不存在. 当143x =-时,过1P ,2P 分别与11F P ,22F P 垂直的直线的交点即为圆心C ,设()00,C y 由111CP F P ⊥,得1011111y y y x x -⋅=-+,而11113y x =+=,故053y = 圆C的半径13CP == 综上,存在满足条件的圆,其方程为:2253239x y ⎛⎫+-= ⎪⎝⎭.22.【答案】(1)26y x =-(2x ≤-或2x ≥);(2. 【解析】(1)曲线C 的参数方程为221,14, x t ty t t ⎧=+⎪⎪⎨⎪=+-⎪⎩①②(t 为参数),将①式两边平方,得22212x t t=++③, ③②,得26x y -=,即26y x =-,因为112x t t t t =+=+≥=,当且仅当1t t =,即1t =±时取“=”,所以2x ≥,即2x ≤-或2x ≥,所以曲线C 的普通方程为26y x =-(2x ≤-或2x ≥).(2)因为曲线C 的直角坐标系方程为26y x =-(2x ≤-或2x ≥),所以把cos sin x y ρθρθ=⎧⎨=⎩代入得:22sin cos 6ρθρθ=-,()cos 2ρθ≥,则曲线C 的极坐标方程为22sin cos 6ρθρθ=-,()cos 2ρθ≥设A ,B 的极坐标分别为1,6A πρ⎛⎫⎪⎝⎭,2,6B πρ⎛⎫⎪⎝⎭,由226sin cos 6πθρθρθ⎧=⎪⎨⎪=-⎩ 得22sincos 666ππρρ=-,即232240ρρ--=,且ρ≥因为44324473∆=+⨯⨯=⨯,∴ρ=ρ=,满足ρ≥,不妨设1ρ=,2ρ=所以12AB ρρ=-=注:没考虑ρ≥要酌情扣分 23.【解析】(1)()12,,411111,,4424412,4x x f x x x x x x ⎧-≤-⎪⎪⎪=-++=-<<⎨⎪⎪≥⎪⎩所以不等式的解集为[]1,1M =-.(2)要证a b ≥-,只需证a b ≥-,即证()241ab a b -≥-,只需证22442ab a ab b -≥-+,即2242a ab b ≥++,即证()24a b ≥+,只需证2a b ≥+ 因为a ,b M ∈,所以2a b +≤, 所以所证不等式成立.。