无理数与实数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)
例2 判断题


(1)有限小数是有理数;
√) √)
(2)无限小数都是无理数; ( ╳ )
(3)无理数都是无限小数; (
(4)有理数是有限小数.
( ╳ )
强 调
1.无理数是无限不循环小数ห้องสมุดไป่ตู้有理数是有限小数或
无限循环小数.
2.任何一个有理数都可以化成分数
q 为整数且互质),而无理数不能.
p q
形式( p,
例3 以下各正方形的边长是无理数的是( C A.面积为25的正方形; B.面积为 4 的正方形;

25
C.面积为8的正方形; D.面积为1.44的正方形.
例4

一个直角三角形两条直角边的长分别是3和5,则斜边
a是有理数吗?
解:由勾股定理得:a2=32+52,即
a2=34.因为34不是完全平方数,
圆周长 , 直径
理解为圆
周率,但在推求圆周率的过程中,人们常选用直径为1的圆,即设
δ=1,于是就等于π了.
1706年英国的数学家威廉.琼斯(WillianJones,1675~1749)首
先改用π表示圆周率,后来被数学家们所接受,一直沿用至今.
数够用了吗?
再见!!!
二、活动与探究
活动1:面积为2,5的正方形的边长a,b究竟是多少呢?
边长a 1<a<2
面积s 1<S<4
1.4<a<1.5
1.41<a<1.42
1.96<s<2.25
1.9881<s<2.0164
1.414<a<1.415
1.999396<s<2.002225
1.4142<a<1.4143 1.99996164<s<2.00024449
八年级上册
(二)
一、想一想
1.有理数如何分类?
思 考
整数(如-1,0,2,3,… ):都可看成有限小数.
有理数
分数(如
1 2 9 , , 3 5 11

):可不可能都化成有
限小数或无限循环小数? 2.上节课了解到一些数,如a2=2,b2=5中的a,b 既不 是整数,也不是分数,那么它们究竟是什么数呢?
0
负实数
四、辨一辨

2 ,3.14 , 0.1010010001…, 5
, 3 ,
9 ,
2 1
答案:无理数有 0.1010010001…
, 3 , ,
2 1
方法点拔: 判定一个数是否无理数: (1)是看它是不是无限小数,(2)看它是不是不循环小数. 具体从以下几方面来判断: (1)开方开不尽的数是无理数; (2) 是无理数; (3)无理数与有理数的和、差一定是无理数; (4)无理数与有理数(不为0)的积、商一定是无理数;
a 2
2
a
a
是多少?
=1.41421356…
b 5
2
b
b
是多少?
=2.2360679…
结论:a,b既不是整数,也不是分数,则a,b 一定不是有理数.
活动2:分数化成小数,最终此小数的形式有几种 情况?
请同学们以学习小组活动:一同学举出任意一分数,
另一同学将此分数化成小数.并总结此小数的形式? 结论:分数只能化成有限小数或无限循环小数.
即任何有限小数或无限循环小数都是有理数.
强 调
像0.585885888588885…,1.41421356…, 2.2360679…等这些数的小数位数都是无限的,而且不是 循环的,是无限不循环小数.
故无限不循环小数叫无理数.(圆周率π=3.14159265…
也是一个无限不循环小数,故π是无理数)
三、分一分
到目前为止我们所学过的数可以分为几类? 按小数的形式来分 整数
有理数:有限小数或无限循环小数
数 分数
无理数:无限不循环小数
三、分一分
实数的概念:有理数与无理数统称为实数。
按数的概念来分:全体实数
{ 无理数
正实数
{ 有理数 分数(有限小数和循环小数)
(无限不循环小数)
整数
按数的性质来分: 全体实数

1.将下列实数填入相应的括号中:-3.14 , 2006 ,- 2 , 1 0.010110111…(每相邻两各O之间依次多个1); 22 , 22 3 8 7 , 9, 0 0.23 自然数的有( 有理数的有( 无理数的有( 正实数的有( 负实数的有( ) ) ) ) )
1.下列说法正确的是( ). A.无限小数都是无理数; B.所有小数都是有理数; C.带有根号的数都是无理数; D.无理数都是无限小数. 1 2.在 4 , 3 , 0 , 3 , 2这五个数中是无理数的共有( A.0个 B. 2个 C. 3个 D. 4个
所以a不是有理数.
5
a
3
本课小结:
1.无理数的定义.
2.数的分类. 3.判定一个数是无理数还是有理数.
1600年英国的威廉.奥托兰特(Willian Oughtred)首先使
用 表示圆周率,他的理由是,因为π是希腊文圆周的第一个
字母,奥托兰特用它表示圆周长,而δ是希腊文直径的第一个字 母,奥托兰特用它表示直径,根据圆周率=
相关文档
最新文档