相交线与平行线概念判断题(带答案)

合集下载

相交线与平行线解析含答案

相交线与平行线解析含答案

相交线与平行线解析含答案一、选择题1.如图,直线AB,CD相交于点O,∠2-∠1=15°,∠3=130°.则∠2的度数是()A.37.5°B.75°C.50°D.65°【答案】D【解析】【分析】先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.2.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A.80°B.50°C.30°D.20°【答案】D【解析】【分析】【详解】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.3.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G,则图中与∠ECB相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.4.如图AD∥BC,∠B=30o,DB平分∠ADE,则∠DEC的度数为()A.30o B.60o C.90o D.120o【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.5.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】到l1距离为2的直线有2条,到l2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D.【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.6.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()A.81°B.99°C.108°D.120°【答案】B【解析】试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.7.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90°【答案】B【解析】【分析】 过C 作CM ∥AB ,延长CD 交EF 于N ,根据三角形外角性质求出∠CNE =y ﹣z ,根据平行线性质得出∠1=x ,∠2=∠CNE ,代入求出即可.【详解】解:过C 作CM ∥AB ,延长CD 交EF 于N ,则∠CDE =∠E+∠CNE ,即∠CNE =y ﹣z∵CM ∥AB ,AB ∥EF ,∴CM ∥AB ∥EF ,∴∠ABC =x =∠1,∠2=∠CNE ,∵∠BCD =90°,∴∠1+∠2=90°,∴x+y ﹣z =90°.故选:B .【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.8.如图,ABCD为一长方形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为( )A.75°B.72°C.70°D.65°【答案】B【解析】【分析】如图,由折叠的性质可知∠3=∠4,已知AB∥CD,根据两直线平行,内错角相等可得∠3=∠1,再由∠1=2∠2,∠3+∠4+∠2=180°,可得5∠2=180°,即可求得∠2=36°,所以∠AEF=∠3=∠1=72°【详解】如图,由折叠的性质可知∠3=∠4,∵AB∥CD,∴∠3=∠1,∵∠1=2∠2,∠3+∠4+∠2=180°,∴5∠2=180°,即∠2=36°,∴∠AEF=∠3=∠1=72°故选B.【点睛】本题考查的是图形翻折变换的性质及平行线的性质,熟知折叠的性质及平行线的性质是解决问题的关键.9.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】 对于A ,∠EDC=∠EFC 不是两直线被第三条直线所截得到的,据此进行判断;对于B 、D ,∠AFE=∠ACD ,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,据此进行判断;对于C ,∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC 不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,因而可以判定EF ∥BC,但不能判定DE ∥AC ;∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,可以判定DE ∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.10.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )A .40°B .60°C .50°D .70° 【答案】B【解析】【分析】根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.【详解】∵a ∥b ∥c∴1324==∠∠,∠∠∵直角三角板的直角顶点落在直线 b 上∴341290+=+=︒∠∠∠∠∵∠1=30°∴290160=︒-=︒∠∠故答案为:B .【点睛】本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.11.若a ⊥b ,c ⊥d ,则a 与c 的关系是( )A .平行B .垂直C .相交D .以上都不对【答案】D【解析】【分析】分情况讨论:①当b ∥d 时;②当b 和d 相交但不垂直时;③当b 和d 垂直时;即可得出a 与c 的关系.【详解】当b ∥d 时a ∥c ;当b 和d 相交但不垂直时,a 与c 相交;当b 和d 垂直时,a 与c 垂直;a 和c 可能平行,也可能相交,还可能垂直.故选:D .【点睛】本题考查了直线的位置关系,掌握平行、垂直、相交的性质是解题的关键.12.如图,下列说法一定正确的是( )A .∠1和∠4是内错角B .∠1和∠3是同位角C .∠3和∠4是同旁内角D .∠1和∠C 是同位角【答案】D【解析】【分析】根据内错角、同位角以及同旁内角的定义进行判断即可.【详解】解:A 、∠2和∠4是内错角,故本选项错误;B 、∠1和∠C 是同位角,故本选项错误;C 、∠3和∠4是邻补角,故本选项错误;D 、∠1和∠C 是同位角,故本选项正确;故选:D .【点睛】本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.13.如图所示,某同学的家在P 处,他想尽快赶到附近公路边搭公交车,他选择P→C 路线,用几何知识解释其道理正确的是( )A .两点确定一条直线B .垂直线段最短C .两点之间线段最短D .三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】 解:Q 直线外一点与直线上各点连接的所有线段中,垂线段最短,∴ 选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.14.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.15.下列命题错误的是( )A .平行四边形的对角线互相平分B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A 、平行四边形的对角线互相平分,正确;B 、两直线平行,内错角相等,正确;C 、等腰三角形的两个底角相等,正确;D 、若两实数的平方相等,则这两个实数相等或互为相反数,故D 错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.16.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.18.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135°【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt△ABC中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.19.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【答案】B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.20.如图,在下列四组条件中,不能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABD=∠BDC D.∠ABC+∠BCD=180°【答案】A【解析】【分析】根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB、CD是否平行即可.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故A不能判断;B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,故选A.【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.。

七年级下册数学易错题50道

七年级下册数学易错题50道

七年级下册数学易错题50道一、相交线与平行线1. 判断题:不相交的两条直线叫做平行线。

(错误)解析:必须是在同一平面内不相交的两条直线才叫做平行线,如果不在同一平面内,不相交的直线不一定平行。

2. 若∠1与∠2是同旁内角,∠1 = 50°,则∠2的度数是()A.50°B.130°C.50°或130°D.不能确定答案:D解析:两直线平行,同旁内角互补;两直线不平行,同旁内角的关系不确定,只知道∠1 = 50°,不知道两直线的位置关系,所以∠2的度数不能确定。

3. 如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1 = 72°,求∠2的度数。

解:因为AB∥CD,∠1 = 72°,所以∠BEF = 180°∠1 = 180°-72° = 108°。

因为EG平分∠BEF,所以∠BEG=公式∠BEF=公式。

又因为AB∥CD,所以∠2 = ∠BEG = 54°。

二、实数4. 公式的平方根是()A.2B.±2C.4D.±4答案:B解析:先计算公式,然后求4的平方根,因为公式,所以4的平方根是±2。

5. 下列说法正确的是()A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限不循环小数D.实数包括正实数和负实数答案:C解析:无限循环小数是有理数,A错误;公式是有理数,B错误;无理数是无限不循环小数,C正确;实数包括正实数、0和负实数,D错误。

6. 计算:公式解:公式,公式,公式。

则原式公式。

三、平面直角坐标系7. 点P(m + 3,m + 1)在x轴上,则点P的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)答案:B解析:因为点P在x轴上,所以P点的纵坐标为0,即m + 1 = 0,解得m=-1。

相交线与平行线易错题汇编及答案

相交线与平行线易错题汇编及答案
【详解】
A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;
B选项:强调了在平面内,正确;
C选项:不符合对顶角的定义,错误;
D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.
故选:B.
【点睛】
对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.
A.①②③④B.①②③④C.①②③④⑤D.①②④⑤
【答案】D
【解析】
如图,
①∠1和∠4是直线AC和直线BC被直线AB截得的同位角,所以①正确;
②∠3和∠5是直线BC和直线AB被直线AC截得的内错角,所以②正确;
③∠2和∠6是直线AB和直线AC被直线CB截得的内错角,所以③错误;
④∠5和∠2是直线AC和直线BC被直线AB截得的同位角,所以④正确;
12.给出下列说法,其中正确的是( )
A.两条直线被第三条直线所截,同位角相等;
B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
C.相等的两个角是对顶角;
D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.
【答案】B
【解析】
【分析】
正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.
故选C.
7.如图, 平分 , .若 , 到 的距离是2.4,则 的面积等于()
A.3.6B.4.8C.1.8D.7.2
【答案】A
【解析】
【分析】
由角平分线的定义可得出∠BOC=∠DOC,由CD∥OB,得出∠BOC=∠DCO,进而可证出OD=CD=3.再由角平分线的性质可知 到 的距离是2.4,然后根据三角形的面积公式可求 的面积.

相交线与平行线单元测试题含答案

相交线与平行线单元测试题含答案

相交线与平行线单元测试题含答案相交线与平行线单元测试题一、选择题1、下列说法正确的是() A. 相交的两条直线一定有一个交点 B. 同位角相等 C. 两直线平行,对角线一定相等 D. 相等的两个角一定是对顶角2、以下不能说明直线AB与CD平行的是() A. AB//CD,A与B在同一方向,C与D在同一方向 B. $\angle 3 = \angle 4$ C. $\angle A = \angle C$ D. $\angle A + \angle B = 180^{\circ}$,$\angleC + \angleD = 180^{\circ}$3、下列说法正确的是() A. 过一点有且只有一条直线与已知直线平行 B. 两直线平行,同位角相等 C. 内错角相等,两直线平行 D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行4、下列说法正确的是() A. 两条直线被第三条直线所截,同位角相等 B. 相等的两个角是对顶角 C. 两直线平行,同旁内角互补 D. 互补的两个角不一定是邻补角5、下列说法正确的是() A. 同位角相等 B. 互补的角是邻补角 C. 两直线平行,同旁内角相等 D. 两直线平行,内错角相等二、填空题1、同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相________,简述为________.2、两直线平行,同位角________;两直线平行,内错角________;两直线平行,同旁内角________.3、两条直线的位置关系有________、________.4、若三条直线两两相交,则共有________个交点.5、在同一平面内,若两直线都垂直于第三条直线,那么这两条直线________.6、如图所示,若$\angle A + \angle B = 180^{\circ}$,$\angle A = \angle D$,则$\angle B =$________.7、如图所示,若$\angle A = \angle B$,则$\angle C =$________.8、如图所示,若$\angle A + \angle B = 90^{\circ}$,$\angle B + \angle C = 90^{\circ}$,则$\angle A =$________.9、若一个角的两边分别和另一个角的两边分别平行,则这两个角的关系是________.10、如图所示,若AB//CD,则$\angle A + \angle B + \angle C=$________.三、解答题1、已知两条平行线被第三条直线所截,则形成的同位角的数量是多少?这些同位角还具有什么性质?2、利用所给图形探究规律。

初中数学相交线与平行线专题训练50题含答案

初中数学相交线与平行线专题训练50题含答案

初中数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,如果104AOD ∠=︒,那么MOC ∠等于( )A .38°B .37°C .36°D .52° 2.如图,在直线l 外一点P 与直线上各点的连线中,P A =5,PO =4,PB =4.3,OC =3,则点P 到直线l 的距离为( )A .3B .4C .4.3D .5 3.如图网格中,每个小方格都是边长为1的小正方形,点A 、B 是方格纸中的两个格点(网格线的交点称格点),在这个7×7的方格纸中,找出格点C ,使△ABC 的面积为3,则满足条件的格点C 的个数是( )A .2 个B .4个C .5个D .6个 4.如图,直线a ,b 穿过正五边形ABCDE ,且//a b ,则αβ∠-∠=( )A .95°B .84°C .72°D .60° 5.如图,某沿湖公路有三次拐弯,如果第一次的拐角120A ∠=︒,第二次的拐角155B ∠=︒,第三次的拐角为C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠的度数是( )A .130︒B .140︒C .145︒D .150︒ 6.如图,下列条件:①①C =①CAF ,①①C =①EDB ,①①BAC +①C =180°,①①GDE +①B =180°,①①CDG =①B .其中能判断AB //CD 的是( )A .①①①①B .①①①C .①①①D .①①① 7.如图,与①α构成同旁内角的角有( )A .1个B .2个C .5个D .4个 8.如图,下列说法中错误的是( )A .①1与①A 是同旁内角B .①3与①A 是同位角C .①2与①3是同位角D .①3与①B 是内错角9.如图,为判断一段纸带的两边a ,b 是否平行,小明在纸带两边a ,b 上分别取点A ,B ,并连接AB .下列条件中,能得到a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=︒D .13180∠+∠=︒ 10.如图,//DE BC BE ,平分ABC ∠,若170=︒∠,则AEB ∠的度数为( )A .20︒B .35︒C .55︒D .70︒ 11.用“垂线段最短”来解释的现象是( )A .B .C .D .12.如图,直线AB ,CD 相交于点O ,OE 平分①AOC ,若①BOD =70°,则①DOE 的度数是( )A .70°B .35°C .120°D .145° 13.下列说法错误的是( )A .同旁内角相等,两直线平行B .旋转不改变图形的形状和大小C .对角线相等的平行四边形是矩形D .菱形的对角线互相垂直14.(1)如果直线a b ,b c ,那么a c ;(2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)在同一平面内如果直线a b ⊥,c b ,那么a c ; (5)两条直线平行,同旁内角相等;(6)两条直线相交,所成的四个角中,一定有一个是锐角.其中真命题有( )A .1个B .2个C .3个D .4个 15.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;①若a>b ,则-2a>-2b ;①如果三条直线a 、b 、c 满足:a①b ,b①c ,那么直线a 与直线c 必定平行;①对顶角相等,其中真命题有( )个.A .1B .2C .3D .416.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;①若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有①C .①①都正确D .①①都不正确 17.如图,在Rt ABC ∆中,90C ∠=︒,3AC =,6BC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于两点,过这两点作直线与AB 相交于点D ,则AD 的长是( )A .3B .1.5CD .18.如图,直线AB 与直线CD 相交于点O.若①AOD =50°,则①BOC 的度数是( )A .40°B .50°C .90°D .130° 19.将一块直角三角板ABC 按如图方式放置,其中①ABC =30°,A 、B 两点分别落在直线m 、n 上,①1=20°,添加下列哪一个条件可使直线m①n( )A .①2=20°B .①2=30°C .①2=45°D .①2=50° 20.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD ,DP ,BD 与CF 相交于点H .给出下列结论:①~BDE DPE ,①35FP PH =,①2DP PH PB =⋅,①tan 2DBE ∠=序号是( )A .①①B .①①①C .①①①D .①①二、填空题21.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.22.如图,直线,则的度数为=______.23.如图所示,A ,B 之间有一座山,一条笔直的铁路要通过A ,B 两地,在A 地测得铁路的走向是北偏东68°20',如果A ,B 两地同时开工,那么在B 地按____方向施工才能使铁路在山中准确接通.24.如图,直线AB ,CD 相交于点O ,若①AOC =20°,则①BOD 的大小为___________(度).25.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是 _____ (填序号).26.如图,直线AB 与直线CD 交于点O ,OE 平分AOC ∠,已知①100AOD =︒,那么EOB ∠=__度.27.如图,直线AB 与CD 相交于点O ,OE AB ⊥于O ,140∠=︒,则2∠=______.28.如图,已知平行线AB ,CD 被直线AE 所截,AE 交CD 于点F ,连接CE ,若20E ∠=︒,CF EF =,则A ∠的度数为______.29.如图,直线a①直线b ,且被直线c 所截,若①1=(3x+70)度,①2=(2x+10)度,则x 的值为________.30.如图,六边形ABCDEF 是正六边形,若l 1①l 2,则①1﹣①2=_____.31.如图,直线a ①b ,在Rt①ABC 中,点C 在直线a 上,若①1=56°,①2=29°,则①A 的度数为______度.32.如图,梯形ABCD 中,AB CD ∥,对角线AC 、BD 相交于点O ,如果ABD △的面积是BCD △面积的2倍,那么DOC △与BOC 的面积之比是______.33.如图,在Rt①ABC 中,AC =6,BC =8,点P 是AC 边的中点,点D 和E 分别是边BC 和AB 上的任意一点,则PD+DE 的最小值为_____.34.如图,AC BC ⊥,90CDA ∠=︒,4,3,5AC BC AB ===,点C 到AB 的距离是______.与ACD ∠相等的角是_________.35.如图,直线a ,b ,c 两两相交于A ,B ,C 三点,则图中有________对对顶角;有________对同位角;有________对内错角;有________对同旁内角.36.如图,在长方形ABCD 中,点E 、F 分别在AD 、BC 边上,沿直线EF 折叠后,C 、D 两点分别落在平面内的C '和D 处,若①1=70°,则①2=______.37.如图,将一张长方形纸片ABCD 沿EF 折叠后,点A ,B 分别落在点A ',B '的位置.若155∠=︒,则2∠的度数是__________.38.如图,在①ABC 中,①ABC 与①ACB 的平分线交于点D ,EF 经过点D ,分别交AB ,AC 于点E ,F ,BE =DE ,DF =5,点D 到BC 的距离为4,则①DFC 的面积为_____39.如图,已知AB①CD ,垂足为点O ,直线EF 经过O 点,若①1=55°,则①COE 的度数为______度.40.如图,在ABCD 中,105ABC ∠=︒,对角线,AC BD 交于点,30,4O DAC AC ∠=︒=,点P 从点B 出发,沿着边BC CD 、运动到点D 停止,在点P运动过程中,若OPC 是直角三角形,则CP 的长是___________.三、解答题41.如图,点B ,F ,C ,E 在同一条直线上,BF EC =,AB DE =,DE AB ∥.求证:A D ∠=∠.42.如图,已知AM ①CN ,且①1=①2,那么AB ①CD 吗?为什么? 解:因为AM ①CN ( 已知 )所以①EAM =①ECN又因为①1=①2所以①EAM +①1=①ECN +①2即① =①所以 .43.如图,在ABC 中,ABC ∠的平分线交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若80A ∠=︒,40C ∠=︒,求BDE ∠的度数.44.按要求画图:已知点P 、Q 分别在AOB ∠的边OA ,OB 上(如图所示):(1)①画线段PQ ;①过点P 作OB 的垂线PE ,垂足为E ;①过点Q 作OA 的平行线MN (M 在上,N 在下).(2)在(1)的情况下,若40MQB ∠=︒,求OPE ∠.(不使用三角形的内角和为180°) 45.如图,在ΔABC 中,CD 是高,点E 、F 、G 分别在BC 、AB 、AC 上且EF①AB ,DG①BC ,试判断①1与①2的大小关系,并说明理由.46.(1)如图1,在①ABC 中,BD 是①ABC 的角平分线,点D 在AC 上,DE①BC ,交AB 于点E ,①A =50°,①ADB =110°,求①BDE 各内角的度数;(2)完成下列推理过程.已知:如图2,AD ①BC ,EF ①BC ,①1=①2,求证:DG ①AB .推理过程:因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(________).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (________).因为①1=①2(已知),所以________=________(等量代换).所以DG①AB (内错角相等,两直线平行).47.如图,点A 为直线外一点,点B 是直线l 上一定点,点P 是直线l 上一动点,连接AB ,AP ,若要使2PA PB 1+的值最小,确定点P 的位置,并说明理由.48.如图,在三角形ABC 中,点D ,F 在边BC 上,点E 在边AB 上,点G 在边AC 上,EF 与GD 的延长线交于点H ,1B ∠=∠,23180∠+∠=︒.(1)判断EH 与AD 的位置关系,并说明理由(2)若58DGC ∠=°,且410H ∠=∠+︒,求H ∠的度数.49.已知:直线AB 与直线PQ 交于点E ,直线CD 与直线PQ 交于点F ,∠PEB +∠QFD =180°.(1)如图1,求证:AB ∥CD ;(2)如图2,点G 为直线PQ 上一点,过点G 作射线GH ∥AB ,在∠EFD 内过点F 作射线FM,∠FGH内过点G作射线GN,∠MFD=∠NGH,求证:FM∥GN;(3)如图3,在(2)的条件下,点R为射线FM上一点,点S为射线GN上一点,分别连接RG、RS、RE,射线RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度数.50.如图,四边形ABCD与四边形CEFH均为正方形,点B、C、E在同一直线上,连接BD,DF,BF.(1)观察图形,直接写出与线段CH平行的线段.(2)图中与线段CH垂直的线段共有_______条.(3)点B到点F的最短距离为线段____的长,点B到线段EF的的最短距离为线段____的长.(4)若正方形ABCD的边长为a, 正方形CEFH的边长为2,则线段HD=___,线段BE=___,此时请你求出三角形DBF的面积,你有什么发现?参考答案:1.A【分析】先根据已知条件求出①AOC 的度数,再根据OM 平分①AOC ,即可得到①MOC 的值【详解】解:①104AOD ∠=︒①①AOC =180°−104°=76°①OM 平分①AOC ①①MOC=12AOC ∠ 1762=⨯︒ =38°故选:A【点睛】本题主要考查了领补角及角平分线的定义,熟练掌握定义是解题的关键 2.B【分析】点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.【详解】解:由于OP ①直线l ,根据题意知:点P 到直线l 的距离等于PO 的长,即点P 到直线l 的距离PO =4,故选:B .【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.3.D【分析】利用格点的性质和三角形的面积公式即可得.【详解】由格点的性质和三角形的面积公式得,总共有6个满足条件的格点C ,如图所示:(格点C 均在平行于AB 的直线上)其中,由点12345,,,,C C C C C 与点,A B 分别构成的5个三角形的面积显然是36ABC 的面积为3663AC C BDC ABDC S S S --直角梯形1114633(36)1222=⨯⨯-⨯⨯-⨯+⨯ 991222=--故选:D .【点睛】本题考查了平行线的实际应用,理解题意,结合格点的性质是解题关键. 4.C【分析】延长EA 与直线b 交于点F ,由平行线的性质得①AFG =∠β,再由多边形的内角和定理求出108EAB ∠=︒,进一步得出72GAF ∠=︒,最后由三角形的外角关系可得结论.【详解】解:延长EA 与直线b 交于点F ,如图,①//a b①AFG β∠=∠①五边形ABCDE 是正五边形, ①(52)1801085EAB -⨯︒∠==︒ ①180********GAF EAB ∠=︒-∠=︒-︒=︒又=72AFG GAF αβ∠∠+∠=∠+︒①72αβ∠-∠=︒故选:C【点睛】本题考查的是多边形内角与外角,正五边形的性质,三角形外角的性质,利用数形结合求解是解答此题的关键.【分析】过点B作BH①AM,则BH①CD,利用平行线的性质求解即可.【详解】解:如图,过点B作BH①AM,①AM①CD,①BH①CD,①①ABH=①A=120°,①HBC+①C=180°,①①HBC=①ABC-①ABH=35°,①①C=180°-①HBC=145°,故选:C.【点睛】本题考查平行线的判定与性质,添加平行线是解答的关键.6.A【分析】根据平行线的判定定理逐一排除得出即可.【详解】解:①①C=①CAF,①AB//CD;故①符合题意;∠=∠C EDB//∴AC BD故①不符合题意;①①BAC+①C=180°,①AB//CD;故①符合题意;①①GDE+①B=180°,①GDE+①EDB=180°,①①EDB=①B,①AB//CD;故①符合题意;①①CDG=①B,①AB//CD,故①符合题意;符合题意的有:①①①①故选:A .【点睛】本题考查了平行线的判定,掌握平行线的判定是解题的关键.7.C【详解】试题分析:根据题意可知与①α构成同旁内角的角有如图5个.考点:三线八角点评:本题难度较低,主要考查学生对三线八角的掌握.分析这类题型是,主要抓住已知角两边与第三边相交的构成三线基础,为解题关键.8.B【分析】根据同位角、内错角、同旁内角的定义,可得答案.【详解】A. ①1与①A 是同旁内角,故A 正确;B. ①3与①A 不是同位角,故B 错误;C. ①2与①3是同位角,故C 正确;D. ①3与①B 是内错角,故D 正确;故选B.【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握其性质9.D【分析】根据平行线的判定定理进行判断即可.【详解】解:A 、12∠=∠,1∠和2∠邻补角,不能证明a b ∥;B 、13∠=∠,1∠和3∠是同旁内角,同旁内角相等不能证明a b ∥;C 、14180∠+∠=︒,1∠和4∠属于内错角,内错角互补不能证明a b ∥;D 、①13180∠+∠=︒,①a b ∥(同旁内角互补两直线平行);故选:D .【点睛】本题考查了平行线的判定定理,熟知:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;是解本题的关键.10.B【分析】先根据平行线的性质求得①ABC=70°,①CBE=①AEB,再运用角平分线即可求得①AEB的度数.【详解】解:①//DE BC,①170ABC∠=∠=︒,CBE AEB∠=∠,①BE平分①ABC,①1352CBE AEB ABC∠=∠=∠=︒.故选:B.【点睛】本题考查了平行线的性质和角平分线,灵活应用相关性质定理是解答本题的关键.11.A【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】解:A.体育课上,老师测量某个同学的跳远成绩,利用了垂线段最短,故A符合题意;B.木板上弹墨线,利用了两点确定一条直线,故B不符合题意;C.用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故C不符合题意;D.把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故D不符合题意.故选:A.【点睛】本题主要考查了线段的性质,熟记性质并能灵活过应用是解题关键.12.D【分析】根据对顶角相等求出①AOC,根据角平分线的定义计算,得到答案.【详解】解:①①BOD=70°,①①AOC=①BOD=70°,①OE平分①AOC,①①COE=12①AOC=12×70°=35°,①DOE=①COD-①COE=145°故选:D.【点睛】本题考查的是对顶角、角平分线的定义、平角定义,掌握对顶角相等、角平分线的定义是解题的关键.13.A【分析】依次分析各选项即可得出说法错误的选项.【详解】解:因为同旁内角互补,两直线平行,因此A选项错误;根据旋转的性质,旋转不改变图形的形状和大小,因此B选项内容正确;根据矩形的判定,C选项内容正确;根据菱形的性质,D选项内容正确.故选:A.【点睛】本题综合考查了平行线的判定、旋转的性质、矩形的判定、菱形的性质等内容,解决本题的关键是理解并能灵活运用相关概念,本题考查的是概念基础题,因此侧重考查学生对教材基础知识的理解与掌握等.14.A【分析】分别利用平行线的性质,以及对顶角的定义等分析得出答案.【详解】解:(1)如果直线a b,b c,那么a c,正确,是真命题,(2)相等的角是对顶角,错误,不是真命题;(3)两条直线被第三条直线所截,同位角不一定相等,错误,不是真命题;(4)在同一平面内如果直线a①b,c b,那么a c,错误,不是真命题;(5)两条直线平行,同旁内角互补,错误,不是真命题;(6)两条直线相交,所成的四个角中,一定有一个是锐角,错误,不是真命题;故选:A.【点睛】此题主要考查了命题与定理,正确把握平行线的性质是解题关键.15.C【详解】试题分析:根据基本的数学概念依次分析各小题即可作出判断.解:①在同一平面内,过一点有且只有一条直线与已知直线垂直,①如果三条直线a、b、c 满足:a①b,b①c,那么直线a与直线c必定平行,①对顶角相等,均正确;①若,则,错误;故选C.考点:真假命题点评:本题属于基础应用题,只需学生熟练掌握基本的数学概念,即可完成.16.A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得①错误.【详解】解:①若a①b,b①c,则a①c,说法正确;①若a①b,b①c,则a①c,说法错误,应为同一平面内,若a①b,b①c,则a①c;故选:A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.17.C【分析】利用勾股定理求出AB,证明BD=AD即可解决问题.【详解】解:在Rt①ABC中,AC=3,BC=6,①AB=由作图可知,直线DE垂直平分线段BC,①①BED=①C=90°,①DE①AC,①BE=EC,DE①AC,①BD=AD,故选:C.【点睛】本题考查作图−基本作图,勾股定理,平行线等分线段定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.B【分析】根据对顶角相等,可得答案.【详解】解;①①BOC与①AOD是对顶角,①①BOC=①AOD=50°,故选B.【点睛】本题考查了对顶角与邻补角,对顶角相等是解题关键.19.D【分析】根据平行线的性质即可得到①2=①ABC+①1,即可得出结论.【详解】①直线EF①GH ,①①2=①ABC+①1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.20.C【分析】根据等边三角形的性质和正方形的性质,得到30PCD ∠=︒,于是得到75CPD CDP ∠=∠=︒,证得15EDP PBD ∠=∠=︒,于是得到BDE DPE ∆∆,故①正确;由于FDP PBD ∠=∠,60DFP BPC ∠=∠=︒,推出DFP BPH ∆∆,得到PF DF DF PH PB CD ===①错误;由于30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,推出DPH CPD ∆∆,得到PD PH CD PD=,PB CD =,等量代换得到2PD PH PB =⋅,故①正确;过P 作PM CD ⊥,PN BC ⊥,求得30PCD ∠=︒,根据三角函数的定义得到CM PN ==2PM =,由平行线的性质得到EDP DPM ∠=∠,等量代换得到DBE DPM ∠=∠,于是求得tan 2DBE ∠=①正确.【详解】解:①BPC ∆是等边三角形,BP PC BC ∴==,60PBC PCB BPC ∠=∠=∠=︒,在正方形ABCD 中,①AB BC CD ==,A ADC BCD 90∠=∠=∠=︒30ABE DCF ∴∠=∠=︒,75CPD CDP ∴∠=∠=︒,15PDE ∴∠=︒,①604515PBD PBC HBC ∠=∠-∠=︒-=︒︒,EBD EDP ∴∠=∠,①DEP DEB ∠=∠,BDE DPE ∴∆∆;故①正确;①=PC CD ,=30PCD ∠︒=75PDC ∴∠︒15FDP ∴∠=︒①45DBA ∠=︒60PBD BPC ∴∠=∠=︒①DFP BPH ∆∆PF DF DF PH PB CD ∴===①错误; ①30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,①DPHCPD ∆∆, ∴PD PH CD PD=, 2PD PH CD ∴=•,①PB CD =,2PD PH PB =∴⋅,故①正确;如图,过P 作PM CD ⊥,PN BC ⊥,设正方形ABCD 的边长是4,BPC △为正三角形,60PBC PCB ︒∴∠=∠=,4PB PC BC CD ====,30PCD ∴∠=︒sin 604CM PN PB ︒∴==⋅==,sin302PM PC =︒⋅=, ①//DE PM ,EDP DPM ∴∠=∠,DBE DPM ∴∠=∠,tan tan 2DM DBE DPM PM ∴∠=∠===①正确;故选:C.【点睛】本题考查的正方形的性质,相似三角形的判定和性质,平行线的性质,三角函数定义,等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PM及PN的长.21.40︒∠的度数,根据对顶角相等可得解.【分析】由余角的定义可得BOD⊥【详解】解:EO AB90∴∠=BOE︒∴∠=∠-∠=-=905040BOD BOE EOD︒︒︒∴∠=∠=AOC BOD︒40故答案为:40︒【点睛】本题考查了对顶角,熟练掌握对顶角的性质是解题的关键.22.120°.【详解】试题分析:①①①1=50°①①=70°+①1=120°.考点: 1.平等线的性质;2.对顶角.23.南偏西68°20'【分析】根据平行线的性质:两条直线平行,内错角相等进行解答.【详解】如图所示:由于是相向开工.故角度相等,方向相反.而①1与①2为内错角,所以对B来说是南偏西68°20′.故答案是:68°20′.【点睛】考查了平行线的性质和方向角,注意此类题的结论:角度不变,方向相反.24.20【分析】直接利用“对顶角相等”即可解答.【详解】解:①①AOC 和①BOD 是对顶角①①BOD=①AOC=20°.故答案为20.【点睛】本题考查了对顶角的定义和性质,正确识别对顶角是解答本题的关键. 25.①.【分析】利用线段的性质进行解答即可.【详解】解:图①利用垂线段最短;图①利用两点之间线段最短;图①利用两点确定一条直线;故答案为:①.【点睛】本题主要考查了线段的性质,熟悉相关性质是解题的关键.26.140【分析】根据角平分线的定义和对顶角的性质解答即可.【详解】解:①100AOD ∠=︒,①18010080AOC ∠=︒-︒=︒,①OE 平分AOC ∠, ①1402COE AOC ∠=∠=︒, ①100BOC AOD ∠=∠=︒,①10040140EOB BOC COE ∠=∠+∠=︒+︒=︒.故答案为:140.【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握相关的定义和性质是解答本题的关键.27.50°【分析】先根据垂直的定义、角的和差求出BOD ∠的度数,再根据对顶角相等即可得.【详解】OE AB ⊥90BOE1904050BOE BOD ∠∠=∴=∠-︒-︒=︒由对顶角相等得:520BOD ∠=∠=︒故答案为:50︒.【点睛】本题考查了垂直的定义、对顶角相等等知识点,熟记对顶角的性质是解题关键. 28.40°【分析】根据等腰三角形性质,得到20C E ∠=∠=︒,再根据三角形外交定理求得40DFE C E ∠=∠+∠=︒,最后根据平行线的性质求出①A 的度数.【详解】:CF EF =,20E ∠=︒,20C E ∴∠=∠=︒,40DFE C E ∴∠=∠+∠=︒.//AB CD ,40A DFE ∴∠=∠=︒.故答案为40°.【点睛】本题主要考查了平行线的性质、等腰三角形和三角形外角等有关知识,属于常考基础题型.29.20【分析】因为两直线平行,所以①2与①1的补角互为内错角,通过两直线平行内错角相等,建立一个关于x 的方程,解方程即可.【详解】①直线a①直线①21801∠=︒-∠即210180(370)x x +=-+解得20x故答案为20【点睛】本题主要考查平行线的性质,掌握平行线的性质并利用方程的思想列出方程是解题的关键.30.60°【分析】首先根据多边形内角和180°•(n -2)可以计算出①F AB =120°,再过A 作l ①l 1,进而得到l ①l 2,再根据平行线的性质可得①4=①2,①1+①3=180°,进而可以得出结果.【详解】解:如图,过A 作l ①l 1,则①4=①2,①六边形ABCDEF是正六边形,①①F AB=120°,即①4+①3=120°,①①2+①3=120°,即①3=120°﹣①2,①l1①l2,①l①l2,①①1+①3=180°,①①1+120°﹣①2=180°,①①1﹣①2=180°﹣120°=60°,故答案为60°.【点睛】此题主要考查了正多边形和平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.31.27【分析】如图,①3=①1,由①3=①2+①A计算求解即可.【详解】解:如图①a①b,①1=56°①①3=①1=56°①①3=①2+①A,①2=29°①①A=①3﹣①2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.32.1:2【分析】先根据∥DC BA 得到BN DM =,根据=2ABD BCD S S 得到1=2DO BO ,再根据12DOC S DO CH =,12BOC S BO CH =可得到1==2DOCBOC S DO BO S . 【详解】解:过点D 作DM AB ⊥,垂足为M ,过点B 作BN DC ⊥,交DC 的延长线于点N ,过点C 作CH DB ⊥与点H ,①∥DC BA ,①BN DM =,①=2ABD BCD SS , ①11=222AC DM DC BN ⨯⨯⨯, ①2AB DC =,①∥DC BA ,①==CDO OBA DCO OAB ∠∠∠∠,, ①DCO AOB ∽,①1==2DC DO AB BO , ①12DOC SDO CH =,12BOC S BO CH =, ①1==2DOCBOC SDO BO S , 故答案为:1:2.【点睛】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.33.365【分析】作点P 关于BC 的对称点F ,过F 作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,求得AF =9,根据勾股定理得到AB =10,根据相似三角形的性质得到EF =365,于是得到结论. 【详解】解:作点P 关于BC 的对称点F ,过F作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,①CF =CP ,①点P 是AC 边的中点,①AP =PC =3,①AF =9,①在Rt △ABC 中,AC =6,BC =8,①AB =10,①①AEF =①ACB =90°,①①A+①B =①A+①F ,①①B =①F ,①①ABC①①AFE , ①AF AB =EF BC , ①910=8EF , ①EF =365, ①PD+DE 的最小值为365, 答案为:365.【点睛】本题考查了轴对称-最短路线问题,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.34. 125B ∠ 【分析】根据等面积法求得线段CD 的长度,即可求得点C 到AB 的距离,再根据三角形内角和定理即可求得与ACD ∠相等的角.【详解】解:①90CDA ∠=︒,①CD AB ⊥.点C 到AB 的距离为线段CD 的长度. 由题意可得:1122ABC SAC BC AB CD =⨯=⨯ ①125AC BC CD AB ⨯==, ①AC BC ⊥,①90ACB ∠=︒,①90180DCB B CDB DCB B ∠+∠+∠=∠+∠+︒=︒,①90ACD DCB DCB B ∠+∠=︒=∠+∠,①ACD B ∠=∠. 故答案为:125,B ∠. 【点睛】此题考查了点到直线的距离,三角形内角和的性质,以及等面积法求三角形的高,解题的关键是掌握相关基础知识.35.6;12;6;6【详解】每两条直线的交点处有两对对顶角,共有对顶角有6对.①两条直线被第三条直线所截,可得到4对同位角,2对内错角,2对同旁内角, ①三条直线两两相交于三点,可分解成三个“三线八角”的基本图形,则同位角共有12对,内错角有6对,同旁内角有6对.36.125︒【分析】根据矩形的性质可得AD ①BC ,再利用平行线的性质可得①BFC ′=70°,从而利用平角定义求出①CFC ′=110°,然后根据折叠的性质可求出①CFE 的度数,最后利用平行线的性质,即可解答.【详解】解:①由题意可知:AD ①BC ,①①1=①BFC ′=70°,①①CFC ′=180°-①BFC ′=110°,由折叠得:①CFE =①C ′FE =12①CFC ′=55°,①AD ①BC ,①①2=180°-①CFE =125°,故答案为:125°【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.37.70°【分析】首先根据折叠可得①1=①EF B'=55°,再求出①B'FC的度数,然后根据平行线的性质可得①2=①B'FC=70°.【详解】解:根据折叠可得①1=①EF B',①①1=55°,①①EF B'=55°,①①B'FC=180°-55°-55°=70°,①AD//BC,①①2=①B'FC=70°,故答案为:70°.【点睛】本题主要考查了平行线的性质以及折叠的性质,关键是掌握两直线平行,同位角相等.38.10【分析】过点D作DG①BC于G,DH①AC于H,根据等腰三角形的性质得到①EBD=①EDB,根据角平分线的定义得到①EBD=①DBC,进而得到①DBC=①EDB,证明EF BC,求出DF=FC,根据角平分线的性质求出DH,根据三角形的面积公式计算,即可求出结果.【详解】解:如图,过点D作DG①BC于G,DH①AC于H,①BE=DE,①①EBD=①EDB,①BD平分①ABC,①①EBD=①DBC,①①DBC=①EDB,①EF BC,①①FDC=①DCB,①CD平分①ACB,①①FCD=①DCB,①①FDC=①FCD,①FC=DF=5,①CD平分①ACB,DG①BC,DH①AC,①DH=DG=4,①①DFC的面积=12FC·DH=12×5×4=10.故答案为:10.【点睛】本题考查的是角平分线的性质、平行线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.39.125【分析】根据邻补角的和是180°,结合已知条件可求①COE的度数.【详解】①①1=55°,①①COE=180°-55°=125°.故答案为125.【点睛】此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.40【分析】在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,P点一共有三种情况,①当①OP1C=90°时,①当①OP2C=90°时,①当①P3OC=90°时,根据三角函数的值即可求得CP的长度.【详解】解:如图所示,P点可以有以下三种情况,在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,①当①OP 1C=90°时,①ACB=30°,OC=2,①1P C=OC cos30=2⋅︒①当①OP 2C=90°时,①ACD=45°,OC=2,①2P C=OC cos45=2⋅︒①当①P 3OC=90°时,①ACB=30°,OC=2,①3OC P C==2cos30︒【点睛】本题主要考查了平行四边形的动点问题、平行线的性质、三角形内角和为180°、三角函数,解题的关键在于进行分类讨论,并用三角函数求出最后的答案.41.见解析【分析】先根据平行线的性质证得E B ∠=∠,再根据线段和求得EF BC =,然后SAS 证明EDF BAC △△≌,即可由全等三角形的性质得出结论.【详解】证明:①DE AB ∥,①E B ∠=∠①BF EC =,①BF CF EC CF +=+①EF BC =在EDF 与BAC 中,ED BA E B EF BC =⎧⎪∠=∠⎨⎪=⎩①()SAS EDF BAC ≌①A D ∠=∠【点睛】本题考查三角形全等的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.42.两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB ①CD .【分析】利用两直线平行,同位角相等即可得到一对同位角相等,利用等式的性质得到另一对同位角相等,最后利用同位角相等,两直线平行即可得证.【详解】解:因为AM //CN (已知),所以①EAM =①ECN (两直线平行,同位角相等),又因为①1=①2(已知),所以①EAM +①1=①ECN +①2(等式性质),即①BAE =①DCE ,所以AB //CD .故答案为:两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB //CD .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.43.30°##30度【分析】由三角形内角和可得60ABC ∠=︒,然后根据角平分线的定义可得1302ABD CBD ABC ∠=∠=∠=︒,进而根据平行线的性质可求解. 【详解】解:①80A ∠=︒,40C ∠=︒,①60ABC ∠=︒,①ABC ∠的角平分线交AC 于点D , ①1302ABD CBD ABC ∠=∠=∠=︒, ①DE BC ∥,①30EDB CBD ∠=∠=︒,故BDE ∠的度数为30°. 【点睛】本题主要考查角平分线的定义、三角形内角和及平行线的性质,熟练掌握三角形内角和是解题的关键.44.(1)①见解析;①见解析;①见解析(2)50°【分析】(1)①连接PQ即可;①利用直角三角板画垂线即可;①利用直尺和直角三角板画OA的平行线MN即可;∥,根据平行线的性质求出①APF=①AOE=①MQB=40°,(2)过点P作PF OB①FPE=①PEO=90°,然后根据平角定义即可求解.(1)解:①连接PQ,如图,线段PQ即为所求.①如图,直线段PE即为所求.①如图,直线MN即为所求.(2)∥解:①MN OA①①AOE=①MQB,又①MQB=40°,①①AOE=40°,∥,如图,过点P作PF OB①①APF=①AOE=40°,①FPE=①PEO,又PE①OB,①①PEO=①FPE=90°,①①OPE=180°-①APF-①FPE=180°-40°-90°=50°.【点睛】本题考查了基本作图,平行线的性质等,添加辅助线PF是解第2问的关键.45.见解析【分析】由DG①BC,根据“两直线平行,内错角相等”得到①1=①DCE,由CD是高,EF①AB,得到①CDB=①EFB=90°,根据平行线的判定得到CD①EF,由平行线的性质:两直线平行,同位角相等,得到①DCE=①2,即可得到①1=①2.【详解】解:相等,理由如下:①CD 是高,①CD ①AB ,①①CDB=90°① EF①AB, ①①EFB=90°①①CDB=①EFB ,①EF①CD①①2= ①DCB① DG①BC ①①1= ①DCB①①1=①2【点睛】本题考查了平行线的判定与性质以及垂直的定义,熟练掌握相关的定理和定义是解题的关键.46.(1)①ABD =20︒,BDE ∠=20º,BED ∠=140º;(2)垂直的定义;两直线平行,同位角相等;BAD ∠,2∠【分析】(1)由①BDC-①A 求出①ABD 的度数,由BD 为角平分线得到①DBC 的度数,再由DE 与BC 平行,利用两直线平行内错角相等求出①BDE 的度数,利用三角形的内角和定理即可求出①BED 的度数;(2)由AD 垂直于BC ,EF 垂直于BC ,利用垂直的定义得到一对直角相等,利用同位角相等两直线平行得到EF 与AD 平行,利用两直线平行同位角相等得到一对角相等,再由已知一对角相等,利用等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】(1)因为50A ∠=︒,70BDC ∠=︒,所以20ABD BDC A ∠=∠-∠=︒,因为BD 是ABC ∆的角平分线,所以20DBC ABD ∠=∠=︒.因为//DE BC ,所以20BDE DBC ∠=∠=︒(两直线平行,内错角相等),所以180140BED EBD EDB ∠=︒-∠-∠=︒(三角形内角和定理);(2)因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(垂直的定义).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (两直线平行,同位角相等).因为①1=①2(已知),所以BAD ∠=2∠(等量代换).。

“相交线与平行线”易错题

“相交线与平行线”易错题

第五单元《相交线和平行线》易错题5.1相交线1.判断题: 同一平面内三条直线a 、b 、c ,若a ∥b,b ∥c,则a ∥c ;同理,若a ⊥b,b ⊥c,则a⊥c 。

( )【错解】正确【错题剖析】这句话的前半部分是成立的(如图1),但由此推出的后半部分不成立。

平行具有传递性,但垂直不具有传递性(如图2)如果a ⊥b,b ⊥c ,则a ∥c 。

【正确解答】错误【应对攻略】画图是解决问题的最简单也是最直接的办法,往往有意想不到的效果.【练习巩固】1.判断题:1)不相交的两条直线叫做平行线。

( ) 2)过一点有且只有一条直线与已知直线平行。

( ) 3)两直线平行,同旁内角相等。

( ) 4)两条直线被第三条直线所截,同位角相等。

( )2.判断题:只有过直线外一点才能画已知直线的垂线 ( )【错解】正确【错题剖析】此句错误的原因是受“经过直线外一点有且只有一条直线和已知直线平行”这一事实的影响。

但画垂线可以过直线上一点,也可以过直线外一点来画。

正确说法是:经过直线上或直线外一点可以画已知直线的垂线。

【正确解答】错误【应对攻略】考虑问题要全面,全方面的多角度的分析,不能片面看问题.【练习巩固】判断(1)对顶角的余角相等.( )(2)邻补角的角平分线互相垂直.( )(3)平面内画已知直线的垂线,只能画一条.() (4)在同一个平面内不相交的两条直线叫做平行线.( )(5)如果一条直线垂直于两条平行线中的一条直线,那么这条直线垂直于平行线中的另一条直线.( )(6)两条直线被第三条直线所截,两对同旁内角的和等于一个周角.( ) (7)点到直线的距离是这点到这条直线的垂线的长.( )(8)“过直线外一点,有且只有一条直线平行于已知直线”是公理.( )a bc 图1 图23. 如下图,直线AB 、CD 、EF 和射线OG 都经过O 点,则图中对顶角有( )对A 、 6B 、 7C 、 5D 、 8【错解】A.【错题剖析】这种题目很容易“重复”解,也很容易“遗漏”解.本题很容易把 ∠AOG 也数进去. 【正确解答】C.【应对攻略】观察图形需要仔细,要有两个防止:既要防止“重复”又要防止“遗漏”并且应按一定的顺序进行.【练习巩固】如图,BE 平分ABC ,BC DE //,图中相等的角共有( )A 、 3对B 、 4对C 、 5对D 、6对3.观察下列各图,寻找对顶角(不含平角):⑴ 如图a ,图中共有 对对顶角;C EA OB G F DE DCB AA BCD Oa b c A A B B CCD DO OEFGH图a图b图c⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有2008条直线相交于一点,则可形成 对对顶角。

最新相交线与平行线概念判断题(带答案)

最新相交线与平行线概念判断题(带答案)

第五章相交线与平行线概念判断题1. 下列正确说法的个数是()①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A . 1, B. 2, C. 3, D. 42. 下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线.3. 下列图中∠1和∠2是同位角的是()A. ⑴、⑵、⑶,B. ⑵、⑶、⑷,C. ⑶、⑷、⑸, D. ⑴、⑵、⑸4. 如果一个角的补角是150°,那么这个角的余角的度数是( )A.30°B.60°C.90°D.120°5. 下列语句中,是对顶角的语句为( )A.有公共顶点并且相等的两个角B.两条直线相交,有公共顶点的两个角C.顶点相对的两个角D.两条直线相交,有公共顶点没有公共边的两个角6. 下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行7. 两平行直线被第三条直线所截,同旁内角的平分线( )A.互相重合B.互相平行C.互相垂直D.无法确定8.下列说法正确的个数是( ) ①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c. A.1个 B.2个 C.3个 D.4个9. 列说法正确的有()①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若直线a∥b,b∥c,则a与c不相交.A 1个 B.2个 C.3 个 D. 4个10. 下列说法正确的有①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③两条射线或线段平行,是指它们所在的直线平行;④不相交的两条射线不一定平行;[ ]A.0个B.1个C.2个D.3个11. 下列说法正确的有①不相交的两条直线是平行线;②在同一个平面内,两条不相交的线段是平行线;③在同一个平面内,没有交点的直线是平行线.A.0个B.1个C.2个D.3个12.下列说法中,正确的个数有()①同一平面内,不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④一条直线有无数条平行线;⑤过直线外一点可以作无数条直线与已知直线平行.A.0个B.1个C.2个D.3个13.下列说法中正确的是[ ]A.在同一平面内,两条不平行的线段必相交B.在同一平面内,不相交的两条线段是平行线C.两条射线或线段平行是指它们所在的直线平行D.一条直线有可能同时与两条相交直线平行14下列说法中正确的个数有((1)在同一平面内,不相交的两条直线必平行.(2)在同一平面内,不相交的两条线段必平行.(3)相等的角是对顶角.(4)两条直线被第三条直线所截,所得到同位角相等.(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A.1个B.2个C.3个D.4个精品文档15.下列说法中正确的个数为()①.不相交的两条直线叫做平行线②.平面内,过一点有且只有一条直线与已知直线垂直③.平行于同一条直线的两条直线互相平行④.在同一平面内,两条直线不是平行就是相交⑤若直线a、b平行,则a上的线段AB与b上的线段CD 一定平行。

相交线与平行线测试题及答案doc

相交线与平行线测试题及答案doc

相交线与平行线测试题及答案doc一、选择题(每题5分,共20分)1. 在同一平面内,两条直线的位置关系有几种?A. 一种B. 两种C. 三种D. 四种答案:B2. 下列说法中,正确的是:A. 同一平面内,两条直线不相交,则它们一定平行B. 同一平面内,两条直线相交,则它们一定垂直C. 同一平面内,两条直线平行,则它们永不相交D. 同一平面内,两条直线相交,则它们一定平行答案:C3. 如果两条直线都与第三条直线平行,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 无法确定答案:B4. 两条直线相交,交点处的夹角为90°,那么这两条直线的关系是:A. 相交B. 平行C. 垂直D. 重合答案:C二、填空题(每题5分,共20分)1. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线____。

答案:平行2. 在同一平面内,两条直线不相交,则它们是____。

答案:平行3. 垂直于同一直线的两条直线一定是____。

答案:平行4. 两条平行线被第三条直线所截,同位角相等,内错角互补,同旁内角和为____。

答案:180°三、解答题(每题10分,共20分)1. 已知直线AB与直线CD相交于点O,且∠AOB=∠COD=90°,求证:AB∥CD。

证明:因为∠AOB=∠COD=90°,所以AB⊥OB,CD⊥OD。

根据垂直于同一条直线的两条直线平行,所以AB∥CD。

2. 已知直线l1与直线l2相交于点P,且l1∥l3,l2∥l4,求证:l3与l4相交。

证明:因为l1∥l3,l2∥l4,所以∠l1P=∠l3P,∠l2P=∠l4P。

根据同位角相等,两直线平行,所以l3∥l1,l4∥l2。

又因为l1与l2相交,所以l3与l4相交。

四、计算题(每题10分,共40分)1. 在同一平面内,直线m与直线n相交,交点为O。

已知∠1=45°,求∠2的度数。

答案:∠2=180°-45°=135°2. 已知直线a与直线b平行,直线c与直线a相交于点A,且∠BAC=60°,求∠ABC的度数。

《相交线与平行线》常考题型训练(试题与答案)

《相交线与平行线》常考题型训练(试题与答案)

《相交线与平行线》常考题型训练平行线+角平分1.如图,直线AB∥CD,CE平分∠ACD,交AB于点E,∠ACE=20°,点F在AC的延长线上,则∠BAF的度数为()A.20°B.30°C.40°D.50°2.如图,AF是∠BAC的平分线,DF∥AC,若∠1=36°,则∠BDF的度数为()A.18°B.36°C.54°D.72°3.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°4.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠BAG的度数是()A.35°B.45°C.55°D.65°5.如图,AB∥CD,∠B=60°,EF平分∠BED,则∠FED的度数是()A.20°B.30°C.40°D.60°6.如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=5,AC=4,则△ADF周长为()A.7 B.8 C.9 D.107.如图,已知,AB∥CD,∠1=∠2,EP⊥FP,则以下结论错误的是()A.∠1=∠3 B.∠2+∠4=90°C.∠1+∠3=90°D.∠3=∠4两直线平行求角的度数(直尺、三角板)8.如图所示,AB∥CD,DB⊥BC于点B,若∠2=50°,则∠1=()A.40°B.50°C.45°D.60°9.如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°10.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADB=62°,则∠CBF的度数是()A.128°B.118°C.108°D.62°11.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2,(2)∠1=∠3,(3)∠2+∠4=90°,(4)∠4+∠5=180°.其中正确的个数是()A.1 B.2 C.3 D.412.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=16°,那么∠2的度数是()A.16°B.44°C.45°D.60°13.如图,将一块三角尺的直角顶点放在直线a上,a∥b,∠1=50°,则∠2=()A.80°B.70°C.60°D.50°14.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=58°,则下列结论正确的是()A.∠3=42°B.∠4=138°C.∠5=42°D.∠2=58°两直线平行与折叠综合求角的度数15.如图是一张长条形纸片,其中AB∥CD,将纸片沿EF折叠,A、D两点分别与A′、D'对应,若∠1=∠2,则∠D′FC的度数为()A.72°B.36°C.60°D.65°16.如图,将长方形ABCD沿BE折叠,若∠CBA′=40°,则∠BEA′的度数为()A.45°B.65°C.50°D.25°17.如图,将一个长方形纸条折成如图的形状,若已知∠1=126°,则∠2的度数为()A.54°B.63°C.72°D.45°18.如图,将一条两边沿互相平行的纸带按图折叠,则∠1的度数等于()A.65°B.70°C.75°D.80°19.如图,将矩形ABCD沿EF折叠,点C落在点H处,点D落在AB边上的点G处,若∠AEG=30°,则∠EFC等于()A.115°B.75°C.105°D.150°两直线平行与拐角综合求角的度数20.如图,已知a∥b,∠1=50°,∠2=120°,则∠3等于()A.100°B.110°C.120°D.130°21.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β=3∠αC.∠α+∠β=90°D.∠β﹣∠α=90°22.如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°23.如图,已知AB∥CD,∠AEG=40°,∠CFG=60°,则∠G等于()A.20°B.40°C.60°D.100°24.如图所示,直线a∥b,∠1=38°,∠2=90°,则∠3的度数为()A.125°B.138°C.148°D.128°25.如图,AB∥CD,∠BAP=60°﹣α,∠APC=50°+2α,∠PCD=30°﹣α.则α为()A.10°B.15°C.20°D.30°26.如图,直线m∥n,∠1=60°,∠2=25°,则∠A等于()A.30°B.35°C.40°D.50°27.如图所示,直线AB∥CD,∠A=100°,∠C=75°,则∠E的度数是()A.25°B.20°C.30°D.35°28.如图,已知AB∥CD.写出图形中∠P和∠A,∠C的关系()A.∠C=∠P﹣∠A B.∠P=∠C﹣∠A C.∠P=∠A+∠C D.∠C=∠A﹣∠P29.如图,a∥b,则∠A的度数是()度.A.28 B.31 C.39 D.40两直线平行填空题30.如图,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,求证:a∥c.在下列解答中,填空(理由或数学式);解:∵∠1=∠2(已知),∴().∵(已知),∴b∥c(),∴(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).31.已知:如图,∠DAE=∠E,∠B=∠D.直线AD与BE平行吗?直线AB与DC平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由).解:直线AD与BE平行,直线AB与DC.理由如下:∵∠DAE=∠E,(已知)∴∥,(内错角相等,两条直线平行)∴∠D=∠DCE.(两条直线平行,内错角相等)又∵∠B=∠D,(已知)∴∠B=,(等量代换)∴∥.(同位角相等,两条直线平行)两直线平行的性质与判定综合证明题32.已知:如图,AC⊥BC,CD∥FG,∠1=∠2.求证:DE⊥AC.33.如图,在△ABC中,点E、H在BC上,EF⊥AB,HD⊥AB,垂足分别是F、D,点G在AC上,∠AGD=∠ACB,试说明∠1+∠2=180°.34.如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?并说明理由.两直线平行拐点探究题35.(1)【感知】如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE,试说明∠AEC=∠A+∠DCE.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E作EF∥AB.∴∠A=∠1 ()∵AB∥CD(已知)EF∥AB(辅助线作法)∴CD∥EF()∴∠2=∠DCE()∵∠AEC=∠1+∠2∴∠AEC=∠A+∠DCE()(2)【探究】当点E在如图②的位置时,其他条件不变,试说明∠A+∠AEC+∠C=360°(3)【应用】如图③,延长线段AE交直线CD于点M,已知∠A=130°,∠DCE=120°,则∠MEC的度数为.(请直接写出答案)36.感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.阅读下面的解答过程,井填上适当的理由.解:过点E作直线EF∥CD∴∠2=∠D()∵AB∥CD(已知),EF∥CD,∴AB∥EF()∴∠B=∠1()∵∠1+∠2=∠BED,∴∠B+∠D=∠BED()应用与拓展:如图②,直线AB∥CD.若∠B=22°,∠G=35°,∠D=25°,则∠E+∠F=度.方法与实践:如图③,直线AB∥CD.若∠E=∠B=60°,∠F=80°,则∠D=度.《相交线与平行线》常考题型训练参考答案与试题解析一.选择题(共31小题)1.如图,直线AB∥CD,CE平分∠ACD,交AB于点E,∠ACE=20°,点F在AC的延长线上,则∠BAF的度数为()A.20°B.30°C.40°D.50°【分析】根据角平分线的性质和平行线的性质,可以求得∠BAF的值,本题得以解决.【解答】解:∵∠ACE=20°,CE平分∠ACD,∴∠ACD=2∠ACE=40°,∵AB∥CD,∴∠BAF=∠ACD,∴∠BAF=40°,故选:C.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.2.如图,AF是∠BAC的平分线,DF∥AC,若∠1=36°,则∠BDF的度数为()A.18°B.36°C.54°D.72°【分析】根据两直线平行,同位角相等,可得∠F AC=∠1,再根据角平分线的定义可得∠BAF=∠F AC.【解答】解:∵DF∥AC,∴∠F AC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAF=∠F AC=36°,∴∠BAC=72°,∵DF∥AC,∴∠BDF=∠BAC=72°故选:D.【点评】本题考查了平行线的性质,角平分线的定义,熟记平行线的性质是解题的关键.3.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【解答】解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.【点评】此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角相等.4.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠BAG的度数是()A.35°B.45°C.55°D.65°【分析】首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用角平分线的定义来求∠BAG的度数.【解答】解:∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,故选:A.【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.5.如图,AB∥CD,∠B=60°,EF平分∠BED,则∠FED的度数是()A.20°B.30°C.40°D.60°【分析】利用平行线的性质以及角平分线的定义即可解决问题.【解答】解:∵AB∥CD,∴∠B=∠BED=60°∵EF平分∠BED,∴∠FED=∠BED=30°,故选:B.【点评】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=5,AC=4,则△ADF周长为()A.7B.8C.9D.10【分析】根据平行线的性质和角平分线的定义得出BD=DE,EF=FC,进而解答即可.【解答】解:∵DF∥BC,∴∠DEB=∠EBC,∠FEC=∠ECB,∵BE、CE分别是∠ABC和∠ACB的平分线,∴∠DBE=∠EBC,∠FCE=∠ECB,∴∠DBE=∠DEB,∠FEC=∠FCE,∴BD=DE,EF=FC,∴△ADF周长=AD+DF+AF=AD+AF+DE+EF=AD+AF+BD+FC=AB+AC=5+4=9,故选:C.【点评】本题考查等腰三角形的性质、平行线的性质以及角平分线的性质;有效的进行线段的等量代换是正确解答本题的关键.7.如图,已知,AB∥CD,∠1=∠2,EP⊥FP,则以下结论错误的是()A.∠1=∠3B.∠2+∠4=90°C.∠1+∠3=90°D.∠3=∠4【分析】过点P作PH∥AB,再根据平行线的性质及直角三角形的性质对各选项进行逐一判断即可.【解答】解:过点P作PH∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠EPH,∠3=∠HPF,∵EP⊥FP,∴∠2+∠4=90°,∠HPF+∠EPH=90°,∴∠3=∠4,故B,D正确;∵∠1=∠2,∠3=∠4,∠2+∠4=90°,∴∠1+∠3=90°,故C正确,故选:A.【点评】本题考查平行线的性质和判定,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图所示,AB∥CD,DB⊥BC于点B,若∠2=50°,则∠1=()A.40°B.50°C.45°D.60°【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵DB⊥BC,∴∠CBD=90°,∴∠BCD=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠BCD=40°.故选:A.【点评】此题主要考查了平行线的性质和三角形内角和定理,正确掌握平行线的性质是解题关键.9.如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°【分析】由直线a∥b,利用“两直线平行,内错角相等”可得出∠4的度数,结合对顶角相等可得出∠5的度数,再利用三角形内角和定理可求出∠3的度数.【解答】解:给图中各角标上序号,如图所示.∵直线a∥b,∴∠4=∠2=45°,∴∠5=45°.∵∠1+∠3+∠5=180°,∴∠3=180°﹣32°﹣45°=103°.故选:C.【点评】本题考查了平行线的性质以及三角形内角和定理,牢记“两直线平行,内错角相等”是解题的关键.10.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADB=62°,则∠CBF的度数是()A.128°B.118°C.108°D.62°【分析】利用平行线的性质可得∠DBC=∠ADB,再由邻补角的定义,可求得∠CBF,可求得答案.【解答】解:∵AD∥BC,∴∠DBC=∠ADB=62°,∵∠CBF+∠DBC=180°,∴∠CBF=180°﹣62°=118°.故选:B.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.11.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2,(2)∠1=∠3,(3)∠2+∠4=90°,(4)∠4+∠5=180°.其中正确的个数是()A.1B.2C.3D.4【分析】根据两直线平行,同位角相等、同旁内角互补可判断(1)、(2)、(4),根据平角的定义可判断∠2与∠4的关系.【解答】解:(1)因为∠1和∠2是两平行线间的同位角,所以根据两直线平行,同位角相等可得∠1=∠2;(2)∠1和∠3不属于平行线间的同位角或内错角,所以∠1和∠3不一定相等;(3)∠2、∠4和直角三角板的直角组成一个平角180°,所以∠2+∠4=90°;(4)∠4和∠5是两平行线间的同旁内角,根据两直线平行,同旁内角互补,可得∠4+∠5=180°.所以正确的个数是3个.故选:C.【点评】本题主要考查了平行线的性质,平行线的性质是体现角之间关系的重要依据.12.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=16°,那么∠2的度数是()A.16°B.44°C.45°D.60°【分析】根据BE∥CD得到∠EBC=16°,依据∠ABC=60°,∠EBC=16°,由角的和差关系可求∠2=44°.【解答】解:如图,∵BE∥CD,∴∠EBC=∠1=16°,∵∠ABC=60°,∴∠2=44°.故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.13.如图,将一块三角尺的直角顶点放在直线a上,a∥b,∠1=50°,则∠2=()A.80°B.70°C.60°D.50°【分析】先根据三角形内角和定理求出∠4的度数,由对顶角相等求出∠5的度数,根据平行线的性质即可得出结论.【解答】解:由已知知:∠3=60°∵1=50°,∠3=60°,∴∠4=180°﹣∠1﹣∠3=180°﹣50°﹣60°=70°,∴∠5=∠4=70°,∵a∥b,∴∠2=∠5=70°故选:B.【点评】本题考查的是平行线的性质,三角形的内角和定理,掌握两直线平行,同位角相等是解决问题的前提.14.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=58°,则下列结论正确的是()A.∠3=42°B.∠4=138°C.∠5=42°D.∠2=58°【分析】利用平行线的性质、直角的定义即可解决问题.【解答】解:∵a∥b,∠1=58°,∴∠3=∠1=58°,∠2=∠1=58°,∠4=180°﹣∠3=180°﹣58°=122°,∵三角板为直角三角板,∴∠5=90°﹣∠3=90°﹣58°=32°.∴选项D正确,故选:D.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等.15.如图是一张长条形纸片,其中AB∥CD,将纸片沿EF折叠,A、D两点分别与A′、D'对应,若∠1=∠2,则∠D′FC的度数为()A.72°B.36°C.60°D.65°【分析】依据平行线的性质以及折叠的的性质,即可得到∠A'EF=60°,∠1=60°,再根据平行线的性质,即可得到∠D′FC的度数.【解答】解:∵AB∥CD,∴∠1=∠AEF,由折叠可得∠A'EF=∠AEF,又∵∠1=∠2,∴∠AEF=∠A'EF=∠2,∵∠AEB=180°,∴∠A'EF=60°,∠1=60°,∵A'E∥D'F,∴∠A'EF+∠D'FE=180°,∴∠D'FC=180°﹣60°﹣60°=60°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.16.如图,将长方形ABCD沿BE折叠,若∠CBA′=40°,则∠BEA′的度数为()A.45°B.65°C.50°D.25°【分析】由折叠的性质知,折叠后形成的图形全等,找出对应的边角关系即可.【解答】解:根据题意,∠A′=∠A=90°,∠ABE=∠A′BE,∵∠CBA′=40°,∴∠EBA'′=(180°﹣90°﹣40°)=25°,∴∠BEA'=90°﹣25°=65°,故选:B.【点评】本题考查折叠的性质.解题关键是找出由轴对称所得的相等的边或者相等的角.17.如图,将一个长方形纸条折成如图的形状,若已知∠1=126°,则∠2的度数为()A.54°B.63°C.72°D.45°【分析】由CD∥EF,利用“两直线平行,同旁内角互补”可求出∠DCF的度数,再利用折叠的性质及邻补角互补,可求出∠2的度数.【解答】解:在图中标上各字母,如图所示.∵CD∥EF,∴∠1+∠DCF=180°,∴∠DCF=180°﹣126°=54°.∵2∠2+∠DCF=180°,∴∠2==63°.故选:B.【点评】本题考查了平行线的性质以及折叠的性质,牢记“两直线平行,同旁内角互补”是解题的关键.18.如图,将一条两边沿互相平行的纸带按图折叠,则∠1的度数等于()A.65°B.70°C.75°D.80°【分析】根据翻折不变性以及平行线的性质解决问题即可【解答】解:如图,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠ACD=40°,∴∠BAC=140°,∵∠1=∠2,∴∠1=∠BAC=70°,故选:B.【点评】本题主要考查了平行线的性质的运用,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.如图,将矩形ABCD沿EF折叠,点C落在点H处,点D落在AB边上的点G处,若∠AEG=30°,则∠EFC等于()A.115°B.75°C.105°D.150°【分析】利用翻折变换的性质求出∠DEF,再利用平行线的性质解决问题即可.【解答】解:∵∠AEG=30°,∴∠DEG=150°,由翻折的性质可知:∠DEF=∠FEG=∠DEG=75°,∵AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=105°,故选:C.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.如图,已知a∥b,∠1=50°,∠2=120°,则∠3等于()A.100°B.110°C.120°D.130°【分析】利用平行线的性质以及三角形的外角的性质解决问题即可.【解答】解:如图,∵a∥b,∴∠2+∠4=180°,∵∠2=120°,∴∠4=60°,∵∠3=∠1+∠4,∠1=50°,∴∠3=50°+60°=110°,故选:B.【点评】本题考查平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β=3∠αC.∠α+∠β=90°D.∠β﹣∠α=90°【分析】延长BC交DE于F,如图,利用平行线的性质得到∠BFD=∠ABF=∠α,然后根据三角形外角性质可得到∠β=∠α+90°.【解答】解:延长BC交DE于F,如图,∵AB∥DE,∴∠BFD=∠ABF=∠α,∴∠CDE=∠CDF+∠DCF,即∠β=∠α+90°.故选:D.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.22.如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=95°,∴∠1+∠2=∠α+180°﹣∠β=95°,∴∠β﹣∠α=85°.故选:D.【点评】本题考查了平行线的性质,熟记平行线的性质是解题的关键.23.如图,已知AB∥CD,∠AEG=40°,∠CFG=60°,则∠G等于()A.20°B.40°C.60°D.100°【分析】过点G作GH∥AB,得出∠EGH=∠AEG,证出GH∥CD,则∠FGH=∠CFG,得出∠EGF=∠AEG+∠CFG,即可得出结果.【解答】解:过点G作GH∥AB,如图所示:∴∠EGH=∠AEG,∵AB∥CD,∴GH∥CD,∴∠FGH=∠CFG,∴∠EGH+∠FGH=∠AEG+∠CFG.即:∠EGF=∠AEG+∠CFG=40°+60°=100°,故选:D.【点评】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题的关键.24.如图所示,直线a∥b,∠1=38°,∠2=90°,则∠3的度数为()A.125°B.138°C.148°D.128°【分析】反向延长∠2的边与a交于一点,由三角形外角性质可得∠4=∠2﹣∠1=55°,再根据邻补角以及平行线的性质,即可得到∠3的度数.【解答】解:如图,反向延长∠2的边与a交于一点,由三角形外角性质,可得∠4=∠2﹣∠1=52°,∴∠5=180°﹣∠4=128°,∵a∥b,∴∠3=∠5=128°.故选:D.【点评】考查了平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.25.如图,AB∥CD,∠BAP=60°﹣α,∠APC=50°+2α,∠PCD=30°﹣α.则α为()A.10°B.15°C.20°D.30°【分析】过点P作一条直线平行于AB,根据两直线平行内错角相等得:∠APC=∠BAP+∠PCD,得到关于α的方程,解即可.【解答】解:过点P作PM∥AB,∴AB∥PM∥CD,∴∠BAP=∠APM,∠DCP=∠MPC,∴∠APC=∠APM+∠CPM=∠BAP+∠DCP,∴50°+2α=60°﹣α+30°﹣α,解得α=10°.故选:A.【点评】本题考查了平行线的性质,注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系26.如图,直线m∥n,∠1=60°,∠2=25°,则∠A等于()A.30°B.35°C.40°D.50°【分析】首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠A的度数.【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=60°,∴∠3=60°,∵∠3=∠2+∠A,∠2=25°,∴∠A=35°.故选:B.【点评】本题考查了平行线的性质和三角形的外角性质,关键是求出∠3的度数,此题难度不大.27.如图所示,直线AB∥CD,∠A=100°,∠C=75°,则∠E的度数是()A.25°B.20°C.30°D.35°【分析】先根据平行线的性质求出∠EFD的度数,再由三角形外角的性质得出结论即可.【解答】解:∵直线AB∥CD,∠A=100°,∴∠EFD=∠A=100°,∵∠EFD是△CEF的外角,∴∠E=∠EFD﹣∠C=100°﹣75°=25°.故选:A.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.28.如图,已知AB∥CD.写出图形中∠P和∠A,∠C的关系()A.∠C=∠P﹣∠A B.∠P=∠C﹣∠A C.∠P=∠A+∠C D.∠C=∠A﹣∠P【分析】过P作PE∥AB,依据AB∥CD,即可得出PE∥CD,根据平行线的性质,即可得到∠APC=∠CPE ﹣∠APE=∠C﹣∠A,【解答】解:如图所示,过P作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠C=∠CPE,∠A=∠APE,∴∠APC=∠CPE﹣∠APE=∠C﹣∠A,故选:B.【点评】此题考查了平行线的性质.解题时注意:两直线平行,内错角相等.29.如图,a∥b,则∠A的度数是()度.A.28B.31C.39D.40【分析】利用平行线的性质以及三角形的外角的性质即可解决问题.【解答】解:∵a∥b,∴∠ABE=∠ACF=70°,∵∠ABE=∠A+∠ADB,∴∠A=70°﹣31°=39°,故选:C.【点评】本题考查平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.30.如图,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,求证:a∥c.在下列解答中,填空(理由或数学式);解:∵∠1=∠2(已知),∴a∥b(内错角相等,两直线平行).∵∠3+∠4=180°(已知),∴b∥c(同旁内角互补,两直线平行),∴a∥c(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).【点评】此题考查平行线的判定和性质,关键是根据平行线的判定解答.31.已知:如图,∠DAE=∠E,∠B=∠D.直线AD与BE平行吗?直线AB与DC平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由).解:直线AD与BE平行,直线AB与DC平行.理由如下:∵∠DAE=∠E,(已知)∴AD∥BE,(内错角相等,两条直线平行)∴∠D=∠DCE.(两条直线平行,内错角相等)又∵∠B=∠D,(已知)∴∠B=∠DCE,(等量代换)∴AB∥DC.(同位角相等,两条直线平行)【分析】因为∠DAE=∠E,所以根据内错角相等,两条直线平行,可以证明AD∥BE;根据平行线的性质,可得∠D=∠DCE,结合已知条件,运用等量代换,可得∠B=∠DCE,可证明AB∥DC.32.已知:如图,AC⊥BC,CD∥FG,∠1=∠2.求证:DE⊥AC.【分析】由平行线的性质得∠2=∠DCB,等量代换得∠DCB=∠1,由平行线的判定定理可得DE∥BC,利用平行线的性质得出结论.【解答】证明:∵CD∥FG,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴DE∥BC,∵AC⊥BC,∴DE⊥AC.【点评】本题主要考查平行线的性质及判定定理,综合运用平行线的性质和判定定理是解答此题的关键.33.如图,在△ABC中,点E、H在BC上,EF⊥AB,HD⊥AB,垂足分别是F、D,点G在AC上,∠AGD =∠ACB,试说明∠1+∠2=180°.【分析】由垂直的定义可得∠BFE=∠BDC,再根据平行线的判定可证明EF∥HD,根据平行线的性质得出∠2+∠DHB=180°;由∠AGD=∠ACB可证明DG∥BC,得出∠1=∠DHB,等量代换即可证明∠1+∠2=180°.【解答】证明:∵EF⊥AB,HD⊥AB,垂足分别是F、D,∴∠BFE=∠BDH=90°,∴EF∥HD;∴∠2+∠DHB=180°,∵∠AGD=∠ACB,∴DG∥BC,∴∠1=∠DHB,∴∠1+∠2=180°.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.反之也成立.34.如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?并说明理由.【分析】根据同位角相等,两直线平行可得DE∥BC,再根据两直线平行,内错角相等可得∠2=∠4,然后求出∠3=∠4,再根据同位角相等,两直线平行判断出CD∥FH,然后求解即可.【解答】解:∵∠1=∠ACB,∴DE∥BC,∴∠2=∠4,∵∠2=∠3,∴∠3=∠4,∴CD∥FH,∵FH⊥AB,∴CD⊥AB.【点评】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.35.【分析】(1)过点E作EF∥AB,由平行线的性质得出∠A=∠1,证出CD∥EF,由平行线的性质得出∠2=∠DCE,即可得出结论;(2)过点E作EF∥AB,则EF∥CD,由平行线的性质得出∠A+∠AEF=180°,∠C+∠CEF=180°,即可得出结论;(3)同(2)得∠A+∠AEC+∠DCE=360°,得出∠AEC=110°,即可得出答案.【解答】(1)证明:如图①,过点E作EF∥AB,∴∠A=∠1(两直线平行,内错角相等),∵AB∥CD(已知),∵EF∥AB(辅助线作法),∴CD∥EF(平行于同一直线的两条直线平行),∴∠2=∠DCE(两直线平行,内错角相等),∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠DCE(等量代换),故答案为:两直线平行,内错角相等;平行于同一直线的两条直线平行;两直线平行,内错角相等;等量代换;(2)证明:过点E作EF∥AB,如图②所示:∵AB∥CD,∴EF∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°;(3)解:同(2)得:∠A+∠AEC+∠DCE=360°,∴∠AEC=360°﹣∠A﹣∠DCE=360°﹣130°﹣120°=110°,∴∠MEC=180°﹣∠AEC=180°﹣110°=70°,故答案为:70°.36.【分析】感知与填空:过点E作直线EF∥CD,由两直线平行,内错角相等得出∠2=∠D,由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB∥EF,由两直线平行,内错角相等得出∠B=∠1,由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED.应用与拓展:过点G作GN∥AB,则GN∥CD,由感知与填空得∠E=∠B+∠EGN,∠F=∠D+∠FGN,即可得出结果.方法与实践:设AB交EF于M,∠AME=∠FMB=180°﹣∠F﹣∠B=40°,由感知与填空得∠E=∠D+∠AME,即可得出结果.【解答】解:感知与填空:过点E作直线EF∥CD,∴∠2=∠D(两直线平行,内错角相等),·∵AB∥CD(已知),EF∥CD,∴AB∥EF(两直线都和第三条直线平行,那么这两条直线也互相平行),∴∠B=∠1(两直线平行,内错角相等),∵∠1+∠2=∠BED,∴∠B+∠D=∠BED(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G作GN∥AB,则GN∥CD,如图②所示:由感知与填空得:∠E=∠B+∠EGN,∠F=∠D+∠FGN,∴∠E+∠F=∠B+∠EGN+∠D+∠FGN=∠B+∠D+∠EGF=22°+25°+35°=82°,故答案为:82.方法与实践:设AB交EF于M,如图③所示:∠AME=∠FMB=180°﹣∠F﹣∠B=180°﹣80°﹣60°=40°,由感知与填空得:∠E=∠D+∠AME,∴∠D=∠E﹣∠AME=60°﹣40°=20°,故答案为:20.【点评】本题考查了平行线的判定与性质、三角形内角和定理等知识;熟练掌握平行线的性质是解题的关键.。

《相交线、平行线》基础测试(含答案).doc

《相交线、平行线》基础测试(含答案).doc

《相交线、平行线》基础测试一、判断题(每小题2分,共10分)1.把一个角的一边反向延长,则可得到这个角的邻补角……………………()2.对顶角相等,但不互补;邻补角互补,但不相等……………………………()3.如果直线a⊥b,且b⊥c,那么a⊥c………………………………………()4.平面内两条不平行的线段..必相交…………………………………………()5.命题有真命题、假命题,定理也有真定理假定理…………………………()二、填空题(每小题3分,共27分)6.如图,直线AB、CD相交于点O,∠1=∠2.则∠1的对顶角是_____,∠4的邻补角是______.∠2的补角是_________.7.如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.8.如图,OA⊥OB,OC⊥OD.若∠AOD=144°,则∠BOC=______.9.如图,∠1的内错角是,它们是直线、被直线所截得的.10.如图,AB∥CD、AF分别交AB、CD于A、C.CE平分∠DCF,∠1=100°,则∠2=.11.如图,∠1=82°,∠2=98°,∠3=80°,则∠4=.12.如图,直线AB∥CD∥EF,则∠α+∠β-∠γ=.13.“如果n是整数,那么2n是偶数”其中题设是,结论是,这是命题(填真或假).14.把命题“直角都相等”改写为“如果…,那么…”的形式是______________________.三、选择题(每题3分,共18分)15.下列命题中,是真命题的是…………………………………………………()(A)相等的两个角是对顶角.(B)有公共顶点的两个角是对顶角.(C)一条直线只有一条垂线.(D)过直线外一点有且只有一条直线垂直于已知直线.16.如图,OA⊥OB,OC⊥OD,垂足均为O.则∠BOC+∠AOD等于…………()(A)150°(B)160°(C)170°(D)180°17.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是…………………………()(A)①、②、③(B)①、②、④(C)②、③、④(D)①、②、③、④18.如图,图中的同位角共有…………………………………………………()(A)6对(B)8对(C)10对(D)12对19.如图,下列推理正确的是…………………………………………………()(A)∵∠1=∠2,∴AD∥BC (B)∵∠3=∠4,∴AB∥CD(C)∵∠3=∠5,∴AB∥DC (D)∵∠3=∠5,∴AD∥BC20.如图,AB∥CD.若∠2是∠1的两倍,则∠2等于……………………………()(A)60°(B)90°(C)120°(D)150°四、画图(本题6分)21.如图,分别作出线段AB、BC、的垂直平分线,设交点为O,连结OA、OB、OC.量得OA=()mm,OB=()mm,OC=()mm.则OA、OB、OC的关系是____________________.五、完成下列推理,并填写理由(每小题8分,共16分)22.如图,∵∠ACE=∠D(已知),∴∥().∴∠ACE=∠FEC(已知),∴∥().∵∠AEC=∠BOC(已知),∴∥().∵∠BFD+∠FOC=180°(已知),∴∥().23.如图,∠B=∠D,∠1=∠2.求证:AB∥CD.【证明】∵∠1=∠2(已知),∴∥(),∴∠DAB+∠=180°().∵∠B=∠D(已知),∴∠DAB+∠=180°(),∴AB∥CD().六、计算或证明(第24、25、26每小题6分,第27题5分,共23分)24.如图,a∥b,c∥d,∠1=113°,求∠2、∠3的度数.25.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.26.已知:如图,D是BC上的一点.DE∥AC,DF∥AB.求证:∠A+∠B+∠C=180°.27.如图,如果D是BC的中点,那么B、C两点到直线AD的距离相等.试写出已知,求证,并补全图形(不证明).参考答案一、判断题1.【提示】根据叙述,画出相应的图形即可判断.【答案】√.2.【提示】两直线互相垂直时,对顶角相等且互补,邻补角互补且相等.【答案】×.3.【提示】画图,a⊥b,则∠1=90°,b⊥c,则∠2=90°.∴∠1=∠2.∴a∥c.【答案】×.【点评】由此题可知平面内垂直于同一直线的两直线互相平行,垂直关系没有传递性.5.【提示】前一句话是对的,后一句话是错的.假命题不能成为定理,定理都是真命题.【答案】×.4.【提示】仔细读题,想想线段的特征,线段有两个端点,有一定的长度,它们可以延长后相交,但本身可以既不平行,也不相交.【答案】×.【点评】平面内两条不平行的线段可以相交,也可以不相交,但平面内两条不平行的线段的延长线一定相交.6.【提示】注意补角和邻补角的区别,前者只要求满足数量关系,即两角和为180°,而后者既要求满足数量关系又要求满足位置关系,即互补相邻.【答案】∠1;∠1和∠3;∠BOE或∠4.7.【提示】根据“对顶角相等”和“角平分线的定义”来求.【答案】38°.8.【提示】由OA⊥OB,OC⊥OD,可得∠AOB=∠COD=90°,一周角为360°.【答案】36°.9.【答案】∠AEC和∠B,DF、DC(DF、BC)、AB.10.【提示】先证∠DCF=∠1=100°,再用“角平分线家义”来求∠2.【答案】50°.11.【提示】先判定AC∥BD.再利用平行线的性质求∠4的度数.【答案】80°.12.【提示】∵AB∥CD,∴∠ADC=∠α.∵∠ACD+∠CDF+∠β=360°,∴∠α+∠β +∠CDF=360°.∴∠α+∠β =360°-∠CDF.∵CD∥EF,∴∠CDF+∠γ=180°.∴∠α+∠β-∠γ =360°-∠CDF-∠γ =360°-(∠CDF+∠γ).∴∠α+∠β-∠γ =180°.【答案】180°.13.【提示】“如果”开始的部分是题设,“那么”开始的部分是结论.【答案】n是整数,2n是偶数,真.14.【答案】如果几个角是直角,那么这几个角都相等.15.【答案】D.16.【提示】延长BO到E.∵OA⊥OB,Array∴OA⊥OE.又OC⊥O(D)∴∠AOC+∠COE=∠AOC+∠AOD=90°.由同角的余角相等知:∠COE=∠AOD.∴∠BOC+∠AOD=∠BOC+∠COE=180°.【答案】D.17.【提示】可将涉及的一对角从整个图形中分离出来,单独观察.如①②③④这样可排除图中其它线的干扰,便于确定两角的相对位置.易知①、②、③正确.【答案】A.18.【提示】可采用17题的方法.两条直线被第三条直线所截,同位角有四对,图中有三组两条直线被第三条直线所截,均共有同位角4×3=12对.【答案】D.19.【答案】C.20.【提示】由AB∥CD,可得∠3+∠2=180°.∵∠1=∠3,∴∠1+∠2=180°.∵∠2=2∠1,∴3∠1=180°.∴∠1=60°.∴∠2=2×60°=120°.【答案】D.21.【答案】18,18,18.OA=OB=OC.22.【答案】CE,DF,同位角相等,两直线平行;EF,AD,内错角相等,两直线平行;AE、BF,同位角相等,两直线平行;EC,DF,同旁内角互补,两直线平行.23.【答案】AD,BC,内错角相等两直线平行;B,两直线平行,同旁内角互补;D,等量代换,同旁内角互补,两直线平行.24.【提示】由a∥b,∠1=113°,可求∠2.由c∥d和求出的∠2的度数可求∠4.然而求出∠3.【答案】∠2=113°.∠3=67°.∵a∥b(已知).∴∠2=∠1=113°(两直线平行,内错角相等).∵c∥d(已知).∴∠4=∠2=113°(两直线平行,同位角相等).∵∠3+∠4=180°(邻补角定义),∴∠3=67°(等式性质).25.【提示】证明∠BAD=∠2.【证明】∵AD∥EF(已知),∴∠1=∠BAD(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠BAD=∠2(等量代换).∴AB∥DG(内错角相等,两直线平行).26.【提示】由DE∥AC,DF∥AB,先证:∠A=∠EDF,再证∠A+∠B+∠C=180°.【证明】∵DE∥AC(已知),∴∠BED=∠A,∠BDE=∠C(两直线平行,同位角相等).∵DF∥AB(已知),∴∠BED=∠EDF(两直线平行,内错角相等),∠FDC=∠B(两直线平行,同位角相等).∴∠EDF=∠A(等量代换).∵∠BDE+∠EDF+∠FDC=180°(平角定义),∴∠C+∠A+∠B=180°(等量代换).即∠A+∠B+∠C=180°.27.【提示】B、C两点的直线AD的距离,是点到直线的距离.即相应的“垂线段”的长度.可用三角尺画出图形.【答案】图形如图所示,已知:BD=CD,且BE⊥AD,CF⊥AD,垂足分别为E、F.求证:BE=CF.。

(完整版)相交线与平行线常考题目及答案(绝对经典)

(完整版)相交线与平行线常考题目及答案(绝对经典)
相交线与平行线
一.选择题(共3小题)
1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A.平行B.垂直C.平行或垂直D.无法确定
2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有( )
26.几何推理,看图填空:
(1)∵∠3=∠4(已知)
∴∥()
(2)∵∠DBE=∠CAB(已知)
∴∥()
(3)∵∠ADF+=180°(已知)
∴AD∥BF()
27.如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.
(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.
7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.
评卷人
得分
三.解答题(共43小题)
8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.
(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.
(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
15.如图,已知AB∥PN∥CD.
(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;
(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.
16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°

相交线与平行线测试题及答案

相交线与平行线测试题及答案

相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。

A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。

1) 平行线没有交点。

2) 相交线可以有无数个交点。

3) 两条垂直线的交点一定是直角。

A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。

答案:90度5. 判断题:两条平行线的夹角为180度。

答案:错误6. 判断题:两条相交直线一定不平行。

答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。

答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。

答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。

答案:相交线是指两条直线或线段在平面上有唯一一点相交。

例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。

平行线是指在平面上没有任何交点的两条直线。

例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。

10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。

两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。

总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。

相交线与平行线基础测试题含答案解析

相交线与平行线基础测试题含答案解析

相交线与平行线基础测试题含答案解析一、选择题1.如图所示,下列条件中,能判定直线a ∥b 的是( )A .∠1=∠4B .∠4=∠5C .∠3+∠5=180°D .∠2=∠4【答案】B【解析】【分析】 在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠1=∠4,错误,因为∠1、∠4不是直线a 、b 被其它直线所截形成的同旁内角或内错角;B 、∵∠4=∠5,∴a ∥b (同位角相等,两直线平行).C 、∠3+∠5=180°,错误,因为∠3与∠5不是直线a 、b 被其它直线所截形成的同旁内角;D 、∠2=∠4,错误,因为∠2、∠4不是直线a 、b 被其它直线所截形成的同位角. 故选:B .【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角2.如图,下列能判定AB ∥CD 的条件有几个( )(1)12∠=∠ (2)34∠=∠(3)5B ∠=∠ (4)180B BCD ∠+∠=︒.A .4B .3C .2D .1【答案】B【解析】【分析】 根据平行线的判定逐一判定即可.【详解】因为12∠=∠,所有AD ∥BC ,故(1)错误.因为34∠=∠,所以AB ∥CD ,故(2)正确.因为5B ∠=∠,所以AB ∥CD ,故(3)正确.因为180B BCD ∠+∠=︒,所以AB ∥CD ,故(4)正确.所以共有3个正确条件.故选B【点睛】本题考查的是平行线的判定,找准两个角是哪两条直线被哪条直线所截形成的同位角、同旁内角、内错角是关键.3.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F ,可得AB//EF ,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.4.如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=56°,则∠2等于( )A.24°B.34°C.56°D.124°【答案】C【解析】【分析】【详解】试题分析:根据对顶角相等可得∠3=∠1=56°,根据平行线的性质得出∠2=∠3=56°.故答案选C.考点:平行线的性质.5.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.6.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 到l 1距离为2的直线有2条,到l 2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l 1,l 2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D .【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.7.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.8.如图,直线AB ,CD 相交于点O ,∠2-∠1=15°,∠3=130°.则∠2的度数是( )A.37.5°B.75°C.50°D.65°【答案】D【解析】【分析】先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.9.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.10.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B .11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】 连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE =34OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=3OE ∴DE=2EH=3OE ∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a 33 ∴S △ODE 的最小值为342=2348a ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC 23∵23a =14×2312a ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE =23a ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵DE=3OE∴OE 最小时,DE 最小而OE 的最小值为OE′=3a ∴DE 的最小值为3×3a =12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.13.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.14.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.15.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..16.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b ∥c⇒a∥c.17.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.18.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.19.若a⊥b,c⊥d,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对【答案】D【解析】【分析】分情况讨论:①当b∥d时;②当b和d相交但不垂直时;③当b和d垂直时;即可得出a与c的关系.【详解】当b∥d时a∥c;当b和d相交但不垂直时,a与c相交;当b和d垂直时,a与c垂直;a和c可能平行,也可能相交,还可能垂直.故选:D.【点睛】本题考查了直线的位置关系,掌握平行、垂直、相交的性质是解题的关键.20.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.。

相交线与平行线专项训练及解析答案

相交线与平行线专项训练及解析答案

相交线与平行线专项训练及解析答案一、选择题1.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B.2.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠α+∠AEF=180°,∵EF∥CD,∴∠γ=∠DEF,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .3.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.4.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】 解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.5.下列结论中:①若a=b a b ;②在同一平面内,若a ⊥b ,b//c ,则a ⊥c ;③直线外一点到直线的垂线段叫点到直线的距离;33( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①若a=b 0≥a b②在同一平面内,若a ⊥b,b//c ,则a ⊥c ,正确③直线外一点到直线的垂线段的长度叫点到直线的距离 33正确的个数有②④两个6.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.7.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a交c于点M,∵b∥c,a⊥b,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B.【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识8.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.9.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等D .如果点P 的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上.【答案】D【解析】【分析】根据平行线的性质定理对A 、C 进行判断;利用对顶角的性质对B 进行判断;根据直角坐标系下点坐标特点对D 进行判断.【详解】A .两直线平行,同位角相等,故A 是假命题;B .对顶角相等,故B 是假命题;C .如果两个角的两边互相平行,那么这两个角相等或互补,故C 是假命题;D .如果点的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上,故D 是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.10.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.11.下列图形中线段PQ 的长度表示点P 到直线a 的距离的是( )A .B .C .D .【答案】C【解析】【分析】 根据点到直线的距离的定义,可得答案.【详解】由题意得PQ ⊥a ,P 到a 的距离是PQ 垂线段的长,故选C .【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.12.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个B.4个C.5个D.6个【答案】C【解析】【分析】已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选C.【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.13.如图,∠BCD =95°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=95°B .∠β﹣∠α=95°C .∠α+∠β=85°D .∠β﹣∠α=85°【答案】D【解析】【分析】 过点C 作CF ∥AB ,然后利用两直线平行,内错角相等;两直线平行,同旁内角互补进行推理证明即可.【详解】解:过点C 作CF ∥AB∵AB ∥DE ,CF ∥AB∴AB ∥DE ∥CF∴∠BCF=∠α∠DCF+∠β=180°∴∠BCD =∠BCF +∠DCF∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.14.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.15.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个 【答案】A【解析】【分析】根据∠1=∠B可判断AD∥BC,再结合∠2=∠C可判断AB∥CD,其余选项也可判断.【详解】∵∠1=∠B∴AD∥BC,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB∥CD,③正确∴∠1=∠D,∴∠D=∠B,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD∥BC推导出∠B+∠2=180°,为证AB∥DC 作准备.16.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.17.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.18.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.19.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .20.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.。

相交线与平行线技巧及练习题含答案

相交线与平行线技巧及练习题含答案

相交线与平行线技巧及练习题含答案一、选择题1.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.2.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B.【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.3.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.4.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.5.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.6.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.7.如图AD∥BC,∠B=30,DB平分∠ADE,则∠DEC的度数为()A.30B.60C.90D.120【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B .【点睛】此题主要考查了平行线的性质,正确得出∠ADB 的度数是解题关键.8.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线l 1,l 2的距离,则称(p,q)为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有( )个.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 到l 1距离为2的直线有2条,到l 2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l 1,l 2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D .【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.9.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】 对于A ,∠EDC=∠EFC 不是两直线被第三条直线所截得到的,据此进行判断;对于B 、D ,∠AFE=∠ACD ,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,据此进行判断;对于C ,∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC 不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,因而可以判定EF ∥BC,但不能判定DE ∥AC ;∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,可以判定DE ∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.10.如图,直线AB ,CD 相交于点O ,∠2-∠1=15°,∠3=130°.则∠2的度数是( )A .37.5°B .75°C .50°D .65°【答案】D【解析】【分析】 先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.13.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.14.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE =34OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC =2312即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE 在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a ×33=36a∴S △ODE 22 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=2122=142 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确;∵S 四边形ODBE 2 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE 的周长最小∵OE∴OE 最小时,DE 最小而OE 的最小值为∴DE =12a ∴BDE 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】 此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.15.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.16.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】 根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.17.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .18.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .56°C .66°D .54°【答案】B【解析】试题分析:∵AB ∥CD ,∴∠D=∠1=34°,∵DE ⊥CE ,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B .考点:平行线的性质.19.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .20.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()A .30B .45︒C .60︒D .75︒【答案】B【解析】【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.【详解】解:∵//AB CD ,∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,故答案为B.【点睛】本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;。

初中数学相交线与平行线经典测试题附答案

初中数学相交线与平行线经典测试题附答案
14.如图, ,点 在 上,点 在 上,如果 , ,那么 的度数为()
A. B. C. D.
【答案】B
【解析】
【分析】
由 可得∠ABE+∠CEB=180°,∠BED= ,即∠CEB=130°,由 可得 ,设 =k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由 可得 =∠DEF即可解答.
故选:B.
【点睛】
此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.
5.如图,直线a∥b,直线 分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是
A.50°B.70°C.80°D.110°
【答案】C
【解析】
【分析】
根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
考点:平行线的性质.
9.如图,下列条件中能判定 的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
对于A,∠EDC=∠EFC不是两直线被第三条直线所截得到的,据此进行判断;
对于B、D,∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,据此进行判断;
对于C,∠3=∠4这两个角是AC与DE被EC所截得到的内错角,据此进行判断.
【详解】
∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;
∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;
∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.

相交线与平行线测试题及答案难

相交线与平行线测试题及答案难

相交线与平行线测试题及答案难一、选择题1. 在同一平面内,两条直线的位置关系是()。

A. 相交或平行B. 相交或重合C. 平行或重合D. 相交、平行或重合答案:D2. 如果两条直线都与第三条直线平行,那么这两条直线的关系是()。

A. 相交B. 平行C. 重合D. 不确定答案:B3. 两条直线相交成90度角,这两条直线是()。

A. 相交线B. 垂直线C. 平行线D. 异面直线答案:B二、填空题4. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线()。

答案:平行5. 在平面几何中,如果两条直线不相交,则它们被称为()。

答案:平行线三、判断题6. 两条平行线被第三条直线所截,同位角相等。

()答案:正确7. 垂直于同一直线的两条直线一定平行。

()答案:错误四、解答题8. 已知直线AB与直线CD相交于点O,且∠AOB=90°,求证:AB⊥CD。

证明:因为∠AOB=90°,所以AB与CD相交成直角,根据垂直的定义,AB⊥C D。

9. 若直线m平行于直线n,直线n平行于直线p,求证:直线m平行于直线p。

证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

因此,直线m平行于直线p。

五、综合题10. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+5,求证:l1与l2相交。

证明:首先,我们可以将两个方程联立求解。

\begin{cases}y = 2x + 3 \\y = -x + 5\end{cases}将第一个方程中的y代入第二个方程,得到:2x + 3 = -x + 5解得:x = 1将x=1代入任意一个方程求得y,例如第一个方程:y = 2(1) + 3 = 5因此,l1与l2的交点为(1,5),所以l1与l2相交。

11. 已知直线l1平行于直线l2,直线l2平行于直线l3,求证:直线l1平行于直线l3。

证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

相交线与平行线概念判断题(带答案)

相交线与平行线概念判断题(带答案)

第五章相交线与平行线概念判断题1. 下列正确说法的个数是()①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A . 1, B. 2, C. 3, D. 42. 下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线.3. 下列图中∠1和∠2是同位角的是()A. ⑴、⑵、⑶,B. ⑵、⑶、⑷,C. ⑶、⑷、⑸,D. ⑴、⑵、⑸4. 如果一个角的补角是150°,那么这个角的余角的度数是( )A.30°B.60°C.90°D.120°5. 下列语句中,是对顶角的语句为( )A.有公共顶点并且相等的两个角B.两条直线相交,有公共顶点的两个角C.顶点相对的两个角D.两条直线相交,有公共顶点没有公共边的两个角6. 下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行7. 两平行直线被第三条直线所截,同旁内角的平分线( )A.互相重合B.互相平行C.互相垂直D.无法确定8.下列说法正确的个数是( ) ①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c. A.1个 B.2个 C.3个 D.4个9. 列说法正确的有()①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若直线a∥b,b∥c,则a与c不相交.A 1个 B.2个 C.3 个 D. 4个10. 下列说法正确的有①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③两条射线或线段平行,是指它们所在的直线平行;④不相交的两条射线不一定平行;[ ]A.0个B.1个C.2个D.3个11. 下列说法正确的有①不相交的两条直线是平行线;②在同一个平面内,两条不相交的线段是平行线;③在同一个平面内,没有交点的直线是平行线.A.0个B.1个C.2个D.3个12.下列说法中,正确的个数有()①同一平面内,不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④一条直线有无数条平行线;⑤过直线外一点可以作无数条直线与已知直线平行.A.0个B.1个C.2个D.3个13.下列说法中正确的是[ ]A.在同一平面内,两条不平行的线段必相交B.在同一平面内,不相交的两条线段是平行线C.两条射线或线段平行是指它们所在的直线平行D.一条直线有可能同时与两条相交直线平行14下列说法中正确的个数有((1)在同一平面内,不相交的两条直线必平行.(2)在同一平面内,不相交的两条线段必平行.(3)相等的角是对顶角.(4)两条直线被第三条直线所截,所得到同位角相等.(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A.1个B.2个C.3个D.4个15.下列说法中正确的个数为()①.不相交的两条直线叫做平行线②.平面内,过一点有且只有一条直线与已知直线垂直③.平行于同一条直线的两条直线互相平行④.在同一平面内,两条直线不是平行就是相交⑤若直线a、b平行,则a上的线段AB与b上的线段CD一定平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线概念判断题
1. 下列正确说法的个数是()
①同位角相等②对顶角相等
③等角的补角相等④两直线平行,同旁内角相等
A . 1, B. 2, C. 3, D. 4
2. 下列说法正确的是()
A.两点之间,直线最短;
B.过一点有一条直线平行于已知直线;
C.和已知直线垂直的直线有且只有一条;
D.在平面内过一点有且只有一条直线垂直于已知直线.
3. 下列图中∠1和∠2是同位角的是()
A. ⑴、⑵、⑶,
B. ⑵、⑶、⑷,
C. ⑶、
⑷、⑸, D. ⑴、⑵、⑸
4. 如果一个角的补角是150°,那么这个角的余角的度数是( )
°°°°
5. 下列语句中,是对顶角的语句为( )
A.有公共顶点并且相等的两个角
B.两条直线相交,有公共顶点的两个角
C.顶点相对的两个角
D.两条直线相交,有公共顶点没有公共边的两个角
6. 下列命题正确的是( )
A.内错角相等
B.相等的角是对顶角
C.三条直线相交,必产生同位角、内错角、同旁内角
D.同位角相等,两直线平行
7. 两平行直线被第三条直线所截,同旁内角的平分线( )
A.互相重合
B.互相平行
C.互相垂直
D.无法确定
8.下列说法正确的个数是( ) ①同位角相等;
②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c. 个个个个
9. 列说法正确的有()
①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;
③若线段AB与CD没有交点,则AB∥CD;④若直线a ∥b,b∥c,则a与c不相交.
A 1个个个 D. 4个10. 下列说法正确的有
①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;
③两条射线或线段平行,是指它们所在的直线平行;④不相交的两条射线不一定平行;
[ ]
个个个个
11. 下列说法正确的有
①不相交的两条直线是平行线;
②在同一个平面内,两条不相交的线段是平行线;
③在同一个平面内,没有交点的直线是平行线.
个个个个
12.下列说法中,正确的个数有()
①同一平面内,不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;
③过一点可以而且只可以画一条直线与已知直线平行;
④一条直线有无数条平行线;
⑤过直线外一点可以作无数条直线与已知直线平行.A.0个B.1个C.2个D.3个
13. 下列说法中正确的是
[ ]
A.在同一平面内,两条不平行的线段必相交
B.在同一平面内,不相交的两条线段是平行线
C.两条射线或线段平行是指它们所在的直线平行D.一条直线有可能同时与两条相交直线平行
14下列说法中正确的个数有(
(1)在同一平面内,不相交的两条直线必平行.
(2)在同一平面内,不相交的两条线段必平行.
(3)相等的角是对顶角.
(4)两条直线被第三条直线所截,所得到同位角相等.(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.
A.1个B.2个C.3个D.4个
15.下列说法中正确的个数为()
①.不相交的两条直线叫做平行线
②.平面内,过一点有且只有一条直线与已知直线垂直
③.平行于同一条直线的两条直线互相平行
④.在同一平面内,两条直线不是平行就是相交
⑤若直线a、b平行,则a上的线段AB与b上的线段CD一定平行。





答案:BDDBD DCABB BCCBD。

相关文档
最新文档