北师大版初三数学中考模拟试题及答案
北师大版九年级中考数学模拟考试试题(含答案)
九年级中考数学模拟试卷(满分150分 时间120分钟)一.单选题。
(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx-1的图象向上平移2个单位长度后经过点(2,3),则k的值是()A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为()A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。
(共24分)11.因式分解:m2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式.(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。
历年北师大版初三数学中考模拟试题及答案
北师大版中考模拟试题【巩固练习】(答题时间:100分钟)一、选择题(每题3分,共18分)1. 下列四个函数中,当x >0时,随x 增大而增大的函数是( )A. y x =2 B. y x =-+21 C. y x=-2D. y x =--212. 纳米是一种长度单位,一纳米=109-m 。
已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为( )A. 35104.×-m B. 35105.×-m C. 35109.×-m D. 035105.×-m 3. 过O 内一点M 的最长弦为6cm ,最短的弦为4cm ,则OM 的长为( )A. 3cmB. 2cmC. 5cmD. 3cm4. 某校九年级毕业时,每一个同学都将自己的像片向全班其他同学各送一张表示留念。
全班共送了2250张像片,如果全班有x 名学生,根据题意列出方程为( ) A. x x ()-=12250 B. x x ()+=12250 C. 212250x x ()+=D. x x ()-=122502×5. 如图所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是( )6. 若一次函数y ax b =+的图象经过二、三、四象限,则二次函数y ax bx =+2的图象只可能是( )二、填空题(每题3分,共18分) 7. 计算:932--=()___________。
8. 已知两圆半径分别为3cm和7cm,如果两圆相切,则圆心距d=___________;9. 如图,矩形ABCD中,AB=3,BC=4,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积是___________。
10. 小明把如图所示的4张扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌旋转倒过来,然后小明很快辨认了哪张牌被倒过来了,那么图中被倒过来的扑克牌是___________,其辨认所依据的数学知识是___________。
(北师大版)中考数学模拟考试试卷-带答案
(北师大版)中考数学模拟考试试卷-带答案(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.9的平方根是()A.3B.-3C.±3D.√32.下列是描述小明和小颖在同一盏路灯下影子的图片,其中合理的是( )3.2023年10月26日,神舟十七号载人飞船发射取得圆满成功.在发射过程中,神舟十七号的飞行速度约为450000米/分,把"450000"用科学记数法表示应为( )A.4.5x105B.4.5x106C.45x104D.0.45x1064.下列式子计算正确的是()A.m+m=m2B.(-3m)2=6m2C.(m+2n)2=m2+4n2D.(m+3n)(m-3n)=m2-9n25.下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()6.有理数a、b在数轴上的对应位置如图所示,下列选项正确的是()A.a﹣b>0B.a+b<0C.ab>0D.|a|<|b|7.济南市体质健康测试的技能测试要求学生从篮球、足球、排球、游泳四个项目中自选一项。
两名同学选择相同项目的概率是()A.116B.18C.16D.148.如图,在平面直角坐标系中,点4(0,2),B(1,0),∠ABC=90°,BC=2AB.若点C在函数y=kx(x>0)的图象上,则k的值为( )A.6B.8C.10D.129.如图.在平行四边形ABCD中,CD=4,∠B=60°,BE:EC=2:1,依据尺规作图的痕痕迹,则平行四边形ABCD的面积为( )A.12B.12√2C.12√3D.12√510.设二次函数y=ax2+c(a,e是常数,a<0),已知函数值y和自变量x的三对对应值如表所示,若方程ax2+c﹣m=0的一个正实数根为5.则下列结论正确的是()A.m>p>0B.m<q<0C.p>m>0D.q<m<0二.填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上)11.因式分解:m2-4= .12.若分式3有意义,则x的值可以是.(写出一个即可)x+113.已知整数m满足√3<m<√15,则m的最大值是。
2024年中考数学模拟考试试卷-带答案(北师大版)
2024年中考数学模拟考试试卷-带答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图中六棱柱的左视图是()2.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种.3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为()A.14x107B.1.4x108C.0.14x109D.1.4x1093.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示的方式放置,其中∠A=30°,∠ACB=90°,若∠1=45°,则∠2的度数为()A.30°B.25°C.20°D.15°4.下列运算错误的是( )A.(a2)³=a6B.a7÷a³=a4C.a³·a6=a9D.a2+a3=a55.下列运动项目图标中,既是轴对称图形又是中心对称图形的是( )6.若点(-2,y1)、(-1,y2)、(3,y3)在反比例函数y=kx(k<0)上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.为了缓解中考备考压力,增加学习兴趣,李老师带领同学们玩转盘游戏.如图为两个转盘,转盘一被四等分,分别写有汉字"中""考""必""胜";转盘二被三等分,分别写有汉字"我""必""胜",将两个转盘转动一次(当指针指向区域分界线时,不作数,重新转动),若得到"必""胜"两字,则获得游戏一等奖,请求出获得游戏等奖的概率()A.12B.14C.16D.1129.如图,在半径为10的扇形AOB中,∠AOB=90°,C是AB上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π9.如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在△ABC的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠ADB的度数为( )A.36°B.54°C.72°D.108°10.定义:将平面直角坐标系中中横坐标与纵坐标均为整数的点叫作格点,如(-2,1),(2,0)等均为格点.如图,在平面直角坐标系xOy中,直线l:y=a(x+2)(a>0)与x轴交于点A,与抛物线E:y=ax2(a>0)交于B,C两点(B在C的左边).直线l与抛物线E所围成的封闭图形即阴影部分(不包含边界)中的格点数恰好是26个,则a的取值范围是()A.132<a≤7 B.193<a≤203C.132<a≤203或a=7 D.a=7二.填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:x2+6x+9= .12.一个不透明的盒子中装有若干个红球和6个白球,这些球除颜色外均相同.经多次摸球试验后发现,摸到白球的频率稳定在0.25左右,则盒子中红球的个数约为.13.若√7<a<√10,且a为整数,则a的值为.14.如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为(结果保留π).15.如图,已知在Rt△ABC中,∠C=90°,AC=3,BC=4,分别将Rt△ABC的三边分别沿箭头方向平移2个单位长度并适当延长,得到△A1B1C1,则△A1B1C1的面积为。
北师大版初三数学中考模拟试题及答案
初三数学综合测试题(1)(考试时间90分钟,满分100分)一、选择题:(本大题共10题,每小题3分,共30分)每小题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在下面的答题表一内,否则不给分.答题表一1、下列计算正确的是A. 236333=⨯B. -(-a +1)= a -1C. 3m 2-m 2=3D. (-3)2= -32、由几个小正方体所搭成的几何体的俯视图如下面左侧图形所示.(正方形中的数字表 示该位置叠放的小正方体的个数),那么这个几何体的正视图是3、根据右图提供的信息,可知一个热水瓶的价格是A .7元B .35元C .45元D .50元 4、如果分式1x 1x +-的值为零,那么x 的值为A. -1或1B. 1C. -1D. 1或0第3题共52元5、已知α为等腰直角三角形的一个锐角,则cosα等于A .21B .22C .23D .336、若一个正多边形的外角等于30°,则这个多边形的边数是A. 6B. 8C. 10D. 127、四张完全相同的卡片上,分别画有:线段、等边三角形、平行四边形、圆,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率是 A .43 B .21 C .41D .1 8、已知二次函数y = x 2的图象向右平移3个单位后,得到的二次函数解析式是A.2)3x (y -=B. 2)3x (y +=C. 3x y 2-=D. 3x y 2+= 9、如图,已知⊙O 的半径为5,弦AB=8,M 是AB 上任意一点,则线段OM 的长可以是A .1.5B .2.5C .4.5D .5.5第9题10、如图,圆锥底面直径为6cm ,母线长为12cm ,则其侧面展开为扇形的圆心角为A. 30ºB. 45ºC. 60ºD. 90º二、填空题:(本大题共5小题,每小题3分,共15分,请将答案填入答题表二内,否则不给分)答题表二第10题11、若一组数据“-2,x ,-1,0,2”的众数是2,则中位数是 。
2024年中考数学模拟考试试卷-附答案(北师大版)
2024年中考数学模拟考试试卷-附答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下列立体图形中,俯视图是三角形的是( )2."两岸猿声啼不住,轻舟已过万重山."2023年8月29日,某手机共售出约160万台,将数据1600000用科学记数法表示应为( )A.0.16x107B.1.6x106C.1.6x107D.16x1063.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35,则∠2的度数为( )A.35°B.55°C.65°D.70°4.如图,数轴上点A,B,C分别表示数x,x+y,y,且AB<BC,则下列结论正确的是()A.x+y>0B.xy>0C.|x|-y>0D.|x|<|y|5.下列图形中,既是轴对称图形又是中心对称图形的是( )6.下列计算正确的是( )A.3a+2b=5abB.-5y+3y=2yC.7a+a=8D.3x2y-2yx2=x2y7.我校举办的"强基计划五大学科展示汇"吸引了众多学生前来参观,如图所示的是该展览馆出入口的示意图,A,B是入口,C,D,E是出口.小颖从A入口进,从C出口出的概率为()A.15B.16C.12D.138.在同一平面直角坐标系中,函数y=-k(x-1)(k≠0)与y=kx(k≠0)的图象可能是( )9.如图,在△ABC中,∠A=36°,AB=AC,以点B为圆心任意长为半径画弧,分别交AB、BC于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点O ,连接BO ,并延长交AC 于点D .若AB=2,则CD 的长为( )A.√5-1B.3-√5C.√5+1D.3+√510.约定:若函数图象至少存在不同的两点关于原点对称,则把该函数称为"黄金函数",其图象上关于原点对称的两点叫做一对"黄金点".若点A(1,m),B(n ,-4)是关于x 的"黄金函数"y=ax 2+bx+c(a ≠0)上的一对"黄金点",且该函数的对称轴始终位于直线x=2的右侧,则有结论:①a+c=0;②b=4;③14a+12b+c<0:④-1<a<0.其中结论正确的是( )A.①②③B.①③④C.①②④D.②③④ 二.填空题:本题共6小题,每小题4分,共24分. 11.因式分解:4m 2-9= .12.江豚素有"水中大熊猫"之称,为了解洞庭湖现有江豚数量,考察队先从湖中捕捞10头江豚并做上标记,然后放归湖内.经过一段时间与群体充分混合后,再从中多次捕捞全部计数后放回,并算得平均每32头江豚中有2头有标记,则估计洞庭湖现有江豚数量约为 头.13.根据物理学规律,如果把一个物体从地面以10m/s 的速度竖直上抛(如图所示),那么物体经过x s 离地面的高度(单位:m )为10x -4.9x 2.根据上述规律,该物体落回地面所需要的时间x 约为 s.(结果保留整数)14.如图,已知正六边形ABCDEF,⊙O 是此正六边形的外接圆.若AB=2,则阴影部分的面积 为 .15.11月10日晚,"深爱万物"--2023深圳人才嘉年华活动正式启动,千余架无人机在深圳人才公园上空上演"天空之舞",为人才喝彩、向人才致敬.如图所示的平面直角坐标系中,线段OA ,BC 分别表示1号、2号无人机在队形变换中飞行高度y 1,y 2(米)与飞行时间x (秒)的函数关系,其中y 2=-4x+150,线段OA 与BC 相交于点P ,AB ⊥y 轴于点B ,点A 的横坐标为25,则在第 秒时1号和2号无人机在同一高度.16.如图所示,正方形ABCD 的边长为3,点E 在AD 上(不与点A ,D 重合),连接BE ,交对角线AC 于点H ,将△ABE 沿BE 折叠,点A 的对应点为F ,延长EF 交CD 于点G ,连接BG 和CH ,则以下结论中:①∠EBG=45°;②当AE=1时,DG=CG;③S △BED =12S 正方形ABCD ;④GH=BH. 所有正确结论的序号是 。
(完整)北师大版中考数学模拟试题及答案,推荐文档
九年级中考模拟测试题(一)一、填空题(每题3分,共24分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,xy 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q ,则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为 二、选择题(每题3分,共24分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r2+π B 、r c r +π C 、r c r +2π D 、22rc r+π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a的取值范围是( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需( )A 、2.1元B 、05.1元C 、95.0元D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是( )A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a 14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A 、12-πB 、41π- C 、13-π D 、61π-15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是( )A 、51<<x B 、135<<x C 、513<<xD 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( ) A 、%2x B 、%21x + C 、%%)1(x x •+ D 、%%)2(x x •+ 三、解答题17.(6分)化简:2222111x x x x x x-+-÷-+18. (6分)解分式方程:2412-=+-x x x19.(10分)如图,在梯形纸片ABCD 中,AD//BC ,AD >CD ,将纸片沿过点D的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C ′E .求证:四边形CDC ′E 是菱形.20、(10分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及A DEB C C ′ACBC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。
(北师大版)中考数学模拟考试试卷-含答案
(北师大版)中考数学模拟考试试卷-含答案(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________(满分150分时间120分钟)一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.图中立体图形的俯视图是( )2.如图,平行于主光轴MN的光线AB和CD经过凹透镜的折射后,折射光线BE、DF的反向延长线交于主光轴MN上一点P.若∠ABE=160°,∠CDF=150°,则∠EPF的度数是()A.20°B.30°C.50°D.70°3."燕山雪花大如席,片片吹落轩辕台."这是诗仙李白眼里的雪花,单个雪花的重量其实很轻,只有0.00003kg左右,0.00003用科学记数法可表示为( )A.3×10﹣5B.3x10-4C.0.3x10-4D.0.3x10-54.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°5.下列校徽的图案是轴对称图形的是()6.实数a、b在数轴上对应点的位置如图所示.若a+b=0,则下列结论中正确的是()A.|a|<|b|B.2a>2bC.ab>0D.a<-17.春节期间,琪琪和乐乐分别从A,B,C三部春节档片中随机选择一部观看,则琪琪和乐乐选择的影片相同的概率为()A.12B.13C.16D.19 8.小明在化简分式3nm -2n +2m -n2n -m的过程中,因为其中一个步骤的错误,导致化简结果是错误的,小明开始出现错误的那一步编号是( )A.①B.②C.③D.④9.如图,在平行四边形ABCD 中,BC=2AB=8,连接BD ,分别以点B 、D 为国心,大于12BD 长为半径作弧,两弧交于点E 和点F ,作直线EF 交AD 于点I ,交BC 于点H 、点H 恰为BC 的中点,连接AH ,则AH 的长为( )A.4√3B.6C.7D.4√510.二次函数y=ax 2+bx+c(a,b,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:且当x=-12时,与其对应的函数值y>0,有下列结论:①abc<0;②m=n;③-2和3是关于x 的方程ax 2+bx+c=t 的两个根;④a<83,其中正确结论的个数是( )A.1B.2C.3D.4二.填空题(本大题共6个小题,每小题4分,共24分) 11.分解因式:xy -y 2= .12.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 、GH 过点O ,且点E 、H 在边AB 上,点G 、F 在边CD 上,向平行四边形ABCD 内部投掷飞镖,飞镖恰好落在阴影区域的概率为 。
最新北师大版九年级中考模拟试卷以及答案
九年级中考数学模拟试卷一、选择题。
1、如图,将圆沿弦AB折叠,弧AB恰好经过圆心O,若圆的半径为3,则弧AB的长为()。
1A.π2B.πC.2πD.3π2、下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)3、4、将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣25、如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若k的图象恰好经过A′B的中点D,则k的值反比例函数y=x是。
A.9B.12C.15D.186、如图,BC是半圆O的直径,D,E是弧BC上两点,连接BD,CE 并延长交于点A,连接OD,OE.如果∠A=70°,那么∠DOE的度数为()。
A.35°B.38°C.40°D.42°7、下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯8、如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶处看乙楼楼顶处仰角为30°,则甲楼高度为()k(k≠0)9、在同一平面直角坐标系中,函数y=kx+1(k≠0)和y=x的图象大致是()10、如图,是二次函数y=ax2+bx+c图象的一部分,下列结论中①abc>0;②a-b+c<0;③ax2+bx+c+1=0有两个相等的实数根;④-4a<b<-2a,其中正确结论的序号为()11、如图,⊙P与x轴交与点A(—5,0),B(1,0),与y轴的正半轴交于点C,若∠ACB=60°,则点C的纵坐标为()二、填空题。
北师大版九年级下学期数学中考模拟试卷(含答案)
九年级数学中考模拟试卷(满分150分时间:120分钟)一.单选题。
(共40分)1.﹣2023的相反数是()A.﹣12023B.12023C.﹣2023D.20232.如图所示,该几何体的左视图是()A. B. C. D.3.一个数是1290,这个数用科学记数法表示为()A.1.29×104B.12.9×102C.1.29×103D.0.129×1044.如图所示,AE∥CD,EF⊥ED,垂足为E,∠1=28°,则∠2的度数为()A.30°B.40°C.62°D.50°(第4题图)(第7题图)(第9题图)5.下列图形中,是中心对称但不是轴对称图形的是()A.B. C. D.6.下列运算正确的是()A.2a2+3a3=5a5B.(-2a)3=-6a3C.(m+n)2=m2+n2D.(3m+2)(2-3m)=4-9m27.△ABC的顶点分别位于正方形网格的格点上,建立如图所示的平面直角坐标系,已知点C(﹣1,1),将△ABC先沿x轴方向向右平移3个单位长度,再沿y轴方向向下平移2个单位长度,得到△A’B’C’,则点A 的对应点的坐标是()A.(﹣6,6)B.(0,2)C.(0,6)D.(﹣6,2)8.若k>1,则一次函数y=(k-1)x+1-k的图象是()A. B. C. D.9.如图,在菱形ABCD中,分别以C,D为圆心,大于12CD长为半径作弧两弧,分别交于点E、F,连接EF,若直线EF恰好经过点A,与边CD交于点M,连接BM.则下列结论中错误的是()A.∠ABC=60°B.如果AB=2,那么BM=4C.BC=2CMD.S ADM=1S△ABM10.二次函数y=ax2+2ax+3(a≠0),当a-1≤x≤2时二次函数的函数值y恒小于4,则a的取值范围为()A.a<18B.a>-1 C.0<a<18或a<0 D.0<a<18或-1<a<0二.填空题。
北师大版九年级数学中考模拟试卷及答案
北师大版九年级数学中考模拟试卷及答案一、选择题:1.如图中几何体的俯视图是()2.平行四边形一边的短就是10cm,那么这个平行四边形的两条对角线短可以就是()a.4cm,6cmb.6cm,8cmc.8cm,12cmd.20cm,30cm3.例如图,de就是△abc的中位线,若bc的短为3cm,则de的短就是()a.2cmb.1.5cmc.1.2cmd.1cm4.已知图中的两个三角形全等,则∠?的度数是()a.72°b.60°c.58°d.50°5.如图,将边长为8m的正方形abcd折叠,使点d落在bc边的中点e处,折痕为mn,则线段cn的长是()a.3cmb.4cmc.5cmd.6cm6.例如图,梯形abcd中,ab∥cd,ac、bd处设e,若s△dce∶s△dcb=1∶3,则cd∶ab=()a.1s3b.1s2c.2s3d.1s47.例如图,在rt△abc中,ab=ac,ad⊥bc,像距为d,e、f分别就是cd、ad上的点,且ce=af.如果∠aed=62o,那么∠dbf=()a.62ob.38oc.28od.26o8.如图,ab∥cd,且?1?115°,?a?75°,则?e的度数是()a.30°b.50°c.40°d.60°9.如图,菱形abcd中,∠b=60°,ab=5,则ac=().a.3b.4c.5d.610.下列函数:①y??x;②y?2x;③y??12;④y?x.当x?0时,y随x的增大而减小的函数有()x个a.1b.2c.3d.4二、填空题:11.水解因式a?ab?.12.一次函数y??x?1的图像经过点p(m,m-1),则m=.13.若a?1?b?2?0,点m(a,b)在反比例函数y?的图像上,则反比例函数的解析式为__________x14.一个等腰三角形的两边长分别是4cm和5cm,则它的周长为_______________cm.15.如图一副三角板叠放在一起,则图中∠?的度数是.16.例如图,在△abc中,p就是ab上一点,联结cp,当满足条件时△acp∽△abc17.如图,菱形abcd的对角线交于平面直角坐标系的原点,顶点a坐标为(-2,3),现将菱形绕点o顺时针方向转动180°后,a点座标变成____________.18.如图,已知零件的外径为25mm,现用一个交叉卡钳(两条尺长ac和bd相等,oc=od)量零件的内孔直径ab.若oc∶oa=1∶2,量得cd=10mm,则零件的厚度x?_____mm.19.如图,等腰梯形abcd中,ad∥bc,且ad?1bc,e为ad上一点,ac与be交于点f,若2ae:de?2:1,则△aef的面积?△cbf的面积20.如图,小明同学在东西方向的环海路a处,测得海中灯塔p在北偏东60°方向上,在a处东500米的b处,测出海中灯塔p在北偏东30°方向上,则灯塔p至环海路的距离pc=米(用根号则表示)三、计算题1?1?21.排序(5?3)°?2sin45°?2?1?2?22.求解分式方程:113x2x23.谋不等式组??x?1≥1?x,的整数解.x?8?4x?1.?3x2?4x2?x??x,其中x?。
北师大版九年级数学“中考模拟试卷”以及答案
九年级中考数学模拟试卷时间:120分钟 满分150分一、单选题。
(每小题4分,共48分) 1、9的相反数是( )A 、19 B 、﹣19 C 、9 D 、﹣9 2、如图所示三棱柱的主视图是( )。
3、一个数是5575 0000,这个数用科学记数法表示为( )。
A 、5.575×107B 、55.75×105C 、5575×104D 、0.5575×108 4、将一副三角板如图所示的位置放在直尺上,则∠1的度数是( ) A 、115° B 、105° C 、110° D 、95°(第4题图) (第6题图)5、下面数字符号中,既是轴对称图形又是中心对称图形的是( )。
A 、B 、C 、D 、6、实数a 、b 在数轴上的位置如图所示,下列式子正确的是( )。
A 、a >b B 、ab >0 C 、|a |>|b | D 、a+b >07、化简a 2a -b-b 2a -b的结果是( )。
A 、a -bB 、a+bC 、a+b a -bD 、a -ba+b8、同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上,一枚硬币反面向上的概率是( )A、12B、13C、14D、239、已知反比例函数y=kx,当x<0时,y随x的增大而减小,那么一次函数y=﹣kx+k的图象经过第()象限。
A、一、二、三B、一、二、四C、一、三、四D、二、三、四10、如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡,斜坡CD的坡度为i=1:2.4,坡顶D到BC的垂直距离DE=50米,(点A、B、C、D、E在同一面内),在点D处测得建筑物顶点A的仰角为50°,则建筑物AB的高度约()。
参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19A、69.2米B、73.1米C、85.7米D、80.0米(第10题图)(第11题图)11、如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB 的角平分线,CF交AD于点G,交BE于点H,下列说法中:①△ABE的面积=△BCE的面积;②∠FAG=∠FCB;③AF=AG;④BH=CH,其中正确是()。
2024年中考数学模拟考试试卷-有答案(北师大版)
2024年中考数学模拟考试试卷-有答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.三棱柱2.某软件是人工智能技术驱动的自然语言处理工具,它能够基于在预训练阶段所见的模式和统计规律,来生成回答,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写论文、邮件、脚本、文案、翻译、代码等任务,功能非常强大.有研究发现,该软件是20000000000参数量的模型,将数据20000000000用科学记数法表示为()A.0.2x1011B.20x109C.2x1010D.2x10113.如图,已知直线AB∥CD,EG平分∠BEF,∠1=40°,则∠2的度数为()A.70°B.50°C.40°D.140°4.实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(b﹣a)<0B.b(c﹣a)<0C.a(b﹣c)>0D.a(c+b)>05.如图书写的四个汉字中,既是轴对称图形又是中心对称图形的是()6.下列运算正确的是( )A.a2·a2=a6B.a4÷a2=a2C.(a³)2=a5D.2a2+3a2=5a47.某校在举办数学节活动中,需选拔讲题大赛环节的主持人,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是( )A.12B.13C.14D.168.在反比例函数y=4-kx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则k的取值范围是()A.k<0B.k>0C.k<4D.k>49.如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是()A.BE=DEB.DE垂直平分线段ACC.S△CDES△CBA =√33D.BD2=BC·BE10.已知抛物线P:y=x2+4ax-3(a>0).将抛物线P绕原点旋转180°得到抛物线P’,当1≤x≤3时,在抛物线P’上任取一点M,设点M的纵坐标为t,若t≤3,则a的取值范围是( )A.0<a≤14B.0<a≤34C.14≤a<34D.a≥34二.填空题:本题共6小题,每小题4分,共24分.11.因式分解:ax2-4ay2= .12.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中有个红球.13.若关于x的方程x2+mx-12=0的一个根是2,则此方程的另一个根是.14.如图,正五边形ABCDE内接于⊙O,其半径为1,作OF⊥BC交⊙O于点F,则图中阴影部分的面积为.15.一条笔直的路上依次有M,P,N 三地,其中M,N两地相距1000米.甲、乙两台机器人从M,N两地同时出发,匀速而行去目的地N,M.图中OA,BC分别表示甲、乙机器人离M的距离y(米)与行走时间x(分钟)的函数关系图象.当甲机器人到P地后,再经过1分钟机器人也到P地,求P,M两地间的距离为.16.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB'P,连接B'C,则在点P的运动过程中,线段B'C的最小值为.三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:(√3)0+2﹣1+√2cos45°-|﹣12|18.(6分)解不等式组{2x -1≤﹣x +2x -12x <13+2x,并写出它的非负整数解。
2024年中考数学模拟考试试卷-含答案(北师大版)
2024年中考数学模拟考试试卷-含答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求. 1.如图是由5个完全相同的小正方体搭成的几何体,这个几何体的左视图是( )2.2024年1月17日,搭载天舟七号货运飞船的长征七号遥八运载火箭,在我国文昌航天发射场点火发射,发射取得圆满成功,将与在轨运行的空间站组合体进行交会对接.空间站距离地球约为400000米,400000用科学记数法可表示为( ) A.400x103 B.40x104 C.4x105 D.4x1063.若a 与5互为相反数,则a+1的值为( ) A.6 B.4 C.-4 D.-64.实数a ,b 互为相反数,其在数轴上对应的点的位置如图所示,下列结论中,正确的是( )A.|a |<|b |B.a -b=0C.a<-1D.ab>05.简笔画通常利用对称构图,体现对称美.下面四个图案既是轴对称图形又是中心对称图形的是( )6.下列计算正确的是( )A.(a -b)(-a -b)=a 2-b 2B.2a ³+3a ³=5a 6C.6x 3y 2+3x=2x 2y 2D.(-2x 2)³=-6x 67.有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是2的倍数的概率为( )A.56 B.34 C.23 D.128.下列计算正确的是( )A.2m+n=2mnB.-a 2·(-a)4=-a 6 °C.(-2x ³)³=-6x 9D.(4x -3)2=16x 2-12x+99.把一条线段分割为两部分,使较长部分与全长的比值等于较短部分与较长部分的比值,则这个比值为黄金分割比,比值为√5-12,是公认的最能引起美感的比例,如图1为世界名画蒙娜丽莎.如图2,点E 是正方形ABCD 的边AB 上的黄金分割点,且AE>BE ,以AE 为边作正方形AEHF ,延长EH 交CD 于点I ,连接BF 交EI 于点G ,连接BI ,则S △BCI :S △FGH 为( )A.1:1B.√5+13C.√5-12D.√5+1210.若一个点的坐标满足(k ,2k),我们将这样的点定义为"倍值点".若关于x 的二次函数y=(t+1)x 2+(t+2)x+s(s ,t 为常数,t ≠-1)总有两个不同的倍值点,则s 的取值范围是( ) A.s<-1 B.s<0 C.0<s<1 D.-1<s<0二.填空题:本题共6小题,每小题4分,共24分.直接填写答案. 11.因式分解:2a 2-12a+18= .12.在一个不透明的口袋中装有3个红球和若干个白球,它们除颜色外完全相同.多次摸球试 验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有 个. 13.二次函数y=kx 2-4x+2的图象与x 轴有公共点,则k 的取值范围是 .14.如图,直线AB 交反比例函数y=kx 于A ,B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连接OA .若S △OAC =72,则k 的值为 .15.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为 .16.如图,在正方形ABCD 中,点E 是边CD 上一点,BF ⊥AE ,垂足为F ,将正方形沿AE 、BF 切割分成三块,再将△ABF 和△ADE 分别平移,拼成矩形BGHF .若BG=kBF ,则DECD = (用含k 的式子表示).三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算(﹣12)﹣2+(π-3.14)0+4cos45°-|1-√2|18.(6分)解不等式组{2(x +2)-x ≤5①4x+13>x -1②,并写出不等式组的非负整数解.19(6分)如图,在矩形ABCD 中,BE ⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:AF=CE.20.(8分)根据背景素材,探索解决问题. 如图所示,在坡顶A 处的同一水平面上有一座信号塔BC ,某数学兴趣小组的同学们想测量此信号塔的高度,经过小组讨论采取如下办法:同学们先在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为i=1:2.4的斜坡AP 攀行了26米到达点A ,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.请计算: (1)计算坡顶A 到地面PQ 的距离. (2)计算出信号塔BC 的高度.(结果精确到1米,参考数据:sin76≈0.97,cos76°≈0.24,tan76°≈4.01)21.(8分)某学校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A,B,C,D,E五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图.(1)请把图1补充完整;(2)请计算图2中研学活动地点C所在扇形的圆心角的度数;(3)若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.22.(8分)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,BC,过点C作⊙O的切线交AB 延长线于点D,OF⊥BC于点E,交CD于点F.(1)求证:∠BCD=∠BOE;,AB =10,求BD的长.(2)若sin∠BAC=3523.(10分)伴随"一盔一带"安全守护行动,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20个,乙种头盔30个,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元(1)甲、乙两种头盔的单价各为多少元?(2)商店决定再次购进甲、乙两种头盔共40个,正好赶上厂家进行促销活动,促销方式为甲种头盔按单价的八折出售,乙种头盔每个降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少个甲种头盔,使此次购买头盔的总费用最小?最小费用为多少元?24.(10分)如图,一次函数y=kx﹣3的图象与y轴交于点B,与反比例函数y=m(x>0)的图象交x于点A(8,1).(1)求出一次函数与反比例函数的表达式;(2)如图1,点C是线段AB上一点(不与点A,B重合),过点C作y轴的平行线与该反比例函数的图象交于点D,连接OC、OD、AD,当CD等于6时,求点C的坐标和△ACD的面积;(3)在(2)的前提下,将△OCD沿射线BA方向平移一定的距离后,得到△O'C'D',若点O的对应点O'恰好落在该反比例函数的图象上(如图2),求出点O',D'的坐标.25.(12分)如图1,抛物线与x轴交于A,B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的函数表达式;(2)若点P是对称轴上的一个动点,是否存在以P,C,M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;(3)如图2,D是OC的中点,一个动点G从点D出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E,F的位置,写出坐标,并求出最短路程.26.(12分)如图1,在正方形ABCD中,点E在线段BC上,连接AE,将△ABE沿着AE折叠得到△AFE,延长EF交CD于点G.(1)求证:DG=FG;(2)如图2,当点E是BC的中点时,求tan∠CGE的值;(3)如图3,当BEDG =23时,连接CF并延长交AB于点H,求CFCH的值.答案一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图是由5个完全相同的小正方体搭成的几何体,这个几何体的左视图是( B )2.2024年1月17日,搭载天舟七号货运飞船的长征七号遥八运载火箭,在我国文昌航天发射场点火发射,发射取得圆满成功,将与在轨运行的空间站组合体进行交会对接.空间站距离地球约为400000米,400000用科学记数法可表示为( C )A.400x103B.40x104C.4x105D.4x1063.若a与5互为相反数,则a+1的值为( C )A.6B.4C.-4D.-64.实数a,b互为相反数,其在数轴上对应的点的位置如图所示,下列结论中,正确的是( C )A.|a|<|b|B.a-b=0C.a<-1D.ab>05.简笔画通常利用对称构图,体现对称美.下面四个图案既是轴对称图形又是中心对称图形的是( C )6.下列计算正确的是( C )A.(a-b)(-a-b)=a2-b2B.2a³+3a³=5a6C.6x3y2+3x=2x2y2D.(-2x2)³=-6x67.有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是2的倍数的概率为( C )A.56B.34C.23D.128.下列计算正确的是( B )A.2m+n=2mnB.-a2·(-a)4=-a6°C.(-2x³)³=-6x9D.(4x-3)2=16x2-12x+99.把一条线段分割为两部分,使较长部分与全长的比值等于较短部分与较长部分的比值,则这个比值为黄金分割比,比值为√5-12,是公认的最能引起美感的比例,如图1为世界名画蒙娜丽莎.如图2,点E是正方形ABCD的边AB上的黄金分割点,且AE>BE,以AE为边作正方形AEHF,延长EH交CD于点I,连接BF交EI于点G,连接BI,则S△BCI :S△FGH为( D )A.1:1B.√5+13C.√5-12D.√5+1210.若一个点的坐标满足(k,2k),我们将这样的点定义为"倍值点".若关于x的二次函数y=(t+1)x2+(t+2)x+s(s,t为常数,t≠-1)总有两个不同的倍值点,则s的取值范围是( D )A.s<-1 B.s<0 C.0<s<1 D.-1<s<0二.填空题:本题共6小题,每小题4分,共24分.直接填写答案. 11.因式分解:2a 2-12a+18= 2(a -3)2 .12.在一个不透明的口袋中装有3个红球和若干个白球,它们除颜色外完全相同.多次摸球试 验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有 12 个. 13.二次函数y=kx 2-4x+2的图象与x 轴有公共点,则k 的取值范围是 k ≤2且k ≠0 . 14.如图,直线AB 交反比例函数y=kx 于A ,B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连接OA .若S △OAC =72,则k 的值为 73 .15.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为293.16.如图,在正方形ABCD 中,点E 是边CD 上一点,BF ⊥AE ,垂足为F ,将正方形沿AE 、BF 切割分成三块,再将△ABF 和△ADE 分别平移,拼成矩形BGHF .若BG=kBF ,则DECD = √k -1 (用含k 的式子表示).三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算(﹣12)﹣2+(π-3.14)0+4cos45°-|1-√2| =4+1+4×√22+1-√2=6+√218.(6分)解不等式组{2(x +2)-x ≤5①4x+13>x -1②,并写出不等式组的非负整数解.解:解不等式①,得x≤1.解不等式②,得x>-4.∴原不等式组的解集为﹣4<x≤1. ∴非负整数解为0,1.19(6分)如图,在矩形ABCD 中,BE ⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:AF=CE.证明:四边形ABCD 是矩形 ∴AB=CD ,AB ∥CD ∴∠BAE=∠DCF又∵BE ⊥AC ,DF ⊥AC ∴∠AEB=∠CFD=90° 在△ABE 与△CDF 中 {∠AEB =∠CFD ∠BAE =∠DCF AB =CD∴△ABE ≌△CDF(AAS) ∴AE=CF∴AE+EF=CF+EF ,即AF=CE20.(8分)根据背景素材,探索解决问题. 如图所示,在坡顶A 处的同一水平面上有一座信号塔BC ,某数学兴趣小组的同学们想测量此信号塔的高度,经过小组讨论采取如下办法:同学们先在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为i=1:2.4的斜坡AP 攀行了26米到达点A ,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.请计算: (1)计算坡顶A 到地面PQ 的距离. (2)计算出信号塔BC 的高度.(结果精确到1米,参考数据:sin76≈0.97,cos76°≈0.24,tan76°≈4.01)解:(1)如图,过点A 作AH ⊥PQ 于点H∵斜坡AP 的坡度为1:2.4 ∴AHPH =512设AH=5k ,则PH=12k. ∴AP=13k∴13k=26,解得k=2 ∴AH=10∴坡顶A 到地面PQ 的距离为10米(2)如图,延长BC 交PQ 于点D ∵BC ⊥AC ,AC ∥PQ ∴BD ⊥PQ∴∠ACD=∠CDH=∠AHD=90°∴四边形AHDC 是矩形,CD=AH=10,AC=DH ∵∠BPD=45°∴△BPD 是等腰直角三角形 ∴PD=BD设BC=x ,则x+10=24+DH ∴AC=DH=x -14在Rt △ABC 中,tan76°=BCAC ,即x x -14≈4.01,解得x ≈19∴信号塔BC 的高度约19米.21.(8分)某学校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A ,B ,C ,D ,E 五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图. (1)请把图1补充完整;(2)请计算图2中研学活动地点C所在扇形的圆心角的度数;(3)若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.解:(1)本次调查的学生人数为20÷20%=100,最喜欢去A地的人数为100-20-40-25-5=10补全条形统计图如下.(2)研学活动地点C所在扇形的圆心角的度数为360°×40=144°100=300(名)(3)1200×25100答:估计最喜欢去D地研学的学生人数为30022.(8分)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,BC,过点C作⊙O的切线交AB 延长线于点D,OF⊥BC于点E,交CD于点F.(1)求证:∠BCD=∠BOE;,AB =10,求BD的长.(2)若sin∠BAC=35(1)证明:如图,连接OC∵CD 是⊙O 的切线∴∠OCD=90°∴∠OCB+∠BCD=90°∵OF ⊥BC∴∠BEO=90°∴∠BOE+∠OBE=90°∵OC=OB∴∠OCB=∠OBC∴∠BCD=∠BOE(2)解:如图,过点B 作BH ⊥CD 于点H∵AB 是⊙O 的直径∴∠ACB=90°∵sin ∠BAC=BC AB =35,AB=10 ∴BC=6∵OF ⊥BB∴AC ∥OF∴∠BOE=∠BAC∵∠BCD=∠BOE∴∠BAC=∠BCD∴sin ∠BAC=sin ∠BCD=35∴BH=185∵OC ⊥CD BH ⊥CD∴BH ∥OC∴△BDH ∽△ODC∴1855=BD BD+5解得BD=907故BD 的长为90723.(10分)伴随"一盔一带"安全守护行动,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20个,乙种头盔30个,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元(1)甲、乙两种头盔的单价各为多少元?(2)商店决定再次购进甲、乙两种头盔共40个,正好赶上厂家进行促销活动,促销方式为甲种头盔按单价的八折出售,乙种头盔每个降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少个甲种头盔,使此次购买头盔的总费用最小?最小费用为多少元?解:(1)设甲种头盔的单价为x 元,乙种头盔的单价为y 元根据题意,得{20x+30y=2920 x-y=11解得{x=65 y=54答:甲种头盔单价为65元,乙种头盔单价为54元.(2)设再次购进甲种头盔m只,总费用为w元根据题意,得m≥12(40-m)解得m≥403w=65×0.8m+(54-6)(40-m)=4m+1920.∵4>0∴w随着m增大而增大当m=14时,w取得最小值最小值为14×4+1920=1976.∴购买14个甲种头盔时,总费用最小,最小费用为1976元.24.(10分)如图,一次函数y=kx﹣3的图象与y轴交于点B,与反比例函数y=mx(x>0)的图象交于点A(8,1).(1)求出一次函数与反比例函数的表达式;(2)如图1,点C是线段AB上一点(不与点A,B重合),过点C作y轴的平行线与该反比例函数的图象交于点D,连接OC、OD、AD,当CD等于6时,求点C的坐标和△ACD的面积;(3)在(2)的前提下,将△OCD沿射线BA方向平移一定的距离后,得到△O'C'D',若点O的对应点O'恰好落在该反比例函数的图象上(如图2),求出点O',D'的坐标.解:(1)点A(8,1)在一次函数y=kx-3的图象上∴1=8k-3,解得k=12∴一次函数的表达式为y=12x-3∵点A(8,1)在反比例函数y=mx图象上解得m=8.∴反比例函数的表达式为y=8x(2)设C (a ,12a -3)(0<a <8),则D (a ,8a )∴CD=8a -(12a -3)=8a -12a+3∵CD=6∴8a -12a+3=6.解得a=-8(舍去)或a=2∴C(2,-2).如图1,过点A 作AE ⊥CD 于点E则AE=8-2=6∴S △ACD =6×6×12=18(3)D’(6,6)25.(12分)如图1,抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N.(1)求抛物线的函数表达式;(2)若点P 是对称轴上的一个动点,是否存在以P ,C ,M 为顶点的三角形与△MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由;(3)如图2,D 是OC 的中点,一个动点G 从点D 出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E ,F 的位置,写出坐标,并求出最短路程.解:(1):OA=2,OB=4,OC=8∴A(-2,0),B(4,0),C(0,8)设抛物线的函数表达式为y=a(x+2)(x -4)将点C 的坐标代入,得﹣8a=8.解得a=-1.抛物线的函数表达式为y=-x 2+2x+8.(2)存在以点P ,C ,M 为顶点的三角形与△MNB 相似理由如下:∵y=-x 2+2x+8=-(x -1)2+9∴对称轴为直线x=1.设直线BC 的函数表达式为y=kx+b将点B ,C 的坐标代人,得{4k +b =0b =8解得{k =﹣2b =8 ∴直线BC 的函数表达式为y=-2x+8.∴M(1,6),N(1,0).∴由两点距离公式可得BN=3,MN=6,BM=3√5,CM=√5若以点P ,C ,M 为顶点的三角形与△MNB 相似,则有∠BMN=∠CMP .①如图1,当∠CPM=∠BNM=90°时∴CP ∥x 轴∴点P 的坐标为(1,8)②图2,当∠PCM=∠BNM=90°时∴PM CM =BM MN =√52∴PM=52∴点P 的坐标为(1,172)综上所述,点P 的坐标为(1,8)或(1,172)(3)2√3726.(12分)如图1,在正方形ABCD 中,点E 在线段BC 上,连接AE ,将△ABE 沿着AE 折叠得 到△AFE ,延长EF 交CD 于点G.(1)求证:DG=FG;(2)如图2,当点E 是BC 的中点时,求tan ∠CGE 的值;(3)如图3,当BE DG =23时,连接CF 并延长交AB 于点H ,求CF CH 的值.(1)证明:四边形ABCD 是正方形 ∴AB=AD ,∠B=∠D=90°将△ABE 沿着AE 折叠得到△AFE ∴AB=AF ,∠B=∠AFE=∠AFG=90° ∴AD=AF∵AG=AG∴Rt △AFG ≌Rt △ADG(HL) ∴DG=FG(2)解:设BC=CD=2a∵点E 是BC 的中点∴BE=CE=a将△ABE 沿着AE 折叠得到△AFE ∴BE=EF=a∵EG 2=CE 2+CG 2即(a+DG)2=a 2+(2a -DG)2. DG=23a∴tan ∠CGE=a2a -23a =34(3)CF CH =25。
最新北师大版九年级中考数学模拟试题以及答案
九年级中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)﹣2的绝对值是()A.2 B.﹣2 C.±2 D.22.(4分)如图所示的几何体,其俯视图是()3.(4分)2020年6月23日,我国的北斗卫星导航系统(BDS)星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108 B.2.15×107 C.2.15×106 D.21.5×1064.(4分)如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°5.(4分)古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()6.(4分)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多457.(4分)下列运算正确的是()A.(﹣2a3)2=4a6B.a2•a3=a6C.3a+a2=3a3 D.(a﹣b)2=a2﹣b28.(4分)如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)9.(4分)若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()10.(4分)如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD 长度的最小值为()5B.3C.4D.5A.211.(4分)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A .2.6mB .2.8mC .3.4mD .4.5m12.(4分)已知抛物线y =x2+(2m ﹣6)x+m2﹣3与y 轴交于点A ,与直线x =4交于点B ,当x >2时,y 值随x 值的增大而增大.记抛物线在线段AB 下方的部分为G (包含A 、B 两点),M 为G 上任意一点,设M 的纵坐标为t ,若t ≥﹣3,则m 的取值范围是( )A .m ≥23B .23≤m ≤3 C .m ≥3 D .1≤m ≤3 二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)13.(4分)分解因式:2a 2﹣ab = .14.(4分)在一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是 .15.(4分)代数式1x 3-与代数式3x 2-的值相等,则x = .16.(4分)如图,在正六边形ABCDEF 中,分别以C ,F 为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为 .17.(4分)如图,在一块长15m、宽10m的矩形空地上,修建两条同样宽的相互垂直的道路,剩余分栽种花草,要使绿化面积为126m2,则修建的路宽应为米.18.(4分)如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在B'处,AE为折痕;再将EC沿EF翻折,使点C 恰好落在线段EB'上的点C'处,EF为折痕,连接AC'.若CF=3,则tan ∠B'AC′=.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:20.(6分)解不等式组:,并写出它的所有整数解.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O 的直线分别交AD,BC于点E,F.求证:AE=CF.22.(8分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:不合格100≤x<120a合格120≤x<140 b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.23.(8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O 相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.24.(10分)5G时代的到来,将给人类生活带来巨大改变.现有A、B 两种型号的5G手机,进价和售价如表所示:型号价格进价(元/部)售价(元/部)某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A、B两种型号手机各多少部?(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?24.(10分)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正k(x>0)的图象与BC,半轴上,顶点B(2,23),反比例函数y=x1.AB分别交于D,E,BD=2(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.25.(12分)在等腰△ABC中,AC=BC,△ADE是直角三角形,∠DAE 1∠ACB,连接BD,BE,点F是BD的中点,连接CF.(1)=90°,∠ADE=2当∠CAB=45°时.①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是.线段BE与线段CF的数量关系是;②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;学生经过讨论,探究出以下解决问题的思路,仅供大家参考:思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;思路二:取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.26.(12分)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B (3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.。
2024年中考数学模拟考试试卷-附答案(北师大版)
2024年中考数学模拟考试试卷-附答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图所示的几何体是由5个大小相同的小立方块搭成,此几何体的俯视图是( )2.万里长城是世界文化遗产之一,其总长大约为21 200 000 m ,将21 200 000用科学记数法表示为( )A.2.12x106B.2.12x107C.0.212x108D.212x1073.如图,AB∥CD,直线l与AB,CD分别交于点E和F,CD上有一点G且GE=GF,∠1=122°,则∠2的度数为( )A.54°B.64°C.58°D.68°4.实数a,b在数轴上的位置如图所示,则下列结论不正确的是( )A.ab<0B.a+b>0-bl=a-bD.√a2=-a5.下列图形中,既是轴对称图形又是中心对称图形的是()6.下列运算正确的是()A.(m﹣1)2=m2﹣1B.(2m)³=6m³C.m7-m3=m4D.m2+m5=m77.用如图所示的两个可自由转动的转盘进行"配紫色"游戏(红色和蓝色配成紫色),两个转盘分别被分成面积相等的几个扇形,同时转动两个转盘一次,转盘停止时指针所指扇形的颜色即为转出的颜色(若指针停在分界线上,则重转),则配得紫色的概率为( )A.16B.14C.13D.128.已知点A(x1,y1),B(x2,y2)在反比例函数y=-2x的图象上,且x1<0<x2,则下列结论一定正确的是( )A.y1+y2<0B.y1+y2>0C.y1﹣y2<0D.y1-y2>09.如图,在矩形ABCD 中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E和F,大于12EF为半径画弧,两弧交于点P,作射线BP,过点C作BP的垂线分别交BP,AD于点M和N,则CN的长为()A.√10B.√11C.2√3D.410.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点,已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(32,32),且当0≤x≤m时,函数y’=ax2+4x+c-34(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是( )A.-1≤m≤0B.2≤m≤4C.2≤m<72D.2-<m≤72二.填空题:本题共6小题,每小题4分,共24分..11.因式分解:xy2-4x= .12.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为.13.若关于x的一元二次方程x2+2x+h=0无实数根,则k的取值范围是.14.如图,正方形的边AB=2,弧BD和弧AC都是以2为半径的圆弧,则图中空白两部分的面之差为.15.为了增强学生身体素质,学校要求学生练习跑步.开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s,当到达终点时男、女均停止跑步,男、女生从开始匀速跑步到停止跑步分别用时100s,120s.已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则当男、女相遇时,此时男、女同学距离终点的距离为.16.如图,在矩形ABCD 中,AB=8,AD=10,点M 是BC 的中点,E 是BM 上的一点,连接AE ,作点B 关于直线AE 的对称点B',连接DB'并延长交BC 于点F .当BF 最大时,点B'到BC 的距离为 .三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:|﹣12|+(-1)2024﹣sin30°﹣(√3-√2)018.(6分)解不等式组{2(x -1)+1>﹣3①x -1≤1+x3②,并把它的解集在数轴上表示出来.19.(6分)如图,四边形ABCD 是平行四边形,点E ,F ,G ,H 分别在边AD 、AB 、BC 、CD 上,且DE=BG ,AF=CH .求证:EF=GH.20.(8分)植物园是当地人民喜爱的休闲场所之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最小和最大高度分别为多少?(结果精确到0.1m,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)21.(8分)"小手拉大手,共创文明城".某校为了解学生对所在城市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示.单位:分):94,83,90,86,94,88,96,100,89,82,94,82,84,89,88,93,98,94,93,92.整理上面的数据,得到频数分布表和扇形统计图.根据以上信息,解答下列问题:(1)填空:a= ,b= .(2)若成绩不低于90分为优秀,请估计该校1600名学生中,达到优秀等级的人数;(3)已知A等级中有2名男生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.22.(8分)如图,AB是⊙O的直径,点E,C在⊙O上,点C是弧BE的中点,AE垂直于过点C 的直线CD,垂足为D,AB的延长线交直线CD于点F.(1)求证:CD是⊙O的切线;(2)若AE=2,sin∠AFD=13①求⊙O的半径;②求线段DE的长.23.(10分)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A 粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:(1)该商场节后每千克A粽子的进价为多少元?(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润为多少?24.(10分)当k 值相同时,我们把正比例函数y=1k x 和反比例函数y=kx 叫做"关联函数".小亮根 据学习函数的经验,以函数y=﹣12x 和y=﹣2x 为例对"关联函数"进行了探究,下面是小亮的探 究过程,请你将它补充完整(1)如图,在同一平面直角坐系中画出这两个函数的图象,两个函数图象在第二、四象限分别 交于点A 、B ,则点A 、B 的坐标分别是A 、B .(2)点P 是函数y=﹣12x 在第二象限内的图象上的一个动点(不与点A 重合),作直线PA 、PB ,分别与x 轴交于点C 、D .设点P 的横坐标为t .小亮通过分析得到:在点P 运动的过程中,总有PC=PD.证明PC=PD 的过程如下(不完整): 易知点P 的坐标为(t ,﹣2t ) 设直线AP 的表达式为y=ax+b -2a+ b =1将点A 、P 的坐标分别代人,得{﹣2a +b =1ta +b =﹣2t解得{a =﹣1tb =﹣2-tt∴直线AP 的表达式为y=﹣1t x -2-t t令y=0,得x=t -2,则点C 的坐标为(t -2,0) 同理可得直线BP 的表达式为y=1t x -2+t t.....请你补充剩余的证明过程;(3)当△PCD 是等边三角形时,t= .(4)随着点P 的运动,△ABP 的面积S 与点P 的横坐标t 之间存在一定的函数关系,当t>﹣2时,请你求出S 关于t 的函数表达式.25.(12分)如图,抛物线y=ax2+bx+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,点Q是x轴上方抛物线上一点,射线QM⊥x轴于点N,若QM=BM,且tan∠MBN=43,请直接写出点Q的坐标;(3)如图2,点E是第一象限内一点,连接AE交y轴于点D,AE的延长线交抛物线于点P点F在线段CD上,且CF=OD,连接AF,EF,BE,BP,若S△AFE =S△ABE,求△PAB的面积.26.(12分)原题再现:小强特别喜欢探究数学问题,一天李老师给他这样一个几何问题:△ABC 和△BDE都是等边三角形,将△BDE绕着点B旋转到图1位置,求证:AE=CD.小强很快就通过△ABE△CBD,论证了AE=CD.(1)请你写出小强的证明过程;迁移应用:小强想,把等边△ABC和等边△BDE都换成等腰直角三角形,将△BDE绕着点B 旋转到图2位置,其中∠ACB=∠EDB=90°,那么AE和CD有什么数量关系呢?(2)请你帮助小强写出结论,并给出证明;(3)如图3,如果把等腰直角三角形换成正方形,将正方形AFEG绕点A旋转α°,若AB=6√2,AG=4,在旋转过程中,当C,G,E三点共线时,请求出DG的长度.答案一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图所示的几何体是由5个大小相同的小立方块搭成,此几何体的俯视图是( C )2.万里长城是世界文化遗产之一,其总长大约为21 200 000 m ,将21 200 000用科学记数法表示为( B )A.2.12x106B.2.12x107C.0.212x108D.212x1073.如图,AB∥CD,直线l与AB,CD分别交于点E和F,CD上有一点G且GE=GF,∠1=122°,则∠2的度数为( B )A.54°B.64°C.58°D.68°4.实数a,b在数轴上的位置如图所示,则下列结论不正确的是( C )A.ab<0B.a+b>0-bl=a-bD.√a2=-a5.下列图形中,既是轴对称图形又是中心对称图形的是( D )6.下列运算正确的是( C )A.(m﹣1)2=m2﹣1B.(2m)³=6m³C.m7-m3=m4D.m2+m5=m77.用如图所示的两个可自由转动的转盘进行"配紫色"游戏(红色和蓝色配成紫色),两个转盘分别被分成面积相等的几个扇形,同时转动两个转盘一次,转盘停止时指针所指扇形的颜色即为转出的颜色(若指针停在分界线上,则重转),则配得紫色的概率为( B )A.16B.14C.13D.128.已知点A(x1,y1),B(x2,y2)在反比例函数y=-2x的图象上,且x1<0<x2,则下列结论一定正确的是( D )A.y1+y2<0B.y1+y2>0C.y1﹣y2<0D.y1-y2>09.如图,在矩形ABCD 中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E和F,大于12EF为半径画弧,两弧交于点P,作射线BP,过点C作BP的垂线分别交BP,AD于点M和N,则CN的长为( A )A.√10B.√11C.2√3D.410.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点,已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(32,32),且当0≤x≤m时,函数y’=ax2+4x+c-34(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是( B )A.-1≤m≤0B.2≤m≤4C.2≤m<72D.2-<m≤72二.填空题:本题共6小题,每小题4分,共24分..11.因式分解:xy2-4x= x(y+2)(y-2) .12.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为1350.13.若关于x的一元二次方程x2+2x+h=0无实数根,则k的取值范围是k>1 .14.如图,正方形的边AB=2,弧BD和弧AC都是以2为半径的圆弧,则图中空白两部分的面之差为2π-4 .15.为了增强学生身体素质,学校要求学生练习跑步.开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s,当到达终点时男、女均停止跑步,男、女生从开始匀速跑步到停止跑步分别用时100s,120s.已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则当男、女相遇时,此时男、女同学距离终点的距离为315m .16.如图,在矩形ABCD 中,AB=8,AD=10,点M 是BC 的中点,E 是BM 上的一点,连接AE ,作点B 关于直线AE 的对称点B',连接DB'并延长交BC 于点F .当BF 最大时,点B'到BC 的距离为165.三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:|﹣12|+(-1)2024﹣sin30°﹣(√3-√2)0 =12+1-12-1 =018.(6分)解不等式组{2(x -1)+1>﹣3①x -1≤1+x3②,并把它的解集在数轴上表示出来. 解不等式①,得x>-1 解不等式②,得x ≤2原不等式组的解集为﹣1<x ≤219.(6分)如图,四边形ABCD 是平行四边形,点E ,F ,G ,H 分别在边AD 、AB 、BC 、CD 上,且DE=BG ,AF=CH .求证:EF=GH.证明:四边形ABCD 是平行四边形 ∴AD=BC ,∠A=∠C又∵DE=BG∴AE=CG在△EAF和△GCH中,{AE=CG ∠A=∠C AF=CH∴△EAF≌△GCH(SAS)∴EF=GH20.(8分)植物园是当地人民喜爱的休闲场所之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最小和最大高度分别为多少?(结果精确到0.1m,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)解:如图过点B作BT⊥ON于点T,过点A作AK⊥ON于点K在Rt△OBT中,OT=OB·cos26°=3x0.90=2.7(m)∵∠BMN=∠MNT=∠BTN=90°∴四边形BMNT是矩形∴TN=BM=0.9m∴ON=OT+TN=3.6(m)∴CN=ON﹣OC=3.6-3=0.6(m)在Rt△AOK中,OK=OA·cos50°=3x0.64=1.92(m)∴KN=ON﹣OK=3.6-1.92=1.7(m)答:座板距地面的最小高度约为0.6m,最大高度约为1.7m.21.(8分)"小手拉大手,共创文明城".某校为了解学生对所在城市创建全国文明城市相关知 识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x 表示.单位:分):94,83,90,86,94,88,96,100,89,82,94,82,84,89,88,93,98,94,93,92.整理上面的数据,得到频数分布表和扇形统计图.根据以上信息,解答下列问题:(1)填空:a= ,b= .(2)若成绩不低于90分为优秀,请估计该校1600名学生中,达到优秀等级的人数;(3)已知A 等级中有2名男生,现从A 等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.解:(1)a=20-8-5-4=3.∵b%=8+20x100%=40%∴b=40故答案为3,40(2)1600×1120=880(名)即估计该校1600名学生中,达到优秀等级的人数为880.(3)A 等级中有2名男生,则有1名女生.画树状图如下:共有6种等可能的结果,恰好抽到一男一女的结果∴恰好抽到一男一女的概率为46=2322.(8分)如图,AB 是⊙O 的直径,点E ,C 在⊙O 上,点C 是弧BE 的中点,AE 垂直于过点C 的直线CD ,垂足为D ,AB 的延长线交直线CD 于点F.(1)求证:CD 是⊙O 的切线;(2)若AE=2,sin ∠AFD=13①求⊙O的半径;②求线段DE的长.22.(1)证明:如图,连接OC∵AD⊥DF∴∠D=90°∵点C是弧BE的中点∴弧CE=弧CB∴∠DAC=∠CAB∵OA = OC∴∠CAB=∠OCA∴∠DAC=∠OCA∴AD∥OC∴∠OCF=∠D=90°∵OC是⊙O的半径∴DC是⊙O的切线.(2)解:①如图,过点O作OG⊥AE,垂足为GAE=1∴AG=EG=12∵OG⊥AD∴∠AGO=∠DGO=90°∵∠D=∠AGO=90°∴OG∥DF∴∠AFD=∠AOG∵sin∠AFD=13∴sin∠AOG=sin∠AFD=13在Rt △AGO 中,AO=1÷13=3∴⊙0的半径为3②∵∠OCF=90°∴∠OCD=180°∠OCF=90°∵∠OGE=∠D=90°∴四边形OGDC 是矩形∴OC=DG=3∵GE=1∴DE=DG -GE=3-1=2∴线段DE 的长为223.(10分)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A 粽子能够畅销.根据预测,每千克A 粽子节前的进价比节后多2元,节前用240元购进A 粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:(1)该商场节后每千克A 粽子的进价为多少元?(2)如果该商场在节前和节后共购进A 粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A 粽子获得利润最大?最大利润为多少?解:(1)设该商场节后每千克A 粽子的进价为x 元240x -4=240x+2 解得x=10或x=﹣12(舍去)经检验,x=10是原分式方程的根,且符合题意.答:该商场节后每千克A 粽子的进价为10元.(2)设该商场节前购进m 千克A 粽子,总利润为w 元根据题意,得(10+2)m+10(400-m)≤4600解得m ≤300w=(20-12)m+(16-10)(400-m)=2m+2400.∵2>0∴w 随着m 增大而增大当m=300时,w 取得最大值,最大利润为2x300+2400=3000(元)答:该商场节前购进300千克A 粽子获得利润最大24.(10分)当k 值相同时,我们把正比例函数y=1k x 和反比例函数y=k x 叫做"关联函数".小亮根 据学习函数的经验,以函数y=﹣12x 和y=﹣2x 为例对"关联函数"进行了探究,下面是小亮的探 究过程,请你将它补充完整(1)如图,在同一平面直角坐系中画出这两个函数的图象,两个函数图象在第二、四象限分别 交于点A 、B ,则点A 、B 的坐标分别是A 、B .(2)点P 是函数y=﹣12x 在第二象限内的图象上的一个动点(不与点A 重合),作直线PA 、PB ,分别与x 轴交于点C 、D .设点P 的横坐标为t .小亮通过分析得到:在点P 运动的过程中,总有PC=PD.证明PC=PD 的过程如下(不完整):易知点P 的坐标为(t ,﹣2t )设直线AP 的表达式为y=ax+b-2a+ b =1将点A 、P 的坐标分别代人,得{﹣2a +b =1ta +b =﹣2t 解得{a =﹣1t b =﹣2-t t∴直线AP 的表达式为y=﹣1t x -2-t t令y=0,得x=t -2,则点C 的坐标为(t -2,0) 同理可得直线BP 的表达式为y=1t x -2+t t.....请你补充剩余的证明过程;(3)当△PCD 是等边三角形时,t= .(4)随着点P 的运动,△ABP 的面积S 与点P 的横坐标t 之间存在一定的函数关系,当t>﹣2时,请你求出S 关于t 的函数表达式.解:(1)令﹣12x=﹣2x ,则x 2=4 ∴x 1=-2,x 2=2分别代入关系式,得y 1=1,y 2=-1.∴A(-2,1),B(2,-1)(2)令1t x -t+2t =0,得x=1+2则点D 的坐标为(t+2,0)如图,过点P 作PH ⊥x 轴于点H ,则H(t ,0).又:C(t -2,0),D(t+2,0)∴CH=DH∴PH是线段CD的中垂线∴PC=PD(3)﹣√33(4)S=t﹣4t25.(12分)如图,抛物线y=ax2+bx+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,点Q是x轴上方抛物线上一点,射线QM⊥x轴于点N,若QM=BM,且tan∠MBN=43,请直接写出点Q的坐标;(3)如图2,点E是第一象限内一点,连接AE交y轴于点D,AE的延长线交抛物线于点P点F在线段CD上,且CF=OD,连接AF,EF,BE,BP,若S△AFE =S△ABE,求△PAB的面积.(1)设抛物线的表达式为y=a(x+1)(x-3)=a(x2-2x-3),当x=0时,y=3∴-3a=3,解得a=-1.故抛物线的表达式为y=-x2+2x+3(2)Q(2,3)(3)面积=3.526.(12分)原题再现:小强特别喜欢探究数学问题,一天李老师给他这样一个几何问题:△ABC 和△BDE都是等边三角形,将△BDE绕着点B旋转到图1位置,求证:AE=CD.小强很快就通过△ABE△CBD,论证了AE=CD.(1)请你写出小强的证明过程;迁移应用:小强想,把等边△ABC和等边△BDE都换成等腰直角三角形,将△BDE绕着点B 旋转到图2位置,其中∠ACB=∠EDB=90°,那么AE和CD有什么数量关系呢?(2)请你帮助小强写出结论,并给出证明;(3)如图3,如果把等腰直角三角形换成正方形,将正方形AFEG绕点A旋转α°,若AB=6√2,AG=4,在旋转过程中,当C,G,E三点共线时,请求出DG的长度.(1)证明:△ABC 和△BDE 分别是等边三角形 ∴AB=CB ,BE=BD∴∠ABC=∠DBE=60°∴∠DBE ﹣∠DBA=∠ABC ﹣∠DBA ,即∠ABE=∠CBD 在△ABE 和△CBD 中{AB =CB ∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS )∴AE=CD(2)解:AE=√2CD .理由如下∵△ABC ,△BDE 都是等腰直角三角形∴BA=√2BC ,BE=√2BD∴AB CB =BE BD =√2∵∠ABC=∠DBE=45°∴∠ABE=∠CBD∴△ABE ∽△CBD∴AE CD =AB CB =√2∴AE=√2CD(3)解:①如图1,连接AE. 由(2)知△ADG ∽△ACE∴DG CE =AD AC =√22∴DG=√22CE∵四边形ABCD是正方形∴AD=AB=6√2,AC=√2AB=12∵四边形AFEG是正方形∴∠AGE=90°,GE=AG=4∵C,G,E三点共线∴CG=8√2∴CE=CG﹣EG=8√2-4∴DG=8-2√2②如图2,连接AE由(2)知△ADG∽△ACE∴DGCE =ADAC=√22∴DG=√22CE∵四边形ABCD是正方形∴AD=AB=6√2,AC=√2AB=12∵四边形AFEG是正方形∴∠AGE=90°,GE=AG=4∵C,G,E三点共线∴CG==8√2∴CE=CG+EG=8√2+4.∴DG=√22CE=8+2√2综上,当C,G,E三点共线时,DG的长度为8-2√2或8+2√2.。
北师大版九年级中考数学一模考试试题(含答案)
九年级中考数学模拟试卷(满分150分时间120分钟)一.单选题。
(共40分)1.2023的相反数是()A.2023B.12023C.﹣12023D.﹣20232.如图所示的几何体由5个大小相同的立方块搭成,则该几何体的左视图是()3.根据国家统计局调查显示,2022年我国全年出生人口956万人,9 560 000用科学记数法可以表示为()A.0.956×107B.956×104C.9.56×107D.95.6×1054.将一副三角板(∠EDF=30°,∠C=45°)按如图所示方式摆放,使得点D在三角板的一边AC上,且DE∥AB,则∠DMC等于()A.60°B.75°C.90°D.105°(第4题图)(第6题图)5.下列图形中,既是轴对称图形,但不是中心对称图形的是()6.实数M,N在数轴上对应点的位置如图所示,下列结论正确的是()A.mn>0B.m>﹣nC.|m|>|n|D.m+1>n+17.将分别标有“最”、“美”、“济”、“南”四个汉字的小球装在一个不透明的口袋中,这些球除汉字不同外其余完全相同,每次摸球前先搅匀,随机摸出一球,放回摸出的球后再随机摸出一球,两次摸出的球的汉字可以组成济南概率是( ) A.516 B.16 C.18 D.148.如图,PA 、PB 分别是弧AMB 所在圆⨀O 相切于点A ,B ,若该圆半径是3cm ,∠P=60°,则弧AMB 的长是( )A.6πB.4πC.3πD.2π(第8题图) (第10题图)9.如图,在平行四边形ABCD 中,分别以点B ,D 为圆心,大于12BD 的长半径画弧,两弧交于M ,N ,直线MN 分别交AD ,BC 于点E ,F ,连接BD ,EF ,若∠BAD=120°,AE=1,AB=2,则线段BF 的长是( )A.√7+1B.√3+√2C.3D.√710.在平面直角坐标系中,点(1,m )和(2,n )在抛物线y=ax 2+bx+c (a >0)上,抛物线的对称轴为直线x=t ,若m <c <n ,则t 的取值范围( ) A.t <1 B.0<t <1 C.12<t <1 D.12<t <32 二.填空题。
北师大版九年级中考数学模拟试题含答案
中考数学模拟测试题一、选择题(本大题共15个小题,每小题3分,共45分.)1.- 13的相反数是( )A. 13B.3C.-3D.- 132.下列运算正确的是( )A.(-3)2=-9B.(-1)2 015×1=-1C.-5+3=8D.-|-2|=23.人体血液中每个成熟红细胞的平均直径为0.000 007 7米,用科学记数法表示为( )A.7.7×10- 5B.77×10-6C.77×10-5D.7.7×10-64.如图,直线l 1和直线l 2被直线l 所截,已知l 1∥l 2,∠1=70°,则∠2=( )A.110°B.90°C.70°D.50°5.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )6.计算a 3·(-1a )2的结果是( )A.aB.a 5C.a 6D.a 47.下列汽车标志中,既是轴对称图形又是中心对称图形的是( )8.下列命题中是真命题的是( )A .随机事件发生的概率为1 B.平分弦的直径垂直于弦C.正多边形都是轴对称图形D.两边及其一边的对角对应相等的两个三角形全等9.不等式2x-6>0的解集是( )A.x >1B.x <-3C.x >3D.x <310.某市6月某周内每天的最高气温(单位:°C )数据如下:24,26,29,26,29,32,29则这组数据的众数和中位数分别是( )A.29,29B.26,26C.26,29D.29,3211.函数y 1=x+1与y 2=ax+b (a ≠0)的图象如图所示,这两个函数图象的交点在y 轴上,那么使y 1,y 2的值都大于零的x 的取值范围是( )A.x >-1B.x >2C.x <2D.-1<x <212.某公司承担了制作500套校服的任务,原计划每天制作x 套,实际平均每天比原计划多制作了12套,因此提前4天完成任务,根据题意,下列方程正确的是( )A. 50050012x x 4-=+B.50050012x 5x -=- C.5005004x x 12-=+ D.50050012x-4x += 13.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,D 是AB上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连接EF ,则线段EF 的最小值是( )A.2.5B.2.4C.2.2D.214.如图,动点P 在直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(1,1),第二次运动到点(2,0),第三次接着运动到点(3,2),…按这样的运动规律,经过第2 016次运动后,动点P 的纵坐标是( )A.2B.1C.0D.2 01515.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:则下列判断中正确的是( )A.抛物线开口向上B.抛物线于y 轴交于负半轴C.当x=3时,y >0D.方程ax 2+bx+c=0的正根在2与3之间 二、填空题(本大题共6个小题,每小题3分,满分18分.)16.分解因式:(a-b )2-4b 2=________.17.当x=________时,代数式2x+1与5x-8的值相等.18.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠AOC=40°,D 是BC 弧的中点,则∠ACD=________.19.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6个点,得到的点数为偶数的概率是_______.20.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形ABCD的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=k x的图象上,若点A 的坐标为(4,-2),则k 的值为________.21.如图,以△ABC 的三边为边分别作等边△ACD ,△ABE ,△BCF.则下列结论:①△EBF ≌△DFC ;②四边形AEFD 为平行四边形;③当AB=AC ,∠BAC=120°时,四边形AEFD 是正方形.其中正确的结论是________.三、解答题(本大题共7个小题,满分57分,)22.(本小题满分7分)(1)化简:22m11m2m1m1⎛⎫÷-⎪+++⎝⎭.(2)解方程组:2x y4, x y1.+=⎧⎨-=-⎩23.(本小题满分7分)(1)如图,AB∥CD,AB=CD,AE=CF.求证:△ABF≌△CDE.(2)如图,ABCD是⊙O的内接四边形,DP∥AC,交BA的延长线于点P.求证:AD·DC=PA·BC.24.(本小题满分8分)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元.问A,B两件服装的成本各是多少元?中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3 000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=________,b=________; (2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)的为“优等”,则该校参加这次比赛的3 000 名学生中成绩“优等”约有多少人?26.(本小题满分9分)已知反比例函数y=m 1x(m 为常数)的图象在第一、三象限内. (1)求m 的取值范围.(2)如图,若该反比例函数的图象经过平行四边形ABOD 的顶点D ,点A ,B 的坐标分别为(0,3),(-2,0).①求出该反比例函数的解析式;②设点P 是该反比例函数图象上的一点,且在△DOP 中,OD=OP ,求点P 的坐标.在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°.(1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG (如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N (如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其他条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.28.(本小题满分9分)如图,⊙E 的圆心E (3,0),半径为5,⊙E 与y 轴相交于A ,B 两点(点A 在点B 的上方),与x 轴的正半轴交于点C ,直线l 的解析式为y=34x+4,与x 轴相交于点D ,以点C 为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l 与⊙E 的位置关系,并说明理由;(3)动点P 在抛物线上,当点P 到直线l 的距离最小时,求出点P 的坐标及最小距离.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学综合测试题(1)(考试时间90分钟,满分100分)一、选择题:(本大题共10题,每小题3分,共30分)每小题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在下面的答题表一内,否则不给分.答题表一1、下列计算正确的是A. 236333=⨯B. -(-a +1)= a -1C. 3m 2-m 2=3D. (-3)2= -32、由几个小正方体所搭成的几何体的俯视图如下面左侧图形所示.(正方形中的数字表 示该位置叠放的小正方体的个数),那么这个几何体的正视图是3、根据右图提供的信息,可知一个热水瓶的价格是A .7元B .35元C .45元D .50元 4、如果分式1x 1x +-的值为零,那么x 的值为A. -1或1B. 1C. -1D. 1或0第3题共52元5、已知α为等腰直角三角形的一个锐角,则cosα等于A .21B .22C .23D .336、若一个正多边形的外角等于30°,则这个多边形的边数是A. 6B. 8C. 10D. 127、四张完全相同的卡片上,分别画有:线段、等边三角形、平行四边形、圆,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率是 A .43 B .21 C .41D .1 8、已知二次函数y = x 2的图象向右平移3个单位后,得到的二次函数解析式是A.2)3x (y -=B. 2)3x (y +=C. 3x y 2-=D. 3x y 2+= 9、如图,已知⊙O 的半径为5,弦AB=8,M 是AB 上任意一点,则线段OM 的长可以是A .1.5B .2.5C .4.5D .5.5第9题10、如图,圆锥底面直径为6cm ,母线长为12cm ,则其侧面展开为扇形的圆心角为A. 30ºB. 45ºC. 60ºD. 90º二、填空题:(本大题共5小题,每小题3分,共15分,请将答案填入答题表二内,否则不给分)答题表二第10题11、若一组数据“-2,x ,-1,0,2”的众数是2,则中位数是 。
12、在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,2)重合,那么A 、B 两点之间的距离等于 。
13、下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有 个。
14、如图,在Rt △ABC 中,∠C=90º,∠B=30º, 将△ABC 绕着点C 逆时针旋转后得到的△A ′B ′C 的斜边A ′B ′ 经过点A ,那么∠ACA' 的度数是___度。
第14题 15、如图,机器人从A 点出发,沿着西南方向行了42m 到达B 点,在点B 处观察到原点O 在它的南偏东60°的方向上,则OA= m (结果保留根号).三、解答题:(第16-18题每题6分,第19-22题每题7分,第23题9分,共55分)16、先化简,再求值:(3x+2)(3x -2)-5x(x -1)-(2x -1)2,其中x=31-解:17、解方程:x312212x 61--=- 解:1 2 3 n … …第15题18、在不透明的口袋里装有白、红、黄三种颜色的乒乓球(除颜色外其余都相同),现从中任意摸出一个是白球的概率为12,从中任意摸出一个是红球的概率为31。
白球比红球多1个。
(1)试求袋中白球、黄球、红球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图,或列表格法,求两次摸到都是白球的概率。
解:19、用尺轨三等分任意角是数学中的一大难题,但我们可以用“折纸法”把一个直角三等分。
如图所示,具体做法:(1)将一矩形纸片ABCD对折,EF为折痕;(2)继续沿过点C的直线CO对折,使点B落在EF上得到点G,则CO、CG就把∠BCD三等分了。
请你写出它的推理过程。
解:B20、某酒店的客房有标准三人房,收费标准为每天每套150元;标准双人房,每天每套140元。
一个50人的旅游团到该酒店入住,开了一些三人和标准双人房,若每套客房正好住满,且标准三人房住了x套,标准双人房住了y套。
(1)用含x的代数式表示y(2)若该旅游团一天的住宿费要低于3000元,且旅客要求住进的标准三人房不多于标准双人房,那么该旅游团订这两种标准房各多少套?解:21、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm;点P从点A开始沿AD边向点D以1厘米/秒的速度移动;与此同时,点Q从点C开始沿CB边向点B以3厘米/秒的速度移动;当其中一点到达终点时,另一点也随之停止移动,设移动的时间为t秒.(1)当t为何值时,四边形PQCD为平行四边形?(2)设四边形PQCD的面积为y,求y与t的函数关系式?探索四边形PQCD的面积是否存在最大值?若存在,最大值是多少?若不存在,请说明理由?解:Q22、如图,在平面直角坐标系中,以点M(0)为圆心,以M交x轴于A、B两点,交y轴于C、D两点,连结AM并延长交⊙M于P点,连结PC 交x轴于E。
(1)求点C、P的坐标;(2)求证:BE=2OE.解:23、如图,抛物线y=94-x 294-mx+98m 2(m>0)与x 轴相交于A 、B 两点,点H 是抛物线的顶点,以AB 为直径作⊙G 交y 轴于E 、F 两点,EF=24. (1)求m 的值和⊙G 的半径R ; (2)连结AH ,求线段AH 的长度;(3)问:射线GH 上是否存在一点P ,使以点P 为圆心作圆,能与直线AH 和⊙G 同时相切?若存在,求点P 的坐标;若不存在,请简要说明理由。
解:参考答案一、选择题:(本大题共10题,每小题3分,共30分)二、填空题:(本大题共5小题,每小题3分,共15分,请将答案填入答题表二内,否则不给分)答题表二三、解答题:(第16-18题每题6分,第19-22题每题7分,第23题9分,共55分)16、解:原式=59-x =-8三个整式的运算共给3分,合并正确给2分,代入求值1分17、解:化为整式方程……………2分 解得32-=x …………………2分 检验并结论……………………2分18、解:(1) 白球3个、黄球1个、红球2个………………3分 (2)51………………………………………………3分19、解:延长OG 交DC 于HB证OG=GH ………………………………2分 证Rt △CGO ≌Rt △CGH ………………2分 得∠1=∠2 …………………………1分 又∠2=∠3∴CO 、CG 就把∠BCD 三等分 ………2分20、解:(1)依题意得y=2x350- …………………………………2分 (2)根据题意列不等式组150x+140×2350x-<3000 x ≤2350x- ……………………2分 解这个不等式组325<x ≤10 ……………………………1分∴x 取9或10又∵x=9时 y=29350⨯-=223不为整数 ∴舍去。
当x=10时,y=210350⨯-=10答:该旅游团订这两种标准房各10套. …………………………2分21、解:⑴在直角梯形ABCD 中,因AD ∥BC ,所以只要当DP=CQ 时,四边形PQCD 为平行四边形由题意得:3t=24-t ,解得t= 6秒 。
…………………3分 ⑵存在由题意得:四边形PQCD 的面积=t 89628)t 3t 24(+=⨯+-……………1分∵ 0≤t ≤326,y 随 t 的增大而增大…………………………………………1分 ∴当t=326时,y 有最大值=96+8×326=3496 …………………2分22、解:(1)连结PB ,∵PA 是圆M 的直径,∴∠PBA=90°∴求AO=OB=3又∵MO ⊥AB ,∴PB//MO 。
∴PB=2OM=32∴P 点坐标为(3,32)…………………………………2分不偿失又知C (0,3-)………………………………1分 (2)证△AMC 为等边三角形……………………………1分 又∵AP 为圆O 的直径 得∠ACP=90º得∠OCE=30º………………………………………………1分 ∴OE=1………………………………………………………1分 BE=2∴BE=2OE ……………………………………………………1分23、解:(1)94-x 294-mx+98m 2=0, ∴x 2+mx -2m 2=0 ∵m>0,∴A (-2m ,0),B (m ,0)…………………………………………1分∴AB=3m ,⊙G 的半径R=m 23∴G (2m-,0)∵EF ⊥x 轴,AB 为直径,EF=42,∴EO=22…………………………1分 连结GE ,在Rt △GEO 中,由勾股定理得GE 2=GO 2+EO 2解得m=±2,∵m>0,∴m=2,R=3 …………………………………………1分(2)∵24832999y x x ∴=--+,()1,4H ∴-()4,0,A -又5AH ∴=……………………………………2分(3)设⊙P 的半径为R',P 点的坐标为()1,k -, 由题意可知,当4k >时,不符合题意,所以04k <<.因为⊙P 与直线AH 相切,过点P 作PM AH ⊥,垂足为点M ,P PM r = ∴HP=4-k ,R'=HP ·sin ∠AHG=5)k 4(3-……………………………………1分①当⊙P 与⊙G 内切时,3-R'=k ∴()34333,,1,522k k k P -⎛⎫-==∴- ⎪⎝⎭解得……………………………………2分 ②当⊙P 与⊙G 外切,3+R'=k ()34273,1,58k k P -⎛⎫∴+=∴- ⎪⎝⎭27,解得k=8…………………………………1分 所以满足条件的P 点有:31,2P ⎛⎫- ⎪⎝⎭,271,8P ⎛⎫- ⎪⎝⎭.。