七年级数学用方程解决问题

合集下载

苏科版2024新版七年级数学上册教案:4.3.3 用一元一次方程解决问题——利用公式、规律解决问题

苏科版2024新版七年级数学上册教案:4.3.3 用一元一次方程解决问题——利用公式、规律解决问题

学校七年级数学教案课题4.3用一元一次方程解决问题(3)课型新授课编号时间主备复备审核教学目标1.会利用公式或找规律列方程解决实际问题,通过结合实际问题,创造有趣的情境,提高学习兴趣.2.能够根据实际问题中的数量关系列方程解决问题,培养数学建模能力,分析问题、解决问题的能力.教学重难点重点:会利用公式或找规律列方程解决实际问题.难点:能够根据实际问题中的数量关系列方程解决问题.教学环节教学过程师生活动个人复备知学1.揭示课题2.揭示目标课上板书课题;学生齐读目标.预学阅读课本P125、126 页,完成课本练习T1根据预学情况给各小组评分.互学如图,小明将一个正方形纸片剪去一个宽为4的长条后,再从剩下的长方形纸片上剪去一个宽为5的长条.如果两次剪下的长条面积正好相等,那么每一个长条的面积是多少?图形的公式构建等量关系.导学例1:已知三角形三个角的度数之比为2:3:5,判断这个三角形的形状.例2:用黑白两色棋子按如图所示的方式摆图形,依次规律,图形中黑色棋子的个数有可能是50吗?例3:制作一张桌子要用1个桌面和4条桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?利用三角形内角和定理得到等量关系.引导学生从“数”和“形”两个方面找规律,注意理解为什么不可能.小组交流.检学1.宋代数学家杨辉称幻方为纵横图,传说最早出现的幻方是夏禹时代的“洛书”,杨辉在他的著作《续占摘奇算法》中总结了“洛书”的构造,在如图所示的三阶幻方中,每行,每列、每条对角线上的三个数之和都相等,则m+n的值是()A.7 B.1 C.2(1)(2)2.如图,涂色部分是正方形,图中最大的长方形的周长是厘米.独立完成,课堂交流.总结谈谈你这一节课有哪些收获.各抒己见.课后作业板书设计教后记。

七年级上册数学方程公式

七年级上册数学方程公式

七年级上册数学方程公式
七年级上册数学方程公式包括以下几种:
1.一元一次方程:
-标准形式:ax + b = 0,其中a和b为常数,x为未知数。

-解法:通过移项,得到x = -b/a。

2.一元一次方程组:
-标准形式:ax + by = c,dx + ey = f,其中a、b、c、d、e和f为常数,x和y为未知数。

-解法:可以通过消元法、代入法或者加减法来求解。

3.百分数、利润和利息问题:
-百分数问题:百分数= (部分值/全部值)× 100%。

-利润问题:利润=销售价-成本价。

-利息问题:利息=本金×利率×时间。

4.比例问题:
-两个量的比值为定值,即两个量成比例。

比例公式可以表示为:a/b = c/d,其中a、b、c和d为已知数。

5.百分比问题:
-百分数×全部值=部分值。

这些公式是七年级上册数学中常见的方程公式,能够帮助解决数学问题。

在学习这些公式的同时,还可以进一步拓展学习更多的方程公式和数学概念。

七年级列方程解应用题技巧

七年级列方程解应用题技巧

七年级列方程解应用题技巧
引言
列方程解应用题是初中数学研究中的一个重要内容。

掌握了列方程的技巧,可以帮助我们更好地理解和解决实际生活和研究中的问题。

本文将介绍一些七年级列方程解应用题的常用技巧。

技巧一:读题仔细,理解问题
在解决列方程问题之前,我们首先要仔细阅读题目,理解问题的要求和限制条件。

有时候,一个关键的细节可能会影响到我们列方程的过程和方程的解。

技巧二:定义未知数
在列方程时,我们需要定义一个或多个未知数来表示问题中的未知量。

我们可以使用字母或其他符号来表示未知数,并结合题目信息设定其含义。

技巧三:利用问题中的已知条件
题目中往往会给出一些已知条件,我们可以利用这些条件列出方程,从而推导出未知数的值。

在列方程时,我们要根据已知条件设定等式的两边,并进行适当的运算。

技巧四:解方程求解未知数
列好方程后,我们可以通过解方程的方法来求解未知数。

常用的解方程方法有平衡法、代入法、加减消元法等。

根据题目的要求选择合适的方法进行求解,并得出未知数的值。

技巧五:检查解的合理性
在解决问题后,我们应该对得到的解进行检查,以确保解的合理性。

如果解符合题目的要求和已知条件,那么我们可以得出最终的答案;如果不符合,我们需要重新检查方程的列写和解方程的过程。

总结
通过掌握这些列方程解应用题的技巧,我们可以更好地解决七年级数学中的列方程问题。

在实际操作中,我们应该多做练,加强对技巧的熟练掌握,提高解决问题的能力。

文档结束。

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。

七年级数学一元一次方程的应用

七年级数学一元一次方程的应用

七年级数学一元一次方程的应用一元一次方程是初中数学中的基础内容,也是数学在实际生活中广泛应用的一种工具。

本文将从实际问题的角度出发,探讨七年级数学一元一次方程的应用。

1. 商品打折问题假设某商场正在进行打折促销活动,现有一款商品原价为x元,经过折扣后降价到原价的80%。

我们可以通过一元一次方程来计算出折后价格。

设折后价格为y元,则有方程:y = 0.8x。

通过解这个方程,便可以得出折后价格。

这个例子展示了一元一次方程在计算打折后价格问题中的应用。

2. 速度问题在旅行中,我们常常需要计算行驶距离、速度和时间之间的关系。

假设某辆汽车行驶的速度是v km/h,行驶t小时后,行驶的总距离s km。

我们可以通过一元一次方程来计算这些参数之间的关系。

设总距离s为y km,则有方程:s = vt。

通过解这个方程,我们可以计算出汽车行驶的总距离。

这个例子展示了一元一次方程在速度问题中的应用。

3. 家庭预算问题家庭预算是人们生活中常遇到的问题之一。

假设某家庭每月的总收入是x元,总支出是y元。

我们可以通过一元一次方程来计算每月结余或者透支的情况。

设结余为z元,则有方程:z = x - y。

通过解这个方程,我们可以得到每月的结余或者透支情况。

这个例子展示了一元一次方程在家庭预算问题中的应用。

4. 距离、时间、速度问题某辆汽车行驶了一段距离d,行驶的时间是t小时,我们需要计算汽车的平均速度v km/h。

通过一元一次方程我们可以找出速度与距离、时间之间的关系。

设平均速度v为y km/h,则有方程:v = d/t。

通过解这个方程,我们可以计算汽车的平均速度。

这个例子展示了一元一次方程在距离、时间和速度问题中的应用。

以上是几个七年级数学中一元一次方程的应用例子,从商品打折、速度问题、家庭预算问题到距离、时间、速度问题,一元一次方程在实际生活中无处不在。

掌握了一元一次方程的应用,我们不仅能更好地理解数学的基础概念,还能更好地解决实际生活中的问题。

苏科版(2024新版)七年级数学上册课件:4.3.1 用一元一次方程解决问题——步骤及配比问题

苏科版(2024新版)七年级数学上册课件:4.3.1 用一元一次方程解决问题——步骤及配比问题

0.6x+6×0.15x=10.5 x=7
答:可以做7套茶具
方程是解决实际生活中具有相等的数量关系的有效的数学模型.
用一元一次方程来解决问题,通常先用字母表示适 当的未知数,并用含有这个字母的代数式表示其他相关 的量,再根据实际问题中数量之间的相等关系列出方程, 然后解这个方程,写出问题的答案.
用一元一次方程解决实际问题步骤
设可做x套茶具,根据题意,得 0.6x+6×0.15x=10.5 解得: x=7
答:可以做7套茶具
新知探究:
上述问题中,列方程方法解决问题,经历了如下过程: 1.根据题意,设一个合适的未知数 设可做x套茶具
2.根据问题中的等量关系,列出方程 茶壶泥料+茶杯泥料=总泥料
3.解方程,求出未知数的值 4.写出问题的答案
的过程,体会数学的应用价值.
情境引入:
右图中的一套紫砂壶茶具包括1把茶壶和6只茶杯。 做1把茶壶需要0.6kg的泥料, 做1只茶杯需要0.15kg的泥料。 10.5kg泥料可以做几套这样的茶具? (不计制作时的损耗)
【算术方法】
【列方程方法】
0.6+6×0.15=1.5(kg) 10.5÷1.5=7(套) 答:可以做7套茶具
分析:这个问题中有这样的相等关系: 做桌面所需木材的体积+做桌腿所需木材的体积=3.8 m3
课堂练习:
1.如图是一个计算机程序,如果输出“25”, 那么输入的数值为多少?
解:设输入的数值为x
(x-2)×4+1=25
解得:
x=8
输入 -2 ×4 +1
输出 -15
2.今年爸爸的年龄是小丽年龄的3倍,5年后爸爸的年龄与 小丽的年龄之和为58岁,小丽今年多少岁?

25道初一方程题及答案

25道初一方程题及答案

用方程解下列各题1.某商店有一套运动服,按标价的8折出售仍可获利20元,已知这套运动服的成本价为100元,问这套运动服的标价是多少元?2.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?3.2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?4.小华将勤工俭学挣得的100元钱按一年定期存入银行,到期后取出50元来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入银行,若存款的年利率又下调到原来的一半,这样到期后可得本息和63元,求第一次存款的年利率(不计利息税).5.2008年北京奥运会,中国运动员获得金、银、铜牌共100枚,金牌数位列世界第一.其中金牌比银牌与铜牌之和多2枚,银牌比铜牌少7枚.问金、银、铜牌各多少枚?6.天骄超市和金帝超市以同样的价格出售同样的商品,为了吸引顾客,两家超市都实行会员卡制度,在天骄超市累计购买500元商品后,发给天骄会员卡,再购买的商品按原价85%收费;在金帝超市购买300元的商品后,发给金帝会员卡,再购买的商品按原价90%收费,讨论顾客怎样选择商店购物能获得更大优惠?7.小王去新华书店买书,书店规定花20元办优惠卡后购书可享受8.5折优惠.小王办卡后购买了一些书,购书优惠后的价格加上办卡费用比这些书的原价还少了10元钱,问小王购买这些书的原价是多少?8.A、B两城铁路长240千米,为使行驶时间减少20分,需要提速10千米/时,但在现有条件下安全行驶限速100千米/时,问能否实现提速目标.9.水源透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,某城市制定了居民每月每户用水标准8m3,超标部分加价收费,某户居民连续两个月的用水和水费分别是12m3,22元;10m3,16.2元,试求该市居民标准内用水每立方米收费是多少?超标部分每立方米收费是多少?10.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?11.目前广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:2005学年度广州市教育统计手册).(1)求目前广州市在校的小学生人数和初中生人数;(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?12.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8折“,小明测算了一下.如果买50支,比按原价购买可以便宜6元,那么每支铅笔的原价是多少元?13.初三某班的一个综合实验活动小组去A,B两个车站调查前年和去年“春运”期间的客流量情况,如图是调查后小明与其它两位同学进行交流的情景,根据他们的对话,请你分别求出A,B两个车站去年“春运”期间的客流量.14.阅读下面对话:小红妈:“售货员,请帮我买些梨.”售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.15.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场?16.联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.(1)如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?(2)如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?17.学校综合实践活动小组的同学们乘车到天池山农科所进行社会调查,可供租用的车辆有两种:第一种可乘8人,第二种可乘4人.若只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满.(1)参加本次社会调查的学生共多少名?(2)已知:第一种车租金为300元/天,第二种车租金为200元/天.要使每个同学都有座位,并且租车费最少,应该怎样租车.18.某小店老板从面包厂购进面包的价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,这样小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?19.小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.20.(1)一种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么,此商品是按几折销售的?(2)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么该厂六、七两月产量平均增长的百分率是多少?21.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价-进货价).问该文具每件的进货价是多少元?22、近年来,宜宾市教育技术装备水平迅速提高,特别是以计算机为核心的现代化装备取得了突破性发展,中小学每百人计算机拥有量在全省处于领先位置,全市中小学装备领先的总台数由1996年的1040台直线上升到2000年的11600台,若1997到2000年每年比上一年增加的计算机台数都相同,按此速度继续增加,到2003年宜宾市中小学装备计算机的总台数是多少?23.某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本价应降低多少元?24.为了鼓舞中国国奥队在2008年奥运会上取得好成绩,曙光体育器材厂赠送给中国国奥队一批足球.若足球队每人领一个则少6个球,每二人领一个则余6个球,问这批足球共有多少个?某队员领到足球后十分高兴,就仔细研究起足球上的黑白块(如图),结果发现,黑块呈五边形,白块呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?25.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?解题思路1、考点:一元一次方程的应用.专题:销售问题.分析:设这套运动服的标价是x元.此题中的等量关系:按标价的8折出售仍可获利20元,即标价的8折-成本价=20元.解答:解:设这套运动服的标价是x元.根据题意得:0.8x-100=20,解得:x=150.答:这套运动服的标价为150元.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2、考点:一元一次方程的应用.专题:行程问题.分析:本题首先依据题意得出等量关系即甲地到乙地的路程是不变的,进而列出方程为10(2960-x)=18(2560-x),从而解出方程并作答.解答:解:设平路所用时间为x小时,29分= 29/60小时,25分= 25/60,则依据题意得:10(29/60-x)=18(25/60-x),解得:x= 13,则甲地到乙地的路程是15× 13+10×(29/60-13)=6.5km,答:从甲地到乙地的路程是6.5km.点评:本题主要考查一元一次方程的应用,解题的关键是熟练掌握列方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出方程3、考点:一元一次方程的应用.专题:应用题.分析:等量关系为:居民家庭用水=生产运营用水的3倍+0.6.解答:解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米.依题意,得5.8-x=3x+0.6,解得:x=1.3,∴5.8-x=5.8-1.3=4.5.答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.点评:解题关键是弄清题意,找到合适的等量关系.本题也可根据“生产运营用水和居民家庭用水的总和为5.8亿立方米”来列等量关系.4、考点:一元一次方程的应用.专题:应用题;增长率问题.分析:要求存款的年利率先设出未知数,再通过等量关系就是两年的本金加上利息减去够买学习用品的钱等于最后的本息之和.解答:解:设第一次存款的年利率为x,则第二次存款的年利率为x2,第一次的本息和为(100+100×x)元.由题意,得(100+100×x-50)× x2+50+100x=63,解得x=0.1或x= -135(舍去).答:第一次存款的年利率为10%.点评:解题的关键要理解题的大意,特别是第二次到期的本息为50+100x,很多同学都会忽略100x,根据题目给出的条件5、考点:一元一次方程的应用.分析:可设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,根据获得金、银、铜牌共100枚列出方程求解即可.解答:解:设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,(1分)依题意得x+(x+7)+x+(x+7)+2=100(3分)解得x=21,(5分)所以x+7=21+7=28;21+28+2=51答:金、银、铜牌分别为51枚、21枚、28枚.(6分)点评:考查一元一次方程的应用;得到各个奖牌数的等量关系是解决本题的易错点.6、考点:一元一次方程的应用;一元一次不等式的应用.分析:根据题意可以分别对两家超市列出花费和购物金额x的关系式,然后比较两者大小,即可得出结论.解答:解:设顾客所花购物款为x元.①当0≤x≤300时,顾客在两家超市购物都一样.②当300<x≤500时,顾客在金帝超市购物能得更大优惠.当x>500时,假设顾客在金帝超市购物能得更大优惠则300+0.9(x-300)<500+0.85(x-500)解得x<900.③所以当500<x<900时,顾客在金帝超市购物能得更大优惠.同样可得:④当x=900时,顾客在两家超市购物都一样.⑤当x>900时,顾客在天骄超市购物能得更大优惠.点评:本题主要考查对于一元一次方程的应用以及一元一次不等式的掌握.7、考点:一元一次方程的应用.专题:应用题;经济问题.分析:办卡费用加上打折后的书款应该等于书的原价加上节省下来的10元,由此数量关系可列方程进行解答.解答:解:设书的原价为x元,由题可得:20+0.85x=x-10,解得:x=200.答:小王购买这些书的原价是200元.点评:解题关键是要读懂题目的意思,把实际问题转化成数学问题,然后根据题目给出的条件,找出合适的等量关系,列出方程组,再求解8、分析:在提速前和提速后,行走的路程并没有发生变化,由此可列方程解答.解答:解法一解:设提速前速度为每小时x千米,则需时间为240x小时,依题意得:(x+10)(240x- 2060)=240,解得:x1=-90(舍去),x2=80,因为80<100,所以能实现提速目标.解法二解:设提提速后行驶为x千米/时,根据题意,得240x-10- 240x= 2060去分母.整理得x2-10x-7200=0.解之得:x1=90,x2=-80经检验,x1=90,x2=-80都是原方程的根.但速度为负数不合题意,所以只取x=90.由于x=90<100.所以能实现提速目标.9、考点:一元一次方程的应用.专题:应用题;经济问题.分析:标准内用水收费加上超标部分收费就是本月总费用,由此可列方程组进行求解.解答:解:设标准内用水每立方米收费是x元,超标部分每立方米收费是y元.由题可得:8x+(12-8)y=22;8x+(10-8)y=16.2,解得:x=1.3,y=2.9.故该城市居民标准内用水每立方米收费1.3元,超标部分每立方米收费2.9元.10、考点:一元一次方程的应用.专题:应用题;工程问题.分析:本题的等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.解答:解:设严重缺水城市有x座,依题意得:(4x-50)+x+2x=664.解得:x=102.答:严重缺水城市有102座.11、考点:一元一次方程的应用.专题:工程问题.分析:(1)本题可设目前广州市在校的初中生人数为x万,因广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人,那么小学生人数为:(2x+14)万,所以可列方程x+2x+14=128,解方程即可;(2)在(1)的基础上利用“广州市政府的拨款=小学生人数×500+中学生人数×1000”即可求出答案.解答:解:(1)设初中生人数为x万,那么小学生人数为(2x+14)万,则x+2x+14=128解得x=38答:初中生人数为38万人,小学生人数为90万人.(2)500×900 000+1000×380 000=830 000 000元,即8.3亿元.答:广州市政府要为此拨款8.3亿元.12、考点:一元一次方程的应用.专题:应用题;经济问题.分析:等量关系为:原价×50×(1-80%)=6.由此可列出方程.解答:解:设每支铅笔的原价为x元,依题意得:50x(1-0.8)=6,解得:x=0.6.答:故每支铅笔的原价是0.6元.13、考点:一元一次方程的应用.专题:阅读型.分析:所增加的百分比乘以基数即为增加的实际人数,由此可列方程进行解答.解答:解:设A站前年“春运”期间的客流量为x,则B站为(20-x),由题意知:0.2x+0.1(20-x)=22.5-20,解得:x=5∴A站去年客流量为:1.2×5=6(万人)∴B站人数为:22.5-6=16.5(万人)答:A站去年“春运”期间的客流量为6万人,B站为16.5万人.14、考点:一元一次方程的应用.专题:阅读型.分析:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.根据苹果的重量比梨轻2.5千克这个等量关系列方程求解.解答:解:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.则有:30x=301.5x+2.5,解得:x=4,1.5x=6.答:梨和苹果的单价分别为4元/千克和6元/千克.15、考点:一元一次方程的应用.专题:应用题;比赛问题.分析:球队赢球后得分加上输球得分应该等于总得分,即可列方程解应用题.解答:解:设球队赢了x场,则输了(16-x)场,由题可得:2x+(16-x)×1=28解得:x=12,答:球队赢了12场,输了4场.16、考点:一元一次方程的应用.专题:应用题.分析:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第二次参加球类运到的人数,再根据题意列方程求解.(2)在第二次参加球类运到的基础上,根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第三次参加球类运到的人数,根据题意列不等式求解.解答:解:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.第二次参加球类活动的学生为x•(1-20%)+(400-x)•30%由题意得:x=x•(1-20%)+(400-x)•30%解之得:x=240(2)∵第二次参加球类活动的学生为x•(1-20%)+(400-x)•30%= x2+120,∴第三次参加球类活动的学生为:(x2+120)•(1-20%)+[400-(x2+120)]•30%= x4+180,∴由x4+180≥200得x≥80,又当x=80时,第二次、第三次参加球类活动与田径类活动的人数均为整数.答:(1)第一次参加球类活动的学生应有240名;(2)第一次参加球类活动的学生最少有80名.17、考点:一元一次方程的应用.专题:应用题.分析:(1)要注意关键语“只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满”,根据两种坐法的不同来列出方程求解;(2)要考虑到不同的租车方案,然后逐个比较,找出最佳方案.解答:解:(1)设参加本次社会调查的同学共x人,则4(x+48+3)=x,解之得:x=28答:参加本次社会调查的学生共28人.(2)其租车方案为①第一种车4辆,第二种车0辆;②第一种车3辆,第二种车1辆;③第一种车2辆,第二种车3辆;④第一种车1辆,第二种车5辆;⑤第一张车0辆,第二种车7辆.比较后知:租第一种车3辆,第二种车1辆时费用最少,其费用为1100元.18、考点:一元一次方程的应用.专题:经济问题.分析:由题意得,他进的包子数量应在50-80之间;等量关系为:(20×进货量+10×50)×每个的利润-(进货量-50)×10×每个赔的钱=600;据此列出方程解可得答案.解答:解:设这个数量是x个.由题意得:(20x+500)×(1-0.6)-(x-50)×10×(0.6-0.2)=600,解得:x=50.故这个数量是50个.19、考点:一元一次方程的应用.专题:应用题;经济问题.分析:本题的关键语“随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元”,即随身听的单价=书包单价×4-8.依此等量关系列方程求解.解答:解:设随身听单价为x元,则书包的单价为(452-x)元,列方程得:x=4(452-x)-8,解得:x=360.当x=360时,452-x=92.20、考点:一元一次方程的应用;一元二次方程的应用.专题:增长率问题;经济问题.分析:(1)设此商品按x折销售,根据商品进价和标价及利润间关系可得方程;(2)设该厂六,七两月产量平均增长的百分率为x,根据产量的减少和增加可列方程求解.解答:解:(1)设此商品按x折销售.600x=400(1+5%),可求得x=0.7.(2)设该厂六,七两月产量平均增长的百分率为x.5月产量为500(1-10%)=450,则6月是450(1+x),7月为450(1+x)(1+x)=648.则:(1+x)2= 648450=1.44,1+x=1.2,x=20%.21、考点:一元一次方程的应用.专题:销售问题.分析:等量关系为:售价的7折-进价=利润0.2,细化为:(进价+2)×7折-进价=利润0.2,依此等量关系列方程求解即可.解答:解:设该文具每件的进货价是x元,依题意得:70%•(x+2)-x=0.2解得:x=4答:该文具每件的进货价为4元.22、考点:一元一次方程的应用.专题:增长率问题.分析:应先根据96年的台数+4年一共增加的台数=2000年的台数,求得每年的增长量,进而让11600加3年增加的台数即为2003年宜宾市中小学装备计算机的总台数.解答:解:设每年增加的计算机台数为x台,则:1040+(2000-1996)x=11600,解得x=2640,∴2003年宜宾市中小学装备计算机的总台数为:11600+(2003-2000)×2640=19520(台).答:2003年宜宾市中小学装备计算机的总台数是19520台.23、考点:一元一次方程的应用.专题:应用题;经济问题.分析:此题文字叙述量大,要审清题目,找到等量关系:销售利润(销售利润=销售价-成本价)保持不变,设该产品每件的成本价应降低x元,则每件产品销售价为510(1-4%)元,销售了(1+10%)m件,新销售利润为[510(1-4%)-(400-x)]×(1+10%)m元,原销售利润为(510-400)m元,列方程即可解得.解答:解:设该产品每件的成本价应降低x元,则根据题意得[510(1-4%)-(400-x)]×m(1+10%)=m(510-400),解这个方程得x=10.4.答:该产品每件的成本价应降低10.4元.24、考点:一元一次方程的应用.专题:应用题.分析:(1)根据题意可知本题中有两个不变的量,足球总数和总人数,要求的是足球数,所以第一问用总人数作为相等关系列方程即可;(2)第二问可利用黑块与白块的数量比是3:5的关系列方程可求解.解答:解:(1)设有x个足球,则有:x+6=2(x-6),∴x=18;所以这批足球共有18个;(2)设白块有y块,则3y=5×12,∴y=20,所以白块有20块.25、考点:一元一次方程的应用.专题:工程问题.分析:设该年级的男生有x人,那么女生有(170-x)人,所以男生平均一天能挖树坑3x个,女生女生平均一天能种树7(170-x)棵,然后根据每个树坑种上一棵树即可列出方程解决问题.解答:解:设该年级的男生有x人,那么女生有(170-x)人,依题意得:3x=7(170-x),解得:x=119,170-x=51.答:该年级的男生有119人,那么女生有51人.11。

七年级数学上册一元一次方程应用题常用公式

七年级数学上册一元一次方程应用题常用公式

七年级数学上册一元一次方程应用题常用公式
一元一次方程是数学中一个重要的概念,它在解决实际问题中有着广泛的应用。

对于一元一次方程的应用题,我们通常需要使用一些常用的公式来简化计算过程。

下面是一元一次方程应用题中常用的几个公式:
1. 路程=速度×时间
这个公式是解决行程问题的基础,它表示物体在一定时间内移动的距离与速度和时间的关系。

2. 工作量=工作效率×工作时间
这个公式用于解决工作问题,它表示完成一项工作所需的总工作量与工作效率和时间的关系。

3. 利润=售价-进价
这个公式用于解决利润问题,它表示商家在销售商品时所获得的利润与商品的售价和进价的关系。

4. 利息=本金×利率×时间
这个公式用于解决利息问题,它表示在一定时间内,本金产生的利息与本金、利率和时间的关系。

5. 面积=长×宽
这个公式用于解决几何图形面积问题,它表示矩形面积与长和宽的关系。

6. 周长=4×半径
这个公式用于解决圆的周长问题,它表示圆的周长与半径的关系。

7. 体积=底面积×高
这个公式用于解决几何图形体积问题,它表示立方体体积与底面积和高度的关系。

这些公式是一元一次方程应用题中常用的,掌握它们可以帮助我们更快地解决问题。

七上数学列方程解应用题公式

七上数学列方程解应用题公式

七上数学列方程解应用题公式
七年级上册数学列方程解应用题公式主要包括以下几种:
1. 追及问题:甲、乙两物体在同一直线上运动,如果甲、乙做匀速直线运动,那么追及问题的等量关系为:甲的路程+乙的路程=甲与乙的初始距离。

2. 相遇问题:甲、乙两物体在某地相向而行,经过一段时间它们相遇了。

相遇问题的等量关系是:甲的路程+乙的路程=两地的距离。

3. 航行问题:航行问题可以分为顺水航行和逆水航行两种情况。

在顺水航行中,船的速度等于船在静水中的速度加上水流的速度;在逆水航行中,船的速度等于船在静水中的速度减去水流的速度。

4. 劳力调配问题:这类问题一般涉及三个等量关系,设工作总量为“1”,
若完成某项工作的人数增加,则工作时间减少;若完成某项工作的人数减少,则工作时间增加。

5. 比例问题:若甲、乙两数的比是 k,那么我们可以得到以下等量关系:甲/乙=k,或者甲=k×乙。

6. 工程问题:在工程问题中,工作量、工作时间和工作效率之间的关系非常重要。

一般来说,工作量=工作时间×工作效率。

这些是七年级上册数学列方程解应用题的主要公式和等量关系。

需要注意的是,这些公式和等量关系都是根据实际问题的情况而定的,具体问题需要具体分析。

在解题过程中,还需要注意单位的统一和换算。

4.3用方程解决问题(3)

4.3用方程解决问题(3)

用火车运送一批货物,如果每节 车厢装34t,还剩18t装不下;如果每 节多装4t,那么还可以多装26t.问共 有几节火车车厢?
1、将一堆糖果分给幼儿园某班的小朋友,如果 每人2颗,那么就多8颗;如果每人3颗,那么就 少12颗.这个班共有多少名小朋友?
2、有宿舍若干间,如果每间住4人,还空一间;如 果每间住3人就有5人没床位,问有多少间房屋?多 少个人?
初中数学七年级上册 (苏科版)
4.3用方程解决问题(3)
仰化初中
某小组计划做一批“中国结”, 如果每人做5个,那么比计划多了9 个;如果每人做4个,那么比计划少 了15个.小组成员共有多少名?他们 计划做多少个“中 如果每人做5个,那么比计划多了9个“中国结”; (2)如果每人做4个,那么比计划少了15个“中 国结”。 设小组成员有x名,可以画出示意图来分析:
3、某班同学分组参加活动,原来 每组8 人,后来重新编组,每组6人,这样比原 来增加了2组.这个班共有多少人?
4、某工人原计划在规定的时间内 加工一批 零件.如果每小时加工10个零件,就可以超 额完成3个;如果每小时加工11个零件,就 可以提前1h完成.问这批零件有多少个?按 原计划需多长时间完成?
用绳子量井深,把绳三折来量, 井外余绳四尺,把绳四折来量,井 外余绳一尺.求井深及绳长.
练习 1、妈妈买了一篮苹果,分给家里人,每人3个还剩 3个;每人4个还差2个;问家有几口人?妈妈共买 了几个苹果?. 2、将一堆糖果分给幼儿园某班的小朋友,如果 每人2颗,那么就多8颗;如果每人3颗,那么就 少12颗.这个班共有多少名小朋友?
3、七年级(2)班举办了一次集邮展览,展出的邮 票张数比每人4张多14张,比每人5张少26张,问: 这个班共有多少名学生?展出的邮票共有 多少 张?

2022-2023学年苏科版数学七年级上册教案:用方程解决问题

2022-2023学年苏科版数学七年级上册教案:用方程解决问题

多少个3分球?1、某班学生39人到公园划船,共租用9艘船,每艘大船可坐5人,每艘小船可坐3人。

每艘船都坐满,问大、小船各租了多少艘?2、甲、乙两球队开展足球比赛,规定胜一场得3分,平一场得1分,负一场得0分。

甲、乙两队共比赛6场,甲队保持不败,共得14分。

甲队胜了几场?解:设小林投中了x个2分球,则投中了(x-4)个3分球。

小结:进一步让学生领会列表法在解决实际问题中的意义。

进球个数得分2分球x 2x3分球(x-4) 3(x-4)等量关系式2分球得分+3分球得分=28方程2x+3(x-4)=28角度的思维。

对学生的成果要给以积极的评价。

板书设计情境创设1、2、例1:………………例2:………………习题………………作业布置P102课后随笔本节课的主导思想是让学生在主动参与、自主探合作学习的过程中,通过阅、思考、分析、概括,学会运用列表法解决较复杂的实际问题,不单纯地进行数学教学。

特别是在本节课“如何列表?”这一难点的突破上,充分调动了学生的能动性,发挥了合作学习的优势,激发了学生的思维,使学生树立了勇于探索的精神。

设计中注重学生感悟知识的转化过程,充分体现了师生互动、生生合作,互补优化的教学特色。

所谓解题建模策略,是帮助学生理解题意,找清楚各量间的关系的一种方法,一种策略,一种途径,一个手段,不要过多地加大对解题策略(列表格)的分析、构建,这不应成为解方程的新的难点.学习时,可用列表格法表示问题的数量关系,列出代数式,帮助理清思路,找准等量关系列方程。

七年级列方程解应用题的技巧

七年级列方程解应用题的技巧

七年级列方程解应用题的技巧一、引言在七年级的数学学习中,列方程解应用题是一项重要的技能。

通过这道题型,我们可以将生活中的实际问题用数学语言表达出来,从而培养我们的逻辑思维和解决问题的能力。

二、七年级列方程解应用题的特点1.简单易懂的应用题七年级的列方程解应用题通常以简单的生活场景为背景,题目内容容易理解。

例如,行程问题、购物问题、工程问题等。

2.涉及一元一次方程这类题目通常涉及一元一次方程的求解,即方程中只有一个未知数,且未知数的最高次数为1。

3.生活实际与数学知识的结合七年级列方程解应用题将生活中的实际问题与数学知识相结合,帮助我们运用数学方法解决实际问题。

三、解题技巧1.审题方法审题是解决应用题的关键。

我们需要仔细阅读题目,理解题意,找出题目中的已知条件和未知条件。

2.找等量关系在应用题中,往往存在多个量之间的关系。

我们需要找到这些关系,建立等量关系式。

3.列方程根据题目的等量关系,列出方程。

注意方程要符合一元一次方程的形式。

4.解方程利用解方程的方法,求出方程的解。

解方程时,应遵循一定的步骤,如代入法、加减消元法等。

5.检验答案求出答案后,要进行检验。

将答案代入原方程,看是否满足等量关系。

四、实例分析1.题目解析例如,小明用半小时走了3公里,他以同样的速度走完剩下的7公里,问小明一共用了多少时间?2.解题步骤(1)审题:已知小明用半小时走了3公里,剩余7公里速度相同。

(2)找等量关系:走3公里所用时间与走7公里所用时间的和等于总时间。

(3)列方程:设小明走7公里所用时间为x小时,则3/0.5 + 7/x = 总时间。

(4)解方程:3/0.5 + 7/x = 总时间,求得x = 1.75。

(5)检验答案:将x = 1.75代入原方程,符合等量关系。

3.答案解释小明走7公里用了1.75小时,一共用了半小时+ 1.75小时= 2.125小时。

五、提高解题能力的方法1.多做练习多做练习可以提高解题速度和准确率。

初一数学上册:一元一次方程解决应用题【行程问题】

初一数学上册:一元一次方程解决应用题【行程问题】

初一数学上册:一元一次方程解决应用题【行程问题】知识点1、行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2、行程问题基本类型相遇问题:快行距+慢行距=原距追及问题:快行距-慢行距=原距航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系专项练习1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为_____。

解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:X/8-X/40=3.62、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系(1)速度15千米行的总路程=速度9千米行的总路程(2)速度15千米行的时间+15分钟=速度9千米行的时间-15分钟方法一:设预定时间为x小/时,则列出方程是:15(x-0.25)=9(x+0.25)方法二:设从家里到学校有x千米,则列出方程是:X/15+15/60=X/9-15/603、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?等量关系:①两种情形下火车的速度相等②两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。

解:⑴行人的速度是:3.6km/时=3600米÷3600秒=1米/秒骑自行车的人的速度是:10.8km/时=10800米÷3600秒=3米/秒⑵方法一:设火车的速度是X米/秒,则26×(X-3)=22×(X-1) 解得X=4方法二:设火车的车长是x米,则(X+22×1)/22=(X+26×3)/264、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

2024年苏科版七年级数学上册 4.3 用一元一次方程解决问题(课件)

2024年苏科版七年级数学上册 4.3 用一元一次方程解决问题(课件)

知1-练
解题秘方:紧扣等量关系“两片国槐树叶与三片银杏树叶 一年的滞尘总量为164 mg”列出方程求解. 解:设一片国槐树叶一年的平均滞尘量为x mg,则一片银 杏树叶一年的平均滞尘量为(2x-4)mg. 根据题意,得2x+3(2x-4)=164. 解这个方程,得x=22, 此时,2x-4 =40. 答:一片银杏树叶一年的平均滞尘量为 40 mg,一片国槐树叶一年的平均滞尘量为22 mg .
知2-讲
方法总结 常见的两种基本等量关系:
(1)总量与分量关系问题:总量=各分量的和; (2)余缺问题: 表示同一个量的两个不同的式子相等.
知2-练
例 2 派派的妈妈和派派今年共36岁,再过5年, 派派妈妈 的年龄比派派年龄的4倍还大1岁, 则派派今年的年 龄为___4_岁____.
解题秘方:设派派今年的年龄为x岁,紧扣“5 年后 派派妈妈的年龄=4×5 年后派派的年龄+1 岁”, 即可列出关于x的一元一次方程.
“一读,二划,三复述,四表示.”“一读”就是读题,
审题 方法
初步感知题意;“二划”就是在题目上面划符号,找 出重点词句, 理出脉络,使题目简单明了;“三复述” 就是复述题意,使题目变得详细,题意清晰;“四表
示”就是画图表示题意, 使题目变得一目了然
续表:
知1-讲
(1)直接设法:题目问什么,就设什么,它一般适用
知2-练
例 4 [定价格][中考·泰州]某校七年级社会实践小组去商场 调查商品销售情况, 了解到该商场以每件80 元的价 格购进了某品牌衬衫500 件, 并以每件120 元的价格 销售了400 件, 商场准备采取促销措施, 将剩下的 衬衫降价销售. 请你帮商场计算一下, 当每件衬衫降 价多少元时, 销售完这批衬衫正好达到盈利45%的 预期目标?

4.3 用一元一次方程解决问题(课件)苏科版(2024)数学七年级上册

4.3 用一元一次方程解决问题(课件)苏科版(2024)数学七年级上册
项目
只数
足数


合计
35
94
解:设鸡有 只.根据题意,得 .解得 . .答:鸡有23只,兔有12只.
2.利用列表法找工程问题中的等量关系
工程问题中的等量关系
工作量 工作效率×工作时间(或人均效率×时间×人数);合作的效率 各部分单独做的效率和;总工作量 各部分工作量之和.
典例5 (一题多解)检查一处住宅区的自来水管,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成.求乙中途离开了几天?
解:设后两车相距 .根据等量关系,得 ,解得 .答:后快车与慢车相距 .
列表法是一种建模策略,它可以帮助我们分析实际问题中数量之间的等量关系,从而列方程解决问题.1.利用列表法找鸡兔同笼问题中的等量关系
鸡兔同笼问题中的等量关系
鸡的数量兔的数量头的数量,鸡的足数 鸡的数量兔的足数 兔的数量 足的总数量
沿直线运动
沿圆周运动(同时同地)
追及问题
同地不同时
同时不同地
等量关系
时间
(行程问题中常用的三个量之间的关系:路程 速度×时间)
典例3 (一题多问)甲、乙两站相距 ,一列慢车从甲站开出,行驶速度为 ,一列快车从乙站开出,行驶速度为 .
(1)两车相向而行,慢车先开出 ,快车再开.问快车开出多少小时后两车相遇?
解:解所列出的一元一次方程.验:检验所得的解是不是所列方程的解、是否符合实际意义.答:写出答案(包括单位名称).
用一元一次方程解决实际问题的基本过程:审:审清题意,找出题中的等量关系,分清题中的已知量、未知量.设:设未知数,用含未知数的代数式表示其他未知量.列:根据题中的等量关系,列出一元一次方程.

七年级数学用方程解决问题的教学策略研究

七年级数学用方程解决问题的教学策略研究

七年级数学用方程解决问题的教学策略研究【摘要】七年级数学课程中,方程解决问题是一个重要的内容,对学生的数学思维能力和问题解决能力有着重要的促进作用。

本文主要围绕七年级数学课程特点展开分析,探讨方程解决问题的重要性,并深入讨论教学策略。

通过案例分析和教学实践与效果分析,探讨如何有效地教授学生解决问题的技巧。

在对教学策略进行总结,并展望未来的研究方向。

通过本文的研究,有望为七年级数学教学提供更深入的指导,促进学生对方程解决问题的理解和运用能力的提升。

【关键词】七年级数学、方程解决问题、教学策略、案例分析、教学实践、效果分析、教学总结、未来研究方向。

1. 引言1.1 研究背景在当前的教育环境下,教师们需要更加关注如何有效地教授七年级数学中的方程解决问题,以帮助学生更好地掌握这一知识点。

对于七年级数学课程中方程解决问题的教学策略进行深入研究,对于提高学生学习兴趣和学习效果具有重要的意义。

本文旨在探讨七年级数学课程中方程解决问题的教学策略,并通过具体案例分析以及教学实践与效果分析,总结出有效的教学方法,以帮助教师更好地教授这一内容,促进学生的数学学习。

1.2 研究意义数统计等。

谢谢!通过深入研究七年级数学课程的特点和方程解决问题的重要性,可以更好地把握教学内容的核心,有利于教师设计合理有效的教学策略。

教学策略的探讨和案例分析可以为教师提供更多的教学方法和实践经验,帮助他们在课堂上更好地引导学生,激发学生学习的兴趣。

通过对教学实践与效果的分析,可以及时发现问题所在,总结经验教训,为今后的教学工作提供参考和指导。

对七年级数学用方程解决问题的教学策略进行研究具有重要的现实意义和推动作用。

2. 正文2.1 七年级数学课程特点分析七年级是初中阶段的起始年级,学生的数学基础较为薄弱,对抽象概念的理解能力有限。

七年级数学课程的特点主要包括以下几点:1. 强调基础知识的巩固:七年级数学课程注重对基本概念和基本技能的训练,包括四则运算、整数运算等。

初一一元一次方程解决实际问题十种典型类型

初一一元一次方程解决实际问题十种典型类型

一、普通列式1、一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底有多长?2、某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的两倍,前年这个学校购买了多少台计算机?3、洗衣机厂今年计划生产洗衣机25500台,其中a型b型c型三种洗衣机的数量比为1:2:14,这三种洗衣机各计划生产多少台?4、一个人用540元买了两种布料,共138尺,其中蓝色布料每尺三元,黑色布料每尺5元,两种布料各买了多少尺?5、有两个无聊的牧童甲对乙说,把你的羊给我一只,我的羊就是你的两倍。

乙回答说,还是你把你的羊给我一只我们的杨树就一样了。

请问它们分别有几只羊?5、某人工作一年的报酬是年终给他一件衣服和10枚金币,但他干满7个月就决定不干了,结账时给了他一件衣服和两枚金币请问,这件衣服值多少枚金币?二、数字关系1、把12的两个数字对调得到21,一个两位数,个位上的数是a,10位上的数是b,把它们对调得到另一个数用式子分别表示这两个数及它们的差,这样的差能被九整除吗?为什么?一个两位数个位上的数是10位数上的数字是x 把一与x对调,新两位数比原两位数小18,x等于多少?2、一个三位数百位上的数字比10位上的数字大一个位上的数字比10位上的数字三倍少2,若将个位与百位数字调换位置后,所得的三位数与原三位数的和是1171,求这个三位数。

3、每年春节妈妈总要给小申压岁钱,但今年春节妈妈知道小申已经上七年级了,于是今年给小申的是一本银行存折,里面存有1000元。

她提示存折有一个6位数的密码有以下两个特征:A.这个6位数的最左端数字是1,B.如果把最左端的数字一移到最右端,则所得到的新6位数是原来6位数的三倍。

请问你能拿到压岁钱吗?四、剩缺问题1、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余三只鸽子,无鸽笼住,如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只,原有多少只鸽子和多少个鸽笼?2、把一些图书分给某班学生阅读,如果每人分三本,则剩余20本,如果每人分4本则还缺25本,这个班有多少学生?3、铜仁市对城区主干道进行绿化,计划,把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽一棵,则树苗缺21棵,如果每隔6米栽一棵,则树苗正好用完,请问有多少棵树苗?五、火车问题1、一列火车匀速行驶,经过一条长300米的隧道需要20秒的时间,隧道的顶上有一盏灯垂直向下发光,灯光照在火车上的时间是10秒,求出火车的长度?2、某铁路桥长1200米,现在有一辆火车,从桥上通过,测得火车从上桥到完全过桥共用50秒,整个火车完全在桥上的时间是30秒,求火车的长度和速度。

一元一次方程与实际问题

一元一次方程与实际问题

七年级数学——一元一次方程应用题解决有实际背景问题用方程解决应注意以下几点:(1)用列方程的方法解决实际问题的一般思路是分析数量关系列出方程。

(2)列方程的实质是用两种不同的方法来表示同一个量,建立等式。

(3)列方程解应用问题一般步骤是设未知数,列方程,解出方程的解,利用方程的解回答实际问题(4)实际问题中的数量关系比较隐蔽,关键是审题,弄清问题的背景,分析清楚数量关系,特别是找出能够作为列方程依据的相等关系。

(5)针对不同问题抓住基本量找出等量关系。

一、行程问题:(相遇追及)基本量:路程(s)=速度(v)×时间(t)顺水速=静水速+水速逆水速=静水速-水速练习题:例:甲乙两人骑自行车,同时从相距65km 的两地相向而行,甲的速度是17.5km/h,乙的速度是15km/h,经过几个小时两人相距32.5km。

1.某班学生以每小时4.5km的速度步行到某地活动2h后学校派一辆摩托车以27km/h的速度追赶队伍,问摩托车多少小时能够追上?2.一艘船从甲码头到乙码头顺流行驶,用了2小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3km/h,求船在静水中的平均速度。

3.运动场跑道一圈长400m,小健练习骑自行车平均每分钟骑350m,小康练习跑步平均每分钟跑250m,两人从同一处同时反向出发,经过多少时间首次相遇,又经过多少时间再相遇?二、工程问题基本量:工作总量=工作效率×工作时间(一般地:将工作总量看作1)例:一件工作甲单独做用30天完成,乙单独做用10天完成,丙单独做用15天完成,现甲、丙先做2天后,甲离去丙单独做7天后,乙又参加进来,问还需要几天才能完成?1.一项工程甲队单独做10天完成,乙队单独做12天完成,丙队单独做15天完成,现三队合作若干天后,甲调出做其它工作,剩余工作由乙、丙两队在用5天完成,问这项工程甲队工作了多少天?2.一项工作甲独做需9天完成,乙独做需12天完成,丙独做需15天完成,若甲、丙先做3天后,甲因故离开,由乙接替甲工作,求完成这项工作乙的工作时间。

七用方程解决问题《相遇问题》教案

七用方程解决问题《相遇问题》教案
4.通过实例分析,培养学生的逻辑思维能力和解决实际问题的能力。
5.练习相关典型题目,巩固所学知识,提高解题技巧。
二、核心素养目标
《相遇问题》教学旨在培养学生以下核心素养:
1.数学抽象:通过分析实际问题,抽象出相遇问题的数学模型,提高学生的数学抽象能力。
2.逻辑推理:学会运用逻辑推理方法,将相遇问题转化为方程求解问题,增强学生逻辑思维。
3.重点难点解析:在讲授过程中,我会特别强调直线型相遇和环形相遇这两个重点。对于难点部分,如列出等量关系式和解一元一次方程,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相遇问题相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相遇问题的基本原理。
(3)解一元一次方程,特别是涉及分数和带有括号的方程。
-难点举例:在解方程过程中,如何正确地移项、合并同类项以及消去分数和括号。
(4)将求解结果与实际问题相结合,解释其物理意义。
-难点举例:如何将求解得到的数值代入原问题,解释相遇时间、相遇点等实际意义。
在教学过程中,教师应针对这些重点和难点内容,设计生动有趣的实例,采用直观的教具和多媒体辅助教学,帮助学生形象地理解抽象的数学概念。同时,通过小组讨论、个别辅导等教学方法,引导学生积极思考,逐步突破教学难点,确保学生能够透彻理解和掌握核心知识。
三、教学难点与重点
1.教学重点
(1)理解相遇问题的基本概念,包括直线型相遇和环形相遇两种情况。
-通过实例讲解,使学生明确直线型相遇和环形相遇的特点及区别。
(2)掌握列方程解决相遇问题的方法,包括列出等量关系式、设置未知数、解方程等步骤。

七年级下册代数方程解决问题

七年级下册代数方程解决问题

七年级下册代数方程解决问题引言本文档旨在介绍解决七年级下册代数方程问题的方法和步骤。

代数方程在数学学科中占据重要地位,掌握解决代数方程的方法对学生的数学能力提升有着重要的作用。

问题背景在七年级下册数学研究中,涉及到许多代数方程的求解问题。

代数方程是将数学关系用字母和数字的混合形式表示的等式,通过求解代数方程,可以得到未知数的值,从而解决实际问题。

解决方法步骤一:理解代数方程要解决代数方程问题,首先需要理解代数方程的含义。

代数方程由等号连接两个表达式组成,其中包含未知数。

未知数是我们需要求解的变量,通过求解代数方程,可以得到未知数的值。

步骤二:化简方程在求解代数方程之前,我们可以尝试对方程进行化简和整理。

通过合并同类项、消去系数等操作,使方程更加简洁,便于求解。

步骤三:变换方程形式有时候,我们可以通过变换方程的形式,使得方程更容易求解。

常见的变换方法包括移项、消项和配凑等操作。

通过这些变换,可以将复杂的方程转化为简单的形式,进一步简化求解过程。

步骤四:求解方程当代数方程被化简和变换后,即可进行求解。

求解方程的方法包括试值法、因式分解法、配方法、开平方等。

根据具体的方程形式和问题要求,选择合适的求解方法进行计算,最终得到未知数的值。

步骤五:验证解的正确性在求解代数方程之后,我们需要验证所得解是否是正确的。

将解代入原来的方程中,检验等式是否成立。

如果成立,则说明求解正确;如果不成立,则需要重新检查求解过程或者提示解无效。

结论通过理解代数方程、化简方程、变换方程形式、求解方程和验证解的正确性这几个步骤,可以有效解决七年级下册代数方程的问题。

掌握这些解题方法,可以提升数学学习的效果并应用于实际问题当中。

希望本文档对您学习代数方程解决问题有所帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)先存一个3年期的,3年后将本息和自动转 存一个3年期(年利率为2.70%); 你认为哪种储蓄方式开始存入的本金开始存入 x 元, 储蓄方式(1),根据题意,得:
x x 2 .8 8 % 6 5 0 0 0
解方程,得:x 4 2 6 3
徐州三十一中
王永刚
本金:顾客存入银行的钱.
利息=本金×年利率×年数.
从1999年11月1日起,国家对个人在银行的存款征得利息税 20% : 税后利息=本金×年利率×年数×(1-20% ) . 本息和:本金与税后利息的和. 即:本息和=本金+本金×年利率×年数× (1-20% ) .
问题1: 一年期定期储蓄年利率为2.25%, 所得利息要交纳20%的利息税,已知小帅有 一笔一年期定期储蓄,到期纳税后得利息 450元,问小帅存入多少本金?
1000 1000 x 2 1 20% 1039.2
解方程,得 x 0 .0 2 4 5 答:两年期储蓄的年利率是2.45%.
国家规定,教育储蓄不征收利息税,为了准备小 帅6年后上大学的学费5000元,他的父母现在就 参加了教育储蓄,下面有两种储蓄方式: (1)直接存入一个6年期(年利率为2.88%);
解 : 设小帅存入本金 x 元. 根据题意,得
x 2 .2 5 % 1 2 0 % 4 5 0
解方程,得 x 2 5 0 0 0 答:小帅存入本金25000元.
问题2: 小帅存入本金1000元,作为两年 期的定期储蓄,到期后他共取出1039.2元, 已知利息税税率是20%,求该储蓄的年利 率. 解 : 设两年期储蓄年利率为 x . 根据题意,得
储蓄方式(2),根据题意,得:
x 1 2.7% 3 x 1 2.7% 3 2.7% 3 5000
解方程,得: x 4 2 7 9
因此,第一种储蓄方式开始存入的 本金少!
成都市降水丰沛,年均水资源总量为304.72亿立方米,其中地下水31.58亿立方米,过境水184.17亿立方米,基本上能满足成都市人民生活 和生产建设用水的需要。主要特点: ; / 成都调查公司 kfh63ndg 一、河网密度大。成都市有岷江、沱江等12条干流及几十条支流,河流纵横,沟渠交错,河网密度高达1.22公里/平方公里;加上驰名中外 的都江堰水利工程,库、塘、堰、渠星罗棋布。2004年有效灌溉面积达34.5万公顷; 全市水能资源理论蕴藏量为161.5万千瓦。 二、水质优良。成都地处岷江流域中游,河水主要由大气降水、地下潜流和融雪组成,在流入成都平原之前,河道主要在高山峡谷之间, 受人为污染极小,因而水质格外优良,绝大部分指标都符合国家地面水二级标准的要求。
出来,将年夫人和玉盈丫鬟壹路迎到了福晋的霞光苑。壹大清早接到吟雪的传话,玉盈正由丫环翠珠伺候着梳头呢,乍壹听到这个消息也 是始料未及,居然是由自己来陪娘亲拜访。当初凝儿说那句“古有花木兰,今有年玉盈”的时候,她本当是这鬼丫头打趣的话,没承想, 居然就真的是她。玉盈压根儿就没想过这件事情。如果是以前,这需要女眷出头露面的事情当然非她莫属,但是现在不壹样了,凝儿到了 京城。凝儿不但是年家的正牌丫鬟,而且长得又跟仙女似的,这代表年家脸面上的事情,当然要凝儿出面才够气派。而且凝儿马上就要参 加选秀,这雍亲王府的四福晋可是皇上和德妃娘娘的儿媳妇呢,托了她,将来也能为凝儿的选秀谋个好出路。可是,凝儿怎么在这么关键 的时刻病倒了?真是急死人了。自己虽然可以临时代替她陪娘亲去拜访王府,可是她选秀的事情也还怎么跟四福晋提呢?虽然壹方面担心 冰凝的病情会影响了以后的选秀,壹方面又因为初次登王府的大门而紧张不安,而且还有壹些小小的好奇心,但是不管心里如何焦虑担忧、 忐忑不安,玉盈也不能表现在脸面上,毕竟这是第壹次来到王府,跟四福晋素未平生,又身负重任,无论心情如何不平静,也必须强压按 下,低眉垂首,亦步亦趋地随年夫人进了福晋院子的见客前厅。“这位是年夫人?有失远迎。”福晋壹边说,壹边伸手虚搭了壹下正在行 礼的年夫人。“福晋吉祥。您真是太客气了。这位是小女玉盈。”“福晋吉祥”玉盈规规矩矩地施了礼。福晋远远地虚让了壹下,就由大 丫头红莲就将两人请到了客位上就坐。福晋闺名雅思琦,内大臣费扬古的女儿,与王爷成亲整整二十壹载。作为王爷的嫡福晋和最得力的 助手,现在正按照爷的吩咐,应付着年家母女两人。由于从来没有与年家女眷有过交往,这棘手的差事也让她颇觉为难。但王爷交代下来 的任务,就是刀山火海也得眼睛不眨地去完成,更何况只是闲聊家常而已。因此,雅思琦不得不搜肠刮肚地找着不咸不淡的话来硬撑场面: “年夫人这次回京,壹路好走?”“还好,就是越往北方走,天气越是寒冷,都多年不用的皮袄、雪帽,这壹下子全派上用场了。”“是 啊,今年也不知是怎么了,京城可是比往常冷得厉害。”“是啊!在这南方呆惯了,乍壹回来,还真有些不适应呢。”玉盈实在是抵不住 好奇,趁娘亲和福晋闲聊之际,偷眼望去,只见这福晋三十四、五岁的年纪,身高体健、体态丰腴、面若银盘,柳眉凤目,壹派雍容端庄。 这就是四福晋?果然是大家风范,不同凡响呢。玉盈在心中暗暗赞叹。昨日雅思琦接到年府女眷大年三十拜访的帖子时,不禁大吃壹惊, 这年家跟自己从来没有过往,怎么会递帖子要求拜见?还是大年三十这个根本不可能接待
相关文档
最新文档