【典型题】中考数学试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求证:DF 为⊙O 的切线;
(2)若∠BAC=60°,DE= 7 ,求图中阴影部分的面积; (3)若 AB 4 ,DF+BF=8,如图 2,求 BF 的长.
AC 3
23.如图,点 D 在以 AB 为直径的⊙O 上,AD 平分 BAC , DC AC ,过点 B 作⊙O 的
切线交 AD 的延长线于点 E. (1)求证:直线 CD 是⊙O 的切线.
且∠CDB=∠OBD=30°,DB= 6 3 cm.
(1)求证:AC 是⊙O 的切线; (2)求由弦 CD、BD 与弧 BC 所围成的阴影部分的面积.(结果保留 π)
22.如图 1,△ABC 内接于⊙O,∠BAC 的平分线交⊙O 于点 D,交 BC 于点 E(BE>EC),且
BD=2 3 .过点 D 作 DF∥BC,交 AB 的延长线于点 F.
()
A.40
B.30
C.28
D.20
12.甲、乙二人做某种机械零件,已知每小时甲比乙少做 8 个,甲做 120 个所用的时间与
乙做 150 个所用的时间相等,设甲每小时做 x 个零件,下列方程正确的是( )
A. 120 150 x x8
B. 120 150 x8 x
C. 120 150 x8 x
C.(3,-2)或(-2,3) D.(-2,
3)或(2,-3)
10.如图,在⊙O 中,AE 是直径,半径 OC 垂直于弦 AB 于 D,连接 BE,若 AB=2 7 ,
CD=1,则 BE 的长是 ( )
A.5
B.6
C.7
D.8
11.如图,菱形 ABCD 的对角线相交于点 O,若 AC=8,BD=6,则菱形的周长为
H,连接 BH 并延长交 CD 于点 F,连接 DE 交 BF 于点 O,下列结论:①∠AED=∠CED; ②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A.2 个
B.3 个
C.4 个
D.5 个
4.如图,在 ABC 中, ACB 90 ,分别以点 A 和点 C 为圆心,以大于 1 AC 的长为 2
D. 120 150 x x8
二、填空题
13.不等式组
3x x 1 2
2x 4 1 x
的整数解是
1
x=

14.若 a , b 互为相反数,则 a2b ab2 ________.
15.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高 度,进行了如下操作:
(1)在放风筝的点 A 处安置测倾器,测得风筝 C 的仰角∠CBD=60°;
半径作弧,两弧相交于点 M 和点 N ,作直线 MN 交 AB 于点 D ,交 AC 于点 E ,连接 CD .若 B 34 ,则∠BDC 的度数是( )
A. 68
B.112
C.124
D.1源自文库6
5.如图,若锐角△ABC 内接于⊙O,点 D 在⊙O 外(与点 C 在 AB 同侧),则下列三个结
论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D 中,正确的结论为( )
(2)求证: CD BE AD DE .
24.某旅行团 32 人在景区 A 游玩,他们由成人、少年和儿童组成.已知儿童 10 人,成人 比少年多 12 人. (1)求该旅行团中成人与少年分别是多少人? (2)因时间充裕,该团准备让成人和少年(至少各 1 名)带领 10 名儿童去另一景区 B 游 玩.景区 B 的门票价格为 100 元/张,成人全票,少年 8 折,儿童 6 折,一名成人可以免费 携带一名儿童. ①若由成人 8 人和少年 5 人带队,则所需门票的总费用是多少元? ②若剩余经费只有 1200 元可用于购票,在不超额的前提下,最多可以安排成人和少年共多 少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.
直角顶点 C 恰好落在三角尺 A′B′C′的斜边 A′B′上.当∠A=30°,AC=10 时,两直角顶点 C,C′间的距离是_____.
18.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9, 9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学 的植树总棵数为 19 的概率______.
【典型题】中考数学试题含答案
一、选择题
1.在庆祝新中国成立 70 周年的校园歌唱比赛中,11 名参赛同学的成绩各不相同,按照成
绩取前 5 名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要
知道这 11 名同学成绩的( )
A.平均数
B.中位数
C.众数
D.方差
2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑
4.B
解析:B 【解析】 【分析】 根据题意可知 DE 是 AC 的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A 和∠B 互 余可求出∠A,由三角形外角性质即可求出∠CDA 的度数. 【详解】 解:∵DE 是 AC 的垂直平分线, ∴DA=DC, ∴∠DCE=∠A, ∵∠ACB=90°,∠B=34°, ∴∠A=56°, ∴∠CDA=∠DCE+∠A=112°, 故选 B.
10.B
解析:B
【解析】
【分析】
根据垂径定理求出 AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.
19.如图所示,过正五边形 ABCDE 的顶点 B 作一条射线与其内角 EAB 的角平分线相交 于点 P ,且 ABP 60 ,则 APB _____度.
20.计算:
x2
x 2x
1
(1
x
1) 1
=________.
三、解答题
21.如图,点 B、C、D 都在⊙O 上,过点 C 作 AC∥BD 交 OB 延长线于点 A,连接 CD,
A.①②
B.②③
C.①②③
D.①③
6.菱形不具备的性质是( )
A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形
7.点 P(m + 3,m + 1)在 x 轴上,则 P 点坐标为( )
A.(0,﹣2)
B.(0,﹣4)
C.(4,0)
D.(2,0)
8.不等式 x+1≥2 的解集在数轴上表示正确的是( )
∴∠ADE=∠AED= 1 (180°﹣45°)=67.5°, 2
∴∠CED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠CED,故①正确;
∵∠AHB= 1 (180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等), 2
∴∠OHE=∠AED, ∴OE=OH, ∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°, ∴∠OHD=∠ODH, ∴OH=OD, ∴OE=OD=OH,故②正确; ∵∠EBH=90°﹣67.5°=22.5°, ∴∠EBH=∠OHD, 又 BE=DH,∠AEB=∠HDF=45° ∴△BEH≌△HDF(ASA), ∴BH=HF,HE=DF,故③正确; 由上述①、②、③可得 CD=BE、DF=EH=CE,CF=CD-DF, ∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确; ∵AB=AH,∠BAE=45°, ∴△ABH 不是等边三角形, ∴AB≠BH, ∴即 AB≠HF,故⑤错误; 综上所述,结论正确的是①②③④共 4 个. 故选 C. 【点睛】 考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角 形的判定与性质
6.B
解析:B 【解析】 【分析】根据菱形的性质逐项进行判断即可得答案. 【详解】菱形的四条边相等, 菱形是轴对称图形,也是中心对称图形, 菱形对角线垂直但不一定相等, 故选 B. 【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.
7.D
解析:D 【解析】 【分析】 根据点在 x 轴上的特征,纵坐标为 0,可得 m+1=0,解得:m=-1,然后再代入 m+3,可求出横坐标. 【详解】 解:因为点 P(m + 3,m + 1)在 x 轴上, 所以 m+1=0,解得:m=-1, 所以 m+3=2, 所以 P 点坐标为(2,0).
条直线上,那么这两个图形叫做位似图形。把一个图形变换成与之位似的图形是位似变
换。因此,
∵矩形 OA′B′C′与矩形 OABC 关于点 O 位似,∴矩形 OA′B′C′∽矩形 OABC。
∵矩形 OA′B′C′的面积等于矩形 OABC 面积的 1 ,∴位似比为: 1 。
4
2
∵点 B 的坐标为(-4,6),∴点 B′的坐标是:(-2,3)或(2,-3)。故选 D。
故选 D.
【点睛】
本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.
8.A
解析:A
【解析】
试题解析:∵x+1≥2,
∴x≥1.
故选 A.
考点:解一元一次不等式;在数轴上表示不等式的解集.
9.D
解析:D
【解析】
如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一
【点睛】 本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的 性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
5.D
解析:D 【解析】 如图,连接 BE,
根据圆周角定理,可得∠C=∠AEB, ∵∠AEB=∠D+∠DBE, ∴∠AEB>∠D, ∴∠C>∠D, 根据锐角三角形函数的增减性,可得, sin∠C>sin∠D,故①正确; cos∠C<cos∠D,故②错误; tan∠C>tan∠D,故③正确; 故选 D.
故选:C. 【点睛】 本题运用函数图象解决问题,看懂图象是解决问题的关键.
3.C
解析:C 【解析】 【分析】 【详解】 试题分析:∵在矩形 ABCD 中,AE 平分∠BAD, ∴∠BAE=∠DAE=45°, ∴△ABE 是等腰直角三角形,
∴AE= 2 AB, ∵AD= 2 AB,
∴AE=AD, 又∠ABE=∠AHD=90° ∴△ABE≌△AHD(AAS), ∴BE=DH, ∴AB=BE=AH=HD,
步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中 x 表示时
间, y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )
A.体育场离林茂家 2.5km B.体育场离文具店1km C.林茂从体育场出发到文具店的平均速度是 50m min
D.林茂从文具店回家的平均速度是 60m min 3.如图,在矩形 ABCD 中,AD= 2 AB,∠BAD 的平分线交 BC 于点 E,DH⊥AE 于点
A.
B.
C.
D.
9.如图,在直角坐标系中,矩形 OABC 的顶点 O 在坐标原点,边 OA 在 x 轴上, OC 在 y 轴上,如果矩形 OA′B′C′与矩形 OABC 关于点 O 位似,且矩形 OA′B′C′的面积等于矩
形 OABC 面积的 1 ,那么点 B′的坐标是( ) 4
A.(-2,3)
B.(2,-3)
2.C
解析:C 【解析】 【分析】 从图中可得信息:体育场离文具店 1000m,所用时间是(45﹣30)分钟,可算出速度. 【详解】
解:从图中可知:体育场离文具店的距离是: 2.5 1.5 1km 1000m ,
所用时间是 45 30 15分钟,
∴体育场出发到文具店的平均速度 1000 200 m min 15 3
25.解方程: x ﹣ 1 =1. x3 x
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】
由于比赛取前 5 名参加决赛,共有 11 名选手参加,根据中位数的意义分析即可. 【详解】 11 个不同的成绩按从小到大排序后,中位数及中位数之后的共有 5 个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选 B. 【点睛】 本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.
(2)根据手中剩余线的长度出风筝线 BC 的长度为 70 米; (3)量出测倾器的高度 AB=1.5 米.
根据测量数据,计算出风筝的高度 CE 约为_____米.(精确到 0.1 米, 3 ≈1.73).
16.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2 的值为__________. 17.如图是两块完全一样的含 30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块 三角尺重叠在一起,设较长直角边的中点为 M,绕中点 M 转动上面的三角尺 ABC,使其
相关文档
最新文档