【典型题】中考数学试题含答案

合集下载

中考数学试卷(含答案)

中考数学试卷(含答案)

中考数学试卷(含答案)中考数学试卷(含答案)一、选择题1. 设函数f(x) = 2x - 3,若f(a) = 7,则a的值是多少?A. 5B. 6C. 7D. 8答案:B2. 某商场正在进行促销活动,原价为360元的商品打7折,那么折后的价格是多少?A. 50.4元B. 252元C. 2520元D. 280元答案:B3. 已知一个长方体的长、宽、高分别为3cm、4cm、5cm,它的体积是多少立方厘米?A. 15 cm³B. 20 cm³C. 45 cm³D. 60 cm³答案:D4. 数列1,3,5,7,…,n的第100项是多少?A. 195B. 197C. 199D. 201答案:C5. 一张矩形桌子的长为120cm,宽为80cm。

如果将它等分成正方形小块,每个小块的边长是多少?A. 40cmB. 30cmC. 20cmD. 10cm答案:C二、填空题1. 四个相邻的奇数之和为96,那么这四个奇数分别是__、__、__、__。

(依次填入每个空格的数字,用逗号隔开)答案:23, 25, 27, 292. 若a:b = 3:4,b:c = 5:6,求a:b:c的比值。

(填入对应的值,用冒号隔开)答案:15:20:243. 某商场原价80元的商品,以8折的价格促销,促销价为__元。

(填入对应的数字)答案:644. 已知一个圆的半径是4cm,求其面积是__平方厘米,周长是__厘米。

(填入对应的数字,用逗号隔开)答案:16π, 8π5. 若a:b = 2:3,b:c = 4:5,c:d = 6:7,求a:b:c:d的比值。

(填入对应的值,用冒号隔开)答案:48:72:90:105三、解答题1. 已知正方形边长为a,求其面积和周长的比值。

解答:正方形的面积为a²,周长为4a。

所以面积与周长的比值为: a²/4a = a/42. 有一辆汽车在1小时内以60km/h的速度行驶了多少公里?解答:由速度等于路程除以时间的公式可得:路程 = 速度 ×时间。

初三数学考试题及答案

初三数学考试题及答案

初三数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.33333...答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 1/5D. -1/5答案:A3. 以下哪个方程是一元二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 2x - 3y = 0D. 3x^3 - 2 = 0答案:B4. 一个等腰三角形的两边长分别为3和5,那么第三边的长度是:A. 3B. 5C. 8D. 不能确定答案:B5. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A7. 以下哪个是正比例函数?A. y = 3x + 2B. y = 5xC. y = x^2D. y = 1/x答案:B8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:C9. 一个长方体的长、宽、高分别为3、4、5,那么它的体积是:A. 60B. 48C. 36D. 24答案:A10. 一个角的补角是120°,那么这个角是:A. 60°B. 120°C. 180°D. 0°答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,那么这个数可以是______或______。

答案:5或-512. 一个角的余角是30°,那么这个角是______。

答案:60°13. 一个数的平方等于9,那么这个数是______或______。

答案:3或-314. 一个等腰三角形的底角是45°,那么顶角是______。

答案:90°15. 函数y = 2x - 1与x轴的交点坐标是______。

中考数学试卷典型题及答案

中考数学试卷典型题及答案

一、选择题(每题3分,共30分)1. 已知等差数列{an}的首项为2,公差为3,则第10项an=()A. 29B. 30C. 31D. 32答案:C解析:由等差数列的通项公式an = a1 + (n-1)d,代入a1=2,d=3,n=10,得an = 2 + (10-1)×3 = 2 + 27 = 29。

2. 已知函数f(x) = 2x - 3,若f(a) = f(b),则a和b的关系是()A. a = bB. a = b + 3C. a = b - 3D. ab = 3答案:C解析:由f(a) = f(b),代入函数f(x) = 2x - 3,得2a - 3 = 2b - 3,化简得a = b。

3. 在△ABC中,∠A=60°,∠B=45°,则∠C=()A. 75°B. 105°C. 120°D. 135°答案:C解析:三角形内角和为180°,所以∠C = 180° - ∠A - ∠B = 180° - 60° - 45° = 75°。

4. 若方程x^2 - 5x + 6 = 0的两根为x1和x2,则x1 + x2的值为()A. 2B. 5C. 6D. 7答案:B解析:根据一元二次方程的根与系数的关系,x1 + x2 = -b/a,代入a=1,b=-5,得x1 + x2 = -(-5)/1 = 5。

5. 已知直线l的方程为2x - y + 1 = 0,点P(1,2)关于直线l的对称点Q的坐标为()A. (2,0)B. (0,2)C. (-1,0)D. (0,-1)答案:A解析:点P关于直线l的对称点Q,其横坐标x' = 2x - 2a/(2b),纵坐标y' =2y - 2b/(2a),代入a=1,b=-1,x=1,y=2,得x' = 2×1 - 2×1/(2×(-1)) = 2,y' = 2×2 - 2×(-1)/(2×1) = 0。

中考数学试题试卷及答案

中考数学试题试卷及答案

中考数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x-3>0的解集?A. x>1B. x<1C. x>3/2D. x<3/2答案:C2. 一个圆的半径为3cm,其面积是多少平方厘米?A. 28.26B. 18.84C. 9.42D. 15.7答案:B3. 如果一个数的立方根等于它本身,那么这个数可能是?A. 0B. 1C. -1D. A和B答案:D4. 计算下列哪个表达式的结果为-1?A. (-2)^3B. (-2)^2C. (-1)^3D. (-1)^2答案:C5. 以下哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 3/x答案:A6. 一个等腰三角形的两边长分别为5cm和10cm,那么它的周长是多少?A. 20cmB. 15cmC. 25cmD. 不能构成三角形答案:D7. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) + 1答案:A8. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A9. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:A10. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A二、填空题(每题3分,共30分)11. 一个直角三角形的两个直角边长分别是3cm和4cm,那么斜边的长度是_________。

答案:5cm12. 一个数的绝对值是5,那么这个数可能是_________或_________。

答案:5或-513. 一个正数的平方根是2,那么这个数是_________。

答案:414. 一个数除以-1/2等于乘以_________。

【典型题】中考数学试题(附答案)

【典型题】中考数学试题(附答案)

【典型题】中考数学试题(附答案)一、选择题1.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()6,0-B .()6,0C .()2,0-D .()2,02.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A .1B .2C .3D .4 3.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( ) A .2B .3C .5D .7 4.函数21y x =-中的自变量x 的取值范围是( ) A .x ≠12 B .x ≥1 C .x >12 D .x ≥125.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°6.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .47.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃8.下面的几何体中,主视图为圆的是( )A .B .C .D .9.下列计算错误的是( )A.a2÷a0•a2=a4B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5D.﹣1.58÷(﹣1.5)7=﹣1.510.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.23π﹣23B.13π﹣3C.43π﹣23D.43π﹣311.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个12.下列几何体中,其侧面展开图为扇形的是( )A.B.C.D.二、填空题13.如图,⊙O是△ABC的外接圆,∠A=45°,则cos∠OCB的值是________.14.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.15.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.16.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.17.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.18.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.19.已知10a b b -+-=,则1a +=__.20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 项部M 的仰角为37°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E .请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)22.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?23.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.2.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.3.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.4.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,故选D.【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.B解析:B【解析】【分析】由AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.∵AB ∥CD ,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE 平分∠BAC ,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.6.C解析:C【解析】【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确;③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确.故选C .7.B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.解析:C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.9.D解析:D【解析】分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.详解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(-1.5)8÷(-1.5)7=-1.5,∴选项C不符合题意;∵-1.58÷(-1.5)7=1.5,∴选项D符合题意.故选D.点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.10.C解析:C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=1,在Rt △COD 中利用勾股定理可知:=,∵sin ∠COD= 2CD OC =, ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =12B×AC=12×2× S 扇形AOC =2120243603ππ⨯⨯=,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =43π- 故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π,有一定的难度. 11.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C .12.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A 、圆柱的侧面展开图是矩形,故A 错误;B 、三棱柱的侧面展开图是矩形,故B 错误;C 、圆锥的侧面展开图是扇形,故C 正确;D 、三棱锥的侧面展开图是三个三角形拼成的图形,故D 错误,故选C .【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =2OC BC ==.故答案为2. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.3【解析】【分析】分别延长AEBF 交于点H 易证四边形EPFH 为平行四边形得出G 为PH 中点则G 的运行轨迹为三角形HCD 的中位线MN 再求出CD 的长运用中位线的性质求出MN 的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.16.【解析】【分析】设D(x2)则E(x+21)由反比例函数经过点DE列出关于x 的方程求得x的值即可得出答案【详解】解:设D(x2)则E(x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 17.2【解析】【分析】设这个圆锥的底面圆的半径为R 根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R 由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R ,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R ,由题意: 2πR=1804180π⨯, 解得R=2.故答案为2. 18.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 19.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab 的值进而即可得出答案【详解】∵+|b ﹣1|=0又∵∴a ﹣b=0且b ﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.【详解】b ﹣1|=0,0≥,|1|0b -≥,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为 解析:516. 【解析】【分析】【详解】 画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.三、解答题21.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.22.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x 档次的产品,根据题意得:[10+2(x -1)]×[76-4(x -1)]=1024, 整理得:x 2﹣16x +48=0,解得:x 1=4,x 2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x 的一元二次方程.23.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,剟剟. 当1017a 剟时, (ⅰ)当10a =时,10010801200b ⨯+„,∴52b „, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+„,∴54b „, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a …时,1001200a …,即成人门票至少需要1200元,不合题意,舍去. 当110a <„时,(ⅰ)当9a =时,100980601200b ⨯++„,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++„,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.24.(1)证明见解析(2)48【解析】【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG ,继而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH 是矩形,进而利用勾股定理得出HO 的长,进而得出答案.【详解】(1)连接FO ,∵ OF =OC ,∴ ∠OFC =∠OCF .∵CF 平分∠ACE ,∴∠FCG =∠FCE .∴∠OFC =∠FCG .∵ CE 是⊙O 的直径,∴∠EDG =90°,又∵FG //ED ,∴∠FGC =180°-∠EDG =90°,∴∠GFC +∠FCG =90°∴∠GFC +∠OFC =90°,即∠GFO =90°,∴OF ⊥GF ,又∵OF 是⊙O 半径,∴FG 与⊙O 相切.(2)延长FO ,与ED 交于点H ,由(1)可知∠HFG =∠FGD =∠GDH =90°,∴四边形FGDH 是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH=22OE HE-=2254-=3.∴FH=FO+OH=5+3=8.S四边形FGDH=12(FG+ED)•FH=12×(4+8)×8=48.25.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。

福建中考数学试题及答案解析

福建中考数学试题及答案解析

福建中考数学试题及答案解析一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -2B. 0C. 1.5D. π答案:B解析:正整数是指大于0的整数,选项B中的0不是正整数,因此正确答案应为选项C,即1.5。

2. 已知一个三角形的两边长分别为3cm和4cm,第三边长x的取值范围是?A. 1cm < x < 7cmB. 0cm < x < 7cmC. 1cm < x < 10cmD. 0cm < x < 10cm答案:A解析:根据三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边。

因此,第三边x的取值范围为1cm < x < 7cm。

3. 计算下列表达式的值:(-3)^2A. 9B. -9C. 3D. -3答案:A解析:负数的偶数次幂结果为正数,因此(-3)^2 = 9。

4. 一个圆的半径为5cm,其面积是多少?A. 25π cm^2B. 50π cm^2C. 75π cm^2D. 100π cm^2答案:B解析:圆的面积公式为A = πr^2,将半径r=5cm代入公式,得到面积A = π(5cm)^2 = 25π cm^2。

5. 若a和b互为相反数,则a+b的值为?A. 0B. 1C. -1D. 无法确定答案:A解析:相反数是指两个数的和为0,因此若a和b互为相反数,则a+b=0。

6. 下列哪个函数是一次函数?A. y = 2x^2B. y = 3x + 4C. y = 5/xD. y = x^3 - 2答案:B解析:一次函数的一般形式为y = kx + b,其中k和b为常数,且k≠0。

选项B中的函数y = 3x + 4符合一次函数的定义。

7. 已知一个等腰三角形的底边长为6cm,腰长为5cm,其周长是多少?A. 16cmB. 21cmC. 26cmD. 无法确定答案:B解析:等腰三角形的两腰相等,因此周长为底边长加上两倍的腰长,即6cm + 2*5cm = 21cm。

中考数学试卷真题带答案

中考数学试卷真题带答案

一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 若方程2x-3=5的解为x,则x的值为()A. 2B. 4C. 7D. 8答案:B解析:将方程2x-3=5移项得2x=5+3,即2x=8,两边同时除以2得x=4。

2. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的面积为()A. 24cm²B. 32cm²C. 36cm²D. 48cm²答案:C解析:等腰三角形的面积公式为S=1/2×底×高,由于是等腰三角形,底边上的高也是腰的中线,所以高为8cm的一半,即4cm。

代入公式得S=1/2×6×4=12cm²,再乘以2得36cm²。

3. 下列函数中,定义域为全体实数的是()A. y=√(x-1)B. y=1/xC. y=x²D. y=1/x²答案:C解析:A选项中,x-1≥0,即x≥1,所以定义域不是全体实数;B选项中,x≠0,所以定义域不是全体实数;D选项中,x≠0,所以定义域不是全体实数;C选项中,x²的定义域为全体实数。

4. 若a、b、c是等差数列,且a+c=10,b=5,则公差d为()A. 1B. 2C. 3D. 4答案:B解析:等差数列的性质是相邻两项之差相等,即d=a2-a1=b-a1。

由a+c=10,得c=a+9。

又因为b=5,所以d=5-a。

将a+c=10代入得5-a+a+9=10,解得a=2,所以d=5-2=3。

5. 下列命题中,正确的是()A. 平行四边形的对角线互相垂直B. 等腰三角形的底角相等C. 直角三角形的斜边最长D. 等边三角形的三个角都相等答案:B解析:A选项错误,平行四边形的对角线互相平分但不一定垂直;B选项正确,等腰三角形的两腰相等,所以底角也相等;C选项正确,直角三角形的斜边是直角边所对的边,所以斜边最长;D选项正确,等边三角形的定义就是三边都相等,所以三个角也都相等。

初中中考数学试题及答案

初中中考数学试题及答案

初中中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是无理数?A. 3.1416B. πC. √2D. 0.33333答案:C2. 如果一个数的平方等于它本身,那么这个数是:A. 1B. -1C. 0D. 1或-1答案:D3. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. A或C答案:D5. 以下哪个是二次根式?A. √3xB. √x/2C. √x^2D. √x + 1答案:A6. 如果一个多项式的次数是3,那么它至少有几个项?A. 1B. 2C. 3D. 4答案:B7. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π答案:C8. 下列哪个是整式?A. 2x/3B. 3x^2 + 2x + 1C. √xD. x^3 - √x答案:B9. 如果一个数的立方等于它本身,那么这个数是:A. 1B. -1C. 0D. A或C答案:D10. 一个长方体的长、宽、高分别为2、3和4,那么它的体积是:A. 24B. 26C. 28D. 30答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 一个数的相反数是-5,这个数是______。

答案:512. 如果一个数的平方根是4,那么这个数是______。

答案:1613. 一个数的绝对值是8,这个数可能是______或______。

答案:8 或 -814. 一个二次方程ax^2 + bx + c = 0的判别式是b^2 - 4ac,当判别式大于0时,方程有______个实数解。

答案:215. 一个数列的前三项是2、5、10,如果这个数列是等差数列,那么第四项是______。

答案:17三、解答题(本题共3小题,每小题10分,共30分)16. 解方程:2x - 5 = 3x + 1。

中考数学试题及答案

中考数学试题及答案

中考数学试题及答案一、选择题1.下图是一个正方形,边长为10cm。

计算正方形的周长是多少? A.20cm B. 40cm C. 50cm D. 100cm2.已知正方形ABCD的边长为8cm,以A为圆心,以AD为半径画一个圆,求圆的面积是多少?A. 64π cm² B. 32π cm² C. 16π cm² D. 8π cm²3.若a:b=3:5,且a=15,则b的值是多少? A. 9 B. 25 C. 5 D. 754.小明参加马拉松比赛,他以每小时12km的速度比赛,若比赛用时3小时,他跑了多少公里? A. 36km B. 30km C. 24km D. 12km5.某天气预报显示,上午9点的温度为18℃,下午3点的温度为26℃,一天中温度的变化是多少? A. 8℃ B. 26℃ C. 44℃ D. 208℃二、填空题1.一条矩形围墙的长是12米,宽比长少2米,这条矩形围墙的宽是______米。

2.小明去商场买东西,他消费了100元,其中60%购买了一本书,剩下的钱他买了一件T恤,这件T恤的价格是______元。

3.已知函数y = 2x - 4,那么当x=5时,y的值是______。

4.一个矩形的面积是48平方厘米,长是6厘米,那么宽是______。

5.一块地的正方形面积是200平方米,那么它的边长是______米。

三、解答题1.现有一个蛋糕,小明吃了其中的1/4,小红吃了其中的1/3,小王吃了剩下的部分。

请问小王吃了蛋糕的几分之几?2.请计算:20 * (2 + 3) ÷ 4 - 6 = ______。

3.求方程2x + 4 = 10的解。

4.如果a + 8 = 20,求a的值。

5.简述三角形的直角边、斜边和角度之间的关系。

四、答案一、选择题:A、C、D、A、A二、填空题:10、40、6、8、14三、解答题: 1. 小王吃了蛋糕的1/2部分。

【必考题】数学中考试卷(含答案)

【必考题】数学中考试卷(含答案)

【必考题】数学中考试卷(含答案)一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.63.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm4.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.5.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③7.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元 A .8B .16C .24D .328.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 9.下列计算正确的是( )A .a 2•a=a 2B .a 6÷a 2=a 3C .a 2b ﹣2ba 2=﹣a 2bD .(﹣32a )3=﹣398a10.估6的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间11.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.分解因式:x 3﹣4xy 2=_____.14.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为____.15.不等式组125x ax x->⎧⎨->-⎩有3个整数解,则a的取值范围是_____.16.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.17.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.18.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx =在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.19.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是_____.20.分式方程32xx2--+22x-=1的解为________.三、解答题21.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整 (收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83 (整理数据)按如下分数段整理、描述这两组样本数据在表中,a = ,b = . (分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:在表中:x = ,y = .(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有 人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.22.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明23.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 25.某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人; (2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.4.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.5.B解析:B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.6.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.7.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.8.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。

中考数学试卷大题及答案

中考数学试卷大题及答案

一、填空题(每空2分,共20分)1. 若等差数列{an}的首项为2,公差为3,则第10项an=__________。

答案:an = 2 + (10 - 1) × 3 = 2 + 27 = 29。

2. 已知二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, -4),则a=__________,b=__________,c=__________。

答案:a > 0,因为开口向上,所以a=1;b=-2a=-2;c=-a+b-4=-1。

3. 在△ABC中,∠A=60°,AB=8,AC=10,则BC=__________。

答案:由余弦定理,BC^2 = AB^2 + AC^2 - 2 × AB × AC × cosA = 64 + 100 - 2 × 8 × 10 × cos60° = 196 - 80 = 116,所以BC = √116。

4. 已知等比数列{an}的首项为3,公比为2,则第5项an=__________。

答案:an = 3 × 2^(5-1) = 3 × 2^4 = 3 × 16 = 48。

5. 若方程x^2 - 4x + 3 = 0的两个根分别为a和b,则a+b=__________,ab=__________。

答案:由韦达定理,a+b=4,ab=3。

二、选择题(每题3分,共30分)6. 下列选项中,不是函数图象平移的是()A. y = x^2B. y = (x+1)^2C. y = x^2 + 2D. y = x^2 - 3x + 2答案:C7. 若m和n是方程x^2 - 5x + 6 = 0的两个根,则m^2 + n^2 = _________A. 16B. 20C. 25D. 30答案:B8. 在直角坐标系中,点P(2, -3)关于原点对称的点为()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)答案:B9. 已知函数y = 2x - 1在x=3时的函数值为5,则该函数的解析式为()A. y = 2x + 3B. y = 2x - 3C. y = x + 3D. y = x - 3答案:B10. 在△ABC中,∠A=90°,∠B=30°,AB=6,则AC=__________。

2024年河北省中考真题数学试卷含答案解析

2024年河北省中考真题数学试卷含答案解析

2024年河北省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .【答案】A 【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-∴气温变化为先下降,然后上升,再上升,再下降.故选:A .2.下列运算正确的是( )A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=【答案】C【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC⊥B .AC PQ ⊥C .ABO CDO △≌△D .AC BD∥【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .4.下列数中,能使不等式516x -<成立的x 的值为( )A .1B .2C .3D .45.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的( )A .角平分线B .高线C .中位线D .中线【答案】B 【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC ⊥,从而可得答案.【详解】解:由作图可得:BD AC ⊥,∴线段BD 一定是ABC 的高线;故选B6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )A .B .C .D .【答案】D【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有3列,每列上小正方体个数从左往右分别为3、1、1.故选:D .7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( )A .若5x =,则100y =B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍8.若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是( )A .38a b+=B .38a b =C .83a b +=D .38a b=+【答案】A 【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .11【答案】C【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程221a a +=,利用公式法求解即可.【详解】解:由题意得:221a a +=,10.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,ABC 中,AB AC =,AE 平分ABC 的外角CAN ∠,点M 是AC 的中点,连接BM 并延长交AE 于点D ,连接CD .求证:四边形ABCD 是平行四边形.证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠,∴①______.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②______).∴MD MB =.∴四边形ABCD 是平行四边形.若以上解答过程正确,①,②应分别为( )A .13∠=∠,AASB .13∠=∠,ASAC .23∠∠=,AASD .23∠∠=,ASA11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=( )A .115︒B .120︒C .135︒D .144︒12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D13.已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy -,则A =( )A .x B .y C .x y +D .x y -14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若n m SS =,则m 与n 关系的图象大致是( )D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法⨯,运算结果为3036.图运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132232表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”()2,1P 按上述规则连续平移3次后,到达点()32,2P ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7-或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位 ,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.【答案】89【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,89出现的次数最多,∴以上数据的众数为89.故答案为:89.18.已知a,b,n均为正整数.(1)若1<<+,则n=;n n(2)若1,1-<<<<+,则满足条件的a的个数总比b的个数少个.n n n n2n 与()21n +之间的整数有2n 个,∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个),故答案为:2.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为4-,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A ,B ,C 三点所对应的数的和,并求ABAC的值;(2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值.21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b +2a b +a b-a b +22a b+2a2a b+a b-2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离1.6m ==AB CD ,点P 到BQ 的距离2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;∠的值.(2)求CP的长及sin APC∵1tan tan 4CH PAE AH α=∠==,设∴()22249x x AC +==,解得:31717x =,∴317CH =m,23.情境 图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.由拼接可得:HF FO KG '==由正方形的性质可得:45A ∠=∴AHG ,H G D '' ,AFE △为等腰直角三角形,∴G KH '' 为等腰直角三角形,设H K KG x ''==,此时2BP '=,222P Q ''=+=,符合要求,或以C 圆心,CO 为半径画弧,交BC 此时2CP CQ ==,222PQ =+=∴22BP =-,综上:BP 的长为2或22-.24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80x y p=;当150p x ≤≤时,()2080150x p y p -=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)9510010511115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知O 的半径为3,弦MN =ABC 中,90,3,ABC AB BC ∠=︒==先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B与点N重合时,求劣弧 AN的长;∥时,如图2,求点B到OA的距离,并求此时x的值;(2)当OA MN(3)设点O到BC的距离为d.①当点A在劣弧 MN上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.∵O 的半径为3,3AB =,∴3OA OB AB ===,∴AOB 为等边三角形,∴60AOB ∠=︒,∴ AN 的长为60π3π180´=;∵25MN =,O H M N ⊥,∴5MH NH ==,而OM =∴222OH OM MH =-==∴点B 到OA 的距离为2;⊥于J,过O作过O作OJ BC∴四边形KOJB为矩形,=,∴OJ KB∵3AB=,32BC=,∴2233=+=,AC AB BC⊥于Q 如图,过A作AQ OB⊥∵B为MN中点,则OB MN∵90ABC AQB ∠=︒=∠,∴90OBJ ABO ABO ∠+∠=︒=∠∴OBJ BAQ ∠=∠,∴tan tan OBJ BAQ ∠=∠,∴122OJ BQ BJ AQ ==,26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .∴交点()426,6J --,交点()426,6K +,由直线l PQ ∥,设直线l 为4y x b =+,∴()44266b -+=-,解得:8622b =-,∴直线l 为:48622y x =+-,∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭,∴L 的横坐标为2t 2+,∵21,22M m m m ⎛⎫- ⎪⎝⎭,()21,2N n n t ⎡--+⎢⎣∴L 的横坐标为2m n +,。

历年中考数学试题及答案

历年中考数学试题及答案

历年中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 一个数的平方根是3,那么这个数是:A. 3B. 9C. -3D. -9答案:B3. 已知一个三角形的两边长分别为3和4,第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 6答案:C4. 计算下列哪个表达式的结果是正数?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. (-2) × (-3) × 2答案:A5. 一个圆的半径是5厘米,那么它的周长是:A. 10π cmB. 20π cmC. 30π cmD. 40π cm答案:B6. 一个等腰三角形的两个底角都是45度,那么顶角的度数是:A. 45°B. 90°C. 135°D. 180°答案:B7. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C8. 计算下列哪个表达式的结果大于0?A. 3 - 2B. 3 + (-2)C. -3 - 2D. -3 + (-2)答案:A9. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 14答案:A10. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1答案:A二、填空题(每题4分,共20分)1. 一个数的立方根是2,那么这个数是________。

答案:82. 一个数的倒数是2/3,那么这个数是________。

答案:3/23. 一个数的绝对值是6,那么这个数可能是________或________。

答案:6,-64. 一个三角形的内角和是________度。

答案:1805. 一个圆的直径是10厘米,那么它的半径是________厘米。

初中中考数学试题及答案

初中中考数学试题及答案

初中中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 2B. x = 1C. x = 0D. x = -1答案:A2. 一个矩形的长是10cm,宽是6cm,那么它的面积是多少平方厘米?A. 60B. 30C. 40D. 50答案:A3. 一个数的平方是36,那么这个数是?A. 6B. -6C. 6或-6D. 以上都不对答案:C4. 一个圆的直径是14cm,那么它的半径是多少?A. 7cmB. 14cmC. 28cmD. 无法确定答案:A5. 一个三角形的三个内角分别是40°,60°和80°,那么这个三角形是什么类型的三角形?A. 直角三角形B. 等腰三角形C. 等边三角形D. 不规则三角形答案:D6. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C7. 一个数除以2得到5,那么这个数是多少?A. 10B. 5C. 2D. 0答案:A8. 一个数的立方是27,那么这个数是?A. 3B. -3C. 3或-3D. 9答案:A9. 一个数的倒数是2,那么这个数是多少?A. 1/2B. 2C. -1/2D. -2答案:A10. 一个数的平方根是4,那么这个数是?A. 16B. 4C. -4D. 以上都不对答案:A二、填空题(每题3分,共30分)1. 一个数的平方是16,这个数是______。

答案:4或-42. 一个数的立方是-8,这个数是______。

答案:-23. 一个数的绝对值是4,这个数是______。

答案:4或-44. 一个数的倒数是1/3,这个数是______。

答案:35. 一个数的平方根是2,这个数是______。

答案:46. 一个数的立方根是3,这个数是______。

答案:277. 一个数除以3得到2,这个数是______。

答案:68. 一个数的平方是25,这个数是______。

中考数学试题真题(含答案)

中考数学试题真题(含答案)

中考数学试题真题(含答案)中考数学试题真题(含答案)一、选择题1. 在平面直角坐标系中,点A的坐标为(3,4),点B的坐标为(-2,-1),则线段AB的长度为A. 2B. 3C. 5D. 6答案:C2. 下列各式中,等式成立的是A. 5x + 2 = 3B. 2x + 4 = x - 3C. 7x - 1 = 5x + 3D. 3x + 2 = 2x + 5答案:A3. 若A、B为正数,则以下不等式成立的是A. A × B < A + BB. A × B > A + BC. A^2 + B^2 < 2ABD. A^2 + B^2 > 2AB答案:C4. 已知两边的长度分别为a、b的直角三角形,斜边的长度为c,则下列各等式中,成立的是A. a^2 + b^2 = cB. a + b = cC. a × b = cD. a - b = c答案:A5. 若曲线y = x^2关于y轴对称,则其对称轴为A. x = 0B. y = 0C. x = yD. x = -y答案:A二、填空题1. 已知1 + 1/2 + 1/4 + 1/8 + ...的前n项和为______。

答案:2 - 1/2^n2. 已知一扇形的顶角为60°,则它的周长较长的一段弧所对的圆心角的度数为______。

答案:300°3. 若a是一个整数,且a^2 > a,则a的取值范围为______。

答案:a <-1 或者 a > 0三、解答题1. 计算下列等式的值:(2^3) × (3^2) ÷ (2^2) - (5^2) + (6^2) ÷ (2^3)答案:172. 在平面直角坐标系中,已知点A(2,1),点B(-1,4),求线段AB的中点坐标。

答案:(-1/2, 5/2)3. 当x = 2时,已知函数y = ax^2 + bx + c的值为0,且当x = 3时,函数值为4。

初三数学中考试卷及答案

初三数学中考试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -2D. 32. 如果 |a| = 5,那么 a 的值是()A. ±5B. 5C. ±2D. 03. 已知x² - 5x + 6 = 0,则 x 的值为()A. 2B. 3C. 4D. 64. 在△ABC中,∠A = 90°,∠B = 45°,则△ABC是()A. 等腰直角三角形B. 等边三角形C. 钝角三角形D. 锐角三角形5. 若 m + n = 7,m - n = 3,则m² - n² 的值为()A. 16B. 14C. 12D. 106. 已知一次函数 y = kx + b 的图象经过点(2,3),且 k > 0,则该函数的图象在()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第一、四象限7. 如果等差数列 {an} 的前5项和为15,公差为2,那么第10项 an 的值为()A. 9B. 11C. 13D. 158. 在△ABC中,若∠A = 60°,∠B = 45°,则 sinC 的值为()A. √3/2B. 1/2C. √2/2D. √6/29. 若x² - 2x - 3 = 0,则 x 的值为()A. 1B. -3C. 3D. 1 或 -310. 下列各数中,无理数是()A. √4B. √9/3C. √16/4D. √25/5二、填空题(每题5分,共20分)11. 若 a = -2,则 |a| = _______。

12. 若 x = -√2,则x² = _______。

13. 已知等差数列 {an} 的第一项为2,公差为3,则第10项 an = _______。

14. 若 sinA = 1/2,且0° < A < 90°,则 cosA = _______。

中考数学考试题及答案

中考数学考试题及答案

中考数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. √3B. 0.3C. πD. 1/3答案:A2. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 4D. 8答案:A4. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个正方体的体积是64立方厘米,它的表面积是多少?A. 64B. 96C. 128D. 256答案:C6. 一个数列的前三项是1, 2, 3,如果这个数列是等差数列,第四项是多少?A. 4B. 5C. 6D. 7答案:A7. 一个二次方程x² - 5x + 6 = 0的解是什么?A. x = 2, 3B. x = 1, 6C. x = 3, 2D. x = 4, 1答案:C8. 一个函数y = 2x - 1在x = 3时的值是多少?A. 5B. 4C. 3D. 2答案:A9. 下列哪个图形是中心对称图形?A. 正方形B. 圆C. 等边三角形D. 矩形答案:B10. 一个长方体的长、宽、高分别是6, 4, 3,它的体积是多少?A. 72B. 64C. 84D. 96答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可能是________。

答案:±512. 一个数的立方根是2,这个数是________。

答案:813. 一个数的倒数是1/4,这个数是________。

答案:414. 一个数的相反数是-3,这个数是________。

答案:315. 一个数的平方是25,这个数是________。

答案:±516. 一个圆的直径是14,它的半径是________。

答案:717. 一个三角形的三边长分别是3, 4, 5,这是一个________三角形。

历年全国中考数学试题及答案

历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的周长公式?A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B2. 已知直角三角形的两直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = \frac{1}{x}D. y = x^3 - 2x答案:B5. 一个数的绝对值等于它本身,这个数是?A. 正数B. 负数C. 非负数D. 非正数答案:C6. 计算下列哪个表达式的结果为0?A. 2x + 3 - (2x + 3)B. 4x^2 - 4x^2C. 5x - 5x + 1D. 3x^2 - 2x + 1答案:B7. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bc(c > 0)C. 如果a > b,那么a/c > b/c(c > 0)D. 以上都是答案:D8. 一个等腰三角形的底角为70°,那么顶角的度数是多少?A. 40°B. 70°C. 80°D. 100°答案:A9. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 不规则多边形答案:B10. 计算下列哪个表达式的结果是负数?A. (-2)^3B. (-2)^2C. (-2)^1D. (-2)^0答案:A二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 一个数的立方根是2,那么这个数是________。

答案:813. 一个等差数列的首项是3,公差是2,那么第5项是________。

中考数学题目试题及答案

中考数学题目试题及答案

中考数学题目试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 一个数的平方等于16,这个数是:A. 4B. -4C. 4或-4D. 2答案:C3. 以下哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 3C. x = 2D. x = 4答案:A4. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A5. 计算下列表达式的值:(3x - 2) + (5x + 6) =A. 8x + 4B. 8x - 4C. 3x + 8D. 5x + 4答案:A6. 一个三角形的两个内角分别是30度和60度,第三个内角是:A. 90度B. 60度C. 30度D. 120度答案:A7. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是10,这个数可以是:A. 10B. -10C. 0D. 10或-10答案:D9. 计算下列表达式的值:(2x^2 - 3x + 1) - (3x^2 - 2x + 4) =A. -x^2 + 5x - 3B. -x^2 + 5x + 3C. -x^2 - 5x + 3D. -x^2 - 5x - 3答案:A10. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. -4答案:A二、填空题(每题4分,共20分)1. 一个数的立方是-27,这个数是______。

答案:-32. 一个数的平方根是2,这个数是______。

答案:43. 一个数的倒数是2,这个数是______。

答案:1/24. 一个数的绝对值是5,这个数可以是______。

答案:5或-55. 一个数的平方是25,这个数可以是______。

答案:5或-5三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 11。

答案:3x - 7 = 113x = 18x = 62. 计算:(2x^2 - 3x + 5) / (x - 2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

条直线上,那么这两个图形叫做位似图形。把一个图形变换成与之位似的图形是位似变
换。因此,
∵矩形 OA′B′C′与矩形 OABC 关于点 O 位似,∴矩形 OA′B′C′∽矩形 OABC。
∵矩形 OA′B′C′的面积等于矩形 OABC 面积的 1 ,∴位似比为: 1 。
4
2
∵点 B 的坐标为(-4,6),∴点 B′的坐标是:(-2,3)或(2,-3)。故选 D。
且∠CDB=∠OBD=30°,DB= 6 3 cm.
(1)求证:AC 是⊙O 的切线; (2)求由弦 CD、BD 与弧 BC 所围成的阴影部分的面积.(结果保留 π)
22.如图 1,△ABC 内接于⊙O,∠BAC 的平分线交⊙O 于点 D,交 BC 于点 E(BE>EC),且
BD=2 3 .过点 D 作 DF∥BC,交 AB 的延长线于点 F.
步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中 x 表示时
间, y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )
A.体育场离林茂家 2.5km B.体育场离文具店1km C.林茂从体育场出发到文具店的平均速度是 50m min
D.林茂从文具店回家的平均速度是 60m min 3.如图,在矩形 ABCD 中,AD= 2 AB,∠BAD 的平分线交 BC 于点 E,DH⊥AE 于点
(2)根据手中剩余线的长度出风筝线 BC 的长度为 70 米; (3)量出测倾器的高度 AB=1.5 米.
根据测量数据,计算出风筝的高度 CE 约为_____米.(精确到 0.1 米, 3 ≈1.73).
16.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2 的值为__________. 17.如图是两块完全一样的含 30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块 三角尺重叠在一起,设较长直角边的中点为 M,绕中点 M 转动上面的三角尺 ABC,使其
故选:C. 【点睛】 本题运用函数图象解决问题,看懂图象是解决问题的关键.
3.C
解析:C 【解析】 【分析】 【详解】 试题分析:∵在矩形 ABCD 中,AE 平分∠BAD, ∴∠BAE=∠DAE=45°, ∴△ABE 是等腰直角三角形,
∴AE= 2 AB, ∵AD= 2 AB,
∴AE=AD, 又∠ABE=∠AHD=90° ∴△ABE≌△AHD(AAS), ∴BE=DH, ∴AB=BE=AH=HD,
故选 D.
【点睛】
本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.
8.A
解析:A
【解析】
试题解析:∵x+1≥2,
∴x≥1.
故选 A.
考点:解一元一次不等式;在数轴上表示不等式的解集.
9.D
解析:D
【解析】
如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一
C.(3,-2)或(-2,3) D.(-2,
3)或(2,-3)
10.如图,在⊙O 中,AE 是直径,半径 OC 垂直于弦 AB 于 D,连接 BE,若 AB=2 7 ,
CD=1,则 BE 的长是 ( )
A.5
B.6
C.7
D.8
11.如图,菱形 ABCD 的对角线相交于点 O,若 AC=8,BD=6,则菱形的周长为
4.B
解析:B 【解析】 【分析】 根据题意可知 DE 是 AC 的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A 和∠B 互 余可求出∠A,由三角形外角性质即可求出∠CDA 的度数. 【详解】 解:∵DE 是 AC 的垂直平分线, ∴DA=DC, ∴∠DCE=∠A, ∵∠ACB=90°,∠B=34°, ∴∠A=56°, ∴∠CDA=∠DCE+∠A=112°, 故选 B.
2.C
解析:C 【解析】 【分析】 从图中可得信息:体育场离文具店 1000m,所用时间是(45﹣30)分钟,可算出速度. 【详解】
解:从图中可知:体育场离文具店的距离是: 2.5 1.5 1km 1000m ,
所用时间是 45 30 15分钟,
∴体育场出发到文具店的平均速度 1000 200 m min 15 3
直角顶点 C 恰好落在三角尺 A′B′C′的斜边 A′B′上.当∠A=30°,AC=10 时,两直角顶点 C,C′间的距离是_____.
18.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9, 9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学 的植树总棵数为 19 的概率______.
半径作弧,两弧相交于点 M 和点 N ,作直线 MN 交 AB 于点 D ,交 AC 于点 E ,连接 CD .若 B 34 ,则∠BDC 的度数是( )
A. 68
B.112
C.124
D.146
5.如图,若锐角△ABC 内接于⊙O,点 D 在⊙O 外(与点 C 在 AB 同侧),则下列三个结
论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D 中,正确的结论为( )
D. 120 150 x x8
二、填空题
13.不等式组
3x x 1 2
2x 4 1 x
的整数解是
1
x=

14.若 a , b 互为相反数,则 a2b ab2 ________.
15.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高 度,进行了如下操作:
(1)在放风筝的点 A 处安置测倾器,测得风筝 C 的仰角∠CBD=60°;
∴∠ADE=∠AED= 1 (180°﹣45°)=67.5°, 2
∴∠CED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠CED,故①正确;
∵∠AHB= 1 (180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等), 2
∴∠OHE=∠AED, ∴OE=OH, ∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°, ∴∠OHD=∠ODH, ∴OH=OD, ∴OE=OD=OH,故②正确; ∵∠EBH=90°﹣67.5°=22.5°, ∴∠EBH=∠OHD, 又 BE=DH,∠AEB=∠HDF=45° ∴△BEH≌△HDF(ASA), ∴BH=HF,HE=DF,故③正确; 由上述①、②、③可得 CD=BE、DF=EH=CE,CF=CD-DF, ∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确; ∵AB=AH,∠BAE=45°, ∴△ABH 不是等边三角形, ∴AB≠BH, ∴即 AB≠HF,故⑤错误; 综上所述,结论正确的是①②③④共 4 个. 故选 C. 【点睛】 考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角 形的判定与性质
(2)求证: CD BE AD DE .
24.某旅行团 32 人在景区 A 游玩,他们由成人、少年和儿童组成.已知儿童 10 人,成人 比少年多 12 人. (1)求该旅行团中成人与少年分别是多少人? (2)因时间充裕,该团准备让成人和少年(至少各 1 名)带领 10 名儿童去另一景区 B 游 玩.景区 B 的门票价格为 100 元/张,成人全票,少年 8 折,儿童 6 折,一名成人可以免费 携带一名儿童. ①若由成人 8 人和少年 5 人带队,则所需门票的总费用是多少元? ②若剩余经费只有 1200 元可用于购票,在不超额的前提下,最多可以安排成人和少年共多 少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.
【典型题】中考数学试题含答案
一、选择题
1.在庆祝新中国成立 70 周年的校园歌唱比赛中,11 名参赛同学的成绩各不相同,按照成
绩取前 5 名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要
知道这 11 名同学成绩的( )
A.平均数
B.中位数
C.众数
D.方差
2.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑
【点睛】 本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的 性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
5.D
解析:D 【解析】 如图,连接 BE,
根据圆周角定理,可得∠C=∠AEB, ∵∠AEB=∠D+∠DBE, ∴∠AEB>∠D, ∴∠C>∠D, 根据锐角三角形函数的增减性,可得, sin∠C>sin∠D,故①正确; cos∠C<cos∠D,故②错误; tan∠C>tan∠D,故③正确; 故选 D.
6.B
解析:B 【解析】 【分析】根据菱形的性质逐项进行判断即可得答案. 【详解】菱形的四条边相等, 菱形是轴对称图形,也是中心对称图形, 菱形对角线垂直但不一定相等, 故选 B. 【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.
7.D
解析:D 【解析】 【分析】 根据点在 x 轴上的特征,纵坐标为 0,可得 m+1=0,解得:m=-1,然后再代入 m+3,可求出横坐标. 【详解】 解:因为点 P(m + 3,m + 1)在 x 轴上, 所以 m+1=0,解得:m=-1, 所以 m+3=2, 所以 P 点坐标为(2,0).
25.解方程: x ﹣ 1 =1. x3 x
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】
由于比赛取前 5 名参加决赛,共有 11 名选手参加,根据中位数的意义分析即可. 【详解】 11 个不同的成绩按从小到大排序后,中位数及中位数之后的共有 5 个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了. 故选 B. 【点睛】 本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.
相关文档
最新文档