初中数学找规律题讲解与总结

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、新课引入

小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。

2、合作交流,探索规律:

活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形

⑴填写下表:

⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?

★注意引导学生概括“探索规律”的一般步骤:

①寻找数量关系;

②用代数式表示规律

③验证规律。

★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?

活动二:探索具体情景下事物的规律

问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?

问题2.若按图2方式摆放桌子和椅子

⑴一张桌子可坐6人,2张桌子可坐人。

⑵按照上图方式继续排列桌子,完成下表:

问题3.如果按图3的方式将桌子拼在一起

⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?

⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。

⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。

活动三:探索图表的规律

下面是2000年八月份的日历:

⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系?

⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗?

⑶这个关系对任何一个月的日历都成立吗?为什么?

⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。

⑸你还能提出那些问题?

中考数学探索题训练—找规律

1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要

用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。在电子数字计算机中用的是二进制,只要两个数码:0和1。如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数。

2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;

1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是。

3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:

输入 (1)

2

3

4

5

… 输出

21 52 103 174 265

那么,当输入数据是8时,输出的数据是( ) A 、

618 B 、638 C 、658 D 、67

8

4、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.

5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了 块石子。

6、如下图是用棋子摆成的“上”字:

第一个“上”字 第二个“上”字 第三个“上”字

如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上” 字分别需用 和 枚棋子;(2)第n 个“上”字需用 枚棋子。 7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.

8、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有 个点,第n 个图形中有 个点。

(1)

(2)

(3)

第4题

第7题图

(4)

9、下面是按照一定规律画出的一列“树型”图:

经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出 个“树枝”。

10、观察下面的点阵图和相应的等式,探究其中的规律:

(1)在④和⑤后面的横线上分别写出相应的等式;

(2)通过猜想写出与第n 个点阵相对应的等式_____________________。

11、用边长为1cm 的小正方形搭成如下的塔状图形,则第n 次所搭图形的周长是_______________cm (用含n 的代数式表示)。

12、如图,都是由边长为1的正方体叠成的图形。例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。依此规律。则第(5)个图形的表面积 个平方单位。

……

……

①1=12; ②1+3=22; ③1+3+5=32

④ ;

⑤ ;

第1次 第2次 第3次 第4次 ···

···

⑴ ⑵ ⑶

13、图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )

A 25

B 66

C 91

D 120

14、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,…… 按这样的规律叠放下去,

第8个图中小立方体个数是 .

15、图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方

法继续摆放,由上而下分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为s .解答下列问题:

(1)按照要求填表:

(2)写出当n =10时,s= .

n 1 2 3 4 … s

1

3

6

(1)

(2)

(3)

图1 图2 图3

相关文档
最新文档