历年中考统计与概率题专题练习
中考数学复习《统计与概率》专项提升训练题-附答案
中考数学复习《统计与概率》专项提升训练题-附答案学校:班级:姓名:考号:说明:共三大题,23小题,满分120分,作答时间120分钟.中考对接点统计常考频数分布图(表)、条形统计图、扇形统计图、折线统计图,利用各种统计量分析数据,样本估计总体;概率常考利用画树状图或列表的方法计算随机事件的概率,用频率估计概率一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)题号12345678910答案1.下列事件中适合采用抽样调查的是A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对神舟十四号太空飞船各零部件质量情况的检查D.对市面上某品牌奶粉质量情况的调查2.下列事件是必然事件的是A.小明中考模拟考时,数学成绩都是110分以上,则中考时,他的数学成绩必定在110分以上B.明天不会出太阳C.367人中至少有2人生日相同D.随意抛掷两枚质地均匀的骰子,两次朝上的数字之和等于13.某市教委高度重视安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是A.12B.13C.14D.164.数学老师在江西智慧作业中布置了8道题目,根据“作业归集”中学生的答题情况制作了如下统计表:答对题目数量/道5678人数419189根据表中数据,全班同学答对题目数量(单位:道)的中位数和众数分别是A.6, 6B.6, 7C.7, 7D.7, 65.关于事件与概率,下面表述不正确的是A.若P(A)=0,则A为不可能事件B.若A为不可能事件,则P(A)=0C.若A为必然事件,则P(A)=1D.若A为随件事件,则0≤P(A)≤16.小明在调查全班同学喜爱的电视节目时,若喜爱体育节目的同学占全班同学的30%,那么在制作扇形统计图时,“体育”节目对应扇形的圆心角的度数为A.30°B.108°C.54°D.120°7.如图,在6×6正方形网格中,任选一个白色的小正方形并涂黑,恰好能使图中黑色部分为轴对称图形的概率是A.533B.433C.111D.2338.已知在一个样本中,50个数据分别落在5个小组内,第一,二,三,五组数据分别为2,6,7,15,则第四小组的频数和频率分别为A.25,50%B.20,50%C.20,40%D.25,40%9.教育部规定,初中生每天的睡眠时间应为9个小时.小红同学记录了她一周的睡眠时间.并将统计结果绘制成如图所示的折线统计图,则小红这一周每天睡眠时间在9个小时以上(含9个小时)的有A.4天B.3天C.2天D.1天10.国庆期间,数学研究小组对游客前往山西凤凰山生态植物园的出行方式进行了随机抽样调查,将结果整理后绘制了如下两幅统计图(尚不完整).根据图中的信息,下列结论中错误的是A.本次抽样调查的样本容量是2000B.扇形统计图中的m为5C.若国庆期间去该地观光的游客有1万人,则选择自驾方式出行的大约有4500人D.样本中选择自驾方式出行的有1000人二、填空题(本大题共5个小题,每小题3分,共15分)11.如图,一个游戏盘中,红、黄、蓝三个扇形的圆心角度数分别为45°,120°,195°,让转盘自由转动,指针停止后(指针指向分界线时重新转)在黄色区域的概率是.12.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差这几个统计量中,该鞋厂最关注的是.13.小明、小华两人进行飞镖比赛,已知他们每人十次投得的成绩如图所示,那么两人中成绩更稳定的是.14.垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访100名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;①绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比;①整理采访记录并绘制空矿泉水瓶投放频数分布表.正确统计步骤的顺序应该是.15.如图,这是某旅游景区某周当日最高气温的折线统计图,则这7天的日最高气温的平均数为℃.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2小题,每小题5分,共10分)(1)已知数据3, 4, 5, 8, x的平均数为5,求这组数据的众数.(2)将2023,-22与π, 3.14159和√4, sin 60°六个数字分别写在六张卡片上,这些卡片除了数字外其他都相同,洗匀7后背面朝上放在桌面上,任取一张卡片,求卡片上面写的数字恰是无理数的概率.17.(本题8分)小明和小亮用如图所示的两个转盘(每个转盘被平均分成面积相等的扇形)做游戏:同时转动两个转盘(指针指向分界线时重新转),停止转动后,若指针所指两个区域的数字之差的绝对值为奇数,则小明胜;若指针所指两个区域的数字之差的绝对值为偶数,则小亮胜.这个游戏对双方公平吗?请你用列表法或树状图说明理由.18.(本题7分)甲、乙两位同学参加数学综合素质测试,各项成绩(单位:分)如下表:数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)甲成绩的众数是;乙成绩的中位数是.(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按4①3①1①2计算,那么甲、乙的数学综合素质成绩分别为多少分?19.(本题8分)某校九年级两个班各选派6名学生参加“垃圾分类知识竞赛”,各参赛选手的成绩如下(满分150分):九(1)班: 86, 91, 92, 92, 94, 96.九(2)班: 83, 89, 90, 90, 91, 97.(1)九(1)班参赛选手成绩的中位数是分,众数是分.(2)求九(2)班参赛选手成绩的方差.20.(本题8分)某商场国庆期间为促销特举办抽奖活动,规则如下:在不透明的袋子中有2个红球和3个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小颖只有一次摸球机会,那么小颖获得奖品的概率为.(2)如果小颖有两次摸球机会(摸出后不放回),求小颖获得2份奖品的概率.(请用“画树状图”或“列表”的方法写出分析过程)21.(本题8分)某校在七年级新生中举行了全员“防溺水”安全知识竞赛,竞赛题目共10题,每题10分.现从三个班中各随机抽取10名同学的成绩(单位:分).收集数据:1班: 90, 70, 80, 80, 80, 90, 80, 90, 80, 1002班: 60, 80, 80, 90, 90, 90, 60, 90, 100, 1003班: 80, 90, 60, 80, 80, 90, 80, 100, 100, 80整理、分析数据:班级平均数中位数众数1班m80802班84n903班848080根据以上信息回答下列问题:(1)填空:表格中m=,n=.(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩最好?请说明理由.(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,已知该校七年级新生共630人,试估计需要准备多少张奖状.22.(本题13分)为了加强对食堂的监控,有效保证饮食质量,某学校随机抽取部分学生开展满意度问卷调查,学生根据实际情况给食堂评分,并将本次调查结果制成如下统计表:评分/分45678910人数6183646a284比率3%9%18%23%31%b2%(1)本次问卷调查,学生所评分数的众数是分.(2)根据本次调查结果,若从本校随机抽选一名学生给食堂评分,估计他的评分不低于8分的概率是多少?(3)学校决定:本次调查综合得分8~10分为“满意”,给予食堂通报表扬; 6~8分为“比较满意”,提醒食堂进行改善; 0~6分为“不满意”,责令食堂限时整改.根据本次调查结果,判断学校可能对食堂采取何种措施,说明理由.(这里的0~6表示大于等于0同时小于6)23.(本题13分)某校文学社为了解学生课外阅读情况,对本校七年级的学生进行了课外阅读知识水平检测.为了解情况,从七年级学生中随机抽取部分女生和男生的测试成绩,这些学生的成绩记为x(0≤x≤100),将所得数据分为5组:A组: x<60.B组: 60≤x<70.C组: 70≤x<80.D组: 80≤x<90.E组: 90≤x≤100.学校对数据进行分析后,提供了如下信息:女生成绩在70≤x<80这一组的数据:70,72,72,72.男生成绩在60≤x<80这一组的数据:72,68,62,68,70.抽取的男生和女生测试成绩的平均数、中位数、众数如表所示:平均数中位数众数男生76a68女生7672b请根据以上信息解答下列问题:(1)a=, b=.(2)通过以上的数据分析,你认为(填“男”或“女”)学生的课外阅读整体水平较高,请说明理由:.(写出一条理由即可)(3)现在打算从得分为D组的学生中随机选出2名学生调查他们课外阅读的时间,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.参考答案1.D2.C3.A4.D5.D6.B7.B8.C9.C 10.D 提示:样本容量是700÷35%=2000,故A 正确; m %=1-45%-35%-15%=5% ①m=5,故B 正确;10000×45%=4500(人),故C 正确; 2000×45%=900(人),故D 错误.11.1312.众数 13.小明 14.①①① 15.20 16.解:(1)由题意,得3+4+5+8+x=5×5,解得x=5.所以数据3, 4, 5, 8, 5的众数是5. ......................................................................................................................... 5分 (2)①六个数字2023,-227,π, 3.14159,√4, sin 60°中,无理数只有π和sin 60°两个①P (卡片上面写的数字恰是无理数)=26=13. ........................................................................................................... 5分 17.解:这个游戏对双方公平. .................................................................................................................................. 2分 理由:画树状图如下:共有12种等可能的结果,其中指针所指两个区域的数字之差的绝对值为奇数的结果有6种,指针所指两个区域的数字之差的绝对值为偶数的结果有6种,①小明胜的概率=612=12,小亮胜的概率=612=12 ①小明胜的概率=小亮胜的概率①这个游戏对双方公平. ......................................................................................................................................... 8分 18.解:(1)93;93. ........................................................................................................................................................ 1分 (2)甲的数学综合素质成绩为93×4+93×3+89×1+90×24+3+1+2=92(分), (4)分 乙的数学综合素质成绩为94×4+92×3+94×1+86×24+3+1+2=91.8(分). ................................................................................ 7分19.解:(1)92; 92. ....................................................................................................................................................... 3分 (2)平均数为83+89+90×2+91+976=90(分),方差s 2=16[(83-90)2+(89-90)2+2×(90-90)2+(91-90)2+(97-90)2]=503. (8)分20.解:(1)25. ................................................................................................................................................................ 2分(2)列表如下:红1红2 黑1 黑2 黑3 红1(红1,红2)(红1,黑1) (红1,黑2) (红1,黑3) 红2 (红2,红1)(红2,黑1)(红2,黑2) (红2,黑3) 黑1 (黑1,红1) (黑1,红2)(黑1,黑2)(黑1,黑3) 黑2 (黑2,红1) (黑2,红2) (黑2,黑1)(黑2,黑3)黑3(黑3,红1)(黑3,红2)(黑3,黑1)(黑3,黑2)................................................................................................................................................................................. 6分 由上表可知,共有20种等可能的结果,其中两次摸到红球的结果数为2①P (两次获得奖品)=220=110. .................................................................................................................................... 8分 21.解:(1)84;90. ........................................................................................................................................................ 2分 (2)2班成绩最好.理由如下: 从平均数上看,三个班都一样;从中位数上看, 1班和3班都是80分, 2班是90分; 从众数上看, 1班和3班都是80分, 2班是90分.综上所述, 2班的成绩最好. ................................................................................................................................... 5分 (3)630×530=105(张).答:估计需要准备105张奖状. ............................................................................................................................... 8分 22.解:(1)8. ............................................................................................................................................................... 3分 (2)6÷3%=200a=200-6-18-36-46-28-4=62. ①由表格知评分不低于8分的频率是62+28+4200×100%=47% (或1-3%-9%-18%-23%=47%) ............................................................................................................................... 7分 ①评分不低于8分的概率是47%. ......................................................................................................................... 8分 (3)方法一:x =4×6+5×18+6×36+7×46+8×62+9×28+10×4200=7.2(分). ........................................................................... 11分①6<7.2<8①学校对食堂采取提醒改善的措施. ................................................................................................................... 13分方法二: b=28200×100%=14%.x =4×3%+5×9%+6×18%+7×23%+8×31%+9×14%+10×2%=7.2(分). ........................................................... 11分 ①6<7.2<8①学校对食堂采取提醒改善的措施. ................................................................................................................... 13分 23.解:(1)71;72. ........................................................................................................................................................ 4分 提示:本次调查人数为(2+4)÷30%=20(名)B 组的人数为20×25%=5(人), B 组中的女生有5-3=2(名) 调查人数中,女生有1+2+4+1+2=10(人),男生有20-10=10(人)抽查人数中,10名男生成绩处在中间位置的两个数的平均数为71分,因此中位数是71,即a=71 在10名女生成绩中,出现次数最多的是72,因此众数是72,即b=72.(2)女; ....................................................................................................................................................................... 6分 女生成绩的中位数、众数均比男生的高. ............................................................................................................ 8分 (3)根据题意列表如下:男1男2 男3 女 男1男1男2男1男3 男1女 男2 男2男1男2男3男2女 男3 男3男1 男3男2男3女女女男1女男2女男3共有12种等可能的结果,其中1男1女的结果有6种所以恰好是1男1女的概率是612=12. ................................................................................................................... 13分。
中考数学复习专题《概率》专项训练-附带答案
中考数学复习专题《概率》专项训练-附带答案一、选择题1.下列事件为必然事件的是()A.三角形内角和是180°B.打开电视机,正在播放新闻C.明天下雨D.掷一枚质地均匀的硬币,正面朝上2.九年级一班有25名男生和20名女生,从中随机抽取一名作为代表参加校演讲比赛.下列说法正确的是()A.抽到男生和女生的可能性一样大B.抽到男生的可能性大C.抽到女生的可能性大D.抽到男生或女生的可能性大小不能确定3.将分别标有“大”、“美”、“明”、“德”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字可以组成“明德”的概率是()A.16B.18C.14D.5164.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A离开的概率是()A.12B.13C.14D.166.口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计下一次操作获到红球的概率是()A.0.3 B.0.4 C.0.5 D.0.67.有三张正面分别写有数字-2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,洗匀后,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.498.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B.抛一枚质地均匀的硬币,出现正面朝上的概率C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率二、填空题9.从√2,0,π,3.14,17中随机抽取一个数,抽到有理数的概率是.10.甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是。
初中数学统计与概率测试题(含答案)
初中数学统计与概率测试题(含答案)初中数学统计与概率测试题(含答案)题目1. 某班级中共有32名学生,其中有20名男生和12名女生。
请回答以下问题:a) 男生的比例是多少?b) 女生的比例是多少?答案:a) 男生的比例 = (男生人数 / 总人数) × 100% = (20 / 32) × 100% =62.5%b) 女生的比例 = (女生人数 / 总人数) × 100% = (12 / 32) × 100% =37.5%题目2. 某小组有8名成员,其中有3名男生和5名女生。
请回答以下问题:a) 随机选择一个成员,男生的概率是多少?b) 随机选择一个成员,女生的概率是多少?答案:a) 男生的概率 = 男生人数 / 总人数 = 3 / 8 = 0.375b) 女生的概率 = 女生人数 / 总人数 = 5 / 8 = 0.625题目3. 根据某城市的气象数据,统计了过去一周的天气情况,得到如下表格:| 天气 | 晴天 | 雨天 | 多云 || ------- | ---- | ---- | ---- || 出现次数 | 3次 | 2次 | 2次 |请回答以下问题:a) 晴天的概率是多少?b) 下雨的概率是多少?c) 多云的概率是多少?答案:a) 晴天的概率 = 晴天出现次数 / 总天数= 3 / 7 ≈ 0.429b) 下雨的概率 = 雨天出现次数 / 总天数= 2 / 7 ≈ 0.286c) 多云的概率 = 多云出现次数 / 总天数= 2 / 7 ≈ 0.286题目4. 某班级有35名学生,其中10名学生喜欢阅读科幻小说,15名学生喜欢阅读推理小说,其中有5名学生两者都喜欢,问:a) 喜欢阅读科幻小说或者推理小说的学生有多少人?b) 不喜欢阅读科幻小说和推理小说的学生有多少人?答案:a) 喜欢阅读科幻小说或者推理小说的学生 = 喜欢阅读科幻小说的学生 + 喜欢阅读推理小说的学生 - 两者都喜欢的学生 = 10 + 15 - 5 = 20人b) 不喜欢阅读科幻小说和推理小说的学生 = 总人数 - 喜欢阅读科幻小说或者推理小说的学生 = 35 - 20 = 15人题目5. 某次抽奖活动中,共有100人参与抽奖,其中只有5名幸运儿中奖。
(11)统计与概率——2023年中考数学真题专项汇编(含解析)
(11)统计与概率——2023年中考数学真题专项汇编1.【2023年河南】为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. B. C. D.2.【2023年安徽】如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A. B. C. D.3.【2023年河北】有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D.4.【2023年福建】为贯彻落实教育部办公厅关于“保障学生每天校内、校外各1小时体育活动时间”的要求,学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间(单位:分钟),并制作了如图所示的统计图.根据统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是( )A.平均数为70分钟B.众数为67分钟C.中位数为67分钟D.方差为05.【2023年甘肃兰州】2022年我国新能源汽车销量持续增长,全年销量约为572.6万辆,同比增长91.7%,连续8年位居全球第一.如图,统计图反映了2021年、2022年新能源汽车月度销量及同比增长速度的情况.(2022年同比增长速度)根据统计图提供的信息,下列推断不合理的是( )A.2021年新能源汽车月度销量最高是12月份,超过40万辆B.2022年新能源汽车月度销量超过50万辆的月份有6个C.相对于2021年,2022年新能源汽车同比增长速度最快的是2月份,达到了181.1%D.相对于2021年,2022年从5月份开始新能源汽车同比增长速度持续降低6.【2023年北京】某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:_________只.7.【2023年重庆A】一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.8.【2023年河南】某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm)的统计图,则此时该基地高度不低于300 cm的“无絮杨”品种苗约有__________棵.9.【2023年山西】中国古代的“四书”是指《论语》《孟子》《大学》《中庸》(如图),它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是__________.10.【2023年福建】某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:甲的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是_________.11.【2023年天津】为培养青少年的劳动意识,某校开展了剪纸、编织、烘焙等丰富多彩的活动.该校为了解参加活动的学生的年龄情况,随机调查了a名参加活动的学生的年龄(单位:岁).根据统计的结果,绘制出如下的统计图(1)和图(2).请根据相关信息,解答下列问题:(1)填空:a的值为________,图(1)中m的值为________;(2)求统计的这组学生年龄数据的平均数、众数和中位数.12.【2023年北京】某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175b.16名学生的身高的平均数、中位数、众数:(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好.据此推断:在下列两组学生中,舞台呈现效果更好的是__________(填“甲组”或“乙组”).168,172,他们的身高的方差为.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为__________和____________.13.【2023年重庆A】为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格,中等,优等),下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B款智能玩具飞机架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表根据以上信息,解答下列问题:(1)上述图表中___________,___________,___________;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可).(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架.14.【2023年河南】蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:(1)表格中的______;______(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?15.【2023年安徽】端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行活整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是______________,七年级活动成绩的众数为______________分;(2)______________,______________;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.16.【2023年陕西A】一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为_________;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.17.【2023年陕西A】某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了如下统计图表:根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是________;(2)求这20个数据的平均数;(3)“校园农场“中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数.18.【2023年山西】为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图.(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分.(2)请你计算小涵的总评成绩.(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.19.【2023年江西】为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁2名同学都被选为宣传员的概率.20.【2023年江西】为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表(1)_______,_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由.②约定:视力未达到1.0为视力不良.若该区有26000名初中学生,估计该区有多少名初中学生视力不良?并对视力保护提出一条合理化建议.21.【2023年河北】某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)监督人员从余下问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?22.【2023年广东】小红家到学校有两条公共汽车线路,为了解两条线路的乘车所用时间,小红做了试验,第一周(5个工作日)选择A线路,第二周(5个工作日)选择B线路,每天在固定时间段内乘车2次并分别记录所用时间,数据统计如下:(单位:min)数据统计表___________;___________(2)应用你所学统计知识,帮助小红分析如何选择乘车线路.答案以及解析1.答案:B解析:用A,B,C分别代表三部影片,画树状图如下:由树状图可知,共有9种等可能的情况,其中两个年级选择的影片相同的情况有3种,故所求概率为.故选B.2.答案:C解析:根据题意,有以下6种等可能的结果:123,132,213,231,312,321,其中恰好是“平稳数”的结果有:123,321,共有2种,故所求概率为,即.3.答案:B解析:在7张扑克牌中,有1张黑桃牌,3张红心牌,1张梅花牌,2张方块牌.因为红心牌的张数最多,所以从中随机抽取一张,抽到红心牌的可能性最大.4.答案:B解析:平均数(分钟).把这组数据按照从低到高的顺序排列为65,67,67,70,75,79,88,位于中间的数为70,故中位数为70分钟.这组数据中67出现了2次,出现的次数最多,故众数是67分钟.由于这7个数不完全相等,故方差不为0.5.答案:D解析:比较统计表中的数据可知,相对于2021年,2022年5月到6月,新能源汽车同比增长速度提高,而从6月到12月,新能源汽车同比增长速度持续降低.故选项D推断不合理.6.答案:460解析:(只).7.答案:解析:根据题意列表如下:率为.8.答案:280解析:该基地高度不低于300 cm的“无絮杨”品种苗约有(棵).9.答案:解析:将《论语》《孟子》《大学》《中庸》分别用A,B,C,D表示,根据题意列表如下:率是.10.答案:乙解析:利用加权平均数计算.甲:(分);乙:(分);丙:(分).,故被录用的是乙.11.答案:(1)40;15(2)14解析:(1).,.(2)观察条形统计图,,这组数据的平均数是14.在这组数据中,15出现了16次,出现的次数最多,这组数据的众数是15.将这组数据按由小到大的顺序排列,处于中间的两个数都是14,且,这组数据的中位数是14.12.答案:(1),.(2)甲组(3)170;172解析:(1)将这组数据按照从小到大的顺序排列为:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,出现次数最多的数是165,出现了3次,即众数,16个数据中的第8和第9个数据分别是166,166,中位数,,;(2)甲组身高的平均数为,甲组身高的方差为乙组身高的平均数为,乙组身高的方差为,舞台呈现效果更好的是甲组,故答案为:甲组;(3)168,168,172的平均数为所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于,数据的差别较小,数据才稳定,可供选择的有:170,172,且选择170,172时,平均数会增大,故答案为:170;172.13.答案:(1)72;70.5;10(2)答案一:A款智能玩具飞机运行性能更好.理由如下(写出一条理由即可):①A款智能玩具飞机运行最长时间的中位数71大于B款智能玩具飞机运行最长时间的中位数70.5;②A款智能玩具飞机运行最长时间的众数72大于B款智能玩具飞机运行最长时间的众数67.答案二:B款智能玩具飞机运行性能更好,理由如下:A,B两款智能玩具飞机运行最长时间的平均数均为70,B款智能玩具飞机运行最长时间的方差26.6小于A款智能玩具飞机运行最长时间的方差30.4.(3)(架)答:估计两款智能玩具飞机运行性能在中等及以上的共有192架.解析:14.答案:(1)7.5;<(2)选择乙公司.因为乙公司配送速度得分的平均数和中位数都比甲公司高,说明乙公司的整体配送速度较快.(注:答案不唯一,合理即可)(3)收集快递公司的收费标准.(注:答案不唯一,合理即可)解析:(1)由题意可得,,∴,故答案为:7.5.(2)略(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)15.答案:(1)1;8(2)2;3(3)否.理由:七年级平均成绩(分),优秀率.八年级平均成绩(分),优秀率.因为,,所以根据样本数据,本次活动中优秀率高的年级平均成绩较低.解析:(1)根据扇形统计图,七年级活动成绩为分学生数的占比为.样本中,七年级活动成绩为分的学生数是,根据扇形统计图,七年级活动成绩的众数为8分故答案为:1;8.(2)八年级10名学生活动成绩的中位数为8.5分,第5名学生为8分,第6名学生为9分,,,故答案为:2;3.(3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为,平均成绩为,八年级优秀率为,平均成绩为:,优秀率高的年级为八年级,但平均成绩七年级更高,优秀率高的年级不是平均成绩也高.16.答案:(1)(2)解析:(1)由题意可得,数字1,1,2,3中,数字1有2个,所以,从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为,故答案为:;(2)根据题意列表如下:数的结果有7种,所以.17.答案:(1)54(2)50(3)15000个解析:(1)补全的频数分布直方图如图所示(2).(3)估计这300棵西红柿植株上小西红柿的总个数是.18.答案:(1)69;69;70(2)82分(3)结论:小涵能入选,小悦不一定能入选,理由见解析.解析:(1)从小到大排序,67,68,69,69,71,72,74,中位数是69,众数是69,平均数:(2)(分).答:小涵的总评成绩为82分.(3)结论:小涵能入选,小悦不一定能入选.理由:理由:由题中20名学生的总评成绩频数直方图可得,总评成绩不低于80分的学生有10名,总评成绩不低于70分且低于80分的学生有6名.小涵和小悦的总评成绩分别是82分、78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.19.答案:(1)随机(2)解析:(1)略(2)解法一:列表如下:同学1同学2甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)由上表可知,所有可能的结果共有12种,且每种结果出现的可能性相等,其中甲、丁2名同学都被选为宣传员的结果有2种.所以P(甲、丁2名同学都被选为宣传员).解法二:画树状图如下:由树状图可知,所有可能的结果共有12种,且每种结果出现的可能性相等,其中甲、丁2名同学都被选为宣传员的结果有2种.所以P(甲、丁2名同学都被选为宣传员).20.答案:(1)68;(2)320(3)①小胡的说法正确②估计该区有14300名中学生视力不良,建议见解析解析:(1)略(2)略(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中学生视力的中位数为1.0,高中学生视力的中位数为0.9,所以初中学生的视力水平好于高中学生.理由二:从众数看,初中学生视力的众数为1.0,高中学生视力的众数为0.9,所以初中学生的视力水平好于高中学生.②方法一:(名).方法二:(名).答:估计该区有14300名中学生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.21.答案:(1)中位数为3.5分,平均数为3.5分;该部门不需要整改(2)监督人员抽取的问卷所评分数为5分;与(1)相比,中位数发生了变化解析:(1)由条形统计图可知,客户所评分数按从小到大排列后,第10,11个数据分别是3分,4分,客户所评分数的中位数为(分).客户所评分数的平均数为(分).客户所评分数的平均数和中位数都不低于3.5分,该部门不需要整改.(2)设监督人员抽取的问卷所评分数为x分,根据题意,得,解得.满意度从低到高为1分,2分,3分,4分,5分,共5档,监督人员抽取的问卷所评分数为5分.中位数发生了变化.理由:加入这个数据后,将客户所评分数按从小到大排列,第11个数据是4分,加入这个数据之后,中位数是4分,与(1)相比,中位数发生了变化.22.答案:(1)19;26.8;25(2)选择A线路.理由:A线路平均用时少.或选择B线路.理由:B线路方差小,说明用时波动性不大.解析:(1)将A线路所用时间数据按从小到大的顺序排列,中间的两个数是18,20,故该组数据的中位数是,即.,即.B线路所用时间数据中,25出现的次数最多,故众数是25,即.(2)(可从平均数、中位数、众数、方差等四个方面分析,并说明理由,合理即可)。
初中数学九年级专题八《统计与概率》试卷含答案
专题八《统计与概率》试卷含答案(考试时间120分钟,试卷满分120分)一、选择题1、在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.96,2.10,2.31.则这组数据的众数和极差分别是()A.1.85和0.21B.2.11和0.46C.1.85和0.60D.2.31和0.602.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是()A. 22°C,26°CB. 22°C,20°CC. 21°C,26°CD. 21°C,20°C3.有13位同学参加学校组织的才艺表演比赛.已知他们所得的分数互不相同,共设7个获奖名额.某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是()A.方差B.平均数C.众数D.中位数4、某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是()A.0.1 B.0.17 C.0.33 D.0.45.某企业1~5月分利润的变化情况图所示,以下说法与图中反映的信息相符的是()A)1~2月分利润的增长快于2~3月分利润的增长B)1~4月分利润的极差于1~5月分利润的极差不同C)1~5月分利润的的众数是130万元D)1~5月分利润的的中位数为120万元6、要反映乌鲁木齐市一天内气温的变化情况宜采用()A.条形统计图B.扇形统计图C.频数分布直方图D.折线统计图7、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)25 25.5 26 26.5 27 购买量(双) 1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为( )A 、25.5厘米,26厘米B 、26厘米,25.5厘米C 、25.5厘米,25.5厘米D 、26厘米,26厘米8.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是A .4,7B .7,5C .5,7D .3,79.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是( )A .甲、乙射中的总环数相同B .甲的成绩稳定C .乙的成绩波动较大D .甲、乙的众数相同10.如图,有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一段绳子.若每边每段绳子被选中的机会相等,则两人选到同一条绳子的概率为A . 21B . 31C . 61 D . 91 11.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )A .21B .31C .61D .121 12.在 6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆. 在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是( )A .61 B .31 C .21 D .3213.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( )A .121B .61C .41 D .31 二、填空题14、妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于 .(填普查或抽样调查)15、甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S 乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)16.在一个不透明的布袋中,有黄色、白色的乒乓球共10个,这些球除颜色外都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数很可能是 个.17.在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为 .18.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球.19.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______________.20.某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是 .21.有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是 .22.在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为___ _____.23.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是.三、解答题24.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图.(Ⅰ)求这10个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7 t的约有多少户.25.从车站到书城有A1、A2、A3、A4四条路线可走,从书城到广场有B1、B2、B3三条路线可走,现让你随机选择一条从车站出发经过书城到达广场的行走路线.画树状图分析你所有可能选择的路线.你恰好选到经过路线B1的概率是多少?26.市种子培育基地用A、B、C三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,C型号种子的发芽率为80%.根据试验数据绘制了下面两个不完整的统计图(图1、图2):(1)C型号种子的发芽数是_________粒;(2)通过计算说明,应选哪种型号的种子进行推广?(精确到1%)(3)如果将所有已发芽的种子放到一起,从中随机取出一粒,求取到C型号发芽种子的概率.27.小莉的爸爸买了今年七月份去上海看世博会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用数状图或列表的方法求小莉去上海看世博会的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.专题八 统计与概率一、选择题1、C 2.D 3. D 4、A 5. C 6、D 7、D 8.C 9.D 10.B11.C 12.D 13.B二、填空题14、抽样调查 15、甲 16.4 17.101 18.15 19.31 20.61 21.31 22.41 23.41 三、解答题24.解:(Ⅰ)观察条形图,可知这组样本数据的平均数是 62 6.54717.5281 6.810x ⨯+⨯+⨯+⨯+⨯==.∴ 这组样本数据的平均数为6.8. ∵ 在这组样本数据中,6.5出现了4次,出现的次数最多,∴ 这组数据的众数是6.5.∵ 将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6.5,有6.5 6.5 6.52+=, ∴ 这组数据的中位数是6.5.(Ⅱ)∵ 10户中月均用水量不超过7 t 的有7户,有 7503510⨯=. ∴ 根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7 t 的约有35户.25.解(1)(2)从车站到书城共有12条路线,经过B 1的路线有4条. ∴P (经过B 1)=124=31. 26.解:(1)480.(2)A 型号种子数为:1500×30%=450,发芽率=450420×100%≈93%.B 型号种子数为:1500×30%=450,发芽率=450370×100%≈82%.C 型号种子数发芽率是80%. ∴选A 型号种子进行推广.(3)取到C 型号发芽种子的概率=480370420480++=12748.27.解:(1)所有可能的结果如有表:一共有16种结果,每种结果出现的可能性相同.和为偶数的概率为83166= ,所以小莉去上海看世博会的概率为83 , (2)由(1)列表的结果可知:小莉去的概率为83,哥哥去的概率为85,所以游戏不公平,对哥哥有利.游戏规则改为:若和为偶数则小莉得5分,若和为奇数则哥哥得3分,则游戏是公平的.。
中考数学复习之统计与概率综合训练题(含20大题)
中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。
中考数学高频考点《统计与概率》专题训练-带答案
中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。
初中数学统计与概率专题训练50题(含参考答案)
初中数学统计与概率专题训练50题含答案一、单选题1.已知五个数a b c d e 、、、、满足a b c d e <<<<,则下列四组数据中方差最大的一组是( ) A .a b c 、、B .b c d 、、C .c d e 、、D .a e 、c 、2.下列事件中是必然事件的是( ) A .某射击运动员射击一次,命中靶心 B .抛掷一枚硬币,落地后正面朝上 C .三角形内角和是360°D .当x 是实数时,x 2≥03.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是( )A .抽101次也可能没有抽到一等奖B .抽100次奖必有一次抽到一等奖C .抽一次也可能抽到一等奖D .抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.一个不透明的袋子中只装有4个黄球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A .摸到红球的概率是14B .摸到红球是不可能事件C .摸到红球是随机事件D .摸到红球是必然事件5.小明同学在某学期德智体美劳的各项评价得分依次为10分、9分、8分、9分、9分,则小明同学五项评价的平均得分为( ) A .7分B .8分C .9分D .10分6.下列说法中,正确的是( ) A .雨后见彩虹是随机事件B .为了检查飞机飞行前的各项设备,应选择抽样调查C .将一枚硬币抛掷20次,一定有10次正面朝上D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是乙城市 7.下列事件为必然事件的是( ) A .打开电视,正在播放广告 B .抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉8中,随意抽取一张纸片,上面写着最简二次根式的概率是()A.16B.13C.23D.129.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,20 10.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则0a<是不可能事件;16④的平方根是4±4=±;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个11.经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰有一人直行,另一人左拐的概率为()A.19B.29C.13D.2312.下列调查中,调查方式选择正确的是()A.为了了解一批灯泡的使用寿命,选择抽样调查B.为了了解某公园全年的游客流量,选择全面调查C.为了了解某1000枚炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查13.下列事件是必然事件的是()A.若a是实数,则|a|≥0B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻14.下列事件中,是随机事件的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正方形都相似15.在某市2021年青少年航空航天模型锦标赛中,各年龄组的参赛人数情况如下表所示:若小明所在年龄组的参赛人数占全体参赛人数的38%,则小明所在的年龄组是()A.13岁B.14岁C.15岁D.16岁16.在某市举办的垂钓比赛上,6名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,6,10,8,10.则这组数据的中位数是()A.8B.7C.6D.1017.在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()A.20元B.30元C.35元D.100元18.如果一组数据a1,a2,a3…,a n方差是9,那么一组新数据a1+1,a2+1,a3+1…,a n+1的方差是()A.3B.9C.10D.8119.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4B.极差是2C.平均数是9D.众数是920.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁二、填空题21.某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,所得成绩如下:70,82,98,60,91,54,78,85,这个问题中的总体是______,个体是______,样本容量是______.22.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视,这个结论是通过___________(填“抽样调查”或“普查”)得到的.23.为了了解某市4万多名初中毕业生的中考数学成绩,任意抽取1000名学生的中考数学成绩进行统计分析,这个问题中,样本容量是______.24.夏季已到,气温渐高.要反映我市某一周每天的最高气温的变化趋势,根据你所学知识宜采用______________统计图.25.如果数据x1,x2,x3的平均数是5,那么数据x1+2,x2+2,x3+2的平均数为____.26.某十字路口有一个交通信号灯,红灯亮60秒,绿灯亮35秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为____________.27.一组数据2,4,x,﹣1的平均数为3,则x的值是___.28.在某项考核中,最终考核成绩(百分制)由研究性学习成绩与卷面成绩组成,其中研究性学习成绩占60%,卷面成绩占40%,小明的这两项成绩依次是90分和85分,则小明的最终考核成绩是___________分.29.一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.30.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是__.31.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,卷面成绩占60%,小明的这两项成绩(百分制)依次是90分,85分,则小明这学期的数学成绩是_________.32.有两个盒子,第一个盒子中装有3 个红球和4 个白球,第二个盒子中装有4 个红球和3 个白球,这些球除颜色外都相同,分别从中摸出1 个球,从第______个盒子中摸到白球的可能性大.33.为了了解某市初中生的视力情况,有关部门进行了抽样调查,数据如下表:若该市共有初中生15万人,则全市视力不良的初中生约有__________万人.34.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差s2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.35.右图是各年龄段人群收视某电视剧情况的条形统计图(统计时年龄只取整数).若某村观看此电视剧的观众人数为1400人,则其中50岁以上(含50岁)的观众约有__________人.36.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组~第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是________.37.一组数据:2,1,2,5,3,2的众数是___.38.某地区有一条长100千米,宽0.5千米的防护林.有关部门为统计该防护林的树林量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木数量如下(单位:棵):65 100,63 200,64 600,64 700,67 400.那么根据以上的数据估算这一防护林总共约有_____棵树.39.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.40.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.计算这10天日最高气温的平均值为_____℃.三、解答题41.为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为65g的鸡蛋,现有两个厂家提供货源,它们的价格相同,鸡蛋的品质相近,质检员分别从两厂的产品中抽样调查了20只鸡蛋,并将它们按质量(单位:克)分成四组(:6770A x ≤<,B :6457x ≤<,C :6164x ≤<,D :58661≤<,它们的质量(单位:g )如下:整理数据:甲厂:66,64,64,66,63,66,66,67,68,64,66,60,66,66,63,60,67,69,68,61;乙厂:65,66,67,67,68,67,66,61,64,65,69,61,62,64,63,64,60,69,65,67.甲厂鸡蛋质量频数统计表分析上述数据,得到下表:请你根据图表中的信息完成下列问题: (1)a =______;b =______;c =______;(2)如果只考虑出口鸡蛋规格,请结合表中的某个统计量,为外贸公司选购鸡蛋提供参考建议;(3)某外贸公司从甲厂采购了18000只鸡蛋,并将质量(单位:g)在6167≤<的鸡蛋x加工成优等品进行盒装售卖,已知一盒有18颗鸡蛋,每颗鸡蛋进价为0.6元,若将优等品鸡蛋全部售出,试求一盒优等品鸡蛋定价多少才能使该外贸公司这一批优等品鸡蛋的利润达到6630元?42.阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯盖和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.43.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:(1)请你填写下表:(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.44.为贯彻落实省教育厅提出的“三生教育”.在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= .(2)在扇形统计图中,B组所占圆心角的度数为.(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人.45.图℃、图℃反映是东方百货商场今年15~月份的商品销售额统计情况.来自商场财~月份的销售总额一共是370万元,观察图℃和图℃,解答下务部的报告表明,商场15面问题:(1)将图℃补充完整;(2)商场服装部5月份的销售额是多少万元?(3)李强观察图℃后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?46.某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?47.重庆演艺集团决定今年3月中旬在八中开展“高雅艺术进学校”的宣传活动,活动有A、唱歌,B、舞蹈,C、绘画,D、演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在某年级学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:a______,并将条形统计图补充完整;(1)本次抽查的学生共______人,(2)如果该年级学生有1000人,请估计该年级喜欢“唱歌”宣传方式的学生约有多少人?A B C D四项宣传方式中随机抽取两项进行展示,(3)学校采用抽签方式让每班在,,,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.48.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图.(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下;A 级成绩为优秀,B 级成绩为良好,C 级成绩为合格,D 级成绩为不合格)其中B 级成绩(单位:分)为:75,75,76,77,78,78,79,79,79,80,80,81,81,82,82,83,83,84,86,87,87,88,89 请你结合图中所给信息解答下列问题: (1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是______; (3)扇形统计图中A 级所在的扇形的圆心角度数是______; (4)九年级(1)班学生的体育测试成绩的中位数是______;(5)若该校九年级有500名学生,请你用此样本估计体育测试中达到良好及良好以上的学生人数约为多少人?49. “PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:15m<3030m<4545m<6060m<7575m<9090m<105根据图表中提供的信息解答下列问题:(1)统计表中的a= ,b= ,c= ;(2)在扇形统计图中,A类所对应的圆心角是度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?参考答案:1.D【分析】根据方差的性质判断即可.【详解】解:五个数a b c d e 、、、、满足a b c d e <<<<,由方差是反映一组数据的波动大小的一个量,方差越大、数据越不稳定可知,a c e ,,方差最大, 故选:D .【点睛】本题考查方差的性质.掌握方差越大、数据越不稳定是解答本题的关键. 2.D【分析】根据必然事件的概念的定义,即可求解.【详解】解:A 、某射击运动员射击一次,命中靶心,是随机事件,故本选项不符合题意;B 、抛掷一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;C 、三角形内角和是360°,是不可能事件,故本选项不符合题意;D 、当x 是实数时,x 2≥0,是必然事件,故本选项符合题意; 故选:D.【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键. 3.C【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖, 故选:C .【点睛】本题考查了概率的意义,理解概率的实际意义是本题的关键 4.B【分析】根据概率公式和必然事件、随机事件及不可能事件逐一判断即可得. 【详解】解:A .摸到红球的概率是0,此选项错误; B .摸到红球是不可能事件,此选项正确,C 、D 选项错误;【点睛】此题考查了概率的定义:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.C【分析】根据平均数的计算方法,五项总分除以5可得结果. 【详解】解:小明同学五项评价的平均得分为: 10989995++++=(分)故选:C .【点睛】本土题考查了求平均数;理解平均数的意义正确计算是解题的关键. 6.A【分析】根据必然事件、不可能事件、随机事件的概念,以及全面调查和抽样调查的区别,方差稳定性,判断即可.【详解】A .雨后见彩虹是随机事件,故本选项正确,符合题意B .为了检查飞机飞行前的各项设备,应选择全面调查,故本选项错误,不符合题意C .将一枚硬币抛掷20次,不一定有10次正面朝上,故本选项错误,不符合题意D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是甲城市,故本选项错误,不符合题意 故选A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,全面调查和抽样调查的区别,方差稳定性.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小越稳定. 7.D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可. 【详解】解:A 、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B 、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C 、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.8.B【分析】根据最简二次根式的定义先找出图片中的最简二次根式的个数,再根据概率公式进行计算,即可得出结论.【详解】解:==符合最简二次根式的定义,所以,随意抽取一张纸片,上面写着最简二次根式的概率是21 63 =,故选:B.【点睛】此题考查了概率的计算,掌握最简二次根式的定义是准确求出概率的关键.9.C【详解】解:由扇形统计图给出的数据可得销售20台的人数是:20×40%=8人,销售30台的人数是:20×15%=3人,销售12台的人数是:20×20%=4人,销售14台的人数是:20×25%=5人,所以这20位销售人员本月销售量的平均数是208+303+124+14520⨯⨯⨯⨯=18.4台;把这些数从小到大排列,最中间的数是第10、11个数的平均数,所以中位数是20;销售20台的人数最多,所以这组数据的众数是20.故选:C.【点睛】本题考查平均数;中位数;众数.10.B【详解】分析:根据无理数,平方根,众数,中位数,平均数的概念一一判断即可.详解:①“明天降雨的概率是50%”表示明天有50%的可能会下雨,故错误.②无理数无限不循环小数,故错误.③若a为实数,则0a<是不可能事件;正确.16④的平方根是4±,用式子表示是4=±;故错误.⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.正确.正确的有2个.故选B.点睛:考查无理数,平方根,众数,中位数,平均数的概念,熟记概念是解题的关键. 11.B【分析】画树状图展示所有9种等可能的结果数,找出恰有一人直行,另一人左拐的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中恰有一人直行,另一人左拐的结果数为2,所以恰有一人直行,另一人左拐的概率=29.故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法表示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.12.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.【详解】A.℃调查一批灯泡的使用寿命具有破坏性,℃选择抽样调查,正确;B.℃调查某公园全年的游客流量工作量大,℃选择抽样调查,故不正确;C.℃调查某1000枚炮弹的杀伤半径具有破坏性,℃选择抽样调查,故不正确;D.℃调查一批袋装食品是否有防腐剂具有破坏性,℃选择抽样调查,故不正确;故选A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.A【详解】试题分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意.考点:随机事件14.C【分析】根据随机事件,必然事件的定义一一判断即可.【详解】等边三角形,等腰直角三角形,正方形都相似,是必然事件,矩形相似是随机事件,故选:C.【点睛】本题考查相似多边形的性质,随机事件,必然事件等知识,解题的关键是掌握随机事件的定义,属于中考常考题型.15.B【分析】根据各年龄组的参赛人数情况表,算出总人数,再算出14岁年龄组人数所占的百分比,即可得到答案.【详解】解:根据各年龄组的参赛人数情况表可知:总参赛人数为:5+19+12+14=50,19÷50=38%,则小明所在的年龄组是14岁.故选:B.【点睛】本题考查了频数与频率,解决本题的关键是掌握频数与频率的关系,理清频数分布表的数据.16.B【分析】根据中位数的定义先把这组数据从小到大重新排列,找出最中间的数即可.【详解】把这数从小到大排列为:4,5,6,8,10,10,最中间的数是6,8则这组数据的中位数是6+8=72;故选B.【点睛】此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.17.A【分析】直接根据众数的概念求解可得.【详解】在这次活动中,该班同学捐款金额的众数是20元,故选:A.【点睛】本题主要考查众数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数.18.B【详解】解:设一组数据a1,a2,a3…,an平均数为a,℃一组新数据a1+1,a2+1,a3+1…,an+1的平均数为a+1,℃一组数据a1,a2,a3…,an方差是9,℃1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9,℃1n[(a1+1-a-1)2+(a2+1-a-1)2+(a3+1-a-1)2+…(an+1-a-1)2)]=1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9故选B.19.A【详解】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=110[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.20.D【详解】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】℃==x x x x >乙丁甲丙,℃从乙和丁中选择一人参加比赛,℃22S S >乙丁,℃选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 21. 该班全体同学的数学成绩 该班每个学生的数学成绩; 8【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,在这个问题中,总体是该班全体同学的数学成绩;个体是该班每个学生的数学成绩;样本是该班的8名学生的数学成绩,样本容量是8.故答案为:该班全体同学的数学成绩,该班每个学生的数学成绩,8.【点睛】本题考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 22.抽样调查【详解】由于普查得到的调查结果比较准确,但所费人力物力和时间较多,而抽样调查得到的调查结果比较近似,在这个调查中,个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查. 23.1000【分析】根据样本容量的定义(样本中个体的数目称为样本容量)即可得. 【详解】解:这个问题中,样本容量是1000, 故答案为:1000.【点睛】本题考查了样本容量,熟记样本容量的定义是解题关键,样本容量只是一个数字,不带单位.。
中考专题:数学统计与概率(答案解析)
高频考点统计与概率试题参考答案与试题解析一.选择题(共9小题)1.(2018•河北)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:==13, ==15:s 甲2=s 丁2=3.6,s 乙2=s丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁解:∵=>=,∴乙、丁的麦苗比甲、丙要高, ∵s 甲2=s 丁2<s 乙2=s 丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐, 综上,麦苗又高又整齐的是丁, 故选:D .2.(2018•山西)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件): 太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( ) A .319.79万件 B .332.68万件 C .338.87万件D .416.01万件解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87 所以这组数据的中位数是338.87 故选:C .3.(2018•呼和浩特)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9解:A 、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B 、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C 、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D 、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意; 故选:D .4.(2018•山西)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .B .C .D .解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为, 故选:A .5.(2018•呼和浩特)随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )A .①的收入去年和前年相同B .③的收入所占比例前年的比去年的大C .去年②的收入为2.8万D .前年年收入不止①②③三种农作物的收入 解:A 、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;B 、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×1005=32.5%,此选项错误; C 、去年②的收入为80000×=28000=2.8(万元),此选项正确;D、前年年收入即为①②③三种农作物的收入,此选项错误;故选:C.6.(2018•包头)一组数据1,3,4,4,4,5,5,6的众数和方差分别是()A.4,1 B.4,2 C.5,1D.5,2解:数据1,3,4,4,4,5,5,6的众数是4,,则=2,故选:B.7.(2018•黑龙江)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94D.极差是20解:A 、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.8.(2018•齐齐哈尔)我们家乡的黑土地全国特有,肥沃的土壤、绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg 装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数B.平均数C.中位数D.方差解:对这个米店老板来说,他最应该关注的是这些数据(袋数)中的哪一包装卖得最多,即是这组数据的众数.故选:A.9.(2018•大庆)已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=()A.98 B.99 C.100 D.102 解:数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为 [92+94+98+91+95]=94,其方差为 [(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6所以a+b=94+6=100.故选:C.二.填空题(共7小题)10.(2018•天津)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.11.(2018•包头)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.解:列表如下:﹣2 ﹣1 1 2 ﹣2 2 ﹣2 ﹣4﹣1 2 ﹣1 ﹣21 ﹣2 ﹣1 22 ﹣4 ﹣2 2由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.12.(2018•北京)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤35 35<t≤40 40<t≤45 45<t≤50 合A 59 151 166 124 5B 50 50 122 278 5C 45 265 167 23 5早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B 线路公交车用时不超过45分钟的可能性为=0.444,C 线路公交车用时不超过45分钟的可能性为=0.954,∴C 线路上公交车用时不超过45分钟的可能性最大, 故答案为:C .13.(2018•呼和浩特)已知函数y=(2k ﹣1)x +4(k 为常数),若从﹣3≤k ≤3中任取k 值,则得到的函数是具有性质“y 随x 增加而增加”的一次函数的概率为 .解:当2k ﹣1>0时,解得:k >,则<k ≤3时,y 随x 增加而增加, 故﹣3≤k <时,y 随x 增加而减小,则得到的函数是具有性质“y 随x 增加而增加”的一次函数的概率为: =.故答案为:.14.(2018•赤峰)一组数据:﹣1,3,2,x ,5,它有唯一的众数是3,则这组数据的中位数是 3 .解:∵一组数据:﹣1,3,2,x ,5,它有唯一的众数是3, ∴x=3,∴此组数据为﹣1,2,3,3,5, ∴这组数据的中位数为3, 故答案为3.15.(2018•哈尔滨)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6, 故骰子向上的一面出现的点数是3的倍数的概率是: =. 故答案为:.16.(2018•通辽)如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD 内随意投掷飞镖. 他们的各项成绩如下表所示:候选人 笔试成绩/分面试成绩/分甲 90 88 乙 84 92 丙 x 90 丁8886(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x 的值; (3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.解:(1)这四名候选人面试成绩的中位数为: =89(分);(2)由题意得,x ×60%+90×40%=87.6 解得,x=86,答:表中x 的值为86;(3)甲候选人的综合成绩为:90×60%+88×40%=89.2(分), 乙候选人的综合成绩为:84×60%+92×40%=87.2(分), 丁候选人的综合成绩为:88×60%+86×40%=87.2(分), ∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.23.(2018•通辽)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m )绘制成不完整的频数分布表和频数分布直方图. 学生立定跳远测试成绩的频数分布表分组 频数 1.2≤x <1.6 a 1.6≤x <2.0 12 2.0≤x <2.4 b 2.4≤x <2.810 请根据图表中所提供的信息,完成下列问题:(1)表中a= 8 ,b= 20 ,样本成绩的中位数落在 2.0≤x <2.4 范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有多少人?解:(1)由统计图可得, a=8,b=50﹣8﹣12﹣10=20,样本成绩的中位数落在:2.0≤x <2.4范围内, 故答案为:8,20,2.0≤x <2.4;(2)由(1)知,b=20,补全的频数分布直方图如右图所示;(3)1000×=200(人),答:该年级学生立定跳远成绩在2.4≤x <2.8范围内的学生有200人.24.(2018•赤峰)国家为了实现2020年全面脱贫目标,实施“精准扶贫”战略,采取异地搬迁,产业扶持等措施.使贫困户的生活条件得到改善,生活质量明显提高.某旗县为了全面了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)将图1补充完整;(2)通过分析,贫困户对扶贫工作的满意度(A、B、C类视为满意)是95%;(3)市扶贫办从该旗县甲乡镇3户、乙乡镇2户共5户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.解:(1)∵被调查的总户数为60÷60%=100,∴C类别户数为100﹣(60+20+5)=15,补全图形如下:(2)贫困户对扶贫工作的满意度(A、B、C类视为满意)是×100%=95%,故答案为:95%;(3)画树状图如下:由树状图知共有20种等可能结果,其中这两户贫困户恰好都是同一乡镇的有8种结果,所以这两户贫困户恰好都是同一乡镇的概率为=.25.(2018•通辽)为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查为优秀,那么估计获得优秀奖的学生有多少人?解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.27.(2018•哈尔滨)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.28.(2018•齐齐哈尔)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有50人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?解:(1)全班学生人数为6÷0.12=50人,故答案为:50;(2)第二、三组频数之和为50×0.48=24,则第三组频数为24﹣6=18,∵自左至右第三,四,五组的频数比为9:8:3,∴第四组频数为16、第五组频数为6,则第六组频数为50﹣(1+6+18+16+6)=3,补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.29.(2018•大庆)九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不完整的频数分布表和扇形统计图.类别频数(人数)频率小说16戏剧 4散文 a其他 b合计 1根据图表提供的信息,解答下列问题:(1)直接写出a,b,m的值;(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的2人恰好是乙和丙的概率.解:(1)∵被调查的学生总人数为4÷10%=40人,∴散文的人数a=40×20%=8,其他的人数b=40﹣(16+4+8)=12,则其他人数所占百分比m%=×100%=30%,即m=30;(2)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,所以选取的2人恰好乙和丙的概率为=.。
中考数学专题训练统计与概率(含解析)
中考数学专题训练统计与概率(含解析)专题训练(统计与概率)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列调查中,调查方式选择正确的是( )A.为了了解全市中学生课外阅读情况,选择全面调查B.为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C.为了了解一批手机的使用寿命,选择抽样调查D.旅客上飞机前的安检,选择抽样调查【解析】选C.为了了解全市中学生课外阅读情况,选择抽样调查,A错误;为了了解全国中学生“母亲节”孝敬母亲的情况,选择抽样调查,B错误;为了了解一批手机的使用寿命,选择抽样调查,C正确;旅客上飞机前的安检,选择全面调查,D错误.2.2019年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1 000名考生是总体的一个样本B.1 000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【解析】选C.A.1 000名考生的数学成绩是总体的一个样本,故A错误;们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A. B. C. D.【解析】选C.因为布袋里装有5个红球,2个白球,3个黄球,所以从袋中摸出一个球是黄球的概率是.7.(2019·邵阳中考)“救死扶伤”是我国的传统美德.某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图.根据统计图判断下列说法,其中错误的一项是( )A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【解析】选D.认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1-27%-65%=8%,故C正确;认为该扶的占65%,故D错误.8.(2019·连云港中考)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【解析】选A.根据方差的意义,可知方差越小,数据越稳定,因此可知比较两人成绩稳定性的数据为方差.9.(2019·成都中考)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解析】选C.根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故其中位数为80分.10.九年级(1)班和(2)班的第一次模拟考试的数学成绩统计如下表:班级参加人数中位数方差平均分(1)班50 120 103 122(2)班49 121 201 122根据上表分析得出如下结论:①两班学生成绩的平均水平基本一致;②(2)班的两极分化比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①②C.①③D.②③【解析】选B.由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多,故③错误.11.(2019·南充中考)某校数学兴趣小组在一次数字课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:成绩/分36 37 38 39 40人数/人 1 2 1 4 2下列说法正确的是( )A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【解析】选C.10名学生的体育成绩中39分出现的次数最多,众数为39分; 排序后第5和第6名同学的成绩的平均值为中位数,中位数为=39分; 平均数==38.4分,方差=[(36-38.4)2+2×(37-38.4)2+(38-38.4)2+4×(39-38.4)2+2×(40- 38.4)2]=1.64;所以选项A,B,D错误.12.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差【解析】选A.因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入前3名了.13.若将30°,45°,60°的三角函数值填入表中,则从表中任意取一个值,是的概率为( )α30°45°60°sinαcosαtanαA. B. C. D.【解析】选D.∵表中共有9个数,有两个,∴从表中任意取一个值,是的概率为.α30°45°60°sinαcosαtanα 114.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是A.平均数B.中位数C.众数D.方差【解析】选B.去掉一个最高分和一个最低分对中位数没有影响.15.(2019·金华中考)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲,乙同学获得前两名的概率是( ) A. B. C. D.【解析】选D.画树状图得:所以一共有12种等可能的结果,甲,乙同学获得前两名的有2种情况,所以甲,乙同学获得前两名的概率是=.16.一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )A.2个B.3个C.4个D.5个【解析】选B.∵重复该试验多次,摸到白球的频率稳定在0.4,∴估计摸到白球的概率0.4,设袋子中黑球的个数为x,∴=0.4,解得x=3,∴可判断袋子中黑球的个数为3.17.(2019·眉山中考)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【解析】选C.A.给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B.给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C.给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意.18.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如表所示:鞋的尺码(单位:cm) 22.5 23 23.5 24 24.5销售量(单位:双) 3 6 12 9 8根据统计的数据,鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比是A.1∶2∶4 B.2∶4∶5C.2∶4∶3D.2∶3∶4【解析】选C.鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比为6∶12∶9=2∶4∶3.19.(2019·绍兴中考)下表记录了甲,乙,丙,丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择A.甲 B.乙 C.丙 D.丁【解析】选D.比较四名射击运动员成绩的平均数可得,乙和丁的成绩更好,而乙的方差>丁的方差,所以丁的成绩更稳定些.20.学校食堂午餐有10元,12元、15元三种价格的盒饭供选择,若经过统计发现10元、12元、15元的盒饭卖出数量恰好分别占50%,30%,20%,则卖出盒饭价格的中位数是( )A.10元B.11元C.12元D.无法确定【解析】选B.∵10元,12元,15元的盒饭卖出数量恰好分别占50%,30%、20%, ∴最中间的两个数是10元,12元,∴中位数是10和12的平均数,(10+12)÷2=11(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2019·重庆模拟)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.【解析】由统计图可知,一共有6+9+10+8+7=40(人),所以该班这些学生一周锻炼时间的中位数是第20个和第21个学生对应的数据的平均数,所以该班这些学生一周锻炼时间的中位数是11小时.答案:1122.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______ (填>或<).【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>.答案:>23.(2019·岱岳区模拟)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.【解析】因为所得函数的图象经过第一、三象限,所以5-m2>0,所以m2<5,所以3,0,-1,-2,-3中,3和-3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=-4<0,无实数根;将m=-1代入(m+1)x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入(m+1)x2+mx+1=0中得,x2+2x-1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为.答案:24.(2019·张店区一模)某校射击队从甲,乙,丙,丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是________.【解析】因为=5.1,=4.7,=4.5,=4.5,所以>>=,因为丁的平均数大,所以最合适的人选是丁.答案:丁三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2019·天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________.(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【解析】(1)4030(2)观察所给的条形统计图,因为==15(岁),所以这组数据的平均数为15岁;因为在这组数据中,16出现了12次,出现的次数最多,所以这组数据的众数为16岁;因为将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有=15(岁),所以这组数据的中位数为15岁.26.(8分)(2019·连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【解析】(1)一共有3类,所以甲投放的垃圾恰好是A类的概率为.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==.即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.27.(10分)(2019·安徽中考)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数中位数方差甲8 8乙8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率. 【解析】(1)平均数中位数方差甲 2乙丙 6(2)因为2<2.2<3,所以<<,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率P==. 28.(10分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:(1)请求出九(2)班全班人数.(2)请把折线统计图补充完整.(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【解析】(1)全班总人数为=48(人).(2)由(1)可知,九(2)班全班人数为48人.从扇形统计图中可以得到国学诵读占总人数的百分比为50%,所以国学诵读的人数为48×50%=24(人).描点、连线,补充完整的折线统计图如图所示:(3)画树状图如图:列表如下:南南书法演讲国学诵读征文宁宁书法√演讲√国学诵读√征文√南南和宁宁参加比赛一共有16种可能的结果,每种结果出现的可能性相等,而他们参加比赛项目相同的情况有4种,记南南和宁宁参加相同比赛项目为事件A,则P(A)==.29.(12分)为全面开展“大课间”活动,某校准备成立“足球”“篮球”“跳绳”“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)m=________,n=________,并将条形统计图补充完整.(2)试问全校2019人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)因为样本容量为15÷15%=100,所以“篮球”所占百分比为=25%,所以m=25;因为“跳绳”对应扇形的圆心角为×360°=108°,所以n=108.(2)全校报名参加足球活动小组的人数为2019×=600(人).(3)列表如下:男1 男2 女1 女2男1 ×(男1,男2) (男1,女1) (男1,女2)男2 (男2,男1) ×(男2,女1) (男2,女2)女1 (女1,男1) (女1,男2) ×(女1,女2)女2 (女2,男1) (女2,男2) (女2,女1) ×画树状图如下:因为所有可能出现的结果为12种,其中出现一男一女两名同学的结果为8种, 所以恰好选中一男一女两名同学的概率为=.。
历年中考统计与概率题专题练习
历年中考统计与概率题专题练习1.某中学九年级3班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题: 1求a 的值;2用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少..有1人的上网时间在8~10小时;2.广州市努力改善空气质量,近年来空气质量明显好转;根据广州市环境保护局公布的2006-2010这五年各年的全年空气质量优良的天数;绘制拆线图如图7,根据图中的信息回答:1、这五年的全年空气质量优良的天数的中位数是 .极差是 .2、这五年的全年空气质量优良的天数与它前一年相比较,增加最多的是 年;填写年份3、求这五年的全年空气质量优良的天数的平均数;3.甲已两个袋中均装有三张除所标的数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为317、、--,乙袋中的三张卡片上所标的数值分别为,、、612-先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值;把x 、y 分别作为点A 的横坐标与纵坐标;1用适当的方法写出点A x 、y 的所有情况; 2求点A 落在第三象限的概率;4.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 1求样本数据中为A 级的频率;2试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;3从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.5.某校初三1班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a,b的值;Array(2)若将各自选项的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;3在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取2名学生进行推铅球测试,求所抽取的两名学生中至.多.有一名女生的概率.6.4件同型号的产品中,有1件不合格品和3件合格品.1从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;2从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;3在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少。
2023年中考数学--统计与概率练习(解析)
专题28 统计与概率一、单选题1.(2022·辽宁沈阳·中考真题)下列说法正确的是( ) A .任意掷一枚质地均匀的骰子,掷出的点数一定是奇数 B .“从一副扑克牌中任意抽取一张,抽到大王”是必然事件 C .了解一批冰箱的使用寿命,采用抽样调查的方式D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则甲组数据更稳定 【答案】C 【分析】依据随机事件、抽样调查以及方差的概念进行判断,即可得出结论. 【详解】解:A .任意掷一枚质地均匀的骰子,掷出的点数不一定是奇数,故原说法错误,不合题意;B .“从一副扑克牌中任意抽取一张,抽到大王”是随机事件,故原说法错误,不合题意;C .了解一批冰箱的使用寿命,适合采用抽样调查的方式,说法正确,符合题意;D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则乙组数据更稳定,故原说法错误,不合题意;故选:C .2.(2022·全国九年级课时练习)已知一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2 B .4C .5D .6【答案】B 【分析】将一组数据从小到大排列,处于最中间的数字就是中位数,本题有5个数字,则排在第三个的就是中位数. 【详解】把数据从小到大排列为:2,2,4,5,6, 中间的数是4, ∴中位数是4, 故选:B .3.(2022·江苏盐城·景山中学九年级月考)截止2022年3月,“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为:29,27,31,31,31,29,29,31,则由年龄组成的这组数据的众数是( )A.27 B.29 C.30 D.31【答案】D【分析】根据众数的定义:一组数据中出现次数最多的一个数或多个数,进行求解即可.【详解】解:由题意可知,这组数据中31出现了4次,出现的次数最多,∴这组数据的众数为31,故选D.4.(2022·东莞市东莞中学初中部九年级)如图,两个转盘被分成几个面积相等的扇形,分别自由转动一次,当转盘停止后,指针各指向一个数字所在的扇形(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止).将两指针所指的两个扇形中的数相加,和为6的概率是()A.16B.13C.12D.56【答案】B【分析】画树状图,共有6个等可能的结果,两指针所指的两个扇形中的数相加,和为6的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有6个等可能的结果,两指针所指的两个扇形中的数相加,和为6的结果有2个,∴两指针所指的两个扇形中的数相加,和为6的概率为26=13,故选B.5.(2022·重庆实验外国语学校九年级)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗平均长度一样,甲、乙的方差分别是10.9、9.9,则下列说法正确是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐【答案】B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲、乙的方差的分别为10.9、9.9,∴甲的方差大于乙的方差,∴乙秧苗出苗更整齐.故选:B.6.(2022·深圳市新华中学九年级期末)一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是()A.49B.23C.12D.13【答案】D【分析】根据题意画出树状图,由概率公式即可得两次都摸到红球的概率.【详解】解:画出树状图:根据树状图可知:所有等可能的结果共有6种,其中两次都摸到红球的有2种,∴两次都摸到红球的概率是26=13;故选:D.7.(2022·四川广元·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【分析】依据平均数、中位数、众数、方差的定义和公式求解即可. 【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=,添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意. 故选:B .8.(2022·湖北随州·)如图,从一个大正方形中截去面积为23cm 和212cm 的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为( )A .49B .59C .25D .35【答案】A 【分析】求出阴影部分的面积占大正方形的份数即可判断. 【详解】解:∵两个小正方形的面积为23cm 和212cm , ∴323 ∴3+23=33∴大正方形的面积为27=, ∴阴影部分的面积为2731212--=, ∴米粒落在图中阴影部分的概率为124=279, 故选:A .9.(2022·山东聊城·)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是( ) A .样本为40名学生 B .众数是11节 C .中位数是6节 D .平均数是5.6节【答案】D 【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可. 【详解】解:A . 随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确; B . 根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确, C . 根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数676.52+=节,故选项C 中位数是6节不正确; D . 根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节 故选项D 平均数是5.6节正确. 故选择:D .10.(2022·全国九年级课时练习)现在要选拔一人去参加全国青少年数学竞赛,小明和小刚的三次选拔成绩分别为:小明:96,85,89,小刚:90,91,89,最终决定选择小刚去参加,那么,最终依据是( ) A .小刚的平均分高 B .小刚的中位数高 C .小刚的方差小 D .小刚最低分高【答案】C利用平均数、中位数及方差的定义进行计算,再根据各统计量特点判断即可.【详解】解:A.平均数:小明的平均数=96+85+89=903,小刚的平均数=90+91+89=903,平均数相同,故此项错误;B.中位数:小明的中位数89,小刚的中位数90,89<90,但中位数不能代表平均水平,故此项错误;C.方差:小明的方差=()()()2229690+8590+899062=33---,小刚的方差=()()()2229090+9190+89902=33---,623>23,小刚的波动较小,故小刚的方差较小,故此项正确;D. 此时不能选择最低分来比较两人的水平,故此项错误.故选C.二、填空题11.(2022·上海宝山区·九年级)如果一组数a,2,4,0,5的中位数是4,那么a可以是_______(只需写出一个满足要求的数).【答案】4【分析】由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.【详解】解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).12.(2022·江苏镇江·中考真题)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为__.【答案】3【分析】分别假设放入的红球个数为1、2和3,画树状图列出此时所有等可能结果,从中找到摸出一红一黄和两个红球的结果数,从而验证红球的个数是否符合题意.解:(1)假设袋中红球个数为1,此时袋中由1个黄球、1个红球,搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.(2)假设袋中的红球个数为2,列树状图如下:由图可知,共有6种情况,其中两次摸到红球的情况有2种,摸出一红一黄的有4种结果,∴P(摸出一红一黄)=42=63,P(摸出两红)=21=63,不符合题意,(3)假设袋中的红球个数为3,画树状图如下:由图可知,共有12种情况,其中两次摸到红球的情况有6种,摸出一红一黄的有6种结果,∴P(摸出一红一黄)=P(摸出两红)=61=122,符合题意,所以放入的红球个数为3,故答案为:3.13.(2022·山东九年级期中)一个不透明的袋子中装有4个小球,小球上分别标有数字-3,122,它们除所标数字外完全相同,摇匀后从中随机摸出两个小球,则两球所标数字之积是正数的概率为______.【答案】12【分析】列表得出所有等可能的情况数,找出两球上所标数字之积是正数的情况,即可求出所求的概率.【详解】解:列表如下:所有等可能的情况有12种,其中两球上所标数字之积是正数的情况有6种,则两球所标数字之积是正数的概率为6÷12=12,故答案是:12.14.(2022·山东九年级期末)已知线段a的长度为11,现从1~10这10条整数线段中任取两条,能和线段a组成三角形的概率为___.【答案】4 9【分析】由10条线段中任意取2条,是一个列举法求概率问题,是无放回的问题,共有90种可能结果,每种结果出现的机会相同,满足两边之和大于第三边构成三角形的有40个结果.因而就可以求出概率.【详解】从1~10这10条整数线段中任意取1条,有10种可能结果;再从剩下9条线段中任意取1条,有9种可能结果;所以从1~10这10条整数线段中任意取2条有10×9=90种等可能的情况,三角形两边之和大于第三边,其中能和线段 a 组成三角形,即这2条线段的长度之和大于11的有:(2,10),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,5),(7,6),(7,8),(7,9),(7,10),(8,4),(8,5),(8,6),(8,7),(8,9),(8,10)(9,3),(9,4),(9,5),(9,6),(9,7),(9,8),(9,10),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9)一共有1+2+3+4十4+5+6+7+8=40种等可能的情况;故能和线段 a 组成三角形的概率为:404=909. 故答案为:49.15.(2022·铜陵市第十五中学九年级期末)如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a 、b ,把a 、b 作为点A 的横、纵坐标;求点A (a ,b )的个数为:__________;点A (a ,b )在函数y x =的图象上的概率为:______.【答案】16 14【分析】(1)根据题意采用列表法,即可求得所有点的个数; (2)求得所有符合条件的情况,求其比值即可求得答案. 【详解】 解:(1)列表得:(1,4)(2,4) (3,4) (4,4)(1,3) (2,3) (3,3) (4,3) (1,2)(2,2) (3,2) (4,2)(1,1)(2,1)(3,1)(4,1)∴点(,)A a b 的个数是16;(2)当a b =时,(,)A a b 在函数y x =的图象上,∴点(,)A a b 在函数y x =的图象上的有4种,分别是:(1,1),(2,2),(3,3),(4,4), ∴点(,)A a b 在函数y x =的图象上的概率是41164=; 故答案是:16,14.三、解答题16.(2022·沭阳县怀文中学九年级月考)一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球1个.(1)现从中任意摸出一个球,求摸到黄球的概率;(2)现规定:摸到红球得5分,摸到蓝球得2分,摸到黄球得3分,甲同学先随机摸出一个小球(不放回),乙同学再随机摸出一个小球为一次游戏.请用画树状图或者列表法,求一次游戏甲、乙摸球所得分数之和不低于8分的概率.【答案】(1)14;(2)见解析,12【分析】(1)由概率公式即可得出答案;(2)画出树状图,共有16个等可能的结果,所得分数之和不低于8分的结果有8个,由概率公式即可得出答案.【详解】解:(1)任意摸出一个是黄球的概率为1211++=14;(2)画树状图如图:共有16个等可能的结果,甲、乙摸球所得分数之和不低于8分的结果有8个,∴一次游戏甲、乙摸球所得分数之和不低于8分的概率为816=12.17.(2022·云南师范大学实验中学九年级期末)从今年开始,云南将在全省集中开展为期一年半,以“清垃圾、扫厕所、勤洗手、净参观、常消毒、管集市、众参与”为主题的爱国卫生“7个专项行”为了动员广大师生朋友,争做爱国生的参与者,传播者,监督者,自觉投身爱国卫生专项行动.现做如下活动:在一个不透明的盒子中装有4张分别标有A、B、C、D的卡片,A、B、C、D四张卡片的背面分别写有“清垃圾、勤洗手、常消毒、众参与”,它们的形状、大小完全相同,现随机从盒子中摸出两张卡片.(1)请用树状图或列表法表示摸出的两张卡片可能出现的所有结果;(2)求摸出的两张卡片中的含有词语“众参与”卡片的概率.【答案】(1)见解析;(2)12【分析】(1)根据题意可以画出相应的树状图;(2)根据(1)中的树状图可以求得摸出的两张卡片中的含有词语“众参与”的概率.【详解】解:(1)树状图如下图所示,(2)由树状图得:共有12个等可能的结果,摸出的两张卡片中含有词语“众参与”的结果有6个,∴摸出的两张卡片中含有词语“众参与”的概率是61 122.18.(2022·全国九年级专题练习)某学生在篮球场对自己进行篮球定点投球测试,下表是他的测试成绩及相关数据:第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回投球次数 5 10 15 20 25 30每回进球次数 3 8 6 16 17 18相应频率(1)请将数据表补充完整.(2)画出该同学进球次数的频率分布折线图.(3)如果这个测试继续进行下去,每回的投球次数不断增加,根据上表数据,测试的频率将稳定在他投球1次时进球的概率附近,请你估计这个概率是多少?(结果用小数表示)【答案】(1)0.6;0.8;0.4;0.8;0.68;0.6;(2)见解析;(3)0.65【分析】(1)根据频率计算方法:频率=每回进球次数÷每回的投球次数,即可求解;(2)利用描点法画图即可;(3)利用样本估计总体即可求解.【详解】(1)∵3÷5=0.6;8÷10=0.8;6÷15=0.4;16÷20=0.8;17÷25=0.68;18÷30=0.6;故将数据表补充如下:第一回投第二回投第三回投第四回投第五回投第六回投球球球球球球每回投球次数5 10 15 20 25 30每回进球次数3 8 6 16 17 18相应频率0.6 0.8 0.4 0.8 0.68 0.6 (2)如图:进球次数的频率分布折线图如下:(3)386161718 51015202530++++++++++≈0.65.答:估计这个概率是0.65.19.(2022·武汉一初慧泉中学九年级月考)某校为了了解学校女生的身高情况,抽查了部分女生的身高,并绘制了以下不完整的统计图.请根据以上图表信息,解答下列问题:(1)本次调查的女生共有______人,E组人数m=______;(2)扇形统计图中E部分所对应的扇形圆心角的大小是______;(3)该校共有女生550名,请你估计该校女生身高不低于160cm的人数.【答案】(1)50,10;(2)72°;(3)308人【分析】(1)从扇形统计图中获取D 部分的比重,从频数分布直方图中获取D 部分的人数,即可求解;求得C 组人数,即可求解.(2)求得E 组的所占的百分比,即可求解;(3)求得女生身高不低于160cm 所占的百分比,即可求解. 【详解】解:(1)从扇形统计图中获取D 部分的比重为26% 从频数分布直方图中获取D 部分的人数为13 总人数为1326%=50÷人 C 组的人数为5028%=14⨯人50261413510m =-----=故答案为:50,10(2)E 部分所对应的扇形圆心角的大小是103607250⨯︒=︒ 答:E 部分所对应的扇形圆心角的大小是72︒ (3)样本中女生身高不低于160cm 的人数有28人2855030850⨯= 答:估计该校女生身高不低于160cm 的有308人.20.(2022·全国九年级课时练习)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔赛,他们的跳高成绩(单位:cm )如下: 甲:172 168 175 169 174 167 166 169 乙:164 175 174 165 162 173 172 175 (1)甲、乙两名运动员跳高的平均成绩分别是多少? (2)分别求出甲、乙跳高成绩的方差; (3)哪个人的成绩更为稳定?为什么?(4)经预测,跳高165cm 以上就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测跳高170cm 方可获得冠军,又应该选哪位运动员参赛?【答案】(1)都是170cm ;(2)29.5s =甲,225.5s =乙;(3)甲运动员的成绩更为稳定,理由见解析;(4)跳高165cm 以上就很可能获得冠军的情况下,选甲运动员参加;跳高170cm 方可获得冠军的情况下,应选乙运动员参加 【分析】(1)根据平均数的计算方法,先将数据求和,再除以8即可得到甲乙两人各自的平均成绩; (2)根据方差的计算公式分别计算即可,(3)由题(2)的计算结果,根据方差的意义可知,方差越小,即波动越小,数据越稳定即可判断; (4)根据题意分情况分析数据即可判断. 【详解】(1)甲的平均成绩为:1(172168175169174167166169)170(cm)8⨯+++++++=,乙的平均成绩为:1(164175174165162173172175)170(cm)8⨯+++++++=,(2)()()()()()()22222221[1721701681701751701691701741701671708s =⨯-+-+-+-+-+-甲221(166170)(169170)769.58⎤+-+-=⨯=⎦22222221(164170)(175170)(174170)(165170)(162170)(173170)8s ⎡=⨯-+-+-+-+-+-⎣乙221(172170)(175170)20425.58⎤+-+-=⨯=⎦;(3)∵9.525.5<, ∴22s s<甲乙,∴甲运动员的成绩更为稳定;(4)若跳过165cm 以上就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm ,而乙只有5次,所以应选甲运动员参加;若跳过170cm 才能得冠军,则在8次成绩中,甲只有3次都跳过了170cm ,而乙有5次,所以应选乙运动员参加.21.(2022·湖北黄石八中)2022年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会,目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机抽查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图(如图1).根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;扇形统计图中“篮球”对应的扇形圆心角的度数为______.(2)请把图2的条形统计图补充完整;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大学生运动会的志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【答案】(1)180,126°;(2)画图见解析;(3)1 6【分析】(1)根据跳水的人数及其百分比求得总人数;然后出田径及游泳的人数,再用总人数减去田径人数、游泳人数、跳水人数即可得到篮球人数,求出其所占总数的百分比,最后乘以360°即可得到结果;(2)根据(1)的计算结果补全统计图即可;(3)画树状图展示所有12种等可能的结果,再找出恰好选中甲、乙两位同学的结果数,然后根据概率公式求解..【详解】(1)54÷30%=180(人)田径人数:180×20%=36(人),游泳人数:180×15%=27(人),篮球人数为:180-54-36-27=63(人)图中“篮球”对应的扇形圆心角的度数为:360°63= 180126°,故答案为:180,126°;(2)补全统计图如下所示:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种. 所以P (恰好选中甲、乙两位同学)=21=126. 22.(2022·靖江市靖城中学)对某篮球运动员进行3分球投篮测试结果如下表:(1)计算、直接填表:表中投篮150次、200次相应的命中率. (2)这个运动员投篮命中的概率约是_____. (3)估计这个运动员3分球投篮15次能得多少分? 【答案】(1)0.6,0.6;(2)0.6;(3)27分 【分析】(1)由命中次数除以投篮次数即可得到相应的命中率; (2)由大量实验是前提下,利用频率估计概率即可得到答案; (3)先计算15次投篮的命中数,从而可得答案. 【详解】解:(1)投篮150次、200次的命中率分别为:90120=0.6,=0.6.150200(2)随着投篮次数的增加,这个运动员投篮命中率稳定在0.6附近, 所以这个运动员投篮命中的概率约是0.6. 故答案为:0.6.(3)这个运动员3分球投篮15次大约投中150.6=9⨯次, 所以这个运动员3分球投篮15次的得分大约为:39=27⨯分.23.(2022·重庆实验外国语学校九年级月考)每年都有很多人因火灾丧失生命,某校为提高学生的逃生意识,开展了“防火灾,爱生命”的防火灾知识竞赛,现从该校七、八年级中各抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A :8085x ≤<,B :8590x ≤<,C :9095x ≤<,D :95100x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩是:100,81,84,83,90,89,89,98,97,99; 八年级抽取的10名学生的竞赛成绩是:100,80,85,83,90,95,92,93,93,99;七、八年级抽取的学生竞赛成绩统计表年级平均分 中位数 众数 方差七年级 91 a 89 45.2 八年级 9192.5b39.2八年级抽取的学生竞赛成绩频数分布直方图请根据相关信息,回答以下问题:(1)直接写出表格中a ,b 的值并补全八年级抽取的学生竞赛成绩频数分布直方图:(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防火安全知识较好?请说明理由(一条理由即可);(3)该校七年级有800人,八年级有1000人参加了此次竞赛活动,请估计参加此次竞赛活动成绩优秀(90x ≥)的学生人数是多少.【答案】(1)89.5;93;见解析;(2)八年级,见解析;(3)1100人 【分析】(1)根据中位数、众数的意义求解即可,求出“C 组”的频数才能补全频数分布直方图; (2)从中位数、众数、方差的角度比较得出结论; (3)分别计算七年级、八年级优秀人数即可. 【详解】解:(1)将七年级10名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为: 899089.52+=, 因此中位数是89.5,即89.5a =;八年级10名学生成绩出现次数最多的是93,共出现2次,因此众数是93,即b =93, 八年级10名学生成绩处在“C 组”的有10-2-3-1=4(人), 补全频数分布直方图如下:(2)八年级学生掌握防火安全知识较好.因为七、八年级平均分相等,八年级中位数92.5大于七年级中位数89.5,所以八年级学生掌握防火安全知识较好.(3)17 80010001100210⨯+⨯=(人);答:参加此次竞赛活动成绩优秀的学生人数是1100人.。
初中数学统计与概率专题训练50题含参考答案
初中数学统计与概率专题训练50题含参考答案一、单选题1.统计得到的一组数据有80个.其中最大值为141,最小值为50,取组距为10,可以分()A.10组B.9组C.8组D.7组2.下列说法正确的是()A.方差越大,数据的波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.掷一枚硬币,正面一定朝上3.到了劳动课时,刚好是小明和小聪两位同学值日,教室里有两样劳动工具:扫把和拖把,小明与小聪用“剪刀,石头,布”的游戏方法决定谁胜了就让谁使用扫把,则小明出“剪刀”后,能胜出的概率是()A.12B.13C.16D.194.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A.12B.14C.18D.1165.2022年深圳市有11.2万名学生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这11.2万名考生的数学成绩是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本容量是200,其中说法正确的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.“打开电视,正在播放新闻联播”是必然事件B.对某批次手机防水功能的调查适合用全面调查(普查)方式C.某种彩票的中奖率是8%是指买8张必有一张中奖D.对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式7.如下电路图中,任意关闭a、b、c三个开关中的两个,灯泡发亮的概率为().A.310B.13C.16D.238.下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法9.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.1810.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.钉钉打卡已经成为一种工作方式,老师利用钉钉调查了全班学生平均每天的阅读时间,统计结果如下表,在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1.5B.1,1.5C.1,2D.1,112.从1~9这九个自然数中任取一个,是2的倍数或是3的倍数的概率是()A.19B.29C.23D.4913.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.手可摘星辰D.大漠孤烟直14.2021年7月24日,宁波小将杨倩取得了东京奥运会气步枪首枚金牌,使得射击运动在各校盛行起来.某班有甲、乙、丙、丁四名学生进行了射击测试,每人10次射击成绩的平均数⎺x(单位:环)及方差s2(单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择()A.甲B.乙C.丙D.丁15.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把3个球放入两个抽屉中,有一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书﹐正好是97页是确定事件D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同).如果从中任取两个球.不一定可以取到红球16.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A.13B.14C.15D.1617.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2B.4C.8D.1618.某班抽取6名同学参加体能测试,成绩如下:75,95,85,80,90,85. 下列表述不正确的是().A.众数是85B.中位数是85C.平均数是85D.方差是15 19.对于数据:1,7,5,5,3,4,3.下列说法中错误的是()A.这组数据的平均数是4B.这组数据的众数是5和3C.这组数据的中位数是4D.这组数据的方差是2220.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率二、填空题21.一组数据2,6,5,2,4,则这组数据的平均数是__________.22.数据1,2,2,5,8的众数是_____.23.某校开展为“希望小学”捐书活动,以下是5名同学捐书的册数:2,3,5,7,2,则这组数据的中位数是_____.24.一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别.从袋中随机摸取一个小球,它是黄球的概率______.25.已知样本1,3,9,a,b的众数是9,平均数是6,则中位数为__.26.九年级某同学6次数学小测验的成绩分别为:100,112,102,105,112,110,则该同学这6次成绩的众数是_____.27.某校在七年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生成绩达90分以上,据此估计该校七年级640名学生中这次模拟考试成绩达90分以上的约有____名学生.28.数据3,4,5,6,7的平均数是___________.29.某校为了举办“迎国庆”的活动,调查了本校所有学生,调查的结果被整理成如图所示的扇形统计图.如果全校学生人数是1200人,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________人.30.下表列出了某地农作物生长季节每月的降雨量(单位:mm):其中有______个月的降雨量比这6个月平均降雨量大.31.有一组数据:3,a,4,8,9,它们的平均数是6,则a是_______.32.从2,3,4,6中任意选两个数,记作a和b,且a≠b,那么点(a,b)在函数8=图象上的概率是_______.yx33.若a、b、c的方差为3,则23b+、23a+、23c+的方差为________.34.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是_________.35.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是_________.36.如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是___________.37.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.38.数字2018、2019 、2020 、2021 、2022的方差是__________;39.一组数据:9、12、10、9、11、9、10,则它的方差是_____.40.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好篮球的人数是14人,则爱好羽毛球的人数为________.三、解答题41.射箭时,新手成绩通常不太稳定,小明和小华练习射箭,第一局12支箭射完后,两人的成绩如图所示,请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由.42.某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图,图中的数字表示每一级台阶的高度(单位:cm),请你用所学过的有关统计的知识回答下列问题:(1)分别求甲、乙两段台阶路的高度平均数;(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在总高度及台阶数不变的情况下,请你提出合理的整修建议.43.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,①问卷得分的极差是_____________分;①问卷得分的众数是____________分;①问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.44.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?45.“垃圾分类,从我做起”,垃圾一般可分为:可回收垃圾、厨余垃圾、有害垃圾、其它垃圾.现小明提了一袋垃圾,小聪提了两袋垃圾准备投放.(1)直接写出小明所提的垃圾恰好是“厨余垃圾”的概率;(2)求小聪所提的两袋垃圾不同类的概率.46.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是(精确到0.1),并说明理由.(2)估算袋中白球的个数.47.为了调查A、B两个区的初三学生体育测试成绩,从两个区各随机抽取了1000名学生的成绩(满分:40分,个人成绩四舍五入向上取整数)A区抽样学生体育测试成绩的平均分、中位数、众数如下:B区抽样学生体育测试成绩的分布如下:请根据以上信息回答下列问题(1)m=;(2)在两区抽样的学生中,体育测试成绩为37分的学生,在(填“A”或“B”)区被抽样学生中排名更靠前,理由是;(3)如果B区有10000名学生参加此次体育测试,估计成绩不低于34分的人数.48.为庆祝建校60周年,某校组织七年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校七年级学生进行抽样调查,根据所得数据绘制出如下计图表:根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生 人;(2)扇形统计图中,扇形E 的圆心角度数是 ; (3)请补全频率分布直方图;(4)已知该校七年级共有学生360人,请估计身高在160170x <的学生约有多少人?49.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环): 小华:7,8,7,8,9,9; 小亮:5,8,7,8,10,10. (1)填写下表:(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么? (3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差 .(填“变大”、“变小”、“不变”)50.(2011湖北鄂州,17,6分)为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图. ①甲、乙两种品牌食用油各被抽取了多少瓶用于检测?①在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?参考答案:1.A【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,根据组数的定义来解即可.2.A【详解】A、方差越大,数据的波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前的安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选A.3.B【详解】画树状图为:共有3种等可能的结果数,其中小明出“剪刀”后,能胜出的结果数为1,所以小明出“剪刀”后,能胜出的概率=13.故选B.4.B【分析】根据概率公式直接解答即可.【详解】①共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,①他选择的景点恰为丝路花雨的概率为14;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5.C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意可知,这11.2万名考生的数学成绩是总体;每一名考生的数学成绩是个体;抽取的200名考生的数学成绩是总体的一个样本;样本容量为200;故①是正确的;①错误;①错误;①是正确的.故选:C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.D【分析】根据必然事件、随机事件、概率的意义,以及全面调查与抽样调查的定义判断即可.【详解】解:A、“打开电视,正在播放新闻联播”是随机事件,不符合题意;B、对某批次手机放水功能的调查适合用抽样调查方式,不符合题意;C、某种彩票的中奖率是8%是指买8张可能一张中奖,不符合题意;D、对某校九(2)班学生肺活量情况的调查适合用全面调查(普查)方式,符合题意.故选:D.【点睛】本题主要考查了概率的意义,掌握全面调查与抽样调查、随机事件的定义是解本题的关键.7.D【分析】用概率公式即可求解.【详解】由图可知,使得灯泡亮的组合有ab,ac这两种,总的可能情况有ab、ac、bc这3种情况,则让灯泡亮的概率为:2÷3=23,故选:D.【点睛】本题考查了用概率公式求解概率的知识,关键是要找全所有的可能情况和使灯泡亮的情况.8.D【详解】试题解析:A、“任意画一个三角形,其内角和为360°”是不可能事件,故A错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投十次可能投中6次,故B错误;C、抽样调查选取样本时,所选样本要具有广泛性、代表性,故C错误;D、检测某城市的空气质量,采用抽样调查法,故D正确;故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.9.B【详解】由频率的定义知,320%3a=+,解得a=12.10.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B【分析】根据表格中的数据可知全班人数共有30人,从而可以求得全班学生平均每天阅读时间的中位数和众数,本题得以解决;【详解】班级学生=8+9+10+3=30(人),阅读量1.5h的人有10个,人数最多,①众数是1.5h.阅读量从小到大排列为0.5h的有8个,1h的有9个,1.5h的人有10个,2h的有3个,所以中间的是第15、16个数分别是1h、1h,①中位数=1+1=12h.故选:B.【点睛】本题主要考查了中位数和众数的求解,准确计算是解题的关键.12.C【分析】从1到9这9个自然数中任取一个有9种可能的结果,其中是2的倍数或是3的倍数的有2,3,4,6,8,9共计6个.【详解】解:从1到9这9个自然数中任取一个有9种可能的结果,是2的倍数或是3的倍数的有6个结果,因而概率是23.故选:C.【点睛】用到的知识点为:概率 所求情况数与总情况数之比.正确写出是2的倍数或是3的倍数的数有哪些是本题解决的关键.13.C【分析】根据必然事件、随机事件、不可能事件的意义结合具体问题情境进行判断即可.【详解】解:A.“黄河入海流”是必然事件,因此选项A 不符合题意;B.“锄禾日当午”是随机事件,因此选项B不符合题意;C.“手可摘星辰”是不可能事件,因此选项C 符合题意;D.“大漠孤烟直”是随机事件,因此选项D不符合题意;故选:C.【点睛】本题考查了必然事件、随机事件、不可能事件,理解必然事件、随机事件、不可能事件的意义是正确判断的前提.14.A【分析】观察表格中的数据,甲、丙、丁的平均数相等且大于乙的平均数,从方差来看,甲的方差最小,根据方差的意义,方差小的发挥稳定,据此即可求解.【详解】解:甲、丙、丁的平均数相等且大于乙的平均数,甲的方差最小,①要从中选择一名成绩好且发挥稳定的学生参加比赛,应选择甲.故选A.【点睛】本题考查了平均数,方差,掌握方差的意义是解题的关键.15.C【分析】随机事件是在随机试验中,可能出现也可能不出现,其发生概率在0%至100%之间,必然事件是一定会发生的事件,其发生概率是100%,确定事件是必然事件和不可能事件的统称,不可能事件发生的概率是0,据此逐项分析解题即可.【详解】A.抛一枚硬币,硬币落地时正面朝上是随机事件,故A.不符合题意;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,故B.不符合题意;C.任意打开九年级数学教科书,正好是97页是随机事件,故C.符合题意;D.一只盒子中有白球3个,红球6个(每个球除了颜色外都相同),从中任取2个球,不一定取到红球是随机事件,故D.不符合题意故选:C【点睛】本题考查随机事件、必然事件、确定事件等知识,是基础考点,难度较易,掌握相关知识是解题关键.16.A【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.A【详解】解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为x ,新数据是在原来每个数上加上100得到,则新平均数变为x +100,则每个数都加了100,原来的方差s 12= 1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,现在的方差s 22=1n[(x 1+100﹣x ﹣100)2+(x 2+100﹣x ﹣100)2+…+(x n +100﹣x ﹣100)2]=1 n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]=2,方差不变.故选A .【点睛】方差的计算公式:s 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2] 18.D【详解】分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和方差的定义可分别求出.详解:这组数据中85出现了2次,出现的次数最多,所以这组数据的众数位85; 由平均数公式求得这组数据的平均数位85,将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85. 方差()()()()()()222222217585958585858085908585856S ⎡⎤=-+-+-+-+-+-⎣⎦, 125.3= 所以选项D 错误.故选D.点睛:考查中位数,算术平均数,众数,方差,掌握它们的概念是解题的关键.19.D【详解】由平均数公式可得这组数据的平均数为4;在这组数据中5和3都出现了2次,其他数据均出现了1次,所以众数是5和3; 将这组数据从小到大排列为:1、3、3、4、5、5、7,可得其中位数是4;其方差S 2=1n[(x 1-x¯)2+(x 2-x¯)2+…+(x n -x¯)2]=227,所以D 错误.故选D . 20.B【详解】试题分析:根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;D、抛一枚硬币,出现反面的概率为,不符合题意,故选B.考点:利用频率估计概率.21.19 5【分析】直接根据算术平均数的定义进行求解.【详解】这组数据的平均数265241955++++==,故答案为:195.【点睛】本题考查算术平均数,熟练掌握算术平均数的计算公式是解题的关键.22.2【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中2是出现次数最多的,故众数是2.故答案为:2.【点睛】本题为统计题,考查了众数的定义,是基础题型.23.3【分析】根据中位数的定义解答即可.【详解】解:①2,2,3,5,7在中间位置的是3,①这组数据的中位数是3.故答案为3.【点睛】本题考查中位数的概念,将数据按照从小到大排列,在最中间位置的数或最中间的两个数的平均数就是中位数.24.25##0.4【分析】直接利用概率公式求解即可求得答案.【详解】解:①一个不透明的口袋中装有6个红球,4个黄球,这些球除了颜色外无其他差别,①从中随机摸出一个小球,恰好是黄球的概率为:4412 645==+.故答案为:25.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.25.8【分析】先根据众数的定义判断出a,b中至少有一个是9,再用平均数求出a+b=17,即可得出结论.【详解】解:①样本1,3,9,a,b的众数是9,①a,b中至少有一个是9,①样本1,3,9,a,b的平均数为6,①(1+3+9+a+b)÷5=6,①a+b=17,①a,b中一个是9,另一个是8,①这组数为1,3,9,8,9,即1,3,8,9,9,①这组数据的中位数是8.故答案为:8.【点睛】本题考查了众数、平均数和中位数的知识,解答本题的关键是能根据众数的定义得出a,b中至少有一个是9.26.112【分析】根据众数的出现次数最多的特点从数据中即可得到答案.【详解】解:在这组数据中出现次数最多的是112,所以这组数据的众数为112,故答案为:112.【点睛】此题重点考查学生对众数的理解,掌握众数的定义是解题的关键.27.160【详解】分析:先求出随机抽取的40名学生中成绩达到90分以上的所占的百分比,再乘以640,即可得出答案.详解:①随机抽取40名学生的数学成绩进行分析,有10名学生的成绩达90分以上,①七年级640名学生中这次模拟考数学成绩达90分以上的约有640×1040=160(名);故答案为160.点睛:此题主要考查了用样本估计总体,求出样本中符合条件的百分比是解题关键,比较简单.28.5【分析】根据平均数的的计算公式列出算式,进行计算即可.【详解】解:这组数据的平均数=(3+4+5+6+7)÷5=5,故答案是:5.【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.29.300【分析】根据扇形统计图中的数据和题目中的数据,可以计算出这所学校赞成举办演讲比赛的学生人数.【详解】解:由统计图可得,这所学校赞成举办演讲比赛的学生有:1200(140%35%)120025%300⨯--=⨯=(人),故答案为:300.【点睛】本题考查扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.30.3【分析】首先运用求平均数的公式得出这六个月平均每月的降雨量,然后进行比较即可.【详解】解:平均每月的降雨量=(20+55+82+135+116+90)÷6=83.3mm,所以有三个月的降雨量比这六个月平均降雨量大.故答案为3.【点睛】本题主要考查的是样本平均数的求法.熟记公式是解决本题的关键.31.6【详解】【分析】根据平均数的定义进行求解即可得.【详解】由题意得:38495a++++=6,解得:a=6,故答案为6.。
中考数学专题训练:统计与概率(含答案)
中考数学专题训练:统计1. (2012福建)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;请根据上述统计表和扇形提供的信息,完成下列问题: (1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?【答案】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135;儿童玩具占得百分比是(90÷300)×100%=30%。
童装占得百分比1-30%-25%=45%。
补全统计表和统计图如下:(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×85%=63.75,童装中合格的数量是135×80%=108,∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是8163.7510884.25%300++=。
2. (2012湖北) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率. 【答案】解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人。
(2)喜爱C 粽的人数:600-180-60-240=120,频率:120÷600=20%; 喜爱A 粽的频率:180÷600=30%。
中考 数学专练10(统计与概率大题)(30题)(老师版)
2022中考考点必杀500题 专练10(统计与概率大题)(30道)1.(2022·浙江绍兴·一模)健康的体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现.某初中学校为了提高学生体质健康,制定合理的校园阳光体育锻炼方案,随机抽查了部分学生最近两周参加体育锻炼活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)抽查的学生中锻炼8天的有______人.(2)本次抽样调查的众数为______,中位数为_______.(3)如果该校约有2000名学生,请你估计全校约有多少名学生参加体育锻炼的天数不少于7天? 【答案】(1)60人 (2)5天,6天(3)估计全校约有800名学生参加体育锻炼的天数不少于7天 【解析】 (1)解:12020600÷=%(人)600254051060⨯---⨯=(1-20%%%%)=600%(人)故抽查的学生中锻炼8天的有60人. (2)解:参加体育锻炼活动5天的人最多,故众数是5; 一共600人,最中间是第300个和301个, 从小到大排序后第300个和301个数都是6天, ∴中位数是6;(3)解:参加体育锻炼的天数不少于7天的人所占百分比是:%%%%,2510540++=⨯%=(人)200040800答:估计全校约有800名学生参加体育锻炼的天数不少于7天.【点睛】本题主要考查了概率统计的知识,包括扇形统计图和条形统计图的联系、众数和中位数的概念和用样本估计总体,牢固掌握以上知识点是做出本题的关键.2.(2022·浙江宁波·二模)第24届冬奥会于2022年2月在北京举行,为推广冰雪运动,发挥冰雪项目的育人功能,教育部近年启动了全国冰雪运动特色学校的䢯选工作.某中学通过将冰雪运动 “早地化” 的方式积极开展了基础滑冰、早地滑雪、早地冰球、早地冰显四个运动项目,要求每一位学生都自主选择一个运动项目,为了了解学生选择冰雪运动项目的情况,随机抽取了部分学生进行调查, 并根据调查结果绘制成如下不完整的条形统计图和扇形统计图.(1)这次随机抽取了_______名学生进行调查,并将条形统计图补充完整.(2)求扇形统计图中 “旱地冰壶” 部分的圆心角度数.(3)如果该校共有2400名学生,请你估计全校学生中喜欢基础滑冰项目有多少人?【答案】(1)50;条形统计图补充完整见解析(2)扇形统计图中 “旱地冰壶” 部分的圆心角度数为108︒(3)估计全校学生中喜欢基础滑冰项目有960人【解析】(1)解:在这次调查中,总人数为10÷20%=50(人),∴喜欢旱地滑雪项目的同学有50﹣20﹣10﹣15=5(人),补全图形如下:(2)旱地冰壶有15人,总人数50人,15÷50×360︒=108︒,∴“旱地冰壶” 部分的圆心角度数为108︒;(3)基础滑冰有20人,总人数50人,202400960⨯=(人),50∴估计全校学生中喜欢基础滑冰项目有960人.【点睛】本题考查条形统计图和扇形统计图的应用,数量掌握统计图的相关数据的关系与应用是解题的关键.3.(2022·湖北十堰·一模)为了解中考体育科目训练情况,从城区九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______;(2)图1中α∠的度数是______,并把图2条形统计图补充完整;(3)若城区九年级学生有18000人,如果全部参加这次中考体育科目测试,请估计不及格的人数为______; (4)测试老师想从4位同学(分别记为甲、乙、丙、丁)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中甲的概率. 【答案】(1)40人 (2)54°;作图见详解 (3)3600人 (4)12 【解析】 (1)12÷30%=40(人)∴本次抽样测试的学生人数是40人, 故答案为:40; (2) 63605440α∠=⨯︒=︒. 故答案为:54°;C 级的人数为4035%14⨯=(人), 故补全条形统计图如下:(3)818000360040⨯=(人)∴估计不及格的人数为3600人,故答案为:3600人;(4)根据题意列表如下:由表可知,共有12种等可能的结果,其中选中甲的有6种,∴P(选中甲) =612=12.【点睛】本题考查条形统计图与扇形统计图相关联,用样本估计总体,列表法或画树状图法求概率.根据条形统计图和扇形统计图得到必要的信息和数据是解题关键.4.(2021·陕西渭南·二模)中华人民共和国第十四届全运会将于2021年9月份在陕西举行,“全民全运同心同行”是本届全运会主题口号.某中学为加深对全运会的了解,组织学生玩抽卡片的游戏,游戏规则如下:a.如图,A、B、C、D四张卡片(形状、大小和质地都相同),正面分别写有“全民全运”“同心同行”“相约西安”“筑梦全运”;b.将这四张卡片背面朝上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张;c.若抽取的两张卡片能组成本届全运会主题口号“全民全运同心同行”,则获得一次成为“文明倡导者”的机会.(1)第一次抽取的卡片上写的是“全民全运”的概率为________;(2)请用列表法或画树状图法求乐乐抽取完两张卡片后,能获得成为“文明倡导者”机会的概率.【答案】(1)1 4(2)1 6【解析】(1)第一次抽取的卡片上写的是“全民全运”的概率为14;故答案为:14;(2)列表如下:由表知,共有12种等可能结果,其中抽取完两张卡片后,能获得成为“文明倡导者”机会的有2种结果,所以抽取完两张卡片后,能获得成为“文明倡导者”机会的概率是21 126.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.(2021·陕西渭南·二模)现代交通的发达虽然给人们带来了无尽的便利,但同时也增加了许多安全隐患.为了提高学生的安全意识,珍爱生命,某学校制作了8条安全出行警句,倡导全校1200名学生进行安全警句背诵系列活动,并在活动之后举办安全知识大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查他们安全警句的背诵情况,根据调查结果绘制成的统计图(部分)如图所示.大赛结束一个月后,再次抽查这部分学生安全警句的背诵情况,并根据调查结果绘制成统计表:请根据调查的信息,完成下列问题:(1)补全条形统计图,表格中m的值为_______;(2)求活动启动之初学生安全警句的背诵条数的平均数及中位数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校安全警句背诵系列活动的效果.【答案】(1)10;补图见解析(2)平均数为5,中位数为4.5(3)见解析【解析】(1)解:调查人数为6020120360÷=(人),背诵“4条”的人数为13512045360⨯=(人),补全条形统计图如图所示:大赛结束一个月后,背诵“4条”的人数为120101540252010m=-----=(人),故答案为:10;(2)解:将这120名学生活动启动之初的背诵情况从小到大排列处在中间位置的两个数的平均数为454.52+=,因此中位数是4.5,这120名学生活动启动之初的背诵情况的平均数为:1(153454205166137118)5 120⨯⨯+⨯+⨯+⨯+⨯+⨯=(条),答:活动启动之初学生安全警句的背诵条数的平均数为5,中位数为4.5;(3)解:从中位数上看,活动开展前的中位数是4.5条,活动开展后的中位数是6条,从背诵“6条及以上”人数的变化情况看,活动前是40人,活动后为85人,人数翻了一倍,从而得出活动的开展促进学生背诵能力的提高,活动开展的效果较好.【点睛】本题考查条形统计图、扇形统计图,理解两个统计图中数量之间的关系是正确解答的关键.6.(2021·山东滨州·二模)为了进一步提高中学生的交通安全意识、文明意识,为“创建文明城市”工作的开展营造浓厚的宣传氛围,某区创新宣传方式,组织学生利用“参观体验+知识竞赛”新模式开展安全宣传活动,并取得了良好的效果.赛后区团委随机抽取了部分参赛学生的成绩,整理后按分数分组如下:A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100,并绘制出不完整的统计图.请你根据提供的信息,解决下列问题:(1)补全频数分布直方图和扇形统计图;(2)这次竞赛成绩的中位数落在组(填写字母);(3)某区共有2万名中学生,若竞赛成绩在80分以上(包括80分)为“优”,请你估计该区竞赛成绩为“优”的学生有多少人?(4)D组中成绩为100分的同学有三人(两男一女),现准备从他们中随机选出两位同学参加市竞赛,请用画树状图或列表法求刚好抽到两位男生的概率.【答案】(1)见解析(2)C(3)12000人(4)1 3【解析】(1)解:由C组人数和百分比可得本次调查的学生有:360÷40%=900(人),A组学生有:900﹣270﹣360﹣180=90(人),B组所占的百分比为:270÷900×100%=30%,补全的补全频数分布直方图和扇形统计图如图所示:(2)解:一共900名学生,则中位数是第450和第451名学生的平均数,∴A、B组共有90+180=270人,A、B、C组共有90+180+270=540人,∴第450和第451名学生在C组,∴这次竞赛成绩的中位数落在C组;(3)解:20000×(40%+20%)=12000(人),即估计该区竞赛成绩为“优”的学生有12000人.(4)解:将男生分别标记为A1,A2,女生标记为B1由表可知,共有6种等可能结果,其中刚好抽到两位男生的有2种结果,所以刚好抽到两位男生的概率为21 63 .【点睛】本题考查了频数分布直方图和扇形图的关联求值,中位数的概念,由样本估计总体,列表法求概率等知识;掌握图表所表达的数据意义是解题关键.7.(2022·陕西·武功县教育局教育教学研究室二模)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9小时,在备战中考的重要阶段,更要注重睡眠,提高学习效率.某校为了了解该校九年级学生每天的睡眠时间,随机调查了该校九年级部分学生,并将调查结果绘制成如下的统计图和统计表,根据图表中的信息,解答下列问题:(1)本次调查数据的中位数落在______组,表中m的值为______,扇形统计图中C组所在扇形的圆心角为______°;(2)求本次调查数据的平均数;(3)若该校共有600名九年级学生,请估计该校每天睡眠时间不少于9h的九年级学生有多少名?【答案】(1)B;10;90(2)8.5h(3)210名【解析】(1)÷=(人)解:被调查的学生人数为:1845%40故本次调查数据的中位数是这组数据从小到大排列后,第20个和第21个数的平均数故本次调查数据的中位数落在B组m=40-18-8-4=10扇形统计图中C 组所在扇形的圆心角为:10360=9040︒⨯︒ 故答案为:B ;10;90;(2) 解:()7.5188.589.3101148.5h 188104⨯+⨯+⨯+⨯=+++, ∴本次调查数据的平均数为8.5h .(3) 解:104600210188104+⨯=+++(名), ∴估计该校每天睡眠时间不少于9h 的九年级学生有210名.【点睛】本题考查了统计图表,中位数,扇形的圆心角,平均数的求法,用样本估计总体,解题的关键是仔细地审题,从图表中获取相关信息.8.(2022·陕西·武功县教育局教育教学研究室二模)此前,网络上出现了“东航失事原因锁定副驾驶”“黑匣子数据已经出来”等传言,严重误导社会公众认知,干扰事故调查工作,民航局表示:将依法追究造谣者法律责任,为了引导广大民众做“不信谣、不传谣、不造谣”的守法公民,某志愿者团队准备将队员们随机分配到A 、B 、C 、D 四个社区做《抵制网络谣言·共建网络文明》的宜传活动,已知莹莹和晓晓都是该志愿者团队中的队员.(1)莹莹被分配到B 社区的概率为______;(2)请用列表法或画树状图的方法求莹莹和晓晓被分配到同一个社区的概率.【答案】(1)14(2)14【解析】(1)∴志愿者团队准备将队员们随机分配到A 、B 、C 、D 四个社区,∴莹莹被分配到B 社区的概率为14. (2)根据题意列表如下:由表格可知,共有16种等可能的结果,其中莹莹和晓晓被分配到同一个社区的情况有4种,∴P(莹莹和晓晓被分配到同一个社区)41 164==.【点睛】此题考查了根据概率公式求解概率以及树状图或列表法求解概率,解题的关键是掌握概率公式以及树状图或列表法求解概率.9.(2022·江苏·徐州市新城实验学校一模)随着奥密克戎病毒的传播,部分地区采用了在线授课学习方式.某校计划为学生提供以下四类在线学习方式:在线讲授、观看微课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)本次调查学生共________人,补全条形统计图:(2)扇形统计图中“观看微课”对应的扇形圆心角等于__________°;(3)该校共有学生2600人,请你估计该校对“在线授课”最感兴趣的学生人数.【答案】(1)120;见解析;(2)72(3)对“在线讲授”最感兴趣的学生人数是780人【解析】(1)总人数:4840%120÷=(人),“在线答题”人数:12036244812---=(人),补全条形统计图如图所示:(2)“观看微课”所占圆心角3607224120︒=︒=⨯, 故答案为:72;(3)本校对“在线授课”最感兴趣的人数260078036120⨯==(人), 答:该校对“在线授课”最感兴趣的学生人数为780人.【点睛】此题主要考查关联扇形统计图与条形统计图、用样本估计总体,利用数形结合的思想解答.解题关键是正确读懂统计图的信息以及明确题意.10.(2022·陕西·一模)一个不透明的袋子中装有1个黄球和若干个蓝球,这些球除颜色外重量、大小、表面光滑度等都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回;搅匀后再摸一个球,记下颜色后放回;不断重复这个过程,获得数据如下:(1)该学习小组发现,摸到黄球的频率在一个常数附近摆动,这个常数是___________(精确到0.01),由此估出蓝球有___________个;(2)现从该袋中一次摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个黄球,1个蓝球的概率.【答案】(1)0.25;3(2)12【解析】(1)解:(1)随着摸球次数的越来越多,频率越来越靠近0.25,因此接近的常数就是0.25;设蓝球由x 个,由题意得:10.251x =+,解得:3x =, 经检验:3x =是分式方程的解;故答案为:0.25,3;(2)(2)画树状图得:∴共有12种等可能的结果,其中恰好摸到一个黄球,一个蓝球有6种情况,∴摸到一个黄球一个蓝球的概率为:61122=; 故答案为:12.【点睛】本题考查了利用频率估计概率、运用树状图法求概率以及概率公式的应用,估算出摸到黄球的概率成为解答本题的关键.11.(2022·辽宁锦州·一模)某校对九年级学生进行“综合素质”评价,评价结果分优秀,良好,合格,不合格四个等级(分别用A,B,C,D表示),现从中随机抽取若干名学生的“综合素质”的等级作为样本进行数据分析,并绘制下列两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)本次随机抽取的学生有_______名,等级为优秀(A)的学生人数所占的百分比是______;(2)在扇形统计图中,等级为合格(C)的学生所在扇形的圆心角度数是______;(3)将条形统计图补充完整;(4)若该校九年级学生共1200名,请根据以上调查结果估算,等级为良好及良好以上的学生共有多少名?【答案】(1)50,40%(2)57.6︒(3)见解析(4)912名【解析】(1)本次随机抽取的学生有18÷36%=50(名).等级为优秀(A)的学生人数为50188420---=(名),∴其所占的百分比是20100%40% 50⨯=,故答案为:50,40%;(2)等级为合格(C)的学生所在扇形的圆心角度数是836057.650⨯︒=︒,故答案为:57.6︒;(3)由(1)可知等级为优秀(A )的学生人数为20名,即可补全统计图如下:(4)2018120091250+⨯=(名), 答:评价结果为良好及良好等级以上的学生大约共有912名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,由样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.12.(2022·浙江湖州·一模)为了解某学校疫情期向学生在家体有锻炼情况,从全体学生中机抽取若干名学生进行调查.以下是根据调查数据绘刺的统计图丧的一部分,根据信息回答下列问题.(1)本次调查共抽取__________名学生.(2)抽查结果中,B组有__________人.(3)在抽查得到的数据中,中位数位于__________组(填组别).(4)若这所学校共有学生800人,则估计平均每日锻炼超过25分钟有多少人?【答案】(1)60(2)18(3)C(4)440(1)解:本次调查共12÷20%=60(人),故答案是:60;(2)解:抽查结果中,B组有60-(9+21+12)=18(人),故答案是:18;(3)解∴共有60个数据,其中位数是第30、31个数据的平均数,而第30、31个数据均落在C组,∴在抽查得到的数据中,中位数位于C组,故答案是:C;(4)解:800211260+⨯=440(人),答:平均每日锻炼超过25分钟有440人.【点睛】本题考查频数(率)分布表、扇形统计图、样本估计总体等知识,解题的关键是根据频数分步图和扇形统计图的关联信息求出被调查学生的总数.13.(2022·湖南岳阳·一模)为落实中小学生五项管理中的手机管理,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A 表示“一等奖”,B 表示“二等奖”,C 表示“三等奖”,D 表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m =______;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.【答案】(1)40;30;(2)见解析 (3)12【解析】(1)解:)获奖总人数为820%40÷=(人). 404816%100%30%40m ---=⨯=,即30m =;故答案为40;30; (2) 解:“三等奖”人数为40481612---=(人),条形统计图补充为:(3)解:画树状图为:共有12种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为6,所以抽取同学中恰有一名男生和一名女生的概率61 122==.【点睛】本题考查了条形统计图和扇形统计图、及用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率一所求情况数与总情况数之比.牢固掌握画树状图列出所以可能结果是解题的关键.14.(2022·福建三明·二模)某商场举行促销活动,消费满一定金额的顾客可以通过参与摸球活动获得奖励.具体方法如下:从一个装有2个红球、3个黄球(仅颜色不同)的袋中摸出2个球,根据摸到的红球数确定奖励金额,具体金额设置如下表:现有两种摸球方案:方案一:随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球;方案二:随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.(1)求方案一中,两次都摸到红球的的概率;(2)请你从平均收益的角度帮助顾客分析,选择哪种摸球方案更有利?【答案】(1)1 10(2)从平均收益的角度看,顾客选择方案二更有利【解析】(1)解:对于方案一,列表如下.由上表可知,共有20种等可能的结果,两次都摸到红球的结果数是2.故采用方案一摸球,两次都摸到红球的概率为21 2010=.(2)解:由(1)中表可知,采用方案一,两次都摸到红球的概率为110,摸到一次红球的概率为123205=,没有摸到红球的概率为63 2010=.平均收益为331510209.5 10510⨯+⨯+⨯=元.对于方案二,列表如下.由上表可知,共有25种等可能的结果,两次摸到红球的结果数是4,摸到一次红球的结果数是12,没有摸到红球的结果数是9.所以两次都摸到红球的概率为425,摸到一次红球的概率为1225,没有摸到红球的概率为925.平均收益为9124510209.8 252525⨯+⨯+⨯=元.∴9.89.5>,∴从平均收益的角度看,顾客选择方案二更有利.【点睛】本题考查列表法求概率,概率的实际应用,熟练掌握这些知识点是解题关键.15.(2022·重庆渝中·二模)某校党委为提高党员教师使用“学习强国”的积极性,4月份开展了一分钟答题挑战赛.规定:答对一道记1分.下列数据是分别从初中组和高中组随机抽取的10名党员教师的成绩(单位:分).初中组:6,13,7,9,8,11,9,13,9,6;高中组:6,9,5,12,8,11,8,9,14,8.通过以上数据得到如下不完整的统计表:根据以上信息,回答下列问题: (1)=a ______,b =______,c =______;(2)该校初中组和高中组党员教师人数分别为50人和60人,若答对9道题以上(包括9道)为优秀等级,请估计该校共有多少名党员教师获得优秀等级;(3)已知25.89s =初中组,求2s 高中组,并说明哪个组党员教师的成绩波动性较小. 【答案】(1)9.1,8.5,8; (2)60名;(3)26.6s =高中组,初中组. 【解析】 (1)解:初中组的平均数61379811913969.110a +++++++++==(分);将高中组的数据按照从小到大排列后,处于中间位置的两个数是8和9, ∴898.52+=(分), ∴8.5b =;∴高中组的数据中出现次数最多的数是8, ∴8c =. (2)解:∴初中组和高中组党员教师答对9道题以上(包括9道)的分别有6人和5人, ∴655060601010⨯+⨯=(名) ∴该校共有60名党员教师获得优秀等级. (3) 解:()()()()()()()222222226999259129893119149 6.610s ⎡⎤-+-⨯+-+-+-⨯+-+-⎣⎦==高中组∴25.89s =初中组,∴22s s 初中组高中组<,∴初中组党员教师的成绩波动性较小.【点睛】本题主要考查了平均数、中位数、众数、方差以及用样本估计总体,熟练掌握平均数、中位数、众数、方差的计算方法是解题的关键.16.(2022·安徽合肥·二模)某校为了解疫情期间学生自习课落实“停课不停学、学习不延期”在线学习的效果,校长通过网络学习平台,随机抽查了该校部分学生在一节自习课中的学习情况,发现共有四种学习方式(每人只参与其中一种):A.阅读电子教材,B.听教师录播课程,C.完成在线作业,D.线上讨论交流.并根据调查结果绘制成如下两幅不完整的统计图,根据图中信息解答下列问题:(1)填空:校长本次调查的学生总人数为______,并补全条形统计图;(2)求扇形统计图中“D.线上讨论交流”对应的圆心角的度数;(3)若该校在线学习学生共有4000人,请你估计“B.听教师录播课程”有多少人?【答案】(1)90,见解析(2)48°(3)1600人【解析】(1)解:校长本次调查的学生总人数为=18÷20%=90(人),∴B.听教师录播课程的人数=90-24-18-12=36(人),补全条形统计图如图所示:(2)解:“D.线上讨论交流”对应的扇形圆心角的度数是123604890⨯=︒︒,∴扇形统计图中“D.线上讨论交流”对应的圆心角是48°;(3) 解:364000160090⨯=(人), ∴估计“B .听教师录播课程”约有1600人. 【点睛】本题考查了条形统计图和扇形统计图,利用样本估计总体的方法,解题的关键是从两个统计图中读取信息解题.17.(2022·天津河东·一模)疫情防控,人人有责,一方有难,八方支援,作为一名中华学子,我们虽不能像医护人员一样在一线战斗,但我们仍以自己的方式奉献一份爱心,因此学校学生会向全校3000名学生发起了“爱心捐助”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的统计图∴和图∴.请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数________和m 的值________; (2)求统计的捐款金额的平均数、众数和中位数. 【答案】(1)50,28(2)平均数是13.1,众数为10,中位数为12.5 【解析】 (1)95018%=,14100%28%50⨯= 故答案为:50,28 (2)观察条形统计图, ∴ 591016151420725413.150x ⨯+⨯+⨯+⨯+⨯==,∴ 这组数据的平均数是13.1. ∴ 在这组数据中,10出现了16次,出现的次数最多, ∴ 这组数据的众数为10.∴ 将这组数据按从小到大的顺序排列,其中处于中间的两个数分别是10,15, 有101512.52+=, ∴ 这组数据的中位数为12.5. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,求平均数、众数和中位数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(2022·河南濮阳·一模)某学校在学生中开展读书活动,学校为了解九年级学生每周平均课外阅读时间的情况,随机抽查了九年级部分同学,对其每周平均课外阅读时间进行统计,绘制了如下的统计图1和图2.请根据相关信息,解答下列问题:(1)图1中的m 值为______;(2)求统计的这组数据的众数、中位数.(3)根据统计的样本数据,估计该校九年级400名学生中,每周平均课外阅读时间大于2h 的学生人数. 【答案】(1)25(2)众数:3h ,中位数:3h。
专题1.6统计与概率三大考点与真题训练(解析版)
2023年中考数学考前30天迅速提分复习方案(上海地区专用)专题1.6统计与概率三大考点与真题训练考点一:数据的收集与整理一、单选题1.(2023·上海·模拟预测)某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法正确的是( )A.总体是该校4000名学生的体重B.个体是每一个学生C.样本是抽取的400名学生D.样本容量是400名学生【答案】A【分析】我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A.总体是该校4000名学生的体重,说法正确,故A符合题意;B.个体是每一个学生的体重,原来的说法错误,故B不符合题意;C.样本是抽取的400名学生的体重,说法错误,故C不符合题意;D.样本容量是400,说法错误,故D不符合题意.故选:A.【点睛】本题主要考查了总体、个体、样本、样本容量,解题的关键是正确记忆各自的概念.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.2.(2022·上海徐汇·统考二模)在知识竞赛中,成绩分为A,B,C,D四个等级,相应等级的得分依次记为100分,90分,80分,70分.将九年级二班参赛选手的成绩整理并绘制成如下的统计图,九年级二班参赛选手成绩的众数和中位数分别是()A.100和90B.100和80C.80和90D.80和80.【答案】B【分析】根据中位数和众数的定义求解即可.【详解】解:由统计图可知,A级的占比最多,即得分为100分的人数最多,∴二班参赛选手的成绩的众数为100;∵中位数是一组数据中处在最中间或处在最中间的两个数据的平均数,∴由扇形统计图可知处在最中间的成绩为80分或处在最中间的两个数据分别为80分,80分,∴中位数即为80,故选B.【点睛】本题主要考查了求中位数和众数,熟知二者的定义是解题的关键.3.(2020·上海虹口·统考二模)如图为某队员射击10次的成绩统计图,该队员射击成绩的众数与中位数分别是()A.8,7B.7,6.5C.7,7D.8,7.5【答案】D【分析】先根据折线图将这10个数据从小到大排列,再根据众数和中位数的概念求解可得.【详解】解:由折线图知,这10个数据分别为3、4、6、7、7、8、8、8、9、10,+=7.5,所以这组数据的众数为8,中位数为782故选:D.【点睛】本题主要考查众数和中位数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;一组数据中出现次数最多的数据叫做众数.4.(2021·上海·上海市实验学校校考二模)为了了解某校九年级300名学生的体重情况,从中抽取50名学生的体重进行分析,在这项调查中,样本是指()A.300名学生B.300名学生的体重C.被抽取的50名学生D.被抽取的50名学生的体重【答案】D【分析】根据总体、个体、样本、样本容量的定义判断即可.【详解】解:为了解某校九年级300名学生的体重情况,从中随机抽取50名学生的体重进行分析,在这项调查中,样本是被抽取的50名学生的体重.故选:D.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.二、填空题5.(2021·上海青浦·统考二模)为了解某区2400名初中教师中接种新冠疫苗的教师人数,随机调查了其中200名教师,结果有150人接种了疫苗,那么估计该区接种新冠疫苗的初中教师人数约有_______人.【详解】解:估计该区接种新冠疫苗的初中教师人数约有2400×150=1800(人),200故答案为:1800.【点睛】本题考查用样本估计总体.理解用样本估计总体的含义和掌握其公式是解答本题的关键.6.(2021·上海金山·二模)为了了解某校初三学生在体育测试中报名球类的情况,随机调查了40名学生的报名情况,得到如下数据.根据此信息,估计该校480名初三学生报名足球的学生人数约为_____人.7.(2021·上海嘉估计某个鱼塘里的鱼的数量,养殖工人网住了50条鱼,在每条鱼的尾巴上做个记号后,又将鱼放回鱼塘.等鱼游散后再随机撒网,网住60条鱼,发现其中有2条鱼的尾巴上有记号.设该鱼塘里有x条鱼,依据题意,可以列出方程:_____.8.(2021·上海静安·统考二模)为了了解学生用于阅读课外书籍的时间的情况,某校在300名九年级学生中随机对40名学生每周阅读课外书籍所用的时间进行统计.根据调查结果画出频率分布直方图,如图所示(每个小组可包括最小值,不包括最大值),由此可以估计该校九年级学生阅读课外书籍用的时间在6小时及以上的人数约为________.【答案】120【分析】根据直方图分析出课外阅读时间在6小时及以上的人数的频率,然后利用频率乘总人数即可求解.【详解】由图中可知,课外阅读时间在6小时及以上的人数的频率为0.25+0.15=0.4,∴所有学生中,课外阅读时间在6小时及以上的人数300×0.4=120人,故答案为:120.【点睛】本题考查频率分布直方图,理解频率分布直方图的意义是解题关键.9.(2021·上海闵行·统考二模)为了解全区104000个小学生家庭是否有校内课后服务需求,随机调查了4000个小学生家庭,结果发现有2800个小学生家庭有校内课后服务需求,那么估计该区约有________个小学生家庭有校内课后服务需求.【答案】72800【分析】先求出样本中学生参加校内课后服务所占的百分比,再用样本估算总体.【详解】280010400072800´=(人).4000故答案为:72800.【点睛】考查了用校本估算总体,解题关键先计算出样本中所占的百分比,再用样本的数据去估算总体情况.10.(2021·上海松江·统考二模)一次数学测试后,某班40名学生按成绩分成5组,第1、2、3、4组的频数分别为6、7、10、13,则第5组的频率为 _____.11.(2022·上海杨浦·统考二模)为了了解全区近4800名初三学生数学学习状况,从中随机抽取500名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组)数据可含最低值,不含最高值根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是_______.【答案】1920【分析】根据题意和表格中的数据,可以先计算出80~90和90~100的学生人数,然后即可计算出70~80的学生人数,再计算出全区此次成绩在70~80分的人数即可.【详解】解:由题意可得,80~90的学生有:500×0.18=90(人),90~100学生有:500×0.04=20(人),∴样本中70~80的学生有:500-12-18-160-90-20=200(人),=1920,∴估计全区此次成绩在70~80分的人数大约是4800×200500故答案为:1920.【点睛】本题考查频数分布表、用样本估计总体,解答本题的关键是明确题意,求出样本中70~80分的人数.12.(2021·上海·上海市实验学校校考二模)某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:70~90有15人,90~105有42人,105~12 0有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是______________.三、解答题13.(2023·上海·模拟预测)小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.【答案】(1)55天(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【详解】(1)∵4710142055++++=(天).∴这5期的集训共有55天.(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步了11.7211.520.2-=(秒),∴第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【点睛】本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.14.(2021·上海徐汇·统考二模)问题:某水果批发公司用每千克2元的价格购进1000箱橘子,每箱橘子重10千克.由于购进的橘子有损耗,所以真正可以出售的橘子不到100 00千克.如果该公司希望这批橘子销售能获得5000元利润,应该把销售价格定为多少元?思路:为了解决这个问题,首先要估计这10000千克橘子中除去损耗后剩下多少橘子可以销售,因此需要估计损耗的橘子是多少千克.方案:为此,公司采用抽样调查来估计这批橘子的损耗情况.公司设计如下两种抽样方案:①从仓库中最方便处打开若干箱子逐个检查;②把这批橘子每箱从1~1000编号,用电脑随机选择若干号码,打开相应的箱子进行逐个检查.解决:(1)公司设计的两个抽样方案,从统计意义的角度考虑,你认为哪个方案比较合适?并说明理由;(2)该公司用合理的方式抽取了20箱橘子进行逐个检查,并在表中记录了每个被抽到的箱子里橘子的损耗情况.:被抽到的箱子里橘子的损耗情况表根据如表信息,请你估计这批橘子的损耗率;(3)根据以上信息,请你帮该公司确定这批橘子的销售价格,尽可能达到该公司的盈利目标(精确到0.01元/千克).【答案】(1)从统计意义的角度考虑,方案②比较合适,因为此时每箱橘子都有被抽到的可能,选取的样本具有代表性,属于简单随机抽样,所以方案②比较合适;(2)8.36%;(3)2.73元/千克【分析】(1)根据抽样调查时选取的样本必须具有代表性即可求解;(2)计算出抽取的20箱橘子的平均损耗率即可;(3)设该公司确定这批橘子的销售价格为x元/千克,根据利润=售价﹣进价列出方程即可.【详解】解:(1)从统计意义的角度考虑,方案②比较合适,因为此时每箱橘子都有被抽到的可能,选取的样本具有代表性,属于简单随机抽样,所以方案②比较合适;(2)(8.57+8.15)÷(10×20)×100%=8.36%.即估计这批橘子的损耗率为8.36%;(3)10000×(1﹣8.36%)x﹣2×10000=5000,解得,x≈2.73.答:该公司可确定这批橘子的销售价格约为2.73元/千克,能够尽可能达到该公司的盈利目标.【点睛】本题是一道利用统计知识解答实际问题的重点考题,主要考查利用统计图表处理数据的能力和利用样本估计总体的思想.从统计表中获取有用信息是解题的关键.15.(2022·上海青浦·统考二模)为了解某区3200名学生放学后在校体育运动的情况,调研组选择了有600名学生的W校,抽取40名学生进行调查,调查情况具体如下表:图表1:感兴趣的运动项目(1)此次调查的总体是__________,样本容量是__________.(2)若从9年级某学习加强班进行抽样调查,则这样的调查________(“合适”,“不合适”),原因是样本不是________样本;(3)根据图表1,估计该校对篮球感兴趣的学生的总人数为_____;(4)根据图表2,若从左至右依次是第一、二、三、四、五组,则中位数落在第___组.(5)若要从对篮球感兴趣的同学中选拔出一支篮球队来,现在有以下两名学生的投篮数据,记录的是每10次投篮命中的个数.甲同学:10、5、7、9、4;乙同学:7、8、7、6、7.若想要选择更稳定的同学,你会选择计算这两组数据的________,因为这个量可以代表数据的________.请计算出你所填写的统计量,并且根据计算的结果,选择合适的队员.【答案】(1)某区3200名学生放学后在校体育运动的情况,40(2)不合适;随机抽样(3)240(4)三(5)方差;离散程度;选择乙【分析】(1)根据总体及样本容量的相关概念可直接进行求解;(2)由题意可直接求解;【点睛】本题主要考查平均数、众数、中位数、方差及频数直方图;熟练掌握平均数、众数、中位数、方差及频数直方图是解题的关键.考点二:数据分析一、单选题1.(2022·上海松江·校考三模)小丽连续7次的数学考试成绩分数是:93、85、88、89、90、87、90.关于这组数据,下列说法正确的是( )A.中位数是88B.众数是90C.平均数是89D.方差是87【答案】B【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【详解】解:将数据重新排列为85、87、88、89、90、9093,、则这组数的中位数为89,众数为90,平均数为18587888990909388.97´++++++»(),所以说法正确的是B.故选:B.【点睛】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.2.(2022·上海普陀·统考二模)某公司有9个子公司,某年各子公司所创年利润的情况如下表所示.根据表中的信息,下列统计量中,较为适宜表示该年各子公司所创年利润的平均水平的是( )A.方差B.众数C.平均数D.中位数【答案】D【分析】先分别求出平均数和中位数,再进行分析即可得.3.(2022·上海杨浦·统考二模)在一次引体向上的测试中,如果小明等5位同学引体向上的次数分别为:6、8、9、8、9,那么关于这组数据的说法,正确的是()A.平均数是8.5B.中位数是9C.众数是8.5D.方差是1.24.(2022·上海黄浦·统考二模)下列各统计量中,表示一组数据波动程度的量是()A.方差B.众数C.平均数D.频数【答案】A【分析】根据方差、众数、平均数、频数的意义即可求解.【详解】解:方差是表示一组数据波动程度的量,众数、平均数是表示一组数据集中趋势的量,频数是表示数据出现的次数,故选A.【点睛】本题考查了方差、众数、平均数、频数的意义,掌握以上知识是解题的关键.5.(2021·上海青浦·统考二模)某校为了解学生在“慈善募捐”活动中的捐款情况,进行了抽样调查,结果如表所示.那么该样本中学生捐款金额的中位数和众数分别是( )A.20元,50元B.35元,50元C.50元,50元D.20元,20元【答案】A【解析】根据中位数和众数的定义求解即可.【详解】解:∵本组数据从小到大排列共50个,且最中间的两个数据是20和20,∴这组数据的中位数为:2020202+=;∵捐款50元的人数最多,∴这组数据的众数是50.故选:A【点睛】本题考查中位数和众数的知识点,充分利用中位数和众数的定义是解题的关键.6.(2021·上海金山·二模)某人统计九年级一个班35人的身高时,算出平均数与中位数都是158厘米,但后来发现其中一位同学的身高记录错误,将160厘米写成了166厘米,经重新计算后,正确的中位数是a 厘米,那么中位数a 应( )A.大于158B.小于158C.等于158D.无法判断【答案】C【分析】根据中位数的定义得出最中间的数还是158厘米,从而选出正确答案.【详解】解:∵原来的中位数158厘米,将160厘米写成166厘米,最中间的数还是158厘米,∴a =158,故选:C.【点睛】本题考查了中位数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(2021·上海·统考二模)某校对进校学生进行体温检测,在某一时段测得6名学生的体温分别为36.8℃,36.9℃,36.5℃,36.6℃,36.9℃,36.5℃,那么这6名学生体温的平均数与中位数分别是()A.36.7℃,36.7℃B.36.6℃,36.8℃C.36.8℃,36.7℃D.36.7℃,36.8℃8.(2021·上海普陀·统考二模)已知两组数据:x1、x2、x3、x4、x5和x1+2、x2+2、x3+2、x4+2、x5+2,下列有关这两组数据的说法中,正确的是( )A.平均数相等B.中位数相等C.众数相等D.方差相等【答案】D【分析】根据平均数、中位数、众数和方差的意义求解即可.【详解】解:因为新数据是在原数据的基础上每个加2,∴这两组数据的平均数、中位数和众数都改变,而波动幅度不变,即方差不改变,故选:D.【点睛】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9.(2021·上海闵行·统考二模)如果一组数据为,0,1,0,0,那么下列说法不正1-确的是()A.这组数据的方差是0B.这组数据的众数是0C.这组数据的中位数是0D.这组数据的平均数是010.(2022·上海·上海市娄山中学校考二模)某射击选手10次射击成绩统计结果如下表,这10A.8、8B.8、8.5C.8、9D.8、10【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题11.(2021·上海宝山·统考三模)如果一组数a,2,4,0,5的中位数是4,那么a可以是_______(只需写出一个满足要求的数).【答案】4【分析】由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.【详解】解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.12.(2021·上海浦东新·统考模拟预测)某商店4月份销售的鞋子部分情况如表:根据这组数据可知,这个月销售36到41码鞋子尺寸的众数是_____.【答案】39.【分析】根据表格中的数据,正确使用众数的定义即可.【详解】根据表格中数据,可以知道36到41码的鞋子的销售量,其中尺寸为39码的鞋子销售量最大,故众数为39.故答案为:39.【点睛】本题考查统计表的理解和众数的定义,正确理解统计表并掌握众数概念是解题关键.13.(2021·上海普陀·统考二模)为了唤起公众的节水意识,从1993年起,联合国将每年的3月22日定为“世界水日”.某居委会表彰了社区内100户节约用水的家庭,5月份这100户家庭节约用水的情况如表所示,那么5月份这100户家庭节水量的平均数是_____吨.【答案】5.5【分析】根据加权平均数的定义列式计算即可.【详解】解:5月份这100户家庭节水量的平均数是5626287.210100´+´+´=5.5(吨),故答案为:5.5.【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.14.(2023·上海·模拟预测)已知第一组数据:12,14,16,18的方差为21s ;第二组数据:32,34,36,38的方差22s ;第三组数据:2020,2019,2018,2017的方差为23s ,则21s ,22s ,23s 的大小关系是21s _______22s ________23s (填“>”,“=”或“<”)【答案】 = >【分析】根据方差是反映数据波动情况的量进行判断即可.【详解】解:Q 第一组和第二组数据都是间隔为2的偶数,\两组数据波动情况相同,即:2212s s =,Q 第三组数据是相差为1的整数,\方差最小,即:222123s s s =>,故答案为:=,>.【点睛】考查了方差的知识,解题时可以直接根据波动情况判断,也可以利用方差公式计算后确定答案,难度不大.考点三:概率一、填空题1.(2022·上海松江·统考二模)甲乙两人做“石头、剪刀、布”游戏,能在一个回合中分出胜负的概率是____________.【答案】23【分析】直接用列表法求出所有可能的情况,然后根据基本概率公式即可得出答案.【详解】分别用、、A B C 表示石头、剪刀、布,则在一个回合下的所有情况列表如下:一共有9种等可能结果,其中获胜的情况有6种,故获胜的概率6293P ==.【点睛】本题考查了基本概率的求法,解题的关键是熟练掌握求概率的方法,包括列表法和树状图法.2.(2022·上海金山·统考二模)一个布袋中有8个红球和16个黑球,这两种球除了颜色以外没有任何其他区别,从布袋中任取1个球是黑球的概率是______.3.(2022·上海黄浦·统考二模)一副52张的扑克牌(无大王、小王),从中任意抽出一张,抽到红桃K 的概率是________.4.(2022·上海闵行·统考二模)一个布袋中有三个完全相同的小球,把它们分别标号为1、2、3,从布袋中任取一个球记下数字作为点P 的横坐标x ,不放回小球,然后再从布袋中取出一个球记下数字作为点P 的纵坐标y ,那么点(),P x y 落在直线1y x =+上的概率是_________.共有6种等可能的结果,其中,点(),P x y 落在直线1y x =+上的结果有2种,∴点(),P x y 落在直线1y x =+上的概率=2163=.故答案为:13.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,还需要注意实验是不放回实验.5.(2023·上海·模拟预测)一个袋子里装有10个材质均匀,大小相同,颜色不同的球,每个球上面都标有0到9中任意一个数字.现从中任意摸取一个球,摸取到数字是合数的球的概率是___________.【答案】25##0.4数与总情况数之比.6.(2023·上海·模拟预测)从2π这三个数中任选一个数,选出的这个数是有理数的概率为________________.7.(2023·上海·模拟预测)在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是_____.8.(2022·上海虹口·统考二模)如果从1、2、3、4、5、6、7、8、9、10这10个数中任取一个数,那么取到的数恰好是素数的概率是______.9.(2022·上海奉贤·统考二模)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是2的倍数的概率是_____ _______.##0.5【答案】1210.(2022·上海·上海市进才中学校考一模)将 1、2、3 三个数字分别作为横坐标和纵坐标,随机生成的点的坐标如下表.如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x图象上的概率是__________.【真题训练】一、单选题1.(2022·上海·统考中考真题)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差【答案】D【分析】根据平均数,中位数,众数和方差的特点,这组数据都加上6得到一组新的数据,方差不变,平均数,中位数改变,众数改变,即可得出答案.【详解】解:将这组数据都加上6得到一组新的数据,则新数据的平均数改变,众数改变,中位数改变,但是方差不变;故选:D.【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.2.(2021·上海·统考中考真题)商店准备一种包装袋来包装大米,经市场调查以后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包【答案】A【分析】选择人数最多的包装是最合适的.【详解】由图可知,选择1.5kg/包-2.5kg/包的范围内的人数最多,∴选择在1.5kg/包-2.5kg/包的范围内的包装最合适.故选:A.【点睛】本题较简单,从图中找到选择人数最多的包装的范围,再逐项分析即可.3.(2020·上海·统考中考真题)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( ) A.条形图B.扇形图C.折线图D.频数分布直方图【答案】B【分析】根据统计图的特点判定即可.【详解】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故选:B.【点睛】本题考查了统计图的特点,条件统计图能反映各部分的具体数值,扇形统计图能。
中考数学专题训练之四--统计与概率(含答案)
第十三章统计与概率1.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元,3元,2元,1元. 某天的销售情况如图所示,则这天销售的矿泉水的平均单价()A. 1.95 元B. 2.15元C. 2.25元D. 2.75元2 河南省游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是03 现有4张卡片,其中3张卡片正面上的图案是“♢”,1张卡片正面上的图案是“♣”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.916B.34C.38D.124.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分5.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.6.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与应该选择()A 甲B 乙C 丙D 丁7.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是()A 255分B 184分C 84.5分D 86分8.下列说法中,正确的是()15%10%20%55%DCBA9、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是()A 47B 48C 48.5D 4910.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是()A.中位数为170 B.众位数为168 C.极差为35 D.平均数为170 11.某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x甲=610千克,x乙=608千克,亩产量的方差分别是229.6 S=甲,2 2.7S=乙,则关于两种小麦推广种植的合理决策是()A 甲的平均亩产量较高,应推广甲B 甲、乙的平均亩产量相差不多,均可推广C 甲的平均亩产量较高,且亩产量比较稳定,应推广甲D 甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙12. 现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球2个红球,这些球除颜色外完全相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年中考统计与概率题专题练习
1.某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘
制了频数分布直方图,根据图中信息回答下列问题:
(1)求a的值;
(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选
取2人,其中至少
..有1人的上网时间在8~10小时。
2.广州市努力改善空气质量,近年来空气
质量明显好转。
根据广州市环境保护局公布
的2006-2010这五年各年的全年空气质量优
良的天数。
绘制拆线图如图7,根据图中的
信息回答:
(1)、这五年的全年空气质量优良的天数的中位数是.极差是.
(2)、这五年的全年空气质量优良的天数与它前一年相比较,增加最多的是
年。
(填写年份)
(3)、求这五年的全年空气质量优良的天数的平均数。
3.甲已两个袋中均装有三张除所标的数值外完全相同的卡片,甲袋中的三张卡片
上所标的数值分别为3
、6
1
2先从
、
1
7、
、,乙袋中的三张卡片上所标的数值分别为,
甲袋中随机取出一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值。
把x、y分别作为点A的横坐标与纵坐标。
(1)用适当的方法写出点A(x、y)的所有情况。
(2)求点A 落在第三象限的概率。
4.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为
m
,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:
11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1)求样本数据中为
A 级的频率;
(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数;
(3)从样本数据为C 级的人中随机抽取2人,用列举法求抽得
2个人的“日均
发微博条数”都是
3的概率.
5.某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:
(1)求a ,b 的值;(2)若将各自选项的人数所占比例绘制成扇形统计图,求“一
分钟跳绳”对应扇
形的圆心角的度数;(3)在选报
“推铅球”的学
生中,有3名男生,2名女生,为了了解学生的训练效果,
从这5名学生中随机抽取
2名学生进行推铅球测试,求所抽取的两名学
自选项目人数频率
立定跳远9三级蛙跳12一分钟跳绳8投掷实心球b 推铅球5合计
50
1
生中至多
..
有一名女生的概率.
6.4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在,则可以推算出x的值大约是多少。