2020年整理公务员考试行测数学公式大全.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用数学公式汇总
1. 平方差公式:(a +b )·(a -b )=a 2
-b 2
2. 完全平方公式:(a±b )2
=a 2
±2ab +b
2 3. 完全立方公式:(a ±b)3
=(a±b)(a 2
ab+b 2
)
4. 立方和差公式:a 3
+b 3
=(a ±b)(a 2
+ ab+b 2
)
5. a m ·a n =a
m +n
a m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·
b n
(1)s n =
2
)(1n a a n +⨯=na 1+21
n(n-1)d ;
(2)a n =a 1+(n -1)d ; (3)项数n =
d
a a n 1
-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;
(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2
(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和)
(1)a n =a 1q
n -1
;
(2)s n =q
q a n -11 ·1)
-((q ≠1)
(3)若a,G,b 成等比数列,则:G 2
=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)
n
m
a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和)
(1)一元二次方程求根公式:ax 2
+bx+c=a(x-x 1)(x-x 2)
其中:x 1=a ac b b 242-+-;x 2=a
ac b b 242---(b 2
-4ac ≥0)
根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c
(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3
)3
(
(3)abc c b a 32
2
2
≥++ abc c b a 3
3
≥++
推广:n n n x x x n x x x x ......21321≥++++
(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。 (5)两项分母列项公式:
)(a m m b
+=(m 1—a m +1)×a
b
三项分母裂项公式:)2)((a m a m m b ++=[)(1a m m +—)2)((1
a m a m ++]×a
b 2
1.勾股定理:a 2+b 2=c 2
(其中:a 、b 为直角边,c 为斜边)
2.面积公式:
正方形=2
a 长方形=
b a ⨯
三角形=c ab ah sin 2
1
21= 梯形=h b a )(21+
圆形=πR 2 平行四边形=ah 扇形=0
360
n πR 2
3.表面积:
正方体=62
a 长方体=)(2ac bc a
b ++⨯
圆柱体=2πr 2
+2πr h 球的表面积=4πR 2
4.体积公式
正方体=3
a 长方体=abc 圆柱体=Sh =πr 2
h 圆锥=
31πr 2
h 球=33
4R π 5.若圆锥的底面半径为r ,母线长为l ,则它的侧面积:S 侧=πr l ;
6.图形等比缩放型:
一个几何图形,若其尺度变为原来的m 倍,则: 1.所有对应角度不发生变化; 2.所有对应长度变为原来的m 倍; 3.所有对应面积变为原来的m 2
倍; 4.所有对应体积变为原来的m 3倍。 7.几何最值型:
1.平面图形中,若周长一定,越接近与圆,面积越大。
2.平面图形中,若面积一定,越接近于圆,周长越小。
3.立体图形中,若表面积一定,越接近于球,体积越大。
4.立体图形中,若体积一定,越接近于球,表面积越小。
工作量=工作效率×工作时间; 工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 注:在解决实际问题时,常设总工作量为1或最小公倍数
(1)方阵问题:
1.实心方阵:方阵总人数=(最外层每边人数)2
=(外圈人数÷4+1)2
=N 2
最外层人数=(最外层每边人数-1)×4
2.空心方阵:方阵总人数=(最外层每边人数)2
-(最外层每边人数-2×层数)
2
=(最外层每边人数-层数)×层数×4=中空方阵的人数。 ★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。 3.N 边行每边有a 人,则一共有N(a-1)人。 4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N
2
外圈人数=4N-4
例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人)
(2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要怕N M -层。
(1)利润=销售价(卖出价)-成本;
利润率=
成本
利润=成本销售价-成本=成本销售价
-1;
销售价=成本×(1+利润率);成本=+利润率
销售价
1。
(2)利息=本金×利率×时期; 本金=本利和÷(1+利率×时期)。
本利和=本金+利息=本金×(1+利率×时期)=期限
利率)(本金+⨯
1;
月利率=年利率÷12; 月利率×12=年利率。
例:某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元?”
∴2400×(1+10.2%×36) =2400×1.3672 =3281.28(元)
(1)排列公式:P m n
=n (n -1)(n -2)…(n -m +1),(m≤n)。 5673
7⨯⨯=A (2)组合公式:C m n =P m n ÷P m m =(规定0
n C =1)
。1
233
453
5⨯⨯⨯⨯=c