信息光学技术第五章习题

合集下载

信息光学课后习题解答_苏显渝主编

信息光学课后习题解答_苏显渝主编
2
k 2 2 ( x0 y0 ) U0 ( x0 , y0 ) A0 P( x0 , y0 ) exp j 2f
x 0 y0 k 2 2 exp j ( x y A0 circ( ) 0 ) 2f 0 D1 / 2
2 2
将此式代入菲涅耳衍射公式
0 x1
0 1.5 计算下列一维卷积
x 1 (1) ( 2 x 3) rect( ) 2 x 1 x 1 ( 2) rect( ) rect( ) 2 2
其它
( 3) comb ( x ) rect( x )
解(1)
(1) ( 2 x 3) rect( x 1 1 3 x 1 ) ( x ) rect( ) 2 2 2 2

x y0
2 x 0 y0 e xp( jkf ) exp ( jkf ) D 1 circ( )dx0 dy0 A0 U (0,0, f ) A0 D1 / 2 j f j f 4 2 2 2 D1 I 0 106 I (0,0, z ) A0 4 f
f ( x ) cos2 x 的响应
试计算各自对输入函数 g1 ( x ) 和 g2 ( x ) 解: H1 ( ) rect( )
H 2 ( )
1 rect( ) 3 3
1 F ( ) ( 1) ( 1) 2 1 G1 ( ) H 1 ( ) ( 1) ( 1) 2 1 rect( ) ( 1) ( 1) 0 2
n
0

n
n为奇数
2 ( x 2n )
1.4 计算下面两个函数的一维卷积

信息光学智慧树知到答案章节测试2023年苏州大学

信息光学智慧树知到答案章节测试2023年苏州大学

绪论单元测试1.“信息光学”又称为 ____。

答案:第一章测试1.高斯函数的傅里叶变换是()A:B:C:D:答案:B2.函数的傅里叶变换是()。

A:B:C:D:答案:A3.某平面波的复振幅分布为,那么它在不同方向的空间频率,也就是复振幅分布的空间频谱为()。

A:,B:,答案:A4.圆域函数Circ(r)的傅里叶变换是。

()A:错B:对答案:B5.尺寸a×b 的不透明矩形屏,其透过率函数为rect(x/a)rect(y/b)。

()A:错B:对答案:A6.卷积是一种 ____,它的两个效应分别是_和_,两个函数f(x, y)和h(x, y)卷积的积分表达式为____。

答案:7.什么是线性空不变系统的本征函数?答案:8.基元函数是不能再进行分解的基本函数单元,光学系统中常用的三种基元函数分别是什么?答案:第二章测试1.在衍射现象中,当衍射孔径越小,中央亮斑就____。

答案:2.点光源发出的球面波的等相位面为_,平行平面波的等相位面为_。

答案:3.平面波角谱理论中,菲涅耳近似的实质是用_来代替球面的子波;夫琅和费近似实质是用_来代替球面子波。

答案:4.你认为能否获得理想的平行光束?为什么?答案:5.菲涅尔对惠更斯的波动光学理论表述主要有哪两方面的重要贡献?答案:6.已知一单色平面波的复振幅表达式为,请问该平面波在传播方向的空间频率以及在x,y,z方向的空间频率分别是什么?答案:第三章测试1.物体放在透镜()位置上时,透镜的像方焦面上才能得到物体准确的傅里叶频谱。

A:之后B:之前C:前表面D:前焦面答案:D2.衍射受限光学系统是指(),仅考虑光瞳产生的衍射限制的系统。

A:考虑像差的影响B:不考虑像差的影响答案:B3.相干传递函数是相干光学系统中()的傅里叶变换。

A:点扩散函数B:脉冲响应函数C:余弦函数D:复振幅函数答案:A4.()是实现对空间物体进行信息处理和变换的基本光路结构。

A:光学系统B:4f光路C:准直系统D:单透镜系统答案:D5.成像的本质是衍射光斑的叠加结果。

信息光学试题及答案

信息光学试题及答案

信息光学试题及答案一、选择题(每题4分,共20分)1. 以下哪个选项不是信息光学的研究范畴?A. 光波传播B. 光纤通信C. 激光加工D. 量子计算答案:D2. 光纤通信中,光信号的传输介质是什么?A. 真空B. 空气C. 光纤D. 水答案:C3. 在信息光学中,光的相干性是指什么?A. 光的强度B. 光的颜色C. 光的传播方向D. 光波的相位关系答案:D4. 以下哪个设备不是用于光纤通信的?A. 光纤B. 光端机C. 路由器D. 光放大器答案:C5. 光波的频率与波长之间的关系是什么?A. 成正比B. 成反比C. 无关D. 相等答案:B二、填空题(每题4分,共20分)1. 光纤通信中,光信号的传输介质是________。

答案:光纤2. 光的相干性是指光波的________。

答案:相位关系3. 光纤通信中,光信号的调制方式包括________和________。

答案:幅度调制、频率调制4. 光纤通信中,光信号的传输损耗主要由________和________造成。

答案:材料吸收、散射5. 光纤通信中,光信号的传输距离可以通过________来延长。

答案:光放大器三、简答题(每题10分,共30分)1. 简述信息光学在现代通信中的应用。

答案:信息光学在现代通信中的应用主要包括光纤通信、激光通信、无线光通信等。

光纤通信利用光纤作为传输介质,具有传输速度快、传输距离远、抗干扰能力强等优点。

激光通信则利用激光的高方向性和高相干性,实现远距离、高速度的通信。

无线光通信则通过大气或自由空间传输光信号,适用于移动通信和卫星通信。

2. 解释光波的相干性及其在信息光学中的重要性。

答案:光波的相干性是指不同光波之间能够相互干涉的能力,它与光波的相位关系密切相关。

在信息光学中,相干性是实现光信号调制、传输和检测的关键因素。

例如,在光纤通信中,相干光源可以提高信号的传输质量和距离。

在光学成像系统中,相干光源可以提高成像的分辨率和对比度。

信息光学教程全书习题及参考答案

信息光学教程全书习题及参考答案

L{} 来表示,当
2
L{ f ( x, y)} = g (ξ ,η ) , L{ f
1 1
( x, y )} = g 2 (ξ ,η ) ,且 a1 、 a 2 为常数时,
L{a
1 1
f ( x, y ) + a 2 f 2 ( x, y )} = a1 g1 (ξ ,η ) + a 2 g 2 (ξ ,η )
1 ,y 方 2Bx
向的格点距为
1 。 2B y
由此可见,Whittaker-Shannon 二维抽样定理并不是唯一的抽样定理,只要改变这两个 条件中的任何一个,就可以导出别的二维抽样定理。例如,用一个传递函数为
H ( ρ ) = circ( ) 的滤波器来滤波,可导出新的二维抽样定理,其公式描述为: B
2
2
⎞ ⎡ jk 2 2 ⎟ exp ⎢− 2 f x + y ⎟ ⎣ ⎠
(
x
⎛ x +y 2 P0 exp⎜ 2 ⎜ − w2 πw ⎝
2
2
⎡ jk ⎛ 1 1 ⎞ 2 ⎤ ⎞ ⎛ jk 2 ⎞ ⎜ ⎟ ⎟ ⎜ − + exp x exp ⎢ ⎥ ⎜− 2 f y ⎟ ⎟ ⎟ ⎜f f ⎟ 2 ⎝ ⎠ ⎠ x ⎠ ⎝ ⎣ ⎦
g ( x, y ) =
ρ
π
2 n = −∞ m = −∞
∑ ∑ g ( 2B , 2B ) ×


n
m
J 1 [2πB ( x −
n 2 m 2 ) + (y − ) ] 2B 2B n 2 m 2 2πB ( x − ) + (y − ) 2B 2B
式中 B 为空间函数 g ( x, y ) 的频谱以极半径的形式描述的频率带限宽。 公式推导中用到的博里叶变换关系为:

光学信息技术原理及应用课后重点习题答案

光学信息技术原理及应用课后重点习题答案
(3)
利用傅立叶变换的相移定理,得到
把它带入(3)式,则有
强度分布
2.6试证明如下列阵定理:假设在衍射屏上有 个形状和方位都相同的全等形开孔,在每一个开孔内取一个相对开孔来讲方位一样的点代表孔的位置,那末该衍射屏生成的夫琅和费衍射场是下列两个因子的乘积:(1)置于原点的一个孔径的夫琅和费衍射(该衍射屏的原点处不一定有开孔);(2) 个处于代表孔位置的点上的点光源在观察面上的干涉。
1.6 若只能用 表示的有限区域上的脉冲点阵对函数进行抽样,即
试说明,即使采用奈魁斯特间隔抽样,也不能用一个理想低通滤波器精确恢复 。
答:因为 表示的有限区域以外的函数抽样对精确恢复 也有贡献,不可省略。
第二章习题解答
2.1一列波长为 的单位振幅平面光波,波矢量 与 轴的夹角为 ,与 轴夹角为 ,试写出其空间频率及 平面上的复振幅表达式。

由此得 (1)
角的最大值为 (2)
此时像面上的复振幅分布和强度分布为
(3)照明光束的倾角取最大值时,由(1)式和(2)式可得
即 或 (3)
时,系统的截止频率为 ,因此光栅的最大频率
(4)
比较(3)和(4)式可知,当采用 倾角的平面波照明时系统的截止频率提高了一倍,也就提高了系统的极限分辨率,但系统的通带宽度不变。
可以解得,通过传递函数(2)得到的输出函数为:
该函数依然限制在 区间内,但其平均值为零,是振幅为0.043,周期为0.75,的一个余弦函数与振幅为0.027,周期为0.6的另一个余弦函数的叠加。
1.5 若对二维函数
抽样,求允许的最大抽样间隔并对具体抽样方法进行说明。
答:
也就是说,在X方向允许的最大抽样间隔小于1/2a,在y方向抽样间隔无限制。

高等光学教程-第5章-参考答案

高等光学教程-第5章-参考答案

第五章 部分相干光理论5.1 证明解析信号的实部u 和虚部u 之间互为希尔伯特变换,即它们之间有下面的关系()t u t r ()()t i ()()⎰∞∞--=ξξξπd )(P.V.1)()()(t u t u r i , ⎰∞∞---=ξξξπd )(.P.V 1)()()(tu t u i r证明:(1)由(5-10)式,解析函数的实部()()0()2Re ()exp(2)d r r u t j t νπνν∞⎡=-⎢⎣⎦⎰U ⎤⎥t (5.1-11)而,比较以上两式,可见有关系式)](Re[)()(t t u r u = (5.1-13)⎰∞-=0)(d )2exp()(2)(νπννt j t r U u 上式可表示为 (5.1-18)⎰∞∞--+=νπνννd )2exp()()sgn 1()()(t j t r U u 又因为 ()()exp(2)d t j νπνν∞-∞=-⎰u U所以有 ()()(1sgn )()r νν=+U νU )r (5.1-19)对上式两边取傅里叶逆变换11()1()()11((){()}{()}{(sgn )()}(){sgn )}{()}r r r t u t ννννν-----==+=+*u U U U U F F F F F ν上式中 1{sgn }jtνπ-=-F 再利用卷积定义⎰⎰∞∞---=*=*ηξηξηξd d ),(),(y x f g f g g f 令 t j f π-= , )()(t j t f -=-ξπξ , , )()(t u g r =)()()(ξξr u g =所以 ⎰∞∞--+=ξξξπd )(..)()()()(t u V P jt ut r r u (5.1-22)可见 ⎰∞∞--=ξξξπd )(..1)()()(t u V P t ur i(2)参考教材中(5.1-10)式的推导过程,对于解析函数的虚部有下式成立(P5.1-1)⎥⎥⎦⎤⎢⎢⎣⎡-=⎰∞)()(d )2exp()(Re 2)(νπννt j t ui i U)](Re[)()(t j t u i u -= (P5.1-2)比较(P5.1-1)和(P5.1-2)式,得到⎰∞-=-0)(d )2exp()(2)(νπννt j t j i U u所以⎰∞-=0)(d )2exp()(2)(νπννt j j t i U u )()sgn 1()()(νννi j U U +=对上式两边取傅里叶逆变换得)}(){sgn )}({)}({)()(1)(11ννννi i j j t U U U u ---+==F F F)()}({}{sgn )()(11t ju j i i +*=--ννU F F )(d )(..1)()(t ju tu V P i i +--=⎰∞∞-ξξξπ所以 ⎰∞∞---=ξξξπd )(..1)()()(t u V P t ui r5.2 考察用宽带光作杨氏干涉实验(1) 证明观察屏上的入射光场可表示为⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=c r t P t c r t P t t Q 222111,d d ,d d ),(u K u K u 其中 iii i i i i i cr A s cr πθπθ2)(d 2)(k k K ≅=⎰⎰个针孔第 2,1=i 而为第个针孔的面积。

光信息管理组织(信息光学)

光信息管理组织(信息光学)

光信息处理(信息光学)复习提纲第一章线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?2.空间频率分量的定义及表达式?3.平面波的表达式和球面波的表达式?4.相干照明下物函数复振幅的表示式及物理意义?5.非相干照明下物光强分布的表示式及物理意义?6.线性系统的定义7.线性系统的脉冲响应的表示式及其作用8.何谓线性不变系统9.卷积的物理意义10.线性不变系统的传递函数及其意义11.线性不变系统的本征函数第二章标量衍射理论1.衍射的定义2.惠更斯-菲涅耳原理3.衍射的基尔霍夫公式及其线性表示4.菲涅耳衍射公式及其近似条件5.菲涅耳衍射与傅立叶变换的关系6.会聚球面波照明下的菲涅耳衍射7.夫琅和费衍射公式8.夫琅和费衍射的条件及范围9.夫琅和费衍射与傅立叶变换的关系10.矩形孔的夫琅和费衍射11.圆孔的夫琅和费衍射(贝塞尔函数的计算方面不做要求)12.透镜的位相变换函数13.透镜焦距的判别14.物体位于透镜各个部位的变换作用15.几种典型的傅立叶变换光路第三章光学成象系统的传递函数1.透镜的脉冲响应2.相干传递函数与光瞳函数的关系3.会求几种光瞳的截止频率4.强度脉冲响应的定义5.非相干照明系统的物象关系6.光学传递函数的公式及求解方法7.会求几种情况的光学传递函数及截止频率第五章光学全息1.试列出全息照相与普通照相的区别2.简述全息照相的基本原理3.试画出拍摄三维全息的光路图4.基元全息图的分类5.结合试验谈谈做全息实验应注意什么(没做过实验,只谈一些理论性的注意方面)6.全息照相为什么要防震,有那些防震措施,其依据是什么7.如何检测全息系统是否合格8.全息照相的基本公式9.全息中的物像公式及解题(重点)复 习第一章 线性系统分析1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?时间量 空间量22v T πωπ==22K f ππλ== 时间角频率 空间角频率其中:v ----时间频率 其中:f ---空间频率T----时间周期λ-----空间周期物理意义:由图1.7.3知:(设光在z x ,平面内传播,0=y )cos xd λα=, 又 ∵ 1x xf d =联立得:cos x f αλ=讨论:① 当090,,<γβα时0,,>z y x f f f ,表示k沿正方向传播;②标量性,当α↗时,αcos ↘→x f ↘→x d ↗ 当α↘时,αcos ↗→x f ↗→x d ↘ ③标量性与矢量性的联系条纹密x d ↘→x f ↗→α↘→θ↗x x f d 1=λαcos =x f 条纹疏x d ↗→x f ↘→α↗→θ↘2.空间频率分量的定义及表达式?{}γβαcos ,cos ,cos k k ={}z y x r ,,=)cos cos cos (γβαz y x k r k ++=⋅代入复振幅表达式:()()()[]γβαμcos cos cos ex p ,,,,0z y x jk z y x z y x U ++=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x z y ++=λπμ2ex p ,,0式中:λαcos =x f ,λβcos =yf ,λγcos =z f3.平面波的表达式和球面波的表达式?平面波()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x U λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x U z y x ++=πμ2ex p ,,0球面波()1,,jkr aU x y z e γ=()21212212121221⎪⎪⎭⎫ ⎝⎛++=++=z y x z z y x r近轴时()1,,U x y z ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛++=1221021exp z y x jkz r a()⎪⎪⎭⎫ ⎝⎛+⋅≈1221102exp exp z y x jk jkz z a ⎪⎪⎭⎫ ⎝⎛+=12202exp z y x jkU若球面波中心不在坐标原点,上式改为:()1,,U x y z ()()⎥⎥⎦⎤⎢⎢⎣⎡++-=1202002exp z y y x x jkU4.相干照明下物函数复振幅的表示式及物理意义?设()y x f ,为一物函数的复振幅,其傅氏变换对为 ()()(),exp 2x y x y F f f f x y j f x f y dxdyπ∞-∞⎡⎤=-+⎣⎦⎰⎰ ()()(),exp 2x yxyxyf x y F f f j f x f y df dfπ∞-∞⎡⎤=+⎣⎦⎰⎰可见:物函数()y x f ,可以看作由无数振幅不同()x y x y F f f df df 方向不同()cos ,cos xyf f αλβλ==的平面波相干迭加而成。

光学教程答案(第五章)

光学教程答案(第五章)

1. 试确定下面两列光波E 1=A 0[e x cos (wt-kz )+e y cos (wt-kz-π/2)] E 2=A 0[e x sin (wt-kz )+e y sin (wt-kz-π/2)] 的偏振态。

解 :E 1 =A 0[e x cos(wt-kz)+e y cos(wt-kz-π/2)]=A 0[e x cos(wt-kz)+e y sin(wt-kz)] 为左旋圆偏振光E 2 =A 0[e x sin(wt-kz)+e y sin(wt-kz-π/2)]=A 0[e x sin(wt-kz)+e y cos(wt-kz)] 为右旋圆偏振光2. 为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面通过两块偏振片来观察。

两偏振片透振方向的夹角为60°。

若观察到两表面的亮度相同,则两表面的亮度比是多少?已知光通过每一块偏振片后损失入射光能量的10%。

解∶∵亮度比 = 光强比设直接观察的光的光强为I 0,入射到偏振片上的光强为I ,则通过偏振片系统的光强为I':I'=(1/2)I (1-10%)cos 2600∙(1-10%) 因此:∴ I 0/ I = 0.5×(1-10%)cos 2600∙(1-10%) = 10.125%.3. 两个尼科耳N 1和N 2的夹角为60°,在他们之间放置另一个尼科耳N 3,让平行的自然光通过这个系统。

假设各尼科耳对非常光均无吸收,试问N 3和N 1 的偏振方向的夹角为何值时,通过系统的光强最大?设入射光强为I 0,求此时所能通过的最大光强。

解:201I I()()()()有最大值时,亦可得令注:此时透过的最大光强为,须使欲使I I d d d dI I I II I I II I II I 20cos cos 2329434323060cos 30cos 2302602cos cos 2cos cos 2cos 2222max22232213θααθαααθααθααθαα==⎥⎦⎤⎢⎣⎡-==⋅⋅=-=====∴-=-===4. 在两个理想的偏振片之间有一个偏振片以匀角速度ω绕光的传播方向旋转(见题5.4图),若入射的自然光强为I 0,试证明透射光强为I =16πI 0(1-cos4ωt ).解: I = 12I 0 cos 2ωt cos 2(2π-ωt ) = 12 I 0cos 2ωtsin 2 ωt = 18 I 0 1-cos4t2ω= I 0(1-cos4ωt ) `题5. 线偏振光入射到折射率为1.732的玻璃片上,入射角是60°,入射光的电失量与入射面成30°角。

《信息光学》简单重点及题目

《信息光学》简单重点及题目

一、选择题(每题2分,共40分)1.三角函数可以用来表示光瞳为________________的非相干成像系统的光学传递函数。

A 、矩形B 、圆孔C 、其它形状2.Sinc 函数常用来描述________________的夫琅和费衍射图样A 、圆孔B 、矩形和狭缝C 、其它形状3.高斯函数)](exp[22y x +-π常用来描述激光器发出的________________A 、平行光束B 、高斯光束C 、其它光束4.圆域函数Circ(r)常用来表示________________的透过率A 、圆孔B 、矩孔C 、方孔5.卷积运算是描述线性空间不变系统________________的基本运算A 、输出-输入关系B 、输入-输出关系C 、其它关系6.相关(包括自相关和互相关)常用来比较两个物理信号的________________A 、相似程度B 、不同程度C 、其它关系7.卷积运算有两种效应,一种是展宽,还有一种就是被卷函数经过卷积运算,其细微结构在一定程度上被消除,函数本身的起伏振荡变得平缓圆滑,这种效应是________________A 、锐化B 、平滑化C 、其它8互相关是两个信号之间存在多少相似性的量度。

两个完全不同的,毫无关系的信号,对所有位置,它们互相关的结果应该为________________A 、0B 、无穷大C 、其它9.周期函数随着其周期逐渐增大,频率(即谱线间隔)________________。

当函数周期变为无穷大,实质上变为非周期函数,基频趋于零A .愈来愈小B 、愈来愈大C 、不变14.函数rect(x)rect(y)的傅立叶变换为________________A 、),(y x f f δB 、1C 、)(sin )(sin y x f c f c16.一个 空间 脉冲 在输入平面位移,线性系统的响应函数形式不变 ,只产生相应的位移,这样的系统称为________________A、时不变系统B、空间不变系统或位移不变系统C、其它系统17.线性空间不变系统的脉冲响应的傅立叶变换称为系统的________________。

《光学信息处理》习题解答

《光学信息处理》习题解答

(2)
如果
a
>
1, L
b
>
1 W
,因
f
( x,
y) 是限带函数,在频域内, F (
fx,
f y ) 在长、宽分别为 L 、W
的矩
形内不为零, a > 1 、 b > 1 即 1 < L 、1 < W ,也就是说滤波器通带宽度比输入函数波形宽度窄,
L
Wa
b
势必有一部分信号不能通过滤波器,在频域内,这时 F ( f x , f y ) ⋅ H ( f x , f y ) ≠ F ( f x , f y ) ,在空域内即 1 sinc( x )sinc( y ) * f (x, y) ≠ f (x, y) ab a b
g 1 ( x , y ) = F −1 [G 1 ( f x , f y )] = cos 4π x
(2)由
f2
(x,
y)
=
cos(
4π x ) rect
(x 75
) rect
(y 75
)
得:
F2 (
fx,
fy
)
=
1 [δ 2
(
fx

2)
+
δ(
fx
+
2)]δ
(
fy
)
∗ 752 sinc(75
f x )sinc(75
)]
*
Λ(
x)
对下述传递函数用图解方法确定系统的输出。
(1)
H 1 ( f ) = rect(
f) 2
(2)
H 2 ( f ) = rect(
f ) − rect( 4

信息光学课后习题答案

信息光学课后习题答案

信息光学课后习题答案信息光学是一门研究光在信息处理和传输中的应用的学科,课后习题是帮助学生巩固课堂知识的重要手段。

以下是一些信息光学课后习题的参考答案。

习题一:光的干涉现象1. 描述杨氏双缝干涉实验的基本原理。

答:杨氏双缝干涉实验是利用两个相干光源产生的光波在空间中相遇时,由于相位差不同而相互叠加,形成明暗相间的干涉条纹。

当两束光波的相位差为整数倍的波长时,它们相互加强,形成亮条纹;当相位差为半整数倍波长时,它们相互抵消,形成暗条纹。

2. 计算双缝干涉的条纹间距。

答:设双缝间距为d,观察屏与双缝的距离为L,光波长为λ。

根据干涉条纹的间距公式:\[ \Delta x = \frac{\lambda L}{d} \],可以计算出条纹间距。

习题二:光的衍射现象1. 解释夫琅禾费衍射和菲涅尔衍射的区别。

答:夫琅禾费衍射适用于远场条件,即观察点距离衍射屏很远,可以忽略衍射波的弯曲。

而菲涅尔衍射适用于近场条件,考虑了衍射波的弯曲效应。

2. 描述单缝衍射的光强分布特点。

答:单缝衍射的光强分布呈现中央亮条纹最宽最亮,两侧条纹逐渐变窄变暗,且条纹间距随着角度的增大而增大。

习题三:光的偏振现象1. 什么是偏振光,它有哪些应用?答:偏振光是指光波振动方向被限制在特定平面内的光。

偏振光的应用包括偏振太阳镜减少眩光,液晶显示技术,以及光学测量和成像技术等。

2. 解释马吕斯定律。

答:马吕斯定律描述了偏振光通过偏振器时,透射光强与入射光强的关系。

根据马吕斯定律,透射光强I与入射光强I0的关系为:\[ I = I_0 \cos^2(\theta) \],其中θ是偏振器的偏振方向与光波振动方向之间的夹角。

习题四:光纤通信1. 解释全内反射原理。

答:全内反射是指当光从折射率高的介质进入折射率低的介质时,如果入射角大于临界角,光将不会穿透界面,而是完全反射回高折射率介质内部。

这是光纤通信中光信号能够长距离传输的关键原理。

2. 描述单模光纤和多模光纤的区别。

第五章 光的干涉 习题答案

第五章 光的干涉 习题答案

第五章 光的干涉5-1 波长为589、3nm 的钠光照射在一双缝上,在距双缝200cm 的观察屏上测量20个条纹共宽3cm,试计算双缝之间的距离。

解:由题意,条纹间距为:cm e 15.0203==∴双缝间距为:m e D d 391079.015.0103.589200--⨯≈⨯⨯==λ,两小孔的距离为1.5mm,观察屏离小孔的垂直距离为1m,若所用光源发出波长1λ=650nm 与2λ=532nm 的两种光波,试求两光波分别形成的条纹间距以及两组条纹的第8级亮纹之间的距离。

解:对于1λ=650nm 的光波,条纹间距为:m d D e 339111043.0105.1106501---⨯≈⨯⨯⨯==λ 对于2λ=532nm 的光波,条纹间距为:m d D e 339221035.0105.1105321---⨯≈⨯⨯⨯==λ ∴两组条纹的第8级条纹之间的距离为: m e e x 3211064.0)(8-⨯=-=∆5-3 一个长40mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系,继后抽去气室中的空气,注入某种气体,发现条纹系移动了30个条纹。

已知照射光波波长为656、28nm,空气折射率为1、000276,试求注入气体的折射率n g 。

解:气室充入空气与充气体前后,光程的变化为: D n g )000276.1(-=∆δ 而这一光程变化对应于30个波长: λδ30=∆∴λ30)1(=-D n g000768.1000276.110401028.6563039=+⨯⨯⨯=--g n5-4 在菲涅耳双面镜干涉实验中,光波长为600nm,光源与观察屏到双面镜交线的距离分别为0.6m 与1.8m,双面镜夹角为10-3rad,求:(1)观察屏上的条纹间距;(2)屏上最多能瞧到多少亮条纹?解:如图所示,S 1S 2的距离为:αsin 2l d =∴条纹间距为:αλλsin 2)(l q l d D e +== ∵α角很小∴mmm l q l e 2.1102.1106.0210600)8.16.0(2)(339=⨯=⨯⨯⨯⨯+=+≈---αλ屏上能产生条纹的范围,如图阴影所示mmmq qtg y 6.3108.12223=⨯⨯=≈=-αα∴最多能瞧到的亮条纹数为:32.16.3===e y n5-5 在如图所示的洛埃镜实验中,光源S 1到观察屏的距离为2m,光源到洛埃镜面的垂直距离为2.5mm 。

现代光学系统第五章习题答案

现代光学系统第五章习题答案
个小碎片仍可重现出所拍摄物体的完整的形象。不过当碎 片太小时,重现景像的亮度和分辨率会伴随着降低。而几
何成像,去掉一部分底片,就去掉一部分像。
4. 试解释为什么全息底版被打成碎片还能重现原物整幅图像? 碎片的尺寸对成像质量有什么影响? 答:全息成像和几何成像不同,它不是物点和像点的一一对
应成像,全息底片上每—点都收到被拍摄物体各部位发出的
和相位。全息底片的振幅透过率为
( x, y )]
OR exp[iR ( x, y ) io ( x, y )]
2 2
用原参考光照明,则所得到的像函数表达式为
O R exp[iO ( x, y )] O
3. 试比较全息成像和几何光学成像的不同之处。
答: 1 )全息成像具有三维特性,可以从不同的角度观测,
而几何成像是平面像; 2 )成像的方式不同:几何成像记
录物面上的相对光强分布,而全息成像记录物体光波,饱 和相位信息; 3 )全息图具有弥散性:一张用激光重现的
透射式全息图,即使被打碎成若干小碎片,用其中任何一
sin( /2)<1500/2, <47.03°,即参考光与物光的夹角应小
于47.03°。


1. 全息成像的原理是什么?它对光源的相干长度没有要求? 为什么? 答:全息术的基本思想:波前记录与波前再现。由于记录介 质只对光强有响应,不能记录波前携带的位相信息,只有使 位相的空间调制转换为强度的空间调制才可能实现完整信息 的波前记录。全息记录干涉法可实现这一转换。它利用一参 考光和一带有物体信息的物光在记录介质上的干涉记录物体 的振幅和相位信息。在线性记录条件下,使记录介质的光振 幅透过函数正比于物光和参考光的干涉光强度分布。然后用 原参考光或参考光的共轭光照射记录介质,通过介质的衍射 场就包含原物场,得到全息像。 在全息记录时光源的相干长度与物体线度比较必须足够 大,否则物光和参考光不产生干涉,就记录不到物体信息。

信息光学 课后习题答案

信息光学 课后习题答案

信息光学课后习题答案信息光学课后习题答案在信息时代,光学技术的应用越来越广泛。

信息光学是一门研究光的传播、控制和处理的学科,它涉及到光的物理性质、光学仪器和光学系统的设计等方面。

在信息光学的学习过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高问题解决能力。

下面是一些信息光学课后习题的答案,希望能对你的学习有所帮助。

1. 什么是光的干涉?请简要描述干涉的条件和干涉的类型。

答:光的干涉是指两束或多束光波相互叠加产生干涉现象的现象。

干涉的条件包括:光源的相干性、光波的波长、光波的振幅和相位等。

根据光波的相位关系和干涉光波的振幅分布,干涉可以分为构成干涉的光波相位差为定值的相干干涉和相位差随空间位置而变化的非相干干涉。

2. 什么是光的衍射?请简要描述衍射的条件和衍射的类型。

答:光的衍射是指光波通过物体的边缘或孔径时发生偏折和扩散的现象。

衍射的条件包括:波长与物体尺寸的比值、入射光波的方向和物体的形状等。

根据物体的形状和光波的传播方式,衍射可以分为菲涅尔衍射和菲拉格衍射。

3. 什么是光的偏振?请简要描述光的偏振现象和偏振的方法。

答:光的偏振是指光波中的电矢量在特定方向上振动的现象。

偏振可以通过特定的方法将非偏振光转化为偏振光,常用的偏振方法包括:偏振片的使用、布儒斯特角的利用和波片的调整等。

4. 什么是光的散射?请简要描述散射的条件和散射的类型。

答:光的散射是指光波与物质相互作用后改变传播方向的现象。

散射的条件包括:光波与物质的相互作用力、物质的尺寸和光波的波长等。

根据散射物体的尺寸和光波的波长,散射可以分为瑞利散射、米氏散射和光学散射等。

5. 什么是光的吸收?请简要描述吸收的条件和吸收的影响因素。

答:光的吸收是指光波在物质中被吸收转化为其他形式的能量的现象。

吸收的条件包括:光波与物质的相互作用力、物质的性质和光波的波长等。

吸收的影响因素包括:物质的吸收系数、光波的强度和入射角度等。

以上是对一些信息光学课后习题的简要解答。

光学信息技术原理及应用(第二版)课后答案汇总

光学信息技术原理及应用(第二版)课后答案汇总

第一章 习题解答1.1 已知不变线性系统的输入为()()x x g c o m b =系统的传递函数⎪⎭⎫⎝⎛b f Λ。

若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。

并画出输出函数及其频谱的图形。

答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。

1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1) 如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2) 如果L a 1>, Wb 1>,还能得出以上结论吗?答:不能。

因为这时(){}(){}()y x yx bf af rect y x f W f L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。

1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。

(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫ ⎝⎛331= 对下述传递函数利用图解方法确定系统的输出。

信息光学智慧树知到课后章节答案2023年下北京工业大学

信息光学智慧树知到课后章节答案2023年下北京工业大学

信息光学智慧树知到课后章节答案2023年下北京工业大学北京工业大学绪论单元测试1.傅里叶光学是专门研究二维光信息的科学,是光学与通信理论的结合,是当代信息科学的一部分。

这一说法是否正确?A:错误 B:正确答案:正确第一章测试1.可用来描述点光源复振幅分布的基元函数是()。

A:脉冲函数(δ函数) B:三角形函数 C:矩形函数 D:圆柱函数答案:脉冲函数(δ函数)2.用来描述激光器出射光斑光场复振幅分布的基元函数是()。

A:三角形函数 B:矩形函数 C:高斯函数答案:高斯函数3.下列关于互相关与卷积运算关系的表达式正确的是()。

A:★B:★C:★D:★答案:★4.互相关是衡量两个信号之间相似度。

两个完全不同的、毫无关系的信号,对所有的位置,它们互相关的结果应该为()。

A:1 B:无穷大 C:0答案:05.函数的傅里叶变换为()。

A:0 B:1 C: D:答案:1第二章测试1.线性空间不变系统的输入与输出之间的关系可以通过()运算可以表示。

A:输入与脉冲响应相关 B:输入与脉冲响应乘积 C:输入与脉冲响应卷积答案:输入与脉冲响应卷积2.在傅里叶光学中,把光的传播、成像、信息处理等都以系统是()去分析各种光学问题的。

A:非线性系统 B:线性系统 C:其他系统答案:线性系统3.一个空间脉冲在输入平面位移,线性系统的响应函数形式不变,只产生相应的位移,这样的系统称为()。

A:空间不变系统或位移不变系统 B:其它系统 C:时不变系统答案:空间不变系统或位移不变系统4.对于线性不变系统,系统的输出频谱是输入函数频谱与系统()的乘积。

A:本征函数 B:脉冲响应 C:传递函数答案:传递函数5.根据抽样定理,对连续函数进行抽样时,在x、y方向抽样点最大允许间隔、分别表示该函数在频域中的最小矩形在和方向上的宽度。

)A: B:C:第三章测试1. 基尔霍夫衍射积分公式从理论上证明了光的传播现象能看作( )系统。

A:非线性系统 B:线性系统 C:线性空间不变系统 答案:线性空间不变系统2.圆对称函数的傅里叶变换式本身也是圆对称的,它可通过把空间坐标转换到极坐标系中计算求出,我们称这种变换的特殊形式为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 习题解答5.1两束夹角为 θ = 450的平面波在记录平面上产生干涉,已知光波波长为632.8nm ,求对称情况下(两平面波的入射角相等)该平面上记录的全息光栅的空间频率。

答:已知:θ = 450,λ= 632.8nm ,根据平面波相干原理,干涉条纹的空间分布满足关系式2 d sin (θ/2)= λ其中d 是干涉条纹间隔。

由于两平面波相对于全息干板是对称入射的,故记录 在干板上的全息光栅空间频率为f x = (1/d )= (1/λ)·2 sin (θ/2)= 1209.5 l /mm故全息光栅的空间频率为1209.5 l /mm 。

5.2 如图5.33所示,点光源A (0,-40,-150)和B (0,30,-100)发出的球面波在记录平面上产生干涉:xz图5.33 (5.2题图)(1) 写出两个球面波在记录平面上复振幅分布的表达式;答:设:点源A 、B 发出的球面波在记录平面上的复振幅分布分别为U A 和U B ,则有 ()[{]}22--22)()()/(e x p e x p A A A A A A y y x x z jk jkz a U +=()[{]}22--22)()()/(exp exp B B B B B B y y x x z jk jkz a U +=其中: x A = x B = 0, y A = -40, z A = -150, y B = 30, z B = -100;a A 、a B 分别是球面波的振幅;k 为波数。

(2) 写出干涉条纹强度分布的表达式;I = |U A +U B |2 = U A ·U A * + U B ·U B * +U A *·U B + U A ·U B *[{]{[]}}[{]{[]}}--2---2-4--2--2--442222222222)()()/()()()/(exp )exp()()()/()()()/(exp )exp(B B B A A A B A B A B B B A A A B A B A B A y y x x z jk y y x x z jk jkz jkz a a y y x x z jk y y x x z jk jkz jkz a a a a ++•+++++•++=(3)设全息干板的尺寸为100 × 100 mm 2,λ = 632.8nm ,求全息图上最高和最低空间频率;说明这对记录介质的分辨率有何要求?解答:设全息干板对于坐标轴是对称的,设点源A 与点源B 到达干板的光线的最大和最小夹角分别为θmax 和θmin ,A 、B 发出的到达干板两个边缘的光线与干板的夹角分别为θA 、θB 、θA ’和θB ’,如图所示,它们的关系为θ A = tg -1[z A /(-y A - 50)] ,θ B = tg -1[z B /(-y B - 50)]θA ’= tg -1[z A /(y A - 50)] ,θB ’= tg -1[z B /(y B - 50)] θmax =θ A -θB , θmin =θ B ’-θA ’根据全息光栅记录原理,全息图上所记录的最高空间频率 f max = (2/λ)sin (θmax /2)·cos α 1 最低空间频率 f min = (2/λ)sin (θmin /2)·cos α 2其中α角表示全息干板相对于对称记录情况的偏离角,由几何关系可知cos α 1 = sin (θ A +θB )/2 , cos α 2 = sin (θA ’+θB ’)/2将数据代入公式得 f max = 882 l /mm ,f min = 503 l /mm故全息图的空间频率最高为882 l /mm ,最低为503 l /mm ,要求记录介质的分辨率不得低于900 l /mm 。

5.3 请依据全息照相原理说明一个漫反射物体的菲涅耳全息图。

(1)为什么不能用白光再现?试证明如图5.7所记录和再现的菲涅耳全息图的线模糊和色模糊的表达式(5.26)和(5.28);(2)为什么全息图的碎片仍能再现出物体完整的像?碎片尺寸的大小对再现像质量有哪些影响?(3)由全息图再现的三维立体像与普通立体电影看到的立体像有何本质区别? 答:(1)首先证明(5.26)式,当01λμλ==。

即记录光与再现光波长相同时,(5.21)式变为:0000i c r i c ri c r i c r x x x x l l l l y y y y l l l l =+-=+-当再现光源没有展宽,即0C ∆=,一个点光源的像的展宽,(,)i i I x y ∆∆∆与参考光源的展宽(,)i i R x y ∆∆∆,成正比,即:()i Ri rI R l l ∆∆= 同样,当参考光源没有展宽,再现光源的展宽(,)c c C x y ∆∆∆也与像的展宽成正比 ()i ci cI C l l ∆∆= 参考光源与再现光源同时存在微小展宽其最后结果展宽是两者之和为:()()i i i R cI I I ∆=∆+∆i r r R C l l l ⎛⎫∆∆=+ ⎪⎝⎭ 此即式(5.26)。

对于色模糊,由图5.8可以看出:i l λθ∆=⋅∆色散角与波长成一定函数关系,由于波长范围λ∆产生的色散角为:ix θθλλ∂∆=∆∂ 因而有ix i I l λθλλ∂∆=∆∂该式即为书上(5.27)式,根据书上P132以后分析即可证明(5.28)式。

(2)由于全息图上每一点都记录了物体上所有点发出的波的全部信息,故每一点都可以在再现光照射下再现出像的整体,因而全息图的碎片仍能再现出物体完整的像。

不过对再现像有贡献的点越多,像的亮度越高。

每个点都在不同角度再现像,因而点越多,再现像的孔径角也越大,像的分辨率越高,这就是碎片大小对再现像质量的两个方面影响。

5.4 用波长 λ0= 632.8nm 记录的全息图,然后用 λ= 488.0nm 的光波再现,试问:(1)若l o = 10cm ,l c = l r = ∞,像距l i =?解:根据菲涅耳全息图物像距关系式(5.21C ),像距l i 由下式确定原始像: )(ro c i l l l l 1-111μ+= 共轭像:)(r o c i l l l l 1-1-11μ= 其中 µ = λ / λ0 , 将l c = l r = ∞代入得原始像距为 cm 13≈μoi l l =共轭像距为 cm 13-≈-μoi l l =(2)若l o = 10cm ,l r = 20cm ,l C = ∞,l i =?;解:同理,原始像距为 1-1-1)]([ro i l l l μ=≈ 26 cm 共轭像距为 l I ≈ - 26 cm(3) 第二种情况中,若l C 改为l C = -50cm ,l i =?;解:同理,原始像距为 l I ≈54 cm共轭像距为 l I ≈ - 17 cm(4)若再现波长与记录波长相同,求以上三种情况像的放大率M = ?解:当λ = λ0 时 µ = 1 ,由成像放大率公式(5.25)可知 1--1c or o l l l l M μ±=上述三种情况的放大率分别为(1)M = 1 ; (2)M = 2 ; (3)M = 3.35.5 如图5.34所示,用一束平面波R 和会聚球面波A 相干,记录的全息图称为同轴全息透镜(HL ),通常将其焦距f 定义为会聚球面波点源A 的距离z A 。

R 图5.34 (5.5题图)(1)试依据菲涅耳全息图的物像关系公式(5.21)—(5.22),证明该全息透镜的成像公式为fd d i μ±=-011 式中d i 为像距,d 0为物距,f 为焦距,μ = λ / λ0(λ0为记录波长,λ为再现波长),等号右边的正号表示正透镜,负号表示它同时又具有负透镜的功能。

证明:根据菲涅耳全息图的物像关系公式(5.21c )和(5.22c )有)(ro c i l l l l 1-111μ±= 根据题意,已知 d i = l i ,d 0 = l c ,l r = ∞ ;焦距f 是指当 λ = λ0时平行光入射得到的会聚点的距离,即当l c =∞,μ =1时的像距l i ,此时l i = f (= z A )。

根据公式可得 oo i l l l f 111±=±==μ 于是有 f = + l o (=z A )故:左边=fl l l l l d d o r o c i i μμμ±=±=±==)(1-11-11-10=右边证明完毕。

(2)若已知z A = 20cm ,λ0 = 632.8nm ,物距为d 0 = -10cm ,物高为h O = 2mm ,物波长为λ = 488.0nm ,问:能得到几个像?求出它们的位置和大小,并说明其虚、实和正、倒。

解:由已经证明了的全息透镜成像公式可得fd d i μ±=011 根据题意有f = z A = 20cm ,μ = λ / λ0 = 488.0nm / 632.8nm ,d 0 = -10cm ,代入上式 -16.3 cm 原始像得 d i =-7.2 cm 共轭像根据放大率公式(5.25)1-00-1±=c r z z z z M μ由本题关系可知,上式中z 0 = l o = f = 20cm ,z r = l r = ∞,z c = l c = d 0 = -10cm ,代入上式得 0.6 原始像高h = M ·h 0 = 1.20cm1-1c d f M μ±==0.28 共轭像高h = M ·h 0 = 0.56cm故能得到两个像,原始像位于 -16.3cm 处,正立虚像,像高1.20cm ;共轭像位于 -7.2cm 处,正立虚像,像高0.56cm 。

5.6 用图5.33光路制作一个全息透镜,记录波长为λ0 = 488.0nm ,z A = 20cm ,然后用白光平面波再现,显然由于色散效应,不同波长的焦点将不再重合。

请计算对应波长分别为λ1= 400.0nm 、λ2 = 500.0nm 、λ3 = 600.0nm 的透镜焦距。

答:由(5.23)式可知')(f l l r o 11-1=±μ 于是有 []1-1-1±=)('r o l l f μ其中l O = z A = 20cm ,l c = l r = ∞,µ1 = λ1 / λ0,µ2 = λ2 / λ0,µ3 = λ3 / λ0,代入数据得f 1’= 24.4cm ; f 2’= 19.5cm ; f 3’= 16.3cm故对应3个波长的焦距分别为24.4cm ,19.5cm 和16.3cm 。

相关文档
最新文档