单因素试验方差分析(试验数据处理)

合集下载

单因素实验设计报告

单因素实验设计报告

单因素实验设计报告:因素实验报告设计单因素实验设计举例正交实验单因素实验设计方案篇一:实验报告单因素方差分析5.1、实验步骤: 1(建立数据文件。

定义2个变量:PWK和DCGJSL,分别表示排污口和大肠杆菌数量。

2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。

在对话框左侧的变量列表中,选择变量“DCGJSL”进入“因变量”列表框,选择变量“PWK”进入“因子”列表框。

3(单击“确定”按钮,得到输出结果。

结果解读:由以上结果可以看到,观测变量大肠杆菌数量的总离差平方和为460.438;如果仅考虑“排污口”单个因素的影响,则大肠杆菌数量总变差中,排污口可解释的变差为308.188,抽样误差引起的变差为152.250,它们的方差(平均变差)分别为102.729和12.688,相除所得的F统计量的观测值为8.097,对应的概率P值为0.003。

在显著性水平α为0.05的情况下。

由于概率P值小于显著性水平α,则应拒绝零假设,认为不同的排污口对大肠杆菌数量产生了显著影响,它对大肠杆菌数量的影响效应不全为0。

因此,可判断各个排污口的大肠杆菌数量是有差别的。

5.2、实验步骤: 1(建立数据文件。

定义2个变量:Branch和Turnover,分别表示分店和日营业额。

将Branch的值定义为1=第一分店,2=第二分店,3=第三分店,4=第四分店,5=第五分店。

2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。

在对话框左侧的变量列表中,选择变量“Turnover”进入“因变量”列表框,选择变量“Branch”进入“因子”列表框。

3(单击“确定”按钮,得到输出结果。

结果解读:由以上结果可以看到,观测变量日营业额的总离差平方和为1187668.733;如果仅考虑“分店”单个因素的影响,则日营业额总变差中,分店可解释的变差为366120.900,抽样误差引起的变差为821547.833,它们的方差(平均变差)分别为91530.225和14937.233,相除所得的F统计量的观测值为6.128,对应的概率P 值近似为0。

25.单因素试验的方差分析

25.单因素试验的方差分析

数学模型
j 与 2 均未知.
14
需要解决的问题
1.检验假设
H0 : 12 s , H1 : 1, 2 , , s不全相等.
2.估计未知参数1, 2 , , s , 2.
15
数学模型的等价形式
s
记n nj ,
j 1
1 n
s j 1
njj.
总平均
水平Aj的效 应, 表示水平 Aj下的总体 平均值与总 平均的差异.
i 1 nj
( Xij X• j )2
i 1
2
~ 2(nj 1).
23
又由于各 Xij 独立, 所以由 2 分布的可加性知
S E
2
~ 2
s
(nj
j 1
1),

S
E2~
2
(n
s),
s
其中n nj .
j1
根据 2 分布的性质可以得到,
SE 的自由度为n s; E(SE ) (n s) 2.
铝合金板的厚度
机器Ⅱ 0.257 0.253
机器Ⅲ 0.258 0.264
0.255 0.254
0.259 0.267
0.261
0.262
4
试验指标: 薄板的厚度 因素: 机器
水平:不同的三台机器是因素的三个不同的水平. 假定除机器这一因素外, 其他条件相同,
属于单因素试验. 试验目的: 考察各台机器所生产的薄板的厚度有 无显著的差异. 即考察机器这一因素对厚度有无 显著的影响. 结论: 如果厚度有显著差异, 表明机器这一因素对厚度的影响是显著的.
H0 : 1 23 ,
H1 : 1, 2 , 3不全相等.
进一步假设各总体均为正态变量, 且各总体的

单因素方差分析(1)

单因素方差分析(1)

H
0:
2 1
2 2
2 r
vs
H1:诸
2 i
不全相等
感谢下 载
第六章 方差分析
第一节 单因素方差分析 第二节 双因素方差分析
第一节 方差分析
一、问题的提出
方差分析(analysis of variance)就是采用数理 统计方法对数据进行分析,以鉴别各种因素及因素间 的交互作用对研究对象某些试验指标的影响大小的一 种有效方法. 注:方差分析简记为ANOVA.
水平 A1
A2

Ar 合计
重复数
m1 m2
mr n
试验数据 y11, y12 ,…., y1m1
y21, y22 ,…., y2m2
…….
yr1, yr2 ,…., yrmr
T

平均
T1
y1
T2
y2
……
Tr
yr
T
y
2. 基本假定、平方和分解、方差分析及判断准则相

计算公式稍有不同。特别注意 SA 的计算公式!
( yij
y)2,
fT
n 1
它反映了观测数据 总的变异程度
i1 j1
组间(因子A的)偏 差平方和:
r
SA m ( yi y)2, fA r 1 i1
r
m (i i )2
反映因子A的不同水平效 应间的差异
i1
rm
组和内: (误差)偏差平方Se
i 1
( yij yi
j 1
)2 ,
例2(第一节中例1续)检验不同饲料对鸡增重 的效应中,饲料因子显著.试进行多重比较.
补充:方差齐性检验
(齐性,即相等)

生物统计第三节单因素试验资料的方差分析

生物统计第三节单因素试验资料的方差分析

C T / N 460.5 / 25 8482.41
2
2
上一张 下一张 主 页
退 出
SST x C
2
ij
(21.5 2 19.5 2 17.0 2 16.0 2 ) 8482 . 41
8567 . 75 8482 . 41
Байду номын сангаас85.34
MSE
P
⑥ 列出方差分析表
df
3、确定P值、下结论
•从上表得F=14.32,查附表5(方差分析界值表,
单侧),自由度相同时,F界值越大,P值越小。
因F0.01,2,27= 5.49;故P<0.01,按α=0.05水准
拒绝H0,接受HA,可认为三个不同时期切痂对
ATP含量的影响有统计显著性差异。
方差分析的结果只能总的来说多组间是否
S,即
x
得各最小显著极差,所得结果列于表6-15。
上一张 下一张 主 页
退 出
表6-15 SSR值及LSR值
dfe
上一张 下一张 主 页
退 出
将表6-14中的差数与表6-15中相应的最小显
著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数
极显著高于2号品种母猪,显著高于4号和1号品
③ 计算总的变异及总的自由度
SST x C
2
ij
dfT kn 1 N 1
④ 计算组间变异及相应的自由度
SSB Ti 2 / ni C
df b k 1
⑤ 计算组内变异及相应的自由度
SSE SST SSB
df e dfT df b
N k

方差分析第2部分单因素试验资料的方差分

方差分析第2部分单因素试验资料的方差分

(一)两因素单独观测值试验资料的方差分析 对于A、B两个试验因素的全部ab个水 平组合,每个水平组合只有一个观测值, 全
试验共有ab个观测值,其数据模式如表620所示。
上一张 下一张 主 页 退 出
表6-20 两因素单独观测值试验数据模式
表6-20中
x i.
x
j 1
bБайду номын сангаас
ij
, x. j x..
Cx /N
2 ..
SST x C
2 ij
dfT N 1
df t k 1 df e dfT df t
上一张 下一张 主 页 退 出
SSt xi2 . / ni C
SSe SST SSt
【例6.4】 5个不同品种猪的育肥试验,后期30天增 重(kg)如下表所示。试比较品种间增重有无差异。
这是一个单因素试验,k=5,n=5。
上一张 下一张 主 页 退 出
1、计算各项平方和与自由度
C
2 SST xij C (82 132 142 132 ) 2809.00
2 x..
/ kn 265 /(5 5) 2809 .00
2
2945.00 2809.00 136.00 1 1 2 2 SSt xi. C (51 412 60 2 482 652 ) 2809.00 n 5 2882.20 2809.00 73.20
系统分组方差分析两种,现分别介绍如下。
上一张 下一张 主 页 退 出
一、交叉分组资料的方差分析
设试验考察A、B两个因素,A因素分a个水
平,B因素分b个水平 。 所谓交叉分组是指A因

单因素试验的方差分析

单因素试验的方差分析

其中
r n i
2r
2
S S A X iX n i ii
i 1j 1
i 1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
其中
1 r ni
ni1 j1
ij,
ni
i ij
j1
r ni
2 r ni
2
由P106定理5.1可推得:
S S 2 T~2 n 1 ,S S 2 A ~2 r 1 ,S S 2 E ~2 n r
将 分别SS记2T 作, SS2A
,
SSE
2
的自d由fT度,dfA,dfE
则 FSSA dfA~Fr1,nr
SSE dfE
(,称记作均S S 方A 和d f)A M S A ,S S Ed fE M S E
j1
i1
同一水平 下观测值 之和
所以观测 值之和
例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。
饲料
增重
A
51
40
43
48
B
23
ቤተ መጻሕፍቲ ባይዱ25
26
C
23
28
解:T1 51404348182, T2 232526 74, T3 232851
F0.012,610.92
1 5 .0 3
总和 1024.89 8
不同的饲料对猪的体重的影响极有统计意义。
例2的上机实现步骤
输入原始数 据列,并存 到A,B,C 列;
各水平数据放同一列
各水平数据 放在不同列

单因素试验的方差分析

单因素试验的方差分析

=
2 2
=
2 s
2
;
(3)从每个总体中抽取的样本相互独立.
那么,要从已知数据中推断 s 个总体是否具有显著 的差异,就要比较各个总体的均值是否相等.设第 j 个总
体的均值为 j ,则要检验的假设为
H0 : 1 2 s , H1 : 1, 2 , , s不全相等.
(8-1)
单 因 素 A 具 有 s 个 水 平 A1, A2 , , As , 在 每 个 水 平
推进器 B
A1
B1
58.2 52.6
B2
56.2 41.2
B3
65.3 60.8
燃料 A
49.1 54.1 51.6 A2 42.8 50.5 48.4
60.1 70.9 39.2 A3 58.3 73.2 40.7
75.8 58.2 48.7 A4 71.5 51.0 41.4
这里的试验指标是射程,推进器和燃料是因素, 它们分别有 3 个、 4 个水平.这是一个双因素试验.试 验的目的在于考察在各种因素的各个水平下射程有 无显著的差异,即考察推进器和燃料这两个因素对射 程是否有显著的影响.
H1 : 1,2 ,
,
不全为0.
s
1.3 偏差平方和及其分解
定义 8.2 方和,其中
s nj
称 ST (Xij X )2 为样本的总偏差平 j 1 i1
称为样本的总均值.
1 s nj
X n j1 i1 X ij
s nj
定义 8.3 称 SE =
( Xij X .j )2 为样本的误差平方
差. SA 体现了各水平 Aj 的样本均值 X j 与总均值 X 之间
的差异,反映了样本之间的不同,它是由因素 A 的不同水 平效应的差异以及随机误差引起的.

第9.1节 单因素试验的方差分析——概率论与数理统计(李长青版)

第9.1节 单因素试验的方差分析——概率论与数理统计(李长青版)

ES A ( s 1) 2 n j 2 j
j 1
s
由此得
Se 2 E , ns
1 s SA 2 2 E n j j s 1 s 1 j 1
在 H0 为真时, 即 1 2 s 0 时, 有
S A ( s 1) 将 从而在 H0 不真时, 比值 S ( n s ) 有偏大的趋势, 其 e
S A ( s 1) . 记为 F, 即 F Se (n s )
则 F 可以作为检验 H0 的统
计量. 将 Se 写成如下分项相加的形式
Se ( xi1 x1 ) 2 ( xi 2 x2 ) 2 ( xis xs ) 2
的 影响.
种子品种代 号 (水平) 重复试验序号及作物实测产量
1 128 125 148 2 126 137 132 3 139 125 139 4 130 117 125 5 142 106 151 133 122 139
A1 A2
A3
这里试验的指标是作物产量, 作物是因素, 三种种 子品种代表三个不同的水平. 首先,形成数据差异的直接原因是种子的不同品 种.因此, 每个品种下产量的均值差异检验是我们的主 要任务.这种由因素(种子品种)造成的差异称为条件(系
s nj
从而有
Se ( ij j ) ,
2 j 1 i 1
s
nj
S A n j ( j j ) 2
j 1
s
由此知, Se 反映了误差的波动, 称其为误差的偏差 平方和(或称为组内平方和), 它集中反映了试验中与因 素及其水平无关的全部随机误差. 在 H0 为真时, SA 反 映误差的波动, 在 H0 不真时, SA 反映因子A 的不同水

单因素试验的方差分析

单因素试验的方差分析
概率学与数理统计
单因素试验的方差分析
在方差分析中,我们将要考察的指标称为试验指标,影响 试验指标的条件称为因素(或因子),常用A、B、C, …来表示. 因 素可分为两类,一类是人们可以控制的;一类是人们不能控 制的。 例如,原料成分、反应温度、溶液浓度等是可以控制 的,而测量误差、气象条件等一般难以控制。 以下我们所说 的因素都是可控因素,因素所处的状态称为该因素的水平。 如果在一项试验中只有一个因素在改变,这样的试验称为单 因素试验,如果多于一个因素在改变,就称为多因素试验.
一、单因素试验方差分析的统计模型
例9.1 为求适应某地区的高产水稻的品种( 因素或因子) , 现选了 五个不同品种( 水平)的种子进行试验, 每一品种在四块试验田上进 行试种。假设这 20块土地的面积与其他条件基本相同, 观测到各块 土地上的产量( 单位: 千克) 见表9–1。
在这个问题目中, 要考察的指标是水稻的产量, 影响产量的因
分析的统计模型 .
方差分析的任务是对于模型(9. 1 ) , 检验 s 个总体 N ( 1 , 2) , …, N
( s , 2)的均值是否相等, 即检验假设
H0 : 1 2 s H1 : 1 , 2 , s , 不全相等。
(9.2)
为将问题( 9. 2 ) 写成便于讨论的形式, 采用记号
s nj
ST
(xij x)2
j1 i1
(9.3)
这里
x
1 n
s j 1
nj i1
xij ,
ST能反应全部试验数据之间的差异,又称
为总变差 Aj下的样本均值
x
j
1 n
nj i1
xij
(9.4)
注意到
(xij x )2 (xij x j x j x )2 =(xij x j )2 (x j x )2 2(xij x j )(x j x )

第二节 单因素试验资料的方差分析

第二节 单因素试验资料的方差分析

第二节单因素试验资料的方差分析在方差分析中,根据所研究试验因素的多少,可分为单因素、两因素和多因素试验资料的方差分析。

单因素试验资料的方差分析是其中最简单的一种,目的在于正确判断该试验因素各水平的优劣。

根据各处理内重复数是否相等,单因素方差分析又分为重复数相等和重复数不等两种情况。

上节讨论的是重复数相等的情况。

当重复数不等时,各项平方和与自由度的计算,多重比较中标准误的计算略有不同。

本节各举一例予以说明。

一、各处理重复数相等的方差分析【例6.3】抽测5个不同品种的若干头母猪的窝产仔数,结果见表6-12,试检验不同品种母猪平均窝产仔数的差异是否显著。

表6-12五个不同品种母猪的窝产仔数这是一个单因素试验,k=5,n=5。

现对此试验结果进行方差分析如下:1、计算各项平方和与自由度2、列出方差分析表,进行F检验表6-13不同品种母猪的窝产仔数的方差分析表根据df1=df t=4,df2=df e=20查临界F值得:F0.05(4,20)=2.87,F0.05(4,20)=4.43,因为F>F0.01(4,20),即P<0.01,表明品种间产仔数的差异达到1%显著水平。

3、多重比较采用新复极差法,各处理平均数多重比较表见表6-14。

表6-14不同品种母猪的平均窝产仔数多重比较表(SSR法)-8.2 -9.6因为MS e=3.14,n=5,所以为:根据df e=20,秩次距k=2,3,4,5由附表6查出α=0.05和α=0.01的各临界SSR 值,乘以=0.7925,即得各最小显著极差,所得结果列于表6-15。

表6-15SSR值及LSR值将表6-14中的差数与表6-15中相应的最小显著极差比较并标记检验结果。

检验结果表明:5号品种母猪的平均窝产仔数极显著高于2号品种母猪,显著高于4号和1号品种,但与3号品种差异不显著;3号品种母猪的平均窝产仔数极显著高于2号品种,与1号和4号品种差异不显著;1号、4号、2号品种母猪的平均窝产仔数间差异均不显著。

单因素试验的数据怎么看

单因素试验的数据怎么看

单因素试验的数据怎么看
在单因素试验中,我们研究一个因素对某个感兴趣的变量的影响。

为了了解数据,可以采取以下步骤:
1. 数据收集:收集试验所需的数据。

确保数据是准确、完整的。

2. 描述性统计:对数据进行描述性统计分析,以了解数据的基本特征。

可以计算均值、中位数、标准差等。

3. 绘制图表:绘制适当的图表来展示数据。

常见的图表包括直方图、箱线图、散点图等。

4. 探索异常值:检查是否存在异常值或离群点。

异常值可能会对结果产生影响,需要进行特殊处理。

5. 方差分析:使用方差分析(ANOVA)来评估因素对变量的影响是否显著。

ANOVA可以帮助确定是否有统计显著性。

6. 解释结果:根据数据分析的结果,解释因素对变量的影响程度和统计显著性。

以上是一般的步骤,具体分析方法可能会根据试验设计和数据类型的不同而有所差异。

如果您有具体的数据和问题,我可以为您提供更详细的分析建议。

试验设计与数据处理(第三版)李云雁 第3章 试验的方差分析知识讲解

试验设计与数据处理(第三版)李云雁 第3章  试验的方差分析知识讲解
第3章 试验的方差分析
方差分析(analysis of variance,简称ANOVA) 检验试验中有关因素对试验结果影响的显著性
试验指标(experimental index) 衡量或考核试验效果的参数
因素(experimental factor) 影响试验指标的条件 可控因素(controllable factor)
④计算均方
MS A
SS A df A
SS A r 1
MSB
SSB df B
SSB s 1
MSe
SSe dfe
(r
SSe 1)(s 1)
⑤F检验
FA
MS A MSe
FB
MSB MSe
FA服从自由度为(dfA,dfe)的F分布;
FB服从自由度为(dfB,dfe)的F分布;
对于给定的显著性水平 ,查F分布表:
下的试验结果服从正态分布 在各水平下分别做了ni(i=1,2,…,r)次试验 判断因素A对试验结果是否有显著影响
(3) 单因素试验数据表
试验次数 A1
A2

1
x11
x21

2
x12
x22




…jBiblioteka x1jx2j…




ni
x1n1
x2n2

Ai

Ar
xi1

xr1
xi2

xr2
… ……
xij
1 r s
x rs
i 1
xij
j 1
Ai水平时 :
xi•
1 s
s
xij
j 1

数据分析第七篇:方差分析(单因素方差分析)

数据分析第七篇:方差分析(单因素方差分析)

数据分析第七篇:⽅差分析(单因素⽅差分析)在试验中,把考察的指标称为试验指标,影响试验指标的条件称为因素。

因素可分为两类,⼀类是⼈为可控的测量数据,⽐如温度、⾝⾼等;⼀类是不可控的随机因素,例如,测量误差,⽓象条件等。

因素所处的状态称为因素的⽔平。

如果在试验过程中,只有⼀个因素在改变,称为单因素试验。

⽅差分析(Analysis of Variance,简称ANOVA)主要⽤于验证两组样本,或者两组以上的样本均值是否有显著性差异(是否⼀致)。

举个例⼦,有三台机器⽤来⽣产规格相同的铝合⾦薄板,试验的指标是铝合⾦薄板的厚度,机器是因素,不同的三台机器是因素的三个⽔平。

试验的⽬的是为了考察每台机器所⽣产的薄板的厚度是否有显著的差异,即考察机器这⼀因素对薄板厚度有⽆显著的影响,如果厚度有显著差异,就表明机器对厚度的影响是显著的。

⼀,单因素⽅差分析对多个总体均值进⾏检验,需要⽤到⽅差分析⽅法,例如,某⼯⼚有A、B、C三台轧制板材的设备,如果想知道这三台设备轧制板材的厚度是否⼀致,就可以转化为检验来⾃三个总体的均值是否相同的问题。

以上⾯所说轧制板材为例,检验A、B、C三台设备轧制的板材厚度是否⼀致,可以建⽴如下假设:H0: µ1=µ2=…=µr;H1: µ1,µ2,…,µr不全相等。

三个总体均值是否相等⽆从知道,但是可以通过样本均值是否有显著差异来检验总体均值是否相等。

因为,如果H0为真时,则可以期望样本均值很接近,如果样本均值很接近,则推断总体均值相等的证据很充分,就可以接受H0。

否则,当样本均值相距较远,就认为总体均值相等的证据不充分,从⽽拒绝H0,接受H1。

样本均值之间距离的所谓远近是相对的,是通过假定的共同⽅差的两个点估计值⽐较得出的。

第⼀个点估计是组内⽅差,⽤各个样本⽅差估计得到的,只与每个样本内部的⽅差有关,反映各个⽔平内部随机性的变动。

实验四 单因素方差分析

实验四 单因素方差分析

(三)数据转换时用到的函数套用
• 百分数的转换函数
Degrees(asin(sqrt(p/100))) • 反转换为百分数时的函数套用 2 100*(sin(radians(数据)))
三 练习 P149 9 P150 13
实验四 单因素试验析,掌握方 差分析的三个基本步骤和数据转换的方法。
二 实验内容 (一)利用函数进行分析
本方法用到的函数有sum(), sumsq(), devsq(), fdist(), finv()等;
(二) 利用工具进行分析 在excel中有三种方差分析的工具1、单因素方 差分析:它只适用于单因素完全随机试验的统 计分析,包括观察值不等的试验;2、无重复双 因素:适用于单因素随机区组和二因素无重复 试验的统计分析;3、可重复双因素方差分析: 直接适用于二因素有重复的完全随机;但是通 过适当的改动后,可适用于二因素随机区组、 二因素裂区试验、二因素条区试验、单因素拉 丁方试验的方差分析。

单因素方差分析步骤单因素方差分析的计算步骤

单因素方差分析步骤单因素方差分析的计算步骤

单因素方差分析步骤单因素方差分析的计算步骤一、单因素方差分析的计算步骤假定实验或观察中只有一个因素(因子)A,且A有m个水平,分别记为A1,A2, Am,在每一种水平下,做n次实验,在每一次试验后可得一实验值,记做xij表示在第j个水平下的第i个试验值i 1,2, n;j 1,2, m 。

结果如下表3.1:表3.1 单因素方差分析数据结构表为了考察因素A对实验结果是否有显著性影响,我们把因素A的m个水平A1,A2, Am看成是m个正态总体,而xij i 1,2, n;j 1,2, m 看成是取自第j总体的第i个样品,。

因此,可设xij~Naj, ,i 1,2, n;j 1,2, m可以认为aj j, j是因素A的第j个水平Aj所引起的差异。

因此检验因素A的各水平之间是否有显著的差异,就相当于检验:2H0:a1 a2 am 或者H0: 1 2 m 0具体的分析检验步骤是:(一)计算水平均值令xj表示第j种水平的样本均值,xj xi 1njijnj式中,xij是第j种水平下的第i个观察值,nj表示第j种水平的观察值次数(二)计算离差平方和在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。

首先,总离差平方和,用SST代表,则,SST (xij x)2 其中x xnij,它反映了离差平方和的总体情况。

其次,组内离差平方和,用SSE表示,其计算公式为: 2 SSE x ij jj i其中j反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。

最后,组间平方和,用SSA表示,SSA的计算公式为:SSA j x njj x用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA。

可以看出,它所表现的是组间差异。

其中既包括随机因素,也包括系统因素。

根据证明,SST,SSE,SSA之间存在着一定的联系,这种联系表现在:22 SST SSE S SA因为:x ij x x ij j j x2 2 2 x ij j j x2 x ij j j x在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有,2(xij x)2 (xij j)2 (j x)2即SST SSE S SA(三)计算平均平方用离差平方和除以各自自由度即可得到平均平方。

试验设计与数据处理(第三版)李云雁 第3章 试验的方差分析

试验设计与数据处理(第三版)李云雁 第3章  试验的方差分析
水平(level of factor) 因素的不同状态或内容
3.1 单因素试验的方差分析 (one-way analysis of variance)
3.1.1 单因素试验方差分析基本问题
(1)目的:检验一个因素对试验结果的影响是否显著性 (2)基本命题: 设某单因素A有r种水平:A1,A2,…,Ar,在每种水平
第3章 试验的方差分析
方差分析(analysis of variance,简称ANOVA) 检验试验中有关因素对试验结果影响的显著性
试验指标(experimental index) 衡量或考核试验效果的参数
因素(experimental factor) 影响试验指标的条件 可控因素(controllable factor)
④计算均方
MS A

SS A r 1
MSB

SSB s 1
MS AB

(r
SS AB 1)(s 1)
MSe

SSe rs(c 1)
⑤F检验
FA

MS A MSe
FB

MSB MSe
FAB

MS AB MSe
若FA>F (dfA,dfe),则认为因素A对试验结果有显著影响, 否则无显著影响;
MSe SSe / dfe
MSA——组间均方 MSe——组内均方/误差的均方
(5)F检验
FA

组间均方 组内均方

MS A MSe
服从自由度为(dfA,dfe)的F分布(F distribution) 对于给定的显著性水平,从F分布表查得临界值F(dfA,dfe) 如果FA > F(dfA,dfe) ,则认为因素A对试验结果有显著影

单因素试验的方差分析

单因素试验的方差分析
2
j
μ 各个随机误差 ε ij 相互独立, 1 , μ 2 , , μ s 和 σ
未知.
单因素试验表 部分总体 样 本 A1 A2 … As
X11
X21
· · ·
X12 …
X22 … Xn22 … T.2 …
X 2
· · ·
X1s
X2s
· · ·

Xn11 样本和T.j 样本均值 X j T.1
是 σ 的无偏估计
.
结合定理(1)(2)(3),有
F S A /( s 1 ) S E /( n s ) ~ F ( s 1, n s )
ST ,SA ,SE 的计算方法
n
j
记 T j 化简得

i1
X
ij
, T

j1 i1
s
2
s
n
j
X
ij

T
j1
s
j
j1 i1
s
n
j
(X
ij
X
j )
2
说明:
SE 表示在每个水平下的样本值与该水平下的样本 均值的差异,它是由随机误差引起的,所以,称SE是 误差(组内)平方和.
平方和分解公式:
ST S A S E
证明:S
i1
s
n
j
(X
ij
X)
2

( X
j1 i1
2
都是未知参数。
在水平Aj下进行nj次独立试验,得样本
X 1 j, X
2 j
, ,X
nj j



X
ij

《试验设计与数据处理》第3章_试验的方差分析

《试验设计与数据处理》第3章_试验的方差分析
dfT=dfA+dfB + dfA×B +dfe = n-1= rsc-1
(4)计算均方—— 离差平方和/自由度
因素A的均方
MS A
SS A r 1
误差的均方:
因素B的均方
A×B的均方
MSB
SSB s 1
MS AB
(r
SS AB 1)(s 1)
MSe
SSe rs(c 1)
22
(5) F检验
FA
MS A MSe
xij
i 表示因素A对应的水平
j 表示因素B对应的水12 平
双因素无重复试验的方差分析的基本步骤:
(l)计算平均值 • Ai水平时所有试验值的算术平均值:
1 s
xi
s
xij
j 1
• Bj水平时所有试验值的算术平均值:
x j
1 r
r j 1
xij
• 所有试验值的总平均值:
1 r s
1r
1s
11
3.2 双因素试验的方差分析 ——讨论两个因素对试验结果有无显著性影响的问题
3.2.1 双因素无重复试验的方差分析 • 设在某试验中,有两个因素A和B在变化:
A有r 种水平A1,A2,…,Ar B有s 种水平B1,B2,…,Bs • 在每一种组合水平(Ai,Bj)上做1次试验; • 试验结果为xij(i=1,2,…,r;j = 1,2,…,s); • 所有xij相互独立,且服从正态分布。
(4) 计算平均平方 • 用离差平方和除以自由度得平均平方,简称均方 • 组间均方:MSA SSA / dfA • 组内均方(又称为误差均方): MSe SSe / dfe
9
(5) F检验
• 组间均方和组内均方之比F是一个统计量:

单因素方差分析方法.

单因素方差分析方法.

单因素方差分析方法首先在单因素试验结果的基础上,求出总方差V 、组内方差vw、组间方差vB。

总方差 v=()2ijx x -∑组内方差 v w =()2ij x x i-∑ 组间方差 v B=b ()2ix x -∑从公式可以看出,总方差衡量的是所有观测值xij对总均值x 的偏离程度,反映了抽样随机误差的大小,组内方差衡量的是所有观测值xij对组均值x 的偏离程度,而组间方差则衡量的是组均值x i对总均值x 的偏离程度,反映系统的误差。

在此基础上,还可以得到组间均方差和组内均方差: 组间均方差2Bs ∧=1B-a v组内均方差 2ws∧=aab vw-在方差相等的假定下,要检验n 个总体的均值是否相等,须首先给定原假设和备择假设。

原假设 H 0:均值相等即μ1=μ2=…=μn备择假设H 1:均值不完全不相等则可以应用F 统计量进行方差检验:F=)()(b ab a vv w--1B =22∧∧ss WB该统计量服从分子自由度a-1,分母自由度为ab-a 的F 分布。

给定显著性水平a ,如果根据样本计算出的F 统计量的值小于等于临界值)(a ab 1a F --,α,则说明原假设H 0不成立,总体均值不完全相等,差异并非仅由随机因素引起。

下面通过举例说明如何在Excel 中实现单因素方差分析。

例1:单因素方差分析某化肥生产商需要检验三种新产品的效果,在同一地区选取3块同样大小的农田进行试验,甲农田中使用甲化肥,在乙农田使用乙化肥,在丙地使用丙化肥,得到6次试验的结果如表2所示,试在0.05的显著性水平下分析甲乙丙化肥的肥效是否存在差异。

表2 三块农田的产量要检验三种化肥的肥效是否存在显著差异,等同于检验三者产量的均值是否相等:给定原假设H 0:三者产量均值相等;备择假设H 1:三者的产量均不相等,对于影响产量的因素仅化肥种类一项,因此可以采用单因素方差分析进行多总体样本均值检验。

⑴新建工作表“例1”,分别单击B3:D8单元格,输入表2的产量数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SST ( X ij X ) 2
j 1 i 1
r nj
r
nj
SSA ( X j X ) 2
j 1 i 1
n j ( X j X )2
j 1
s
SSA反映了在每个水平下的样本均值与样本总均 值的差异,它是由因子A 取不同水平引起的,所以, 称SA是因子A的效应(组间)平方和.
单因素试验——在一项试验中只有一个因素改变.
多因素试验——在一项试验中有多个因素在改变.
例1 下表列出了随机选取的、用于计算器的四种 类型的电路的响应时间(以毫秒计). 表1 电路的响应时间 类型Ⅰ 类型Ⅱ 类型Ⅲ 类型Ⅳ 19 20 16 18 22 21 15 22 20 33 18 19 18 27 26 试验指标:电路的响应时间 因素:电路类型 水平: 四种电路类型为因素的四个不同的水平 单因素试验 试验目的:考察电路类型这一因素对响应时间有无 显著的影响.(从哪些值来看是否有影响呢?)
F值 31.10
显著性
934.73
2
6
467.36
**
组内 总和
90.17
1024.89
15.03
8
不同的饲料对猪的体重有非常显著的影响。
三、单因素试验方差分析的简化计算
由于方差分析的计算量比较大,所以引入一种离 差平方和的简单算法:

Ti —Ai 水平时,ni个试验值之和 Qi —Ai 水平时,ni个试验值的平方和 T—n个试验值之和 Q—n个试验值的平方和
r
列平均X i Ti ni
(组内平均值)
X1
X2
...
r i 1
Xr
n n i 其中诸 ni 可以不一样,
(总平均值)
1 r X ni X i n i 1
(2)计算离差平方和
总平方和: (sum of square for total )
效应(组间)平方和: (sum of square for factor A) 说明:
934 .72 SSe SST SSA 1024 .89 934.72 90.17
(3)计算自由度
dfT n 1 9 1 8 dfA r 1 3 1 2 dfe n r 9 - 3 6
解: (4)计算均方
MS A SSA / dfA 934.72 / 2 467.36 MS e SSe / dfe 90.17 / 6 15.03
(5)F检验
MS A 467 .36 FA 31 .10 MS e 15.03
**
F0.01 2,6 10.92 F0.05 2,6 5.14
可见 FA F 0.01(2,6),所以不同的饲料对猪的 体重有非常显著的影响。
列方差分析表
方差来源 平方和自由度 均方和 组间
**
*
例2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。 饲料 增重
A
B
51
23
40
25
43
26
48
C
23
28
解:T1 51 40 43 48 182, X 1 45.5
df A r 1 2, df E n r 9 3 6, X 307/ 9 34.11 dfT n 1 8
T2 23 25 26 74, X 2 24.6 T3 23 28 51 X 3 25.5
T 182 74 51 307
有3种水平,所以r=3
解: (1)计算平均值 X 1 45.5 (2)计算离差平方和
3 nj j 1 i 1
X 2 24.6
X 3 25.5 X 34.11
2 2 2 SST ( X ij X ) 2 (51- 34.11 ) (40 - 34.11 ) ... (28 - 34.11 )
1024 . 89
2 2 2 SSA n j ( X j X ) 2 ( 4 45.5 - 34.11 ) ( 3 24.6 - 34.11 ) ( 2 25.5 - 34.11 ) j 1 3
2 T 2 SSE X ij i 512 402 ... 282 11406.83 i 1 j 1 i 1 ni 11497 11406.83 r r ni
SST SS A SSE 11497 10472.11 1024.89
MS A 934.73 2 467.36 MSE 90.17 6 15.03
为了把方差分析的过程更清楚,制作方差分析表: 单因素方差分析表 方差来源 平方和 自由度 因子A SSA r-1 均方 SSA/r-1 F值 显著性
随机误差
总和
SSe
SST
n-r
n-1
SSe/ n-s
MS A MS e
若 FA F 0.01 ,则称因素A对试验结果有非常显著的影响, 作标记 ;若F 0.05 FA F 0.01 ,则称因素A对试验结果 有显著的影响,作标记 ;若 FA F 0.05(dfA, dfe) , 则称因素A无显著影响,无标记。
(3)计算自由度
仅考虑离差平方和是不够的,为此需考虑自由度 (degree of freedom) SST所对应的自由度称为总自由度:
dfT n 1
dfA r 1
SSA所对应的自由度称为组间自由度: SSe所对应的自由度称为组内自由度:
dfe n r
三个自由度之间存在的关系:
(二) 单因素试验方差分析的基本步骤
(1)计算平均值
重复 水平 试验结果
A 1
X11 ... X1n1
A2
X 21 ... X 2 n2
...
... ... ...
Ar
X r1 ... X rnr
1
... ni
ni
j 1 (组内和)
列和Ti X ij
T1
T2
...
Tr
总和 Ti
i 1
单因素试验的方差分析
一、单因素试验
二、单因素试验方差分析的基本步骤
(1)计算平均值 (2)计算离差平方和 (3)计算自由度
(4)计算平均平方 (5)F检验
三、单因素试验方差分析的简化计算
(一)单因素试验
机器设备 反应时间
原料成分
原料剂量
化工产品的 数量和质量
溶液浓度
操作水平
反应温度


方差分析(analysis of variance,简称ANOVA) ——根据试验的结果进行分析,鉴别各个有关因素 对试验结果的影响程度. 试验指标(experimental index)——试验中要考察的指标. 因 素(experimental factor)——影响试验指标的条件. 可控因素 因 素 不可控因素 水 平(level of factor)——因素所处的状态.
MS A 467.36 F 31.10 MS E 15.03
**
F0.01 2,6 10.92 F0.05 2,6 5.14
ห้องสมุดไป่ตู้
于是有:
如果每个水平上的试验次数ni相同,则可写成:
解:T1 182, T2 74, T3 51, T 307
df A 2, df E 6, dfT 8
r
Ti 2 T 2 1822 742 512 3072 SSA n 4 3 2 9 i 1 ni 11406.83 10472.11 934.72
(5)F检验
组间均方与组内均方之比F是一个统计量:
组间均方 MSA FA ~ F (dfA, dfe) 组间均方 MSe
FA服从自由度为(dfA,dfe)的F分布,对于给定 的 ,通过查表得临界值 F (dfA, dfe) 。 当FA F (dfA, dfe) 时 ,则认为因素A对试 验结果有显著影响 ,否则没有显著影响。
dfT dfA dfe
(4)计算平均平方
用离差平方和除以对应的自由度可得到平均平方 (mean square),简称均方。 将SSA ,SSe分别除以dfA,dfe,得:
MS A SSA / dfA MS e SS e / dfe
称MSA 为组间均方(mean square between group) 称MSe为组内均方(mean square in group) 或误差的均方(error mean square)
误差(组内)平方和: (sum of square for error)
SSe ( X ij X j ) 2
r nj j 1 i 1
说明: SSe 表示在每个水平下的样本值与该水平下的样
本均值的差异,它是由随机误差引起的,所以称 SSe
是误差(组内)平方和.
平方和分解公式:SST SSA SSe
相关文档
最新文档