中考旋转作图题专题

合集下载

(完整)中考数学几何旋转经典例题

(完整)中考数学几何旋转经典例题

旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度,这样的图形运动称为旋转,定点O 称为旋转中心,转动的角称为旋转角;如果图形上的点P 经过旋转到点P ',那么这两个点叫做这个旋转的对应点. 如图1,线段AB 绕点O 顺时针转动090得到B A '',这就是旋转,点O 就是旋转中心,A AOB BO '∠'∠,都是旋转角。

说明: 旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略。

决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的。

由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同. ⑵任意一对对应点与旋转中心的连线所成的角都是旋转角。

⑶对应点到旋转中心的距离相等。

⑷对应线段相等,对应角相等。

例1 、如图2,D 是等腰Rt △ABC 内一点,BC 是斜边,如果将△ADB 绕点A 逆时针方向旋转到△C D A '的位置,则ADD '∠的度数是( )DA.25B.30 C.35 D.45知识点3:旋转作图1。

明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2.理解作图的依据:(1)旋转的定义: 在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等.3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.'图1图2例2 如图3,小明将△ABC 绕O 点旋转得到△C B A ''',其中点C B A '''、、分别是A 、B 、C 的对应点.随即又将△ABC 的边AC 、BC 及旋转中心O 擦去(不留痕迹),他说他还能把旋转中心O 及△ABC 的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置;如不可以,请说明理由。

旋转中考复习

旋转中考复习

图形的旋转一、定义:把一个平面图形绕着平面内某点O 转动一个角度叫做图形的旋转。

点O 叫做旋转中心,转动的角叫做旋转角。

二、旋转的性质:1、对应点到旋转中心的距离相等;2、对应点与旋转中心所连线段的夹角等于旋转角;3、旋转前后的图形全等。

三、旋转作图例1:把RT △ABC (∠C=90°)绕点 C 逆时针旋转90°,得到△A 1B 1C 。

求证:A 1B 1⊥AB 。

例2:如图,以O 为原点建立适当的直角坐标系,标出△ABC 的坐标,并将△ABC 绕原点O 顺时针旋转90°,得到△A 1B 1C 1,写出旋转后各点坐标,并求点A 经过的路径长。

例3:把直线y =x +3绕点O 顺时针旋转90°,写出直线解析式。

例4:已知:正方形ABCD 中,把RT △ABE 绕某一点旋转90°后,得到RT △ADF ,用尺规作图找出旋转中心总结:①由角度相等可以证明线段垂直。

②旋转某个特殊角度一般可由三角形全等求出点的坐标。

③把一条直线旋转可求出旋转后的的直线与坐标轴的点的坐标,再写出直线解析式。

④据旋转的性质:对应点到旋转中心的距离相等,通过作对应点所连线段的垂直平分线的交点可找出旋转中心。

四、旋转与中心对称:把一个图形绕某一点O 旋转180°得到中心对称图形。

把一个图形绕某一点O 旋转任意角度可以得到旋转对称图形。

例:说出下列图形中哪些是中心对称图形,哪些是旋转对称图形。

五、旋转的应用图形的旋转可分为两种题型: ①用旋转进行计算或证明。

通常通过旋转构建直角三角形或等边三角形,从而便于计算或证明。

一般这类题目通常出现在正方形,等边三角形或等腰直角三角形中。

有旋转后重合相等的边构建新的直角三角形或等边三角形。

②图形变换中的旋转。

这类题目往往是通过旋转进行证明,进而探求变化规律。

例1:如图所示:⊿ABC 中,∠ACB=90,AC=BC ,P 是⊿ABC 内的一点,且AP=3,CP=2,BP=1,求∠BPC 的度数.例2:已知,正△ABC 中内有一点P ,连接AP ,BP ,CP ,且∠APC=150°,CP=3,AP=4.求BP 的长。

专题32 几何变换之旋转模型--2024年中考数学核心几何模型重点突破(学生版)

专题32 几何变换之旋转模型--2024年中考数学核心几何模型重点突破(学生版)

专题32几何变换之旋转模型【理论基础】1.旋转的概念:将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转,定点称为旋转中心,旋转的角度称为旋转角.2.旋转三要素:旋转中心、旋转方形和旋转角度.3.旋转的性质(1)对应点到旋转中心的距离相等;(2)两组对应点分别与旋转中心连线所成的角度相等.注:图形在绕着某一个点进行旋转的时候,既可以顺时针旋转,也可以逆时针旋转.4.旋转作图:在画旋转图形时,首先要确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.具体步骤如下:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺/逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的对应点.5.旋转中的全等变换.(1)等腰直角三角形中的半角模型(2)正方形中的半角模型6.自旋转模型:有一组相邻的线段相等,可以通过构造旋转全等.(1)60º自旋转模型(2)90º自旋转模型(3)等腰旋转模型(4)中点旋转模型(倍长中线模型)7.共旋转模型(1)等边三角形共顶点旋转模型(2)正方形共顶点旋转模型8.旋转相似【例1】如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF.下列结论:①△AED≌△AEF;②∠FAD =90°,③BE+DC=DE;④∠ADC+∠AFE=180°.其中结论正确的序号为()A.①②③B.②③④C.①②④D.①③④【例2】如图,点E 为正方形ABCD 外一点,∠AEB =90°,将Rt △ABE 绕A 点逆时针方向旋转90°得到△ADF ,DF 的延长线交BE 于H 点,若BH =7,BC =13,则DH =_____.【例3】如图,ADE △由ABC △绕点A 按逆时针方向旋转90°得到,且点B 的对应点D 恰好落在BC 的延长线上,AD ,EC 相交于点P .(1)求∠BDE 的度数;(2)F 是EC 延长线上的点,且DF PF =.①判断CDF ∠和DAC ∠的数量关系,并证明;②求证:EP PC PF CF=.一、单选题1.如图,P 是等边三角形ABC 内一点,将△ACP 绕点A 顺时针旋转60°得到△ABQ ,若PA=2,PB =4,PC =,则四边形APBQ 的面积为()A .B .C .D .2.如图,在ABC 中,AB AC =,若M 是BC 边上任意一点,将ABM 绕点A 逆时针旋转得到ACN △,点M 的对应点为点N ,连接MN ,则下列结论不一定成立的是()A .AM AN=B .AMN ANM ∠=∠C .CA 平分BCN ∠D .MN AC⊥3.如图,在平面直角坐标系中,△ABC 中点A 的坐标是(3,4),把△ABC 绕原点O 逆时针旋转90︒得到A B C ''' ,则点A ′的坐标为()A .(4,-3)B .(-4,3)C .(-3,4)D .(-3,-4)4.如图,O 是边长为1的等边ABC 的中心,将AB 、BC 、CA 分别绕点A 、点B 、点C 顺时针旋转()0180αα︒<<︒,得到AB '、BC '、CA ',连接A B ''、B C ''、A C ''、OA '、OB '.当A B C '''V 的周长取得最大值时,此时旋转角α的度数为()A .60°B .90°C .120°D .150°5.如图,正方形ABCD 的边长为4,30BCM ∠=︒,点E 是直线CM 上一个动点,连接BE ,线段BE 绕点B 顺时针旋转45°得到BF ,连接DF ,则线段DF 长度的最小值等于()A .424B .222C .2623D .2636.如图,在ABC 中,90C ∠<︒,30B ∠=︒,10AB =,7AC =,O 为AC 的中点,M 为BC 边上一动点,将ABC 绕点A 逆时针旋转角()0360αα︒<≤︒得到AB C ''△,点M 的对应点为M ',连接OM ',在旋转过程中,线段OM '的长度的最小值是()A .1B .1.5C .2D .37.如图,矩形ABCD 中,3AB =,BC =3,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是()A .233+B .25C .233+D 218.如图,在平面直角坐标系中,等腰直角△OAB 位置如图,∠OBA =90°,点B 的坐标为(1,0),每一次将△OAB 绕点O 逆时针旋转90°,同时每边扩大为原来的2倍,第一次旋转得到△OA 1B 1,第二次旋转得到△OA 2B 2,…,以此类推,则点A 2022的坐标是()A .(22022,22022)B .(-22021,22021)C .(22021,-22021)D .(-22022,-22022)二、填空题9.如图,在正方形ABCD 中,点M 是AB 上一动点,点E 是CM 的中点,AE 绕点E 顺时针旋转90°得到EF ,连接DE ,DF .给出结论:①DE =EF ;②∠CDF =45°;③若正方形的边长为2,则点M 在射线AB 上运动时,CF .其中结论正确的是____.10.如图,四边形ABCD ,AB =3,AC =2,把△ABD 绕点D 按顺时针方向旋转60°后得到△ECD ,此时发现点A 、C 、E 恰好在一条直线上,则AD 的长为__________.11.在△ABC 中,∠C =90°,AB =5,把△ABC 绕点C 旋转,使点B 落在射线BA 上的点E 处(点E 不与点A ,B 重合),此时点A 落在点F ,联结FA ,若△AEF 是直角三角形,且AF =4,则BC =_____.12.如图,在四边形ABCD 中,60ADC ∠=︒,30ABC ∠=︒,且AD CD =,连接BD ,若2AB =,BD =BC 的长为______.13.已知,⊙O 的直径BC =,点A 为⊙O 上一动点,AD 、BD 分别平分△ABC 的外角,AD 与⊙O 交于点E .若将AO 绕O 点逆时针旋转270°,则点D 所经历的路径长为_____.(提示:在半径为R 的圆中,n °圆心角所对弧长为180R n π)14.如图,在正方形ABCD 中,M ,N 分别是AB ,CD 的中点,P 是线段MN 上的一点,BP 的延长线交4D 于点E ,连接PD ,PC ,将DEP 绕点P 顺时针旋转90︒得GFP ,则下列结论:CP GP =①,tan 1CGF ∠=②;BC ③垂直平分FG ;④若4AB =,点E 在AD 边上运动,则D ,F ______.15.已知⊙O 的半径为4,A 为圆内一定点,AO =2.M 为圆上一动点,以AM 为边作等腰△AMN ,AM =MN ,∠AMN =108°,ON 的最大值为_____________.16.如图,在矩形ABCD 中,AB =3,BC =4,将矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A ′B ′CD ′,B ′C 与AD 交于点E ,AD 的延长线与A ′D ′交于点F .当矩形A 'B 'CD '的顶点A '落在CD 的延长线上时,则EF =_____.三、解答题17.如图,在平面直角坐标系中△ABC 的三个顶点都在格点上,点A 的坐标为(2,2),请解答下列问题:(1)画出△ABC 绕点B 逆时针旋转90°后得到△A 1B 1C 1,并写出点A 1的坐标;(2)画出和△A 1B 1C 1关于原点O 成中心对称的△A 2B 2C 2,并写出点A 2的坐标;(3)在(1)的条件下,求BC 在旋转过程中扫过的面积.18.如图,在△ABC 中,点E 在BC 边上,AE =AB ,将线段AC 绕A 点旋转到AF 的位置,使得∠CAF =∠BAE ,连接EF ,EF 与AC 交于点G .(1)求证:EF =BC ;(2)若63ABC ∠︒=,25ACB ∠︒=,求∠FGC 的度数.19.如图,正方形ABCD 中,=45°MAN ∠,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)如图1,求证:MN BM DN =+;(2)当=6AB ,5MN =时,求CMN 的面积;(3)当MAN ∠绕点A 旋转到如图2位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.20.阅读下面材料:小岩遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且PA =1,PB PC =2,求∠APB 的度数;小岩是这样思考的:如图2,利用旋转和全等的知识构造AP C '△,连接PP ',得到两个特殊的三角形,从而将问题解决.(1)请你回答:图1中∠APB 的度数等于____;(直接写答案)参考小岩同学思考问题的方法,解决下列问题:(2)如图3,在正方形ABCD 内有一点P ,且PA =1PB =,PD =APB 的度数;(3)如图4,在正六边形ABCDEF 内有一点P ,若∠APB =120︒,直接写出PA ,PB 和PF 的数量关系.21.在ABC 中,90C ∠=︒,30BAC ∠=︒,点D 是CB 延长线上一点(30ADC ∠>︒),连接AD ,将线段AD 绕点D 顺时针旋转60°,得到线段DE ,连接EC .(1)依题意,补全图形;(2)若2BD BC ==,求CE 的长.(3)延长EC 交AB 于F ,用等式表示线段CE CF ,之间的数量关系,并证明.22.在△ABC 中,∠ACB =90°,BC =AC =2,将△ABC 绕点A 顺时针方向旋转60°至AB C ''△的位置.(1)如图1,连接C C '与AB 交于点M ,则CC '=_____,BC '=_____;(2)如图2,连接BB ',延长CC '交BB '于点D ,求CD 的长.23.如图,在等腰Rt △ABC 中,将线段AC 绕点A 顺时针旋转()090αα︒<<︒,得到线段AD ,连接CD ,作∠BAD 的平分线AE ,交BC 于E .(1)①根据题意,补全图形;②请用等式写出∠BAD 与∠BCD 的数量关系.(2)分别延长CD 和AE 交于点F ,①直接写出∠AFC 的度数;②用等式表示线段AF ,CF ,DF 的数量关系,并证明.24.如图,已知抛物线经过点()1,0A -,()3,0B ,()0,3C 三点,点D 是直线BC 绕点B 逆时针旋转90︒后与y 轴的交点,点M 是线段AB 上的一个动点,设点M 的坐标为()0m ,,过点M作x 轴的垂线交抛物线于点E ,交直线BD 于点F .(1)求该抛物线所表示的二次函数的解析式;(2)在点M运动过程中,若存在以EF为直径的圆恰好与y轴相切,求m的值;ΔA O C,点A、O、C的对应点(3)连接AC,将AOC∆绕平面内某点G旋转180︒后,得到111ΔA O C的两个顶点恰好落在分别是点1A、1O、1C,是否存在点G使得AOC∆旋转后得到的111抛物线上,若存在,求出G点的坐标;若不存在,请说明理由.。

中考数学 专题22 图形的旋转(知识点串讲)(解析版)

中考数学 专题22 图形的旋转(知识点串讲)(解析版)

专题22 图形的旋转考点总结【思维导图】【知识要点】知识点一旋转的基础旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P',那么这两个点叫作这个旋转的对应点.如图所示,A OB''∆绕定点O逆时针旋转45︒得到的,其中点A与点A'叫作对应点,线段OB与∆是AOB线段OB'叫作对应线段,OAB∠与OA B'∠)的度数叫∠叫作对应角,点O叫作旋转中心,AOA'∠(或BOB'作旋转的角度. 【注意】1.图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2.旋转中心可以是图形内,也可以是图形外。

【图形旋转的三要素】旋转中心、旋转方向和旋转角. 旋转的特征:➢ 对应点到旋转中心的距离相等;➢ 对应点与旋转中心所连线段的夹角等于旋转角; ➢ 旋转前、后的图形全等. 旋转作图的步骤方法:➢ 确定旋转中心、旋转方向、旋转角; ➢ 找出图形上的关键点;➢ 连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点; ➢ 按原图的顺序连接这些对应点,即得旋转后的图形. 平移、旋转、轴对称之间的联系:变化后不改变图形的大小和形状,对应线段相等、对应角相等。

平移、旋转、轴对称之间的区别: 1) 变化方式不同:平移:将一个图形沿某个方向移动一定距离。

旋转:将一个图形绕一个顶点沿某个方向转一定角度。

轴对称:将一个图形沿一条直线对折。

2) 对应线段、对应角之间的关系不同平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。

旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。

轴对称:对应线段或延长线如果相交,那么交点在对称轴上。

3)确定条件不同A平移:距离与方向旋转:旋转的三要素。

九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习

九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习

九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习 -九年级数学图形的旋转专题讲解+六大题型解析+专题训练,收藏学习图形的旋转这一章节是初中几何内容中非常重要的一个章节,对于图形的运动的形式和规律以及旋转的性质都是我们在对几何的初步认识当中的一个过程,掌握其重要的性质之后,对于几何综合题型当中辅助线的运用起到了非常重要的作用。

并且图形的旋转加上已经学习过的平移和轴对称。

对几何图形的变化有充分地了解,建立几何空间思维的正确认识,对于几何空间能力的提升起到了非常重要的促进作用。

首先,在学习图形的旋转这一章节我们主要围绕以下两个重要的内容来展开:第一,掌握图形的旋转和中心对称的概念;第二,掌握旋转的本质。

这也是我们学习过程中的重点和难点内容。

因为在旋转前后的两个图形中,对应点与旋转中心之间的距离总是相同的,所以对应点必然分别在以旋转中心为圆心,以对应点到旋转中心的距离为半径的一组同心圆上,对应点与旋转中心连线所成的角等于且等于旋转角。

唐老师提醒大家,旋转过程中保持静止的点就是旋转的中心,不变的量就是对应的元素。

其次,旋转的三个要素:旋转中心、旋转的角度和旋转方向.第三,旋转的性质:(1)图形中的每一点都绕着旋转中心旋转了同样大小的连线所成的角度;—整体角度(2)对应点到旋转中心的距离相等;(3)对应线段相等,对应角相等;——局部角度(4)图形的形状和大小都没有发生变化,即旋转不改变图形的形状和大小.—变换结果.第四,简单图形的旋转作图:(1)确定旋转中心;(2)确定图形中的关键点;(3)将关键点沿指定的方向旋转指定的角度;(4)连接这些点,得到原始图形的旋转图形。

(以上四个步骤是我们在制作简单旋转图的过程中应该遵循的步骤。

按照以上步骤画图,可以提高大家的学习效率,保证其在画图过程中的正确率。

)第五,旋转对称图形:平面图形绕某点旋转一定角度(小于圆角)后,可以与自身重叠。

中考复习 第四讲 旋转作图与计算

中考复习 第四讲 旋转作图与计算

第四讲旋转的作图及计算【基础回顾】1、已知点A(-2,3),A关于原点的对称点B的坐标是,A关于x轴的对称点C的坐标是,A关于y轴的对称点D的坐标是。

2、将教室里的三页吊扇旋转一个角度后与原图形共同形成一个中心对称图形,则旋转的角度最小为度。

3、⑴已知点A的坐标为(1,3),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为。

⑵已知点A的坐标为(-2,1),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为。

⑶已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为。

【例题解析】【例1】如图,在画有方格图的平面直角坐标系中,△ABC的三个顶点均在格点上.(1)填空:△ABC是三角形,它的面积等于平方单位.(2)将△ACB绕点B顺时针方向旋转90°,在方格图中用直尺画出旋转后对应的△A’C’B,则A’点的坐标是(,),C’点的坐标是(,)。

【练】如图,在平面直角坐标系中,点A的坐标为(1,3),点B的坐标为(2,1).(1)将△AOB绕原点O顺时针旋转90°得到△A′OB′,在图中画出△A′OB′;(2)写出点A′、点B′的坐标;(3)若点P(m,n)为△AOB内一点,则其旋转后的对应点P′的坐标为【例2】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,3),B(3,3),C (3,-1).将△ABC绕旋转中心O逆时针方向旋转3次,旋转角分别是90°,180°,270°.(1)在坐标系中画出旋转后的三角形。

(2)写出△ABC绕旋转中心O逆时针方向旋转270°后,点A,B,C所对应的坐标。

(3)△ABC关于直线y=x作轴对称变换,则点A的对应点的坐标为;(4)将线段AC绕点C旋转90°后得到线段A1C,则A1的坐标是;(5)将线段OB绕点O逆时针方向旋转75°后得到线段OB2,在则B2的坐标是;【练】作图:(1)把△ABC向下平移2格,再绕原点顺时针旋转180°,得到△A1B1C1;(2)把△ABC各点坐标做如下变化:横坐标乘以2,纵坐标不变,得到△A2B2C2.【例3】在平面直角坐标系中,小方格都是边长为1的正方形,△ABC≌△DEF,其中点A、B、C、D都在格点上,点E、F在方格线上.请你解答下列问题:(1)将△DEF绕点D顺时针旋转度,再向左平移个单位可与△ABC拼成一个正方形;(2)画出△ABC关于y轴对称的△A1B1C1;画出△ABC绕点P(1,-1)顺时针旋转90°后的△A2B2C2;(3)△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出对称中心的坐标;若不成中心对称图形,则说明理由。

图形的旋转(分层练习)(解析版)-八年级数学 下册

 图形的旋转(分层练习)(解析版)-八年级数学 下册

第三章图形的平移与旋转3.2图形的旋转一、单选题1.(2023秋·广东珠海·七年级统考期末)下列平面图形绕虚线旋转一周,能形成如图这种花瓶形状的几何体的是()A.B.C.D.【答案】C【分析】根据立体图形的形状,平面图形旋转的性质即可求解.【详解】解:A.旋转后不是所需立体图形,故不符合题意;B.旋转后是圆柱体,不是所需立体图形,故不符合题意;C .旋转后是所需立体图形,符合题意;D .旋转后不是所需立体图形,故不符合题意;故选:C .【点睛】本题主要考查平面图形与立体图形,理解并掌握平面图形旋转的性质,立体图形的形状特点是解题的关键.2.(2022秋·河北石家庄·七年级统考期末)如图,图形绕点O 旋转后可得到下列哪个图形()A .B .C .D .【答案】A 【分析】根据旋转的性质即可求解.【详解】解:将图形绕点O 顺时针旋转90 得到而其他选项的图形不能由原图形旋转得出,故选:A .【点睛】本题考查了旋转的性质,掌握旋转的性质是解题的关键.3.(2023秋·四川绵阳·九年级校联考期末)如图,在ABC 中,AB AC ,70ACB ,若将AC 绕点A 逆时针旋转60 后得到AD ,连接BD 和CD ,则BDC ()A .19B .20C .21D .22 【答案】B 【分析】由已知条件可求出CAB 的度数,根据旋转的性质可得ACD 为等边三角形,可求出BAD 、ADC 的度数以及得到AB AD ,进而求出ADB 的度数,由角的和差关系可得BDC 的度数.【详解】由旋转得:AC AD ,60CAD ,∴ACD 为等边三角形,∴60ADC ,∵AB AC ,70ACB ,∴AB AD ,ACB ABC Ð=Ð,∴180240CAB ACB ,604020BAD CAD CAB ,∵AB AD ,∴(18020)280ABD ADB ,∴806020BDC ADB ADC .故选:B .【点睛】本题考查了旋转的性质、等边三角形的性质,熟练掌握旋转的性质,依据性质求角度是解题的关键.4.(2023秋·河北石家庄·七年级统考期末)如图,将三角形AOB 绕点O 按逆时针方向旋转40°后得到三角形COD ,若10AOB =,则AOD 的度数是()A .40°B .50°C .60°D .65°【答案】B 【分析】根据旋转的性质确定旋转角,再由AOD AOB BOD 求解即可.【详解】根据旋转的性质可知:40BOD ,又10AOB=104050AOD AOB BOD ,故选:B .【点睛】本题考查旋转的性质,根据题意确定旋转角是解题关键.5.(2022秋·贵州遵义·九年级校考期中)如图,在平面直角坐标系xOy 中,AOB 可以看作是将DCE △绕某个点旋转而得到,则这个点的坐标是()A .(1,0)B .(2,0)C .(2,1)D .(2,2)【答案】D 【分析】根据旋转中心到对应点距离相等,可知旋转中心是OC 、BE 的垂直平分线的交点.【详解】解:如图,旋转中心是OC 、BE 的垂直平分线的交点,旋转中心的坐标为(2,2),故选D .【点睛】本题主要考查了图形的旋转,明确旋转中心到对应点距离相等是解题的关键.6.(2023秋·广东江门·九年级统考期末)AOB 绕点O 逆时针旋转65 后得到COD △,若30AOB ,则BOC 的度数是()A .25B .30C .35D .65 【答案】C 【分析】根据旋转的性质可得65AOC BOD ,结合30AOB ,即可求BOC 的度数.【详解】解:∵AOB 绕点O 逆时针旋转65°得到COD △,∴65AOC BOD ,∵30AOB ,∴35BOC AOC AOB ,故选C .【点睛】本题考查旋转的性质,旋转角的含义,掌握旋转角的含义是解本题的关键.二、填空题7.(2023秋·上海浦东新·七年级校考期末)如图,如果三角形BCD 旋转后能与等边三角形ABC 重合,那么图形所在的平面内可以作为旋转中心的点共有_______个.【答案】3【分析】根据三角形BCD 旋转后能与等边三角形ABC 重合,确定旋转中心,即可得到答案.【详解】解:以点B 为旋转中心,BCD △顺时针旋转60 ,能与等边三角形ABC 重合;以C 为旋转中心,BCD △逆时针旋转60 ,能与等边三角形ABC 重合;以BC 的中点为旋转中心,BCD △旋转180 ,能与等边三角形ABC 重合;则图形所在的平面内可以作为旋转中心的点共有3个.故答案为:3【点睛】此题考查了图形的旋转,熟练掌握旋转的三要素:旋转中心,旋转方向,旋转角是解题的关键.8.(2023秋·山东泰安·八年级统考期末)如图,点A ,B 的坐标分别为 1,1、 3,2,将ABC 绕点A 按逆时针方向旋转90 ,得到A B C ,则B 点的坐标为________.【答案】0,3【分析】根据题意画出图形,然后结合直角坐标系即可得出B 的坐标.【详解】解:如图,根据图形可得:点B 坐标为 0,3,故答案为: 0,3.【点睛】本题考查了旋转作图的知识及旋转后坐标的变化,解答本题的关键是根据题意所述的旋转三要素画出图形,然后结合直角坐标系解答.9.(2023春·江苏泰州·八年级校考周测)如图,将等边三角形CBA 绕点C 顺时针旋转 得到CB A ⅱV ,使得B ,C ,A 三点在同一直线上,则 ___________________.【答案】120 ##120度【分析】根据旋转的性质和等边三角形的性质,利用180ACB ,求出ACA 的度数,即为 的度数.【详解】解:∵将等边三角形CBA 绕点C 顺时针旋转 得到CB A ⅱV ,∴ACA ,60ACB ,∵B ,C ,A 三点在同一直线上,∴180120ACA ACB ;故答案为:120 .【点睛】本题考查求旋转角,等边三角形性质.熟练掌握对应点与旋转中心形成的夹角即为旋转角,是解题的关键.10.(2023秋·广西南宁·九年级统考期末)如图,在ABC 中,90ACB ,4AC ,3BC ,将ABC 绕点A 顺时针旋转得到AB C △,使点B 在AC 的延长线上,则B C 的长为________.三、解答题11.(2022秋·广西钦州·九年级校考阶段练习)如图,下列的图案是由什么基本图案经怎样的旋转得到的,把它画出来?【答案】见解析【分析】根据旋转的性质进行求解即可.【详解】解:(1);(2);(3);以上基本图案绕着对称轴旋转一周得到.【点睛】本题考查了旋转的性质,根据旋转的性质正确作图是解本题的关键.12.(2023春·江苏·八年级专题练习)如图,网格中每个小正方形的边长都是单位1.(1)画出将ABC 绕点O 顺时针方向旋转90 后得到的A B C ;(2)请直接写出A ,B ,C 三点的坐标.【答案】(1)见解析(2) 4,0A , 0,1B ,2,2C【分析】(1)利用旋转变换的性质分别作出A ,B ,C 的对应点A ,B ,C 即可;(2)根据点的位置写出坐标即可.【详解】(1)解:如图,A B C 即为所求;(2)解:由坐标系中图形的位置可知: 4,0A , 0,1B , 2,2C .【点睛】本题考查作图-旋转变换,解题的关键是掌握旋转变换的性质,属于中考常考题型.提升篇一、填空题1.(2022秋·山东济宁·九年级统考期末)如图,在平面直角坐标系中,点A 的坐标为 0,6,点B 的坐标为 8,0,连接AB ,若将Rt ABO △绕点B 顺时针旋转90 ,得到Rt A BO △,则点A 的坐标为___________.【答案】14,8【分析】根据旋转的性质,得到8,6O B OB O A OA ,90,90OBO BO A BOA ,得到 8,8O ,O A x ∥,进而求出A 的坐标即可.【详解】解:∵点A 的坐标为 0,6,点B 的坐标为 8,0,∴6,08OA B ,∵将Rt ABO △绕点B 顺时针旋转90 ,得到Rt A BO △,∴8,6O B OB O A OA ,90,90OBO BO A BOA ,∴90OBO BO A , 8,8O ,∴O A x ∥轴,∴ 86,8A ,即: 14,8A ;故答案为: 14,8.【点睛】本题考查坐标轴下的旋转.熟练掌握旋转的性质,利用数形结合的思想求解,是解题的关键.2.(2023秋·广西柳州·九年级统考期末)如图,在ABC 中,108BAC ,将ABC 绕点A 按逆时针方向旋转得到AB C △.若点B 恰好落在BC 边上,且AB CB ,则C 的度数为________.【答案】24【分析】设C x ,根据题意可得AB AB B C ,根据等边对等角可得,C CAB ,B AB B ,利用三角形外角的性质可得2AB B C ,根据题意,列方程求解即可.【详解】解:设C x ,根据旋转的性质可得AB AB B C则C CAB ,B AB B ,∴22B AB B C x ,由180BAC B C 可得1082180x x ,解得24x ,即24C 故答案为:24【点睛】此题考查了旋转的性质,等腰三角形的性质以及三角形内角和定理的应用,解题的关键是熟练掌握相关基础性质.3.(2023秋·广东深圳·八年级深圳中学校考期末)如图,点E 为正方形ABCD 内一点,90AEB ,将Rt ABE △绕点B 按顺时针方向旋转90 ,得到CBE △(点A 的对应点为点)C ,连接DE ,延长AE 交CE 于点F ,则四边形BE FE 为正方形,若15AB ,3CF ,则DE 的长为____________.则90DGA AEB ,20cm BC .如图2,将ABC 绕点O 顺时针旋转60 ,AC 与EF 相交于点G ,则FG 的长是______.由题意得,EDF 20cm BC DF ,根据O 是边()BC DF 的中点,可得:∵ABC 绕点O 顺时针旋转∴60BOD NOF旋转180 ,得到11O AB △,再将11O AB △绕点1O 旋转180 ,得到112O A B △,再将112O A B △绕点1A 旋转180 ,得到213O A B △,……,按此规律进行下去,若点(2,0)B ,则点6B 的坐标为___________.【答案】(8,63)【分析】根据中心对称的性质,可得1(0,23)B ,1(2,23)O ,再根据1B 、2B 、3B ……的坐标,根据规律即可得出答案.【详解】解:∵ABO 是等边三角形,(2,0)B ,∴2OB OA AB ,60AOB .过点A 作AM OB ,交OB 于点M ,交11O B 于点N ,∴30OAM ,∴112OM OA ,∴22213AM ,∴(1,3)A ,∵将等边OAB 绕点A 旋转180 ,得到11O AB △,∴11AO B AOB ≌,∴111,2AN AM O B OB ,∴1(0,23)B ,1(2,23)O ,同理2(4,23)B ,3(2,43)B ,4(6,43)B ,5(4,63)B ,6(8,63)B ,故答案为:(8,63).【点睛】本题主要考查了旋转的性质,等边三角形的性质,以及直角三角形的性质,规律问题,根据题意,找到图形变化的规律是解题的关键.二、解答题6.(2022秋·贵州黔西·九年级统考期中)如图,在平面直角坐标系中,已知点 1,0A , 3,4B , 2,4C , 6,6D .(1)沿水平方向移动线段AB ,使点A 和点C 的横坐标相同,画出平移后所得的线段11A B ,并写出点1B 的坐标;(2)将线段11A B 绕某一点旋转一定的角度,使其与线段CD 重合(点1A 与点C 重合,点1B 与点D 重合),请作出旋转中心点P .【答案】(1)图见解析,点1B 的坐标为(0,4)(2)见解析【分析】(1)利用C 点的横坐标为2,把AB 向右平移2个单位即可;(2)作1CA 与1DB 的垂直平分线,它们的交点为P .【详解】(1)如图,线段11A B 为所作,点1B 的坐标为(0,4);(2)如图,点P 为所作.【点睛】本题考查了平移作图,以及旋转中心的确定方法:把旋转前后重合的点看成是两图的对应点;找出两组对应点,分别连接每组对应点并作连线的垂直平分线,交点就是旋转中心.7.(2023春·江苏泰州·八年级校考周测)如图,ABC 中,点E 在BC 边上,AE AB ,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE ,连接EF ,EF 与AC 交于点G.(1)求证:EF BC ;(2)若65ABC ,28ACB ,求FGC 的度数.【答案】(1)见解析(2)78【分析】(1)由旋转的性质可得AC AF ,利用SAS 证明ABC AEF ≌△△,根据全等三角形的对应边相等即可得出EF BC ;(2)根据等腰三角形的性质以及三角形内角和定理求出18065250BAE ,那么50FAG .由ABC AEF ≌△△,得出28AFE ACB ,再根据三角形外角的性质即可求出78FGC FAG AFG .【详解】(1)证明:∵CAF BAE ,∴BAC EAF .∵将线段AC 绕A 点旋转到AF 的位置,∴AC AF .在ABC 与AEF △中,AB AE BAC EAF AC AF,∴ABC AEF ≌△△(SAS ),∴EF BC ;(2)解:∵AB AE ,65ABC ,∴AEB ABC ,∴18065250BAE ,∴50FAG BAE .∵ABC AEF ≌△△,∴28AFE ACB ,∴502878FGC FAG AFG .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明ABC AEF ≌△△是解题的关键.8.(2023秋·河北唐山·九年级统考期末)如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂长AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD ,10DM .(1)在旋转过程中:①当A 、D 、M 三点在同一直线上时,求AM 的长;②当A 、D 、M 三点是同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90 ,点D 的位置由ABC 外的点1D 转到其内的点2D 处,连接12D D ,如图2,此时2BD 260CD ,求2 AD C 的度数.【点睛】题目主要考查勾股定理解三角形及其逆定理,旋转的性质,全等三角形的判定和性质等,理解题意,综合运用这些知识点是解题关键.。

中考数学 图形的旋转考点课件

中考数学 图形的旋转考点课件
(1)如图①,观察并猜想,在旋转过程中,线段 EA1 与 FC 有怎样的数量关系?并证明你 的结论;
(2)如图②,当 α=30°时,试判断四边形 BC1DA 的形状,并说明理由; (3)在(2)的情况下,求 ED 的长.
解:(1)EA1=FC(提示:证明△ABE≌△C1BF) (2)菱形(证明略) (3)过点 E 作 EG⊥AB,则 AG=BG=1. 在 Rt△AEG 中,AE=cAosGA=cos130°=23 3. 由(2)知 AD=AB=2,∴ED=AD-AE=2-32 3
类型二 旋转作图
如图,在矩形 OABC 中,点 B 的坐标为(-2,3). 画出矩形 OABC 绕点 O 顺时针 旋转 90°后的矩形 OA1B1C1,并直接写出点 A1、B1、C1 的坐标.
【点拨】本题重点考查旋转作图,在作图前要先由已知条件明确:旋转中心、旋转方向、 旋转角以及关键点的个数,作图时只要把每一个关键点都按相同方向、转动相同角度得到相 应对应点即可,最后把各对应点按顺序实线相连.
A.180° B.120° C.9 Nhomakorabea° D.60° 解析:正六边形每个内角为 120°,所以转动 60°即可与原图形重合. 答案:D
8.△ABC 在如图所示的平面直角坐标系中,将△ABC 向右平移 3 个单位长度后得到 △A1B1C1,
再将△A1B1C1 绕点 O 旋转 180°后得到△A2B2C2,则下列说法正确的是( ) A.A1 的坐标为(3,1) B.S 四边形 ABB1A1=3 C.B2C=2 2 D.∠AC2O=45° 解析:根据题意画出图来解答. 答案:D
第 3 讲 图形的旋转
图形的旋转与作图.
1.(2008·丽水)如图,以点 O 为旋转中心,将∠1 按顺时针方向旋转 110°,得到∠2.若∠1 =40°,则∠2=________度.

中考数学复习过关题旋转作图试题

中考数学复习过关题旋转作图试题

卜人入州八九几市潮王学校复习过关题旋转作图1、〔2021•〕如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A〔﹣2,3〕、B〔﹣3,1〕.〔1〕画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1;〔2〕点A1的坐标为___;〔3〕四边形AOA1B1的面积为_____.2、〔2021•〕如图,在正方形网格中建立平面直角坐标系,△ABC三个顶点的坐标分别为A〔﹣7,0〕、B 〔﹣4,4〕、C〔﹣1,0〕.〔1〕做出点B关于x轴的对称点D;〔2〕将以点A、B、C、D为顶点的四边形绕点C顺时针旋转90°作出旋转后的图A1B1C1D1,并直接写出点B、D的对应点B1,D1的坐标.3、〔2021•〕在如下列图的直角坐标系中,解答以下问题:〔1〕分别写出A、B两点的坐标;〔2〕将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;〔3〕求出线段B1A所在直线l的函数解析式,并写出在直线l上从B1到A的自变量x的取值范围.4、〔2021•〕△ABC在平面直角坐标系中的位置如下列图,其中每个小正方形的边长为1个单位长度.〔1〕将△ABC向右移平2个单位长度,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标;〔2〕假设将△ABC绕点〔﹣1,0〕顺时针旋转180°后得到△A2B2C2,并写出△A2B2C2各顶点的坐标;〔3〕观察△A1B1C1和△A2B2C2,它们是否关于某点成中心对称?假设是,请写出对称中心的坐标;假设不是,说明理由.5、〔2021•〕△ABC在如下列图的平面直角坐标系中.〔1〕画出△ABC关于原点对称的△A1B1C1〔2〕画出△A1B1C1关于y轴对称的△A2B2C2〔3〕请直接写出△AB2A1的形状.6、〔2021•〕如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答以下问题:〔1〕将△ABC向右平移5个单位长度,画出平移后的△A1B1C1;〔2〕画出△ABC关于x轴对称的△A2B2C2;〔3〕将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;〔4〕在△A1B1C1、△A2B2C2、△A3B3C3中,△与△成轴对称;△______与△_____成中心对称.7、〔2021•〕如下列图,把△ABC置于平面直角坐标系中,请你按以下要求分别画图:〔1〕画出△ABC向下平移5个单位长度得到的△A1B1C1;〔2〕画出△ABC绕着原点O逆时针旋转90°得到的△A2B2C2;〔3〕画出△ABC关于原点O对称的△A3B3C3.8、〔2021•〕〔1〕如图,点B、E、C、F在一条直线上,BC=EF,AB∥DE,∠A=∠D.求证:△ABC≌△DEF.〔2〕如图,在矩形OABC中,点B的坐标为〔﹣2,3〕.画出矩形OABC绕点O顺时针旋转90°后的矩形OA1B1C1,并直接写出的坐标A1、B1、C1的坐标.9、〔2021•州〕△ABC在平面直角坐标系中的位置如下列图.〔1〕作出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;〔2〕作出将△ABC绕点O顺时针方向旋转180°后的△A2B2C2.10、〔2021•〕△ABC在平面直角坐标系中的位置如下列图,将△ABC沿y轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.11、〔2021•〕△ABC在平面直角坐标系中的位置如下列图,A、B、C三点在格点上.〔1〕作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;〔2〕作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.12、〔2021•〕如图,方格纸中的每个小方格都是边长为1的正方形.在建立直角坐标系后,△ABC的顶点均在格点上,点A的坐标为〔﹣1,1〕.〔1〕写出点B的坐标;〔2〕画出△ABC关于x轴对称的图形△A′B′C′,并写出点B′的坐标;〔3〕画出△ABC绕点O旋转180°后得到的图形△A″B″C″,并写出点B″的坐标?13、〔2021•〕在小正方形组成的15×15的网络中,四边形ABCD和四边形A′B′C′D′的位置如下列图.〔1〕现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,〔2〕假设四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.14、〔2021•〕如图,在所给网格中完成以下各题:〔1〕画出图1关于直线MN对称的图2;〔2〕从平移的角度看,图2是由图1向_________平移_________个单位得到的;〔3〕画出图1绕点P逆时针方向旋转90°后的图3.15、〔2021•〕在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为〔﹣1,0〕,请按要求画图与答题.〔1〕把△ABC绕点P旋转180°得△A′B′C′.〔2〕把△ABC向右平移7个单位得△A″B″C″.〔3〕△A′B′C′与△A″B″C″是否成中心对称,假设是,找出对称中心P′,并写出其坐标.16、〔2021•〕如下列图,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.〔1〕画出四边形OABC关于y轴对称的四边形OA1B1C1,并写出点B1的坐标是_________;〔2〕画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形OA2B2C2,并求出点C旋转到点C2经过的途径的长度.17、〔2021•〕如下列图的正方形网格中,△ABC的顶点均在格点上,在所给直角坐标系中解答以下问题:〔1〕分别写出点A、B两点的坐标;〔2〕作出△ABC关于坐标原点成中心对称的△A1B1C1;〔3〕作出点C关于是x轴的对称点P.假设点P向右平移x个单位长度后落在△A1B1C1的内部,请直接写出x的取值范围.18、〔2021•〕如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个△ABC和一点O,△ABC 的顶点和点O均与小正方形的顶点重合.〔1〕在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1;〔2〕在方格纸中,将△ABC绕点O旋转180°得到△A2B2C2,请画出△A2B2C2.19、〔2021•〕如图,在下面的方格图中,将△ABC先向右平移四个单位得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2,请依次作出△A1B1C1和△A1B2C2.20、〔2021•永春县〕在边长为1的方格纸中建立直角坐标系xoy,O、A、B三点均为格点.〔1〕直接写出线段OB的长;〔2〕将△OAB绕点O沿逆时针方向旋转90°得到△OA′B′.请你画出△OA′B′,并求在旋转过程中,点B所经过的途径的长度.21、〔2021•〕如图,△AOB中,顶点A,B,O均在格点上,画出△AOB绕点O旋转180°后的三角形.〔不要求写做法,证明,但要注明结果〕22、〔2021•〕如图,菱形ABCD〔图1〕与菱形EFGH〔图2〕的形状、大小完全一样.〔1〕请从以下序号中选择正确选项的序号填写上;①点E,F,G,H;②点G,F,E,H;③点E,H,G,F;④点G,H,E,F.假设图1经过一次平移后得到图2,那么点A,B,C,D对应点分别是_________;假设图1经过一次轴对称后得到图2,那么点A,B,C,D对应点分别是_____;假设图1经过一次旋转后得到图2,那么点A,B,C,D对应点分别是_________;(2)①图1,图2关于点O成中心对称,请画出对称中心〔保存画图痕迹,不写画法〕;②写出两个图形成中心对称的一条性质:_________.〔2021•〕如图,方格纸中△ABC的三个顶点均在格点上,将△ABC向右平移5格得到△A1B1C1,再将△A1B1C1 23、绕点A1逆时针旋转180°,得到△A1B2C2.〔1〕在方格纸中画出△A1B1C1和△A1B2C2;〔2〕设B点坐标为〔﹣3,﹣2〕,B2点坐标为〔4,2〕,△ABC与△A1B2C2是否成中心对称?假设成中心对称,请画出对称中心,并写出对称中心的坐标;假设不成中心对称,请说明理由.24、〔2021•〕如下列图,在网格中建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1.〔1〕直接写出D1点的坐标;〔2〕将四边形A1B1C1D1平移,得到四边形A2B2C2D2,假设D2〔4,5〕,画出平移后的图形.〔友谊提示:画图时请不要涂错阴影的位置哦!〕25、〔2021•〕如图,△ABC关于直线MN的对称图形是△A1B1C1,将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2.请在图中分别画出△A1B1C1和△A1B2C2,并正确标出对应顶点的字母.〔不要求写出画法〕26、〔2021•〕在如下列图出方格纸中,每个小正方形的边长都为1.〔1〕画出将铅笔图形ABCDE向上平移9格得到的铅笔图形A1B1C1D1E1;〔2〕将铅笔图形A1B1C1D1E1,绕点A1,逆时针旋转90°,画出转后的铅笔图形A1B2C2D2E2.27、〔2021•〕如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.〔1〕画出对称中心E,并写出点E、A、C的坐标;〔2〕P〔a,b〕是△ABC的边AC上一点,△ABC经平移后点P的对应点为P2〔a+6,b+2〕,请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;〔3〕判断△A2B2C2和△A1B1C1的位置关系.〔直接写出结果〕28、〔2021•〕△ABC在平面直角坐标系中的位置如下列图.〔1〕将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1;并写出点C1的坐标;〔2〕将△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.29、〔2021•〕:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.〔1〕在所给网格中按以下要求画图:①在网格中建立平面直角坐标系〔坐标原点为O〕,使四边形ABCD各个顶点的坐标分别为A〔﹣5,0〕、B 〔﹣4,0〕、C〔﹣1,3〕、D〔﹣5,1〕;②将四边形ABCD沿坐标横轴翻折180°,得到四边形A′B′C′D′,再把四边形A′B′C′D′绕原点O 旋转180°,得到四边形A″B″C″D″;〔2〕写出点C″、D″的坐标;〔3〕请判断四边形A″B″C″D″与四边形ABCD成何种对称?假设成中心对称,请写出对称中心;假设成轴对称,请写出对称轴.30、如图,网格中每个小正方形的边长都是1个单位.折线段ABC的位置如下列图.〔1〕现把折线段ABC 向右平移4个单位,画出相应的图形A B C ''';〔2〕把折线段A B C '''绕线段AA '的中点D 顺时针旋转90°,画出相应的图形A B C '''''';〔3〕在上述两次变换中,点CC C '''→→的途径的长度比点A A A '''→→的途径的长度大个单位. 31、△ABC 在平面直角坐标系中的位置如下列图.〔1〕分别写出图中点A 和点C 的坐标;〔2〕画出△ABC 绕点C 按顺时针方向旋转90°后的△A'B'C';〔3〕求点A 旋转到点A'所经过的道路长。

中考数学考点系统复习 第七章 作图与图形变换 第三节 图形的平移、旋转、对称与位似

中考数学考点系统复习 第七章 作图与图形变换 第三节 图形的平移、旋转、对称与位似

图④
图⑤
图⑥
(4)如图⑤,若将△ABD 绕点 A 逆时针旋转至 AB 与 AC 重合,点 D 的对应 点为 E,点 P 为 AC 的中点,连接 PE,则 PE 的最小值为 3 . (5)如图⑥,当点 D 是 BC 边上的中点时,将线段 AD 绕点 A 旋转 60°得到 AD′,连接 CD′,则 CD′=22 7或或2 2.
解:(1)如图所示,△GMH 即为所求. (2)如图所示,△MNH 即为所求. (3)45.
重难点 1:与图形的对称有关的计算
如图,在正方形纸片 ABCD 中,E 是 CD 的中点,将正方形纸片折叠,
点 B 落在线段 AE 上的点 G 处,折痕为 AF,若 AD=4 cm,则 CF 的长为 6-6-2 2 5 cm.
(2)如图③,点 D 为 BC 的中点,将△ACD 绕点 D 逆时针旋转一定角度 α(0<α<90°)得到△ECD.若 CE∥BD,则旋转角度 α=6060°°;
(3)如图④,连接 AD,将△ABD 绕点 A 逆时针旋转至△ACE 的位置,连接 DE,则旋转角度为 6060°°; ①若∠CAD=45°,则∠CAE 的度数为 1 15°5°; ②若 CD=3,则 CE 的长度为 1 1;
(3)如图③,作出△ABC 绕点 O 顺时针旋转 90°的图形△A3B3C3; 解:△A3B3C3 如图所示.
(4)如图④,以点 A 为位似中心,将△ABC 放大为原来的 2 倍,得到△A4B4C4; 解:△A4B4C4 如图所示.
(5)如图⑤,作出以 AB 为对角线的正方形 AEBF,点 E,F 也为格点,正方 形 AEBF 的面积为 10;
解:(1)线段 A1B1如图所示. (2)线段 A2B1 如图所示. (3)20.

2022年中考数学复习:旋转类综合体专项训练(含答案)

2022年中考数学复习:旋转类综合体专项训练(含答案)

2022年中考数学复习:旋转综合体专项训练1.如图,在Rt ABC 中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转一定的角度α得到DEC ,点A ,B 的对应点分别是点D ,E .(1)如图①,当点E 恰好在AC 边上时,连接AD ,求①ADE 的度数;(2)如图①,当60α=时,若点F 为AC 边上的动点,当①FBC 为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明2.综合与实践问题:如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,GF ⊥CD ,垂足为F .证明与推断(1)①四边形CEGF 的形状是 ;②AGBE的值为 ; 【探究与证明】(2)在图1的基础上,将正方形CEGF 绕点C 按顺时针方向旋转α角(0°<α<45°),如图2所示,并说明理由;【拓展与运用】(3)如图3,在(2)的条件下,正方形CEGF 在旋转过程中,AG 和GE 的位置关系是 .3.若①ABC ,①ADE 为等腰三角形,AC =BC ,AD =DE ,将①ADE 绕点A 旋转,连接BE ,F 为BE 中点,连接CF ,DF .(1)若①ACB =①ADE =90°,如图1,试探究DF 与CF 的关系并证明; (2)若①ACB =60°,①ADE =120°,如图2,请直接写出CF 与DF 的关系.4.在平面直角坐标系中,点(0,0)O ,点A ,点)(0),30B m m AOB >∠=︒.以点O 为中心,逆时针旋转OAB ,得到OCD ,点,A B 的对应点分别为,C D .记旋转角为α.(1)如图①,当点C 落在OB 上时,求点D 的坐标;(2)如图①,当45α=︒时,求点C 的坐标;(3)在(2)的条件下,求点D 的坐标(直接写出结果即可).5.如图,30HAB ∠=︒,点B 与点C 关于射线AH 对称,连接AC .D 点为射线AH 上任意一点,连接CD .将线段CD 绕点C 顺时针旋转60°,得到线段CE ,连接BE .(1)求证:直线EB 是线段AC 的垂直平分线;(2)点D 是射线AH 上一动点,请你直接写出ADC ∠与ECA ∠之间的数量关系.6.已知如图,等腰△ABC 中,AB=AC ,△BAC=α(α>90︒),F 为BC 中点,D 为BC 延长线上一点,以点A 为中心,将线段AD 逆时针旋转α得到线段AE ,连接CE ,DE .(1)补全图形并比较△BAD 和△CAE 的大小; (2)用等式表示CE ,CD ,BF 之间的关系,并证明;(3)过F 作AC 的垂线,并延长交DE 于点H ,求EH 和DH 之间的数量关系,并证明.7.一副三角尺(分别含30°,60°,90°和45°,45°,90°)按如图所示摆放,边OB ,OC 在直线l 上,将三角尺ABO 绕点O 以每秒10°的速度顺时针旋转,当边OA 落在直线l 上时停止运动,设三角尺ABO 的运动时间为t 秒.(1)如图,①AOD = °= ′; (2)当t =5时,①BOD = °; (3)当t = 时,边OD 平分①AOC ;(4)若在三角尺ABO 开始旋转的同时,三角尺DCO 也绕点O 以每秒4°的速度逆时针旋转,当三角尺ABO 停止旋转时,三角尺DCO 也停止旋转.在旋转过程中,是否存在某一时刻使①AOC =2①BOD ,若存在,请直接写出的值;若不存在,请说明理由.8.如图,正方形ABCO 的边OA 、OC 在坐标物上,点B 坐标为()3,3.将正方形ABCO 绕点A 顺时针旋转角度()090αα︒<<︒,得到正方形ADEF ,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P .连AP 、AG .(1)求证:AOG①ADG;∠的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(2)求PAG(3)当12∠=∠时,求直线PE的解析式(可能用到的数据:在Rt中,30°内角对应的直角边等于斜边的一半).(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.9.如图,等腰Rt①ABC中,AB=AC,D为线段BC上的一个动点,E为线段AB上的一个动点,使得CD=.连接DE,以D点为中心,将线段DE顺时针旋转90°得到线段DF,连接线段EF,过点D作射线DR①BC交射线BA于点R,连接DR,RF.(1)依题意补全图形;(2)求证:①BDE①①RDF;(3)若AB=AC=2,P为射线BA上一点,连接PF,请写出一个BP的值,使得对于任意的点D,总有①BPF为定值,并证明.10.在①ABC中,AB=AC,①BAC=90°,D为平面内的一点.(1)如图1,当点D在边BC上时,BD=2,且①BAD=30°,AD=;(2)如图2,当点D在①ABC的外部,且满足①BDC﹣①ADC=45°,求证:BD AD;(3)如图3,若AB =4,当D 、E 分别为AB 、AC 的中点,把①DAE 绕A 点顺时针旋转,设旋转角为α(0<α≤180°)直线BD 与CE 的交点为P ,连接P A ,直接出①P AB 面积的最大值 .11.已知:①ABC 为等边三角形,且AB =4,点D 在直线BC 上运动,线段DA 绕着点D 顺时针旋转60°得到线段DE ,连接AE 和BE ,直线AE 交直线BC 于点F . (1)如图,当点D 在点C 左侧时,求证:CD =BE ;(2)若①ABC 的面积等于①ABF 面积的4倍,直接写出线段CD 的长;(3)在(2)的条件下,若点E 关于直线AD 的对称点为点G ,连接DG 交线段AC 于点M ,DE 交线段AB 于点N ,连接MN ,直接写出线段MN 的长.12.已知在①ABC 中,90ACB ∠=︒,AC =BC =(1)如图1,以点A 为原点,AB 所在直线为x 轴建立平面直角坐标系,直接写出点B ,C 的坐标; (2)如图2,过点C 作①MCN =45°交AB 于点M ,N ,且AM =1,求MN 的长度;(3)如图3,过点C 作①MCN =45°,当点M ,N 分布在点B 异侧时,线段AM ,BN 和MN 满足怎样的数量关系?并给予证明.13.如图,在①ABC 中,AC = BC ,①ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ①BD 于E .(1)求证:①CAE =①CBD ;(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE . ①依题意补全图形;①用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.14.把两个等腰直角ABC 和ADE 按如图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角为α(0360α︒<<︒).(1)如图1,BD 与EC 的数量关系是___________,BD 与EC 的位置关系是___________;(2)如图2,(1)中BD 和EC 的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立请说明理由.(3)如图3,当点D 在线段BE 上时,BEC ∠=___________. (4)当旋转角α=__________时,ABD △的面积最大.15.如图,在Rt ①ABC 中,BC =4,AC =2,①ACB =90°,矩形BDEF 的边BF =1,BD =2,矩形BDEF 可以绕点B 在平面内旋转,连接AE 、BE 、CD . (1)证明:①ABE ①①CBD ;(2)当A 、E 、F 三点共线时,求CD 的长;(3)设AE 的中点为M ,连接FM ,直接写出FM 的最大值.16.在平面直角坐标系中,四边形AOBC 是矩形,点A 的坐标为()5,0,点B 的坐标为()0,3,以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图①,当点D 落在线段BE 上时,连接AB ,AD 与BC 交于点H . ①求证:ADB AOB ≅△△; ①求点H 的坐标.(3)点K 为矩形AOBC 对角线的交点,S 为KDE 得面积,直接写出S 的取值范围.17.如图,P 是正三角形ABC 内的一点,且6,8,10PA PB PC ===,若将PAC △绕点A 顺时针旋转后得到P AB '△,(1)求旋转角的度数;(2)求点P 与点P '之间的距离; (3)求APB ∠的度数.18.如图在平面直角坐标系中,点O 为坐标原点,直线y 34=-x +b 分别交x 轴,y 轴于点A 、B ,OA =4,①OBA 的外角平分线交x 轴于点D .(1)求点D 的坐标;(2)点P 是线段BD 上一点(不与B 、D 重合),过点P 作PC ①BD 交x 轴于点C ,设点P 的横坐标为t ,△BCD 的面积为S ,求S 与t 之间的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,PC 的延长线交y 轴于点E ,当PC =PB 时,将射线EP 绕点E 旋转45°交直线AB 于点F ,求F 点坐标.19.如图,在菱形ABCD 中,60ABC ∠=︒,E 为对角线AC 上一点,将线段DE 绕点D 逆时针旋转60︒,点E 的对应点为F ,连接BE ,AF ,CF .(1)求证:B ,C ,F 三点共线;(2)若点G 为BE 的中点,连接AG ,求证:2AF AG =.20.如图,在四边形ABCD中,BC=CD,△BCD=α°,△ABC+△ADC=180°,AC、BD交于点E.将△CBA 绕点C顺时针旋转α°得到△CDF(点B、A的对应点分别为点D、F).(1)画出旋转之后的图形(不要求写画法,保留画图痕迹);(2)求证:△CAB=△CAD;(3)若△ABD=90°,AB=3,BD=4,△BCE的面积为1S,△CDE的面积为2S,求1S:2S的值.参考答案:1.解:①将ABC绕点C顺时针旋转一定的角度α得到①DEC,E点在AC上,①CA=CD,①ECD=①BCA=30︒,(180︒−30︒)=75︒,①①CAD=①CDA=12又①①DEC=①ABC=90︒,①①ADE=90°-75︒=15︒;(2)①FBC=30︒时,四边形BFDE为平行四边形,①①FBC=①ACB=30︒,①①ABF=①A=60︒,①BF=CF=AF,①ABF是等边三角形,①BF=AB,①将ABC绕点C顺时针旋转60︒得到DEC,①DE=AB,BCE是等边三角形,①DEC=①ABC=90︒,①①CBE=①BEC=60︒,①①EBF=①EBC-①FBC=30︒,①①DEB+①EBF=180︒,①DE=BF,//DE BF,①四边形BFDE为平行四边形.2.①正方形;.理由:如图1中,∵四边形ABCD 是正方形,∴∠BCD =90°,∠BCA =45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°,∴EG =EC ,∴四边形CEGF 是正方形,∵AC BC ,,∴AG =AC ﹣CGBC ﹣EC ,∴AG BE(2)结论:AG ,理由:如图2中,连接CC ,∵四边形ABCD 是正方形,∴∠ABC =90°,AB =BC ,∴△ABC 为等腰直角三角形,∴AC BC由①得四边形GECF 是正方形,∴∠GEC =∠ECF =90°,GE =EC ,∴△EGC 为等腰直角三角形.∴CG CE∴AC CG BC EC=∴△ACG ∽△BCE ,∴AG CG BE EC∴线段AG 与BE 之间的数量关系为AG ;(3)如图3中,连接CG ,∵∠CEF =45°,点B 、E ,∴∠BEC =135°.∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°.∴∠AGF =∠AGC +∠CGF =135°+45°=180°,∴点A ,G ,F 三点共线,∴∠AGE =∠AGF ﹣∠EGF =180°﹣90°=90°,∴AG ⊥GE ,故答案为:AG ⊥GE .3.(1)DF =CF 且DF ①CF ;延长CF 至点M ,使CF =FM ,连接ME ,MD ,CD ,延长DE 交CB 延长线于点N ,如图1,①BF=EF,CF=FM,①BFC=①EFM,①①BFC①①EFM(SAS),①EM=BC=AC,①FME=①FCB,①BC①EM,①①N=①MEN,在四边形ACND中,①ACB=①ADE=90°,①①N+①CAD=360°-(①ACB+①ADE)=180°,又①①MEN+①MED=180°,①①MED=①CAD,又AD=DE,EM=AC,①①MED①①CAD(SAS),①DM=DC,①MDE=①CDA,①①MDC=①NDC+①MDE=①NDC+①CDA=①ADE=90°,①①DCM为等腰直角三角形,①点F是CM中点,CM=CF,DF①CF;①DF=12(2)DF①CF且CF;延长CF至点M,使CF=FM,连接ME,MD,CD,延长ED交BC延长线于点N,如图2,①BF=EF,CF=FM,①BFC=①EFM,①①BFC①①EFM(SAS),①EM =BC =AC ,①FME =①FCB ,①BC //EM ,①①N =①NER ,①①ACB =60°,①①ACN =120°,①①ADE =120°,①①ADN =60°,①①N +①CAD =360°-(①ACN +①ADN )=180°,①①DER +①DEM =180°,①①DEM =①CAD ,又 AD =DE ,EM =AC ,①①MED ①①CAD (SAS ),①DM =DC ,①MDE =①CDA ,①①DCM 为等腰三角形,①①CDM =①ADE =120°,①F 是CM 的中点,①DF ①CF①60CDF ∠=︒①30DCF ∠=︒①CD =2DE由勾股定理得,222CE DE CD +=①2224CE DE DE +=解得,CF (负值舍去)①DF ①CF 且CF .4.(1)如图,过点D 作DE OA ⊥,垂足为E .① 0A ,B m )0m (>),① AB OA ⊥,OA =AB m =.① 30AOB ∠=︒,① 22OB AB m ==.在Rt OAB 中,由222OA AB OB +=,得2234m m +=.解得1m =.① 1AB =,2OB =.① OCD 是由OAB 旋转得到的,① 2OD OB ==,30DOC AOB ∠=∠=︒.① 60DOE DOC BOA ∠=∠+∠=︒.① 9030ODE DOE ∠=︒-∠=︒.① 112OE OD ==. 在Rt OED 中,DE =① 点D 的坐标为(.(2)如图,过点C 作CT OA ⊥,垂足为T .由已知,得45COT ∠=︒.① 9045OCT COT ∠=︒-∠=︒.① OT CT=.① OCD是由OAB旋转得到的,① OC OA==在Rt OTC△中,由222T TO C OC+=,得OT CT=① 点C的坐标为.(3)如图①中,过点D作DJ①OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.①①DOC=30°,①COT=45°,①①DOJ=75°,①①ODJ=90°-75°=15°,①KD=KO,①①KDO=①KOD=15°,①①OKJ=①KDO+①KOD=30°,①OK=DK=2m,KJ,①OD2=OJ2+DJ2,①22=m2+(2m)2,解得m=,①OJ DJ①D⎫⎪⎪⎝⎭.5.(1)证明:连接AE,DB,CB①点B 与点C 关于射线AH 对称,30HAB ∠=︒ ①CD BD =,AC AB =①30HAB HAC ∠∠==︒①260CAB HAC ∠∠==︒①ABC 为等边三角形,60ACB ∠=︒ ①60DCE ∠=︒①DCE ACD ACB ACD ∠∠∠∠-=- ECA DCB ∠=∠①在ECA △和DCB 中,EC DC ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩①()ECA DCB SAS ≅△△①BD EA =①DC BD EC ==,①AE EC =又AB BC =①EB 垂直平分AC(2)分两种情况来讨论:第一种情况,如图,当点D 在ABE △内部时:①点B 与点C 关于射线AH 对称,①90CFA ∠=︒①90ADC CFA DCB DCB ∠=∠+∠=︒+∠ ①ECA DCB ∠=∠①90ADC ECA ∠=︒+∠第二种情况,如图,当点D 在ABC 外部时: ①点B 与点C 关于射线AH 对称,①90CFA ∠=︒①90ADC CFA DCB DCB ∠=∠-∠=︒-∠ ①ECA DCB ∠=∠①90ADC ECA ∠=︒-∠6.如图,即为补全的图形,根据题意可知BAC DAE α∠=∠=,①BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠.(2)由旋转可知AD AE =,①在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,①()BAD CAE SAS ≅,①BD CE =.①BD BC CD =+,①CE BC CD =+.①点F 为BC 中点,①2BC BF =,①2CE BF CD =+,即2CE CD BF -=.(3)如图,连接AF ,作AN DE ⊥,①AB=AC ,F 为BC 中点,①90AFD ∠=︒,12FAB FAC α∠=∠=. 根据作图可知90AND ∠=︒,①180AFD AND ∠+∠=︒,①A 、F 、D 、N 四点共圆,①AFN ADN ∠=∠.①AD AE =,AN DE ⊥,①EN DN =,11(180)9022AFN ADN DAE α∠=∠=︒-∠=︒-. ①11909022AFN FAC αα∠+∠=︒-+=︒. ①90AFH FAC ∠+∠=︒,且点H 在线段DE 上,①点H 与点N 重合,①EH DH =.7.(1)①180AOD AOB COD ∠=︒-∠-∠,3045AOB COD ∠=︒∠=︒,,①10510560=6300AOD '∠=︒=⨯.故答案为:105,6300;(2)当5t =时,即三角尺ABO 绕点O 顺时针旋转了51050⨯︒=︒,如图,ABO 即为旋转后的图形.由旋转可知50BOM ∠=︒,①180180455085BOD COD BOM ∠=︒-∠-∠=︒-︒-︒=︒,故答案为85;(3)当三角尺绕点O 顺时针旋转到如图所示的ABO 的位置时,边OD 平分①AOC .①224590AOC COD ∠=∠=⨯︒=︒,①90AOM ∠=︒①90903060BOM AOB ∠=︒-∠=︒-︒=︒, ①60610t ==; 故答案为:6;(4)①当边OA 落在直线l 上时停止运动时, ①180150=1510t -≤. 当OA 和OC 重合时,即有10418030t t +=︒-︒, 解得:757t =. ①当757t ≤时,1801030415014AOC t t t ∠=︒--︒-=︒-, 当757t >时,1030418014150AOC t t t ∠=+︒+-︒=-︒. 当OB 和OD 重合时,即有10418045t t +=︒-︒, 解得:13514t =①当13514t ≤时,1801045413514BOD t t t ∠=︒--︒-=︒-, 当13514t >时,1045418014225BOD t t t ∠=+︒+-︒=-︒. ①可根据2AOC BOD ∠=∠分类讨论,①当13514t ≤时,有15014=2(13514)t t ︒-︒-, 解得:607t =,符合题意; ①当13575147t <≤时,即有150142(14225)t t ︒-=-︒ 解得:1007t =,符合题意; ①当757t >时,即有141502(14225)t t -︒=-︒解得:150157t =>,不符合题意舍; 综上,可知当607t =或1007t =时,2AOC BOD ∠=∠. 8.(1)证明:在Rt△AOG 和Rt△ADG 中,AO AD AG AG=⎧⎨=⎩ ①AOG ①ADG (HL ).(2)在Rt ①ADP 和Rt ①ABP 中,AD AB AP AP=⎧⎨=⎩ ΔΔADP ABP ∴≅(HL ), 则DAP BAP ∠=∠;ΔΔAOG ADG ≅,1DAG ∴∠=∠;又190DAG DAP BAP ∠+∠+∠+∠=︒,2290DAG DAP ∴∠+∠=︒,45DAG DAP ∴∠+∠=︒,PAG DAG DAP ∠=∠+∠,45∴∠=︒PAG ;ΔΔAOG ADG ≅,DG OG ∴=,ΔΔADP ABP ≅,DP BP ∴=,PG DG DP OG BP ∴=+=+.(3)解:ΔΔAOG ADG ≅,AGO AGD ∴∠=∠,又190AGO ∠+∠=︒,290PGC ∠+∠=︒,12∠=∠,AGO PGC ∴∠=∠,又AGO AGD ∠=∠,AGO AGD PGC ∴∠=∠=∠,又180AGO AGD PGC ∠+∠+∠=︒,180360AGO AGD PGC ∴∠=∠=∠=︒÷=︒,12906030∴∠=∠=︒-︒=︒;∴在Rt ΔAOG 中,2,3AG OG OA ==,222AG OG OA =+∴222(2)3OG OG =+ 解得OGG ∴点坐标为0),3CG =在Rt ΔPCG 中,2PG CG =,222PG CG PC =+∴222(2)CG CG PC =+, ∴3PC =,P ∴点坐标为:(3,3),设直线PE 的解析式为:y kx b =+,则033b k b +=+=⎪⎩,解得3k b ⎧=⎪⎨=-⎪⎩∴直线PE 的解析式为3y =-.(4)①如图1,当点M 在x 轴的负半轴上时,AG MG =,点A 坐标为(0,3),∴点M 坐标为(0,3)-.①如图2,当点M 在EP 的延长线上时,由(3),可得60AGO PGC ∠=∠=︒,EP ∴与AB 的交点M ,满足AG MG =,A 点的横坐标是0,GM ∴的横坐标是3,∴点M 坐标为3).综上,可得点M 坐标为(0,3)-或3).9.(1)如图,(2)DR ①BC90RDB ∴∠=︒将线段DE 顺时针旋转90°得到线段DF ,90,EDF ED FD ∴∠=︒=BDR EDF ∴∠=∠即BDE EDR EDR RDF ∠+∠=∠+∠BDE RDF ∴∠=∠ ABC 是等腰直角三角形90BDR ∠=︒45BRD ∴∠=︒BRD ∴是等腰直角三角形BD DR ∴=∴①BDE ①①RDF ;(2)如图,当24PB AB ==时,使得对于任意的点D ,总有①BPF 为定值,证明如下,ABC 是等腰直角三角形,2AB AC ==BC ∴=DC =设DE a =,则CD =,①BDE ①①RDF ,DR BD ∴==,FR BR a == ABC 是等腰直角三角形,45EBD ∴∠=︒DR BC ⊥45BRD ∴∠=︒BDR ∴是等腰直角三角形,42BR a ∴==-()4422PR BP BR a a ∴=-=--=①BDE ①①RDF ,45FRD EBD ∴∠=∠=︒90BRF BRD DRF ∴∠=∠+∠=︒1tan 22RF a BPF RP a ∴∠=== BPF ∴∠为定值10.证明:(1)如图1,将①ABD 沿AB 折叠,得到①ABE ,连接DE ,①AB =AC ,①BAC =90°,①①ABC =45°,①将①ABD 沿AB 折叠,得到①ABE ,①①ABD ①①ABE ,①AE =AD ,BE =BD ,①ABE =①ABD =45°,①BAD =①BAE =30°,①①DBE =90°,①DAE =60°,且AD =AE ,BE =BD ,①①ADE 是等边三角形,DE =,①AD =DE =故答案为:(2)如图2,过点A 作AE ①AD ,且AE =AD ,连接DE ,①AE ①AD ,①①DAE =①BAC =90°,①①BAE =①DAC ,且AD =AE ,AB =AC ,①①BAE ①①CAD (SAS )①①ACD=①ABE,①①ACD+①DCB+①ABC=90°,①①DCB+①ABC+①ABE=90°,①①BOC=90°,①AE=AD,AE①AD,①DE=,①ADE=45°,①①BDC﹣①ADC=45°,①①BDC=①ADC+45°=①EDC,且DO=DO,①DOB=①DOE=90°,①①DOB①①DOE(ASA)①BD=DE,①BD=;(3)如图3,连接PC交AB于G点①①DAE绕A点旋转①AD=AE,AB=AC,①①DAE=①BAC=90°①①DAB=①EAC①①DAB①①EAC①①DBA=①ECA①①PGB=①AGC①①BPC=①GAC=90°①①BPC为直角三角形①点P在以BC中点M为圆心,BM为半径的圆上,连接PM交AB所在直线于点N,当PM①AB时,点P到直线AB的距离最大,①①BAC=90°①A 、P 、B 、C 四点共圆①PM ①AB ,①N 是AB 的中点①M 是BC 的中点①MN =122AC = ①AB =AC =4,①CB =22442,①BM =PM =12BC =,①PN =2 ,①点P 到AB 所在直线的距离的最大值为:PN =2 . ①①P AB的面积最大值为12AB ×PN =4. 11.(1)证明:ABC 是等边三角形60,BAC AB AC ∴∠=︒=线段DA 绕着点D 顺时针旋转60°得到线段DE , 60,DAE DA DE ∴∠=︒=ADE ∴是等边三角形DAC DAE CAE BAC CAE EAB ∴∠=∠-∠=∠-∠=∠ 即DAC EAB ∠=∠∴ADC AEB △≌△∴CD BE =(2)ABC 是等边三角形,AB =4,则60BAC ∠=︒过点A 作AM BC ⊥,则1302BAH BAC ∠=∠=︒ Rt ABH 中,122BH AB ==AH ∴=142ABC S ∴=⨯⨯△①ABC 的面积等于①ABF 面积的4倍ABF S ∴=△11sin 60422ABF S BF AB =⋅⨯︒=⨯=△ 1BF ∴= ①当F 点在B 点的左侧时,如图,60ACB ABC ∠=∠=︒120ACD ∴∠=︒ADC AEB △≌△ADC AEB ∴∠=∠,BE DC =60ABC ∠=︒60EBF ABE ABC ∴∠=∠-∠=︒60FBE FCA ∴∠=∠=︒又AFC EFB ∠=∠AFC EFB ∴∽FB BE FC AC∴= 4,1AC BC AB BF ====413FC ∴=-=14433FB AC BE FC ⋅⨯∴=== 43CD EB ∴==①当F 点在B 点的右侧时,如图,ADC AEB △≌△60ACD EBA ∴∠=∠=︒60ABC ∠=︒18060EBF ABC ABE ∴∠=︒-∠-∠=︒BE AC ∴∥FEB FAC ∴∽FB BE FC AC∴= 1,4,145FB AC FC BC BF ===+=+=45FB AC BE FC ⨯∴== 45CD EB ∴==综上所述CD 的长为43或45(3)如图,点E 关于直线AD 的对称点为点G ,ADE 是等边三角形60ADE ADG ∴∠=∠=︒,AE AD =AEN ADM ∴∠=∠60=︒60,60MAD DAB CAB EAB DAB DAE ∠+∠=∠=︒∠+∠=∠=︒MAD NAE ∴∠=∠MAD NAE ∴=AM AN ∴=60MAN ∠=︒AMN ∴是等边三角形MN AN ∴=由(2)可得45BE =,FEB FAC ∽ 445525EF BF BF AF FC BC BF ∴====+过点A 作AH BC ⊥,则AH =,2CH HB ==,3HF HB BF =+=AF ∴=425EF AF ∴==AE AF EF ∴=-==60,ABE AEN EAB NAE ∠=∠=︒∠=∠∴BEA ENA ∽BE BA EN EA∴= 则BE EA EN BA ⨯=60,ADN ABE AND ENB ∠=∠=︒∠=∠ADN EBN ∴∽AD AN EB EN∴= 即AN EB EN AD ⨯= BE EA AN EB BA AD ⨯⨯∴= EA AD AN AB⨯∴=AE AD =,4AB =2926142500AN ⎝⎭∴== 即92612500MN =12. 解:(1)如图1,过点C 作CD ①x 轴于D ,①在①ABC 中,90ACB ∠=︒,AC =BC=①4AB = ,①点B (4,0),①CD ①AB ,①AD =CD =12AB =12×4=2,①点C 的坐标为(2,2);(2)如图,把①ACM 绕点C 逆时针旋转90°得到①BCM ′,连接M ′N ,①90ACB ∠=︒,AC =BC ,①①ABC 是等腰直角三角形,①①CAB =①CBA =45°,由旋转的性质得,45AM BM CM CM CAM CBM ACM BCM '''==∠=∠=︒∠=∠'、、,,①454590M BN ABC CBN ∠'=∠+∠'=︒+︒=︒ ,①①MCN =45°,①90904545M CN BCN BCM BCN ACM MCN ∠'=∠+∠'=∠+∠=︒-∠=︒-︒=︒ , ①MCN M CN ∠=∠' ,在①MCN 和①M ′CN 中,①CM CM MCN M CN CN CN ''=⎧⎪∠=∠⎨⎪=⎩,①MCN M CN SAS '≌(), ①MN M N =' ,在Rt M NB ' 中,222BM BN M N +='' ,①222AM BN MN += ,1AM =,①3MN BN AB AM +=-=,1BM '= ,设MN x =,则BN =3x -,()22213-x x ∴+=,解得:53x =, 53MN ∴=; (3)AM 2+BN 2=MN 2,证明如下:如图3,把①BCN 绕点C 顺时针旋转90°得到ACN ' ,①90ACB ∠=︒,AC =BC ,①①ABC 是等腰直角三角形,①①CAB =①CBA =45°,由旋转的性质得,135AN BN CN CN CAN CBN '='=∠'=∠=︒,, , ①1354590MAN ∠'=︒-︒=︒,①点N '在y 轴上,①①MCN =45°,①904545MCN ∠'=︒-︒=︒,①MCN MCN ∠=∠' ,在①MCN 和①MCN ′中,①CN CN MCN MCN CM CM =''⎧⎪∠=∠⎨⎪=⎩,①()MCN MCN SAS ≅' ,①MN MN =' ,在Rt AMN ' 中,222AM AN MN +''= ,①222AM BN MN += .13.(1)如图1,①90ACB ∠=︒,AE BD ⊥,①90ACB AEB ∠=∠=︒,又①12∠=∠,①CAE CBD ∠=∠;(2)①补全图形如图2;①EF BE =.理由如下:在AE 上截取AM ,使AM BE =.又①AC CB =,CAE CBD ∠=∠,①ΔΔACM BCE ≌,①CM CE =,ACM BCE ∠=∠,又①90ACB ACM MCB ∠=∠+∠=︒,①90MCE BCE MCB ∠=∠+∠=︒,①ME =,又①射线AE 绕点A 顺时针旋转45︒,后得到AF ,且90AEF ∠=︒,①EF AE AM ME BE ==+=.14.解:(1)如图:BD 与EC 的数量关系是相等,理由如下:,AB AC AD AE ==,AB AD AC AE ∴-=-,BD EC ∴=;BD 与EC 的位置关系是垂直,理由如下:AB AC ⊥, 又点,D E 分别在,AB AC 上,BD EC ⊥;(2)成立:理由分别如下:如图:根据旋转的性质可得:,,AD AE AB AC BAD CAE ==∠=∠, ()ABD ACE SAS ∴≌,BD EC ∴=,作BD 的延长线交EC 于点F ,交AC 于点G ,如下图:由ABD ACE SAS △≌△()可知,ABD ACE ∠=∠,AGB FGC ∠=∠,AGB FGC ∴∽,90GAB GFC ∴∠=∠=︒,GF CF ∴⊥,即BD EC ⊥;(3)当点D 在线段BE 上时,90BAD BAC DAC DAC ∠=∠-∠=︒-∠,90CAE DAE DAC DAC ∠=∠-∠=︒-∠,BAD CAE ∴∠=∠,又AB AC =,AD AE =,()BAD CAE SAS ∴∆≅∆,180135ADB AEC ADE ∴∠=∠=︒-∠=︒,451354590BEC AEC ∴∠=∠-︒=︒-︒=︒;(4)由题意知,点D 的轨迹在以A 为圆心,AD 为半径的圆, 在ABD ∆中,当AB 为底时,点D 到AB 的距离最大时,ABD ∆的面积最大, 故如图所示,当AD AB ⊥时,ABD ∆的面积最大,∴旋转角为90︒或270︒,故答案为:90︒或270︒.15.解:(1)在Rt ①ABC 中,BC =4,AC =2,①ACB =90°,AB ∴=在Rt ①BDE 中,BF =1,BD =2,BE ∴=121tan ,tan 242ED AC EBD ABC BD BC ∴∠==∠=== EBD ABC ∴∠=∠EBD ABD ABC ABD ∴∠-∠=∠-∠ABE CBD ∴∠=∠24AB BE BC BD ===∴①ABE ①①CBD ;(2)当A 、E 、F 三点共线时,分两种情况讨论: ①90AED ∠=︒,如图,在Rt ①AFB 中,222AB BF AF =+21(2)20AE ∴++=2(2)19AE ∴+=2AE ∴=①ABE ①①CBDAE CD ∴=CD ∴= ①如图,90AFB ∠=︒在Rt ①AFB 中,22220119AF AB BF =-=-=AF ∴=2AE AF EF ∴=+=EBD ABC ∠=∠90EBF ABC ∴∠+∠=︒EBF ABC FBC DBF FBC ∴∠+∠+∠=∠++∠24AB BE BC BD ===∴①ABE ①①CBDAE CD ∴=CD ∴=综上所述,CD =CD =(3)如图,延长EF 至点G ,使得EF =FG ,连接BG ,此时①BEG 是等腰三角形, 当G B A 、、三点共线,此时FM 最大//BD GEG DBA ∴∠=∠9090180DBA FBD GBF G FBD GBF ∴∠+∠+∠=∠+∠+∠=︒+︒=︒, 此时,G B A 、、三点共线,F M 、分别是BE 、AE 的中点,FM ∴是①EGA 的中位线,111==()222FM AG AB BG ∴+==16.解:(1)如图①中,(5,0)A ,(0,3)B ,5OA ∴=,3OB =,四边形AOBC 是矩形,3AC OB ∴==,5OA BC ==,90OBC C ∠=∠=︒,矩形ADEF 是由矩形AOBC 旋转得到,5AD AO ∴==,在Rt ADC 中,4CD ,1BD BC CD ∴=-=,(1,3)D ∴.(2)①如图①中,由四边形ADEF 是矩形,得到90ADE ∠=︒,点D 在线段BE 上,90ADB ∴∠=︒,由(①)可知,AD AO =,又AB AB =,90AOB ∠=︒,()Rt ADB Rt AOB HL ∴≌.①如图①中,由ADB AOB ∆≅∆,得到BAD BAO ∠=∠,又在矩形AOBC 中,//OA BC ,CBA OAB ∴∠=∠,BAD CBA ∴∠=∠,BH AH ∴=,设AH BH m ==,则5HC BC BH m =-=-,在Rt AHC 中,222AH HC AC =+,2223(5)m m ∴=+-,175m ∴=, 175BH ∴=, 17(5H ∴,3). (3)如图①中,当点D 在线段BK 上时,DEK ∆的面积最小,最小值113(522DE DK ==⨯⨯=当点D 在BA 的延长线上时,①D E K ''的面积最大,最大面积113(522D E KD =⨯''⨯'=⨯⨯=. 17.解:(1)∵P AB ∆'由PAC ∆绕点A 旋转得到,∴P AB PAC ∆≅∆',∴P AB PAC ∠=∠',P A PA '=,∵60BAC PAC PAB ∠=∠+∠=︒,∴60P AB PAB ∠+∠='︒,即:60P AP ∠='︒,∴旋转角度数为60︒;(2)如图所示,连接P P ',∵60P AP ∠='︒,P A PA '=,∴P AP ∆'为等边三角形,∴6P P PA '==,即点P 与点P '之间的距离为6;(3)在P PB ∆'中,由(1)得:10P B PC ='=,6P P '=,8PB =,∴222P B P P PB ''=+,∴P PB ∆'为直角三角形,∴90P PB ∠='︒,由(1)得60APP ∠='︒,∴150APB P PB APP ∠=∠+='∠'︒,∴APB ∠的度数为150︒.18.( 1 )①OA =4,①A (4,0),把A (4,0)代入34y x b =-+, 得:b =3,过点D 作DH ①AB 于点H ,则DH =DO ,BH =BO ,①当x =0时,y =3,①B (0,3),①OA =4,BO =BH =3,在Rt OAB 中,①5AB ,AD =DO +OA =DH +4, ①1122ABD S AD OB AB DH =⋅⋅=⋅⋅, ①()1143522DH DH ⨯+⨯=⨯⋅, 解得:DH =6,①OD =6,①点D 的坐标为(﹣6,0),(2)过点P 作PE ①OD 于点E ,则△DPE ①①DBO ,①点P 在直线BD 上,且点P 的横坐标为t ,①DE =t +6,①OD =6,OB =3,在Rt OBD △中,BD ==①①DPE ①①DBO , ①DP DE DB DO =,66t +,解得:)6DP t =+, ①PC ①BD , ①①PDC ①①ODB , ①PC DP OB OD=,①)6236t PC +=,①)6PC t =+,①)()1115154566=22884BCD S BD PC t t t =⋅⋅=⨯+=++; (3)作PH 垂直于x 轴于点H ,设射线EP 绕点E 逆时针旋转45°交x 轴于点K ,顺时针旋转45°交x 轴于点G .①①BPC =90°,①BOC =90°①B ,P ,C ,O 四点共圆,①PC PB =,①45PCB PBC ∠=∠=︒,①①POC =①PBC =45°,①90PHO ∠=︒,①45HPO POC ∠=∠=︒,①PH =HO ,①DH =6﹣HO =6﹣PH ,①DHP DOB ∽, ①663PH DO PH BO -==, 得PH =2,①HC =CO =1,①OE =2,①点(0,2)E -,①①KEP =①DBC ,①PEB =①BDC ,①①KEP +①PEB =①DBC +①BDC ,即①KEO =①BCO ,①OE :GK =CO :BO =1:3,①GK =6,①K (﹣6,0),设直线KE 的解析式为:y kx b =+,则62y k b b =-+⎧⎨-=⎩,解得:132k b ⎧=-⎪⎨⎪=-⎩,, ①直线KE 为:y 13=-x ﹣2, 联立方程组:123334y x y x ⎧=--⎪⎪⎨⎪=-+⎪⎩解得x =12,y =﹣6,①F 1(12,﹣6),①①KEP +①PEG =90°,①①DEG =90°,①①OEG =①ODE ,①OG :OE =OE :OD =1:3,①OG 23=; ①G (23,0), 设直线EG 的解析式为:y mx n =+, 则20=32m n n⎧+⎪⎨⎪-=⎩,解得:32m n =⎧⎨=-⎩, ①直线EG 的解析式为:y =3x ﹣2, 联立方程组:32334y x y x =-⎧⎪⎨=-+⎪⎩, 解得x 43=,y =2, ①F 2(43,2), 综上所述:F 的坐标为(12,﹣6)或(43,2). 19.证明:(1)①四边形ABCD 是菱形,①ABC =60°, ①AB =BC =AD =CD ,①ADC =①ABC =60°,①①ADC 是等边三角形,①AD =AC =AB =BC ,①①ACB 是等边三角形,①①ACB =①ACD =60°,①①ADC =①EDF =60°,①①ADE =①CDF ,①将线段DE 绕点D 逆时针旋转60︒,点E 的对应点为F , ①DE DF =,在①ADE 和①CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩①①ADE ①①CDF (AAS ),①60DCF DAE ∠=∠=︒,①180DCF BCD ∠+∠=︒,①B ,C ,F 三点共线;(2)如图,过点B 作BH ①AC ,交AG 的延长线于点H ,①BH ①AC ,①①H =①GAE ,①ABH +①BAC =180°,①①ABH =120°=①ACF ,①点G 为BE 的中点,①BG =GE ,在①AGE 和①HGB 中,H GAE AGE BGH BG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩,①①AGE ①①HGB (AAS ),由(1)得AE CF =,①AE =BH =CF ,AG =GH =12AH ,在①ABH 和①ACF 中,AB AC ABH ACF BH CF =⎧⎪∠=∠⎨⎪=⎩,①①ABH ①①ACF (SAS ),①AF =AH ,①AF =2AG .20.(1)如图①CDF 即为旋转之后的图形;(2)证明:由旋转旋转可知:①CAB ①①CFD ,①①CDF =①CBA ,①F =①CAB ,CA =CF ,①①CBA +①CDA =180°,①①CDF +①CDA =180°,①A 、D 、F 三点共线,①AC =CF ,①①F =①CAD ,①①CAB =①CAD ;(3)过点E 作EM ①AF 于点M ,过点C 作CN ①BD 于点N , ①①ABE =①AME =90°,在①ABE 和①AME 中,EAB EAM ABE AME AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①ABE ①①AME (AAS ),①AM =AB =3,BE =ME ,①①ABD =90°,AB =3,BD =4,①5AD ==,①DM =2,设BE EM x ==,则4DN x =-,①()222x 24x +=-,解得 1.5x =,①BE =1.5,DE =2.5, ①12113::225S S BE CN DE CN =⋅⋅=.。

初三数学中考专项练习 《旋转》全章复习与巩固--知识讲解(提高)

初三数学中考专项练习 《旋转》全章复习与巩固--知识讲解(提高)

《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:(1)求∠ABC的度数.(2)以点A为中心,把△ABD顺时针旋转60°,画出旋转后的图形.(3)求BD的长度.【答案】∴BC=4,∴∠ABC=30°(2)如图所示:(3)连接BE.由(2)知:△ACE≌△ADB,∴AE=AB,∠BAE=60°,BD=EC,∴∠EBC=90°,又BC=2AC=4,4.(2015•东西湖区校级模拟)如图,Rt△ABC中,AC=BC,∠ACB=90°,点E在线段AB上,CF⊥CE,CE=CF,EF交AC于G,连接AF.(1)填空:线段BE、AF的数量关系为,位置关系为;(2)当=时,求证:=2;(3)若当=n时,=,请直接写出n的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则,∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律.5.已知:点P是正方形ABCD内的一点,连结PA、PB、PC,(1)若PA=2,PB=4,∠APB=135°,求PC的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90° 又∵由(1)证得∠BAE=∠BCP ∴∠PAB+∠BCP=90 又∵∠ABC=90° ∴点A,P,C 三点共线, 即P 必在对角线AC 上.【总结升华】注意勾股定理及逆定理的灵活运用. 举一反三:【变式】如图,在四边形ABCD 中,AB=BC ,,K 为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.。

九年级数学上册第二十三章旋转第2课时旋转作图练习新版新人教版

九年级数学上册第二十三章旋转第2课时旋转作图练习新版新人教版

第2课时旋转作图基础题知识点1 旋转作图1.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是________.2.如图所示,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°,画出旋转后的△AB′C′.3.已知△ABC,请画出以C为旋转中心,顺时针旋转90°后的△A′B′C.4.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置以及旋转后的三角形.5.(荆门中考)如图1,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连接BE,DF.请在图2中用实线补全图形,这时DF=BE还成立吗?请说明理由.知识点2 在平面直角坐标系中的图形旋转6.(烟台中考)如图,将△ABC 绕点P 顺时针旋转90°得到△A′B′C′,则点P 的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4) 7.(邵阳中考)如图,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°到OA′,则点A′的坐标是________.8.(青岛中考)如图,△ABC 的顶点都在方格线的交点(格点)上,如果将△ABC 绕C 点按逆时针方向旋转90°,那么点B 的对应点B′的坐标是________.中档题9.如图,该图形围绕点O 按下列角度旋转后,不能与其自身重合的是( )A .72°B .108°C .144°D .216°10.(巴中中考)如图,已知直线y =-43x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 按顺时针方向旋转90°后得到△AO′B′,则点B′的坐标是________.11.(潜江、天门、仙桃中考)如图,在平面直角坐标系中,点A 的坐标为(-1,2)点C 的坐标为(-3,0),将点C 绕点A 逆时针旋转90°,再向下平移3个单位,此时点C 对应点的坐标为________.12.如图,四边形ABCD 绕点O 旋转后,顶点A 的对应点为点E,试确定B,C,D 的对应点的位置以及旋转后的四边形.13.(眉山中考)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.综合题14.(永州中考)在同一平面内,△ABC和△ABD如图1放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图2.请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图3,求证:四边形CDFE是平行四边形.参考答案基础题1.点B2.图略所示,△AB′C′为所求三角形.3.如图所示.4.图略,顶点B对应点的位置在点E处,△DEC为△ABC绕点C旋转后得到的三角形.5.补全图形图略.DF=BE成立.理由:∵四边形ABCD是正方形,△AEF是等腰直角三角形,∴AD=AB,AF=AE,∠FAE=∠DAB=90°.∴∠FAD =∠EAB.在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AD =AB ,∠FAD =∠EAB,AF =AE.∴△ADF ≌△ABE(SAS).∴DF=BE.6.B7.(-4,3)8.(1,0)中档题9.B 10.(7,3) 11.(1,-3) 12.略.13.(1)图略.(2)图略.(3)旋转中心的坐标为(-1,0). 综合题14.(1)四边形ABDF 是菱形.理由如下:∵△DFA 是由△ABD 绕AD 的中点旋转180°所得,∴AB =DF,BD =FA.∴四边形ABDF 是平行四边形.又∵AB=BD,∴四边形ABDF 是菱形.(2)证明:由(1)知四边形ABDF 是平行四边形,∴AB ∥DF 且AB =DF.由旋转易知四边形ABCE 是平行四边形,∴AB ∥CE 且AB =CE.∴DF∥CE 且DF =CE,∴四边形CDFE 是平行四边形.。

初中数学旋转作图专题训练含答案

初中数学旋转作图专题训练含答案

初中数学旋转作图专题训练含答案姓名:__________ 班级:__________考号:__________一、作图题(共20题)1、如图,在一个10×10的正方形DEFG网格中有一个△ABC。

①在网格中画出△ABC向下平移3个单位得到的△A1B1C1。

②在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C。

③若以EF所在的直线为x轴,ED所在的直线为y轴建立直角坐标系,写出A1、A2两点的坐标。

2、如图,△ABC的顶点坐标分别为A(4,6),B(2,3),C(5,2)。

如果将△ABC 绕C点顺时针旋转90°,得到△A1B1 C。

(1)请在图中画出△A1B1 C;(2)请作出△A1B1C的外接圆(尺规作图,要求保留作图痕迹,不必写出作法);(3)在图中已画好的格点上,是否存在点D,使得=,请写出符合条件的所有D 点的坐标(C点除外)。

(原创)3、如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.ΔABO 的三个顶点A,B,O都在格点上.(1)画出ΔABO绕点O逆时针旋转900后得到的三角形Δ;(2)根据所画的图找出点和点的坐标.4、 ,如图,在由边长为的小正方形组成的方格纸中,有两个全等的三角形,即和.请你指出在方格纸内如何运用平移、旋转变换,将重合到上;5、已知△ABC在平面直角坐标系中的位置如图所示。

⑴分别写出图中点A和点C的坐标;⑵画出△ABC绕点A按逆时针方向旋转90°后的△AB′C′;⑶在⑵的条件下,求点C旋转到点C′所经过的路线长(结果保留π)6、如右图,在网格图中建立平面直角坐标系,的顶点坐标为、、.(1)若将向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的;顺时针方(2)画出绕C1向旋转900后得到的;(3)与是中心对称图形,请写出对称中心的坐标:;并计算的面积: .(4)在坐标轴上是否存在P点,使得△PAB与△CAB的面积相等,若有,则求出点P的坐标.7、在网格纸上按以下要求作图,不用写作法:(1)作出“小旗子”向右平移6格后的图案.(2)作出“小旗子”绕O 点按逆时针方向旋转90°后的图案.8、 如下图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点, △ABC 的顶点均在格点上.(1)画出将△ABC 向右平移2个单位后得到的△A 1B 1C 1,再画出将△A 1B 1C 1绕点B 1按逆时针方向旋转90°后所得到的△A 2B 1C 2;(2)求线段B 1C 1旋转到B 1C 2的过程中,点C 1所经过的路径长.9、 如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个△ABC 和一点O ,△ABC 的顶点与点O 均与小正方形的顶点重合.(1)在方格纸中,将△ABC 向下平移6个单位长度得到△A 1B 1C 1,请画△A 1B 1C 1. (2)在方格纸中,将△ABC 绕点O 旋转180°得到△A 2B 2C 2,请画△A 2B 2C 2.10、每个小方格都是边长为1个单位长度,正方形ABCD在坐标系中的位置如图所示.(1)画出正方形ABCD关于原点中心对称的图形;(2)画出正方形ABCD绕点D点顺时针方向旋转90°后的图形;(3)求出正方形ABCD的点B绕点D点顺时针方向旋转90°后经过的路线.11、如图,在方格纸中每个小正方形的边长均为1个单位,△ABC的三个顶点都在小方格的顶点上.(1)在图中作出将△ABC向右平移5个单位后的图形△A1B1C1;(2)在图中作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A2B2 C.12、已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).13、在如图的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出向下平移4个单位后的,并直接写出在平移过程中扫过的面积;(2)画出绕点顺时针旋转后的,并直接写出点旋转到所经过的路线长.14、如图,在平面直角坐标系中,和关于点成中心对称。

2023年九年级数学中考专题:旋转综合压轴题(倍长中线法)

2023年九年级数学中考专题:旋转综合压轴题(倍长中线法)

2023年九年级数学中考专题:旋转综合压轴题(倍长中线法)1.(1)阅读理解:如图1,在ABC 中,若3AB =,5AC =.求BC 边上的中线AD 的取值范围,小聪同学是这样思考的:延长AD 至E ,使DE AD =,连接BE .利用全等将边AC 转化到BE ,在BAE 中利用三角形三边关系即可求出中线AD 的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是___________,中线AD 的取值范围是___________;(2)问题解决:如图2,在ABC 中,点D 是BC 的中点,DM DN ⊥.DM 交AB 于点M ,DN 交AC 于点N .求证:BM CN MN +>;(3)问题拓展:如图3,在ABC 中,点D 是BC 的中点,分别以AB AC ,为直角边向ABC 外作Rt ABM 和Rt ACN △,其中90BAM NAC ∠=∠=︒,AB AM =,AC AN =,连接MN ,请你探索AD 与MN 的数量与位置关系,并直接写出AD 与MN 的关系.2.(1)如图1,在ABC 中,AB =4,AC =6,AD 是BC 边上的中线,延长AD 到点E 使DE =AD ,连接CE ,把AB ,AC ,2AD 集中在ACE 中,利用三角形三边关系可得AD 的取值范围是 ;(2)如图2,在ABC 中,AD 是BC 边上的中线,点E ,F 分别在AB ,AC 上,且DE ⊥DF ,求证:BE +CF >EF ;(3)如图3,在四边形ABCD 中,∠A 为钝角,∠C 为锐角,∠B +∠ADC =180°,DA =DC ,点E ,F 分别在BC ,AB 上,且∠EDF =12∠ADC ,连接EF ,试探索线段AF ,EF ,CE 之间的数量关系,并加以证明.3.(1)阅读理解:如图①,在ABC 中,若85AB AC =,=,求BC 边上的中线AD 的取值范围.可以用如下方法:将ACD △绕着点D 逆时针旋转180得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠︒=,CB CD =,100BCD ∠︒=,以C 为顶点作一个50︒的角,角的两边分别交AB AD 、于E 、F 两点,连接EF ,探索线段BE DF EF ,,之间的数量关系,并说明理由.4.如图,在锐角ABC ∆中,60A ∠=︒,点D ,E 分别是边,AB AC 上一动点,连接BE 交直线CD 于点F .(1)如图1,若AB AC >,且,BD CE BCD CBE =∠=∠,求CFE ∠的度数;(2)如图2,若=AB AC ,且=BD AE ,在平面内将线段AC 绕点C 顺时针方向旋转60°得到线段CM ,连接MF ,点N 是MF 的中点,连接CN .在点D ,E 运动过程中,猜想线段,,BF CF CN 之间存在的数量关系,并证明你的猜想.5.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长△ABC 的边BC 到D ,使DC =BC ,过D 作DE ∥AB 交AC 延长线于点E ,求证:△ABC ≌△EDC .【理解与应用】如图2,已知在△ABC 中,点E 在边BC 上且∠CAE =∠B ,点E 是CD 的中点,若AD 平分∠BAE .(1)求证:AC =BD ;(2)若BD =3,AD =5,AE =x ,求x 的取值范围.6.如图1,在△ABC 中,若AB =10,BC =8,求AC 边上的中线BD 的取值范围.(1)小聪同学是这样思考的:延长BD 至E ,使DE =BD ,连接CE ,可证得△CED ≌△ABD .①请证明△CED ≌△ABD ;②中线BD 的取值范围是 .(2)问题拓展:如图2,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中,AB =BM ,BC =BN ,∠ABM =∠NBC =∠90°,连接MN .请写出BD 与MN 的数量关系,并说明理由.7.已知ABC 中,(1)如图1,点E 为BC 的中点,连AE 并延长到点F ,使=FE EA ,则BF 与AC 的数量关系是________.(2)如图2,若AB AC =,点E 为边AC 一点,过点C 作BC 的垂线交BE 的延长线于点D ,连接AD ,若DAC ABD ∠=∠,求证:AE EC =.(3)如图3,点D 在ABC 内部,且满足AD BC =,BAD DCB ∠=∠,点M 在DC 的延长线上,连AM 交BD 的延长线于点N ,若点N 为AM 的中点,求证:DM AB =.8.在△ABM 中,AM ⊥BM ,垂足为M ,AM =BM ,点D 是线段AM 上一动点.(1)如图1,点C 是BM 延长线上一点,MD =MC ,连接AC ,若BD =17,求AC 的长;(2)如图2,在(1)的条件下,点E 是△ABM 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF .(3)如图3,当E 在BD 的延长上,且AE ⊥BE ,AE =EG 时,请你直接写出∠1、∠2、∠3之间的数量关系.(不用证明)9.已知:等腰Rt ABC 和等腰Rt ADE △中,AB AC =,AE AD =,90BAC EAD ∠=∠=︒.(1)如图1,延长DE 交BC 于点F ,若68BAE ∠=︒,则DFC ∠的度数为;(2)如图2,连接EC 、BD ,延长EA 交BD 于点M ,若90AEC ∠=︒,求证:点M 为BD 中点; (3)如图3,连接EC 、BD ,点G 是CE 的中点,连接AG ,交BD 于点H ,9AG =,5HG =,直接写出AEC △的面积.10.(1)阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD 的取值范围,小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE.利用全等将边AB转化到CE,在△BCE中利用三角形三边关系即可求出中线BD的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是;中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=∠NBC=90°,连接MN,探索BD与MN的关系,并说明理由.11.(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),①延长AD到M,使得DM=AD;②连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.12.如图,点P是∠MON内部一点,过点P分别作P A∥ON交OM于点A,PB∥OM交ON于点B(P A≥PB),在线段OB上取一点C,连接AC,将△AOC沿直线AC翻折,得到△ADC,延长AD交PB于点E,延长CD 交PB于点F.(1)如图1,当四边形AOBP是正方形时,求证:DF=PF;(2)如图2,当C为OB中点时,试探究线段AE,AO,BE之间满足的数量关系,并说明理由;(3)如图3,在(2)的条件下,连接CE,∠ACE的平分线CH交AE于点H,设OA=a,BE=b,若∠CAO =∠CEB,求△CDH的面积(用含a,b的代数式表示).13.(1)基础应用:如图1,在△ABC中,AB=5,AC=7,AD是BC边上的中线,延长AD到点E使DE =AD,连接CE,把AB,AC,2AD利用旋转全等的方式集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)推广应用:应用旋转全等的方式解决问题如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;∠BAD,试问线段(3)综合应用:如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°且∠EAF=12EF、BE、FD具有怎样的数量关系,并证明.14.(1)阅读理解:如图1,在△ABC中,若AB=5,AC=8,求BC边上的中线AD的取值范围.小聪同学是这样思考的:延长AD至E,使DE=AD,连接BE.利用全等将边AC转化到BE,在△BAE中利用三角形三边关系即可求出中线AD的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是_________,中线AD的取值范围是_________;(2)问题解决:如图2,在△ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM⊥DN.求证:BM+CN>MN;(3)问题拓展:如图3,在△ABC中,点D是BC的中点,分别以AB,AC为直角边向△ABC外作Rt△ABM 和Rt△ACN,其中∠BAM=∠NAC=90°,AB=AM,AC=AN,连接MN,探索AD与MN的关系,并说明理由.15.如图,在等边△ABC 中,点D ,E 分别是AC ,AB 上的动点,且AE =CD ,BD 交CE 于点P .(1)如图1,求证:∠BPC =120°;(2)点M 是边BC 的中点,连接P A ,PM ,延长BP 到点F ,使PF =PC ,连接CF ,①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 .②如图3,若点A ,P ,M 三点不共线,问①中的结论还成立吗?若成立,请给出证明,若不成立,说明理由.16.(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围. 解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE 中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.17.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E 是BC 的中点,点A 在DE 上,且∠BAE =∠CDE .求证:AB =CD .分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB =CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE 到点F ,使EF =DE ,连接BF ;②如图2,分别过点B 、C 作BF ⊥DE ,CG ⊥DE ,垂足分别为点F ,G .(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.18.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC △≌EDB △的理由是______.(2)求得AD 的取值范围是______.【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】⊥,求证:(3)如图2,在ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM DNBM CN MN+>.。

2020年九年级数学中考三轮冲刺复习 :《图形旋转综合》 练习题

2020年九年级数学中考三轮冲刺复习 :《图形旋转综合》 练习题

中考三轮冲刺复习:《图形旋转综合》练习1.在平面直角坐标系xOy中,已知A(4,0)、B(1,3),直线l是绕着△OAB的顶点A 旋转,与y轴相交于点P,探究解决下列问题:(1)如图1所示,当直线l旋转到与边OB相交时,试用无刻度的直尺和圆规确定点P 的位置,使顶点O、B到直线l的距离之和最大(保留作图痕迹);(2)当直线l旋转到与y轴的负半轴相交时,使顶点O、B到直线l的距离之和最大,请直接写出点P的坐标是.(可在图2中分析)2.如图,点E是正方形ABCD的边BC上一点,连接DE,将DE绕着点E逆时针旋转90°,得到EG,过点G作GF⊥CB,垂足为F,GH⊥AB,垂足为H,连接DG,交AB于I.(1)求证:四边形BFGH是正方形;(2)求证:ED平分∠CEI;(3)连接IE,若正方形ABCD的边长为3,则△BEI的周长为.3.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,将△ABC绕点C逆时针旋转90°后得到△A1B1C,再将△A1B1C沿CB向右平移,使点B2恰好落在斜边AB上,A2B2与AC相交于点D.(1)判断四边形A1A2B2B1的形状,并说明理由;(2)求A2C的长度.4.在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.连接QP并延长,分别交AB、CD于点M,N.(1)如图1,求证:△BCP≌△DCQ;(2)如图2,已知PM=QN;若MN的最小值为,求菱形ABCD的面积.5.四边形ABCD是正方形,PA是过正方形顶点A的直线,作DE⊥PA于E,将射线DE绕点D 逆时针旋转45°与直线PA交于点F.(1)如图1,当∠PAD=45°时,点F恰好与点A重合,则的值为;(2)如图2,若45°<∠PAD<90°,连接BF、BD,试求的值,并说明理由.6.如图,在△ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边△CDE.(1)如图1,若∠CDB=45°,AB=6,求等边△CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.①求证:CF⊥DF;②如图3,将△CFD沿CF翻折得△CFD′,连接BD′,直接写出的最小值.7.(1)如图,已知在△ABC中,∠BAC=40°,BD⊥AC于D,CE⊥AB于E,BD、CE所在直线交于点F,求∠BFC的度数;(2)在(1)的基础上,若∠BAC每秒扩大10°,且在变化过程中∠ABC与∠ACB始终保持是锐角,经过t秒(0<t<14),在∠BFC,∠BAC这两个角中,当一个为另一个的两倍时,求t的值;(3)在(2)的基础上,∠ABD与∠ACE的角平分线交于点G,∠BGC是否为定值,如果是,请直接写出∠BGC的值,如果不是,请写出∠BGC是如何变化的.8.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL.EN、GM之间满足的数量关系,并说明理由:(2)旋转至如图③位置,使点G落在BC的延长线上,DE交BC于点L,连接BE,求BE 的长.9.如图,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC边于点E.(1)如图1,过点A作AD⊥BC于D,若已知∠C=50°,求∠EAD的度数;(2)如图2,过点A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度数;(3)如图3,CF平分△ABC的外角∠BCG,交AE的延长线于点F,作FD⊥BC于D,设∠ACB=n°,试求∠DFE﹣∠AFC的值;(用含有n的代数式表示)(4)如图4,在图3的基础上分别作∠BAE和∠BCF的角平分线,交于点F1,作F1D1⊥BC于D1,设∠ACB=n°,试直接写出∠D1F1A﹣∠AF1C的值.(用含有n的代数式表示)10.如图,点O是边长为4的等边三角形ABC的中心,∠EOF的两边与△ABC的边AB,BC 分别交于E、F,∠EOF=120°.(1)如图①,当E为AB中点时,求∠EOF与△ABC的边所围成的四边形OEBF的面积;(2)如图②,∠EOF绕点O旋转.在旋转过程中四边形OEBF的面积会改变吗?请说明理由.11.如图,BC为等边△ABM的高,AB=4,点P为直线BC上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD、BD.(1)问题发现:如图①,当点D在直线BC上时,线段BP与MD的数量关系为,∠DMB=;(2)拓展探究:如图②,当点P在BC的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)问题解决:当∠BDM=30°时,请直接写出线段AP的长度.12.如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.(1)直线BD和CE的位置关系是;(2)猜测BD和CE的数量关系并证明;(3)设直线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD=1时,直接写出PB的长.13.在矩形ABCD中,AD>AB,连接AC,线段AC绕点A逆时针90°旋转得到线段AE,平移线段AE得到线段DF(点A与点D对应,点E与点F对应),连接BF,分别交AD,AC于点G,M,连接EF.(1)依题意补全图形.(2)求证:EG⊥AD.(3)连接EC,交BF于点N,若AB=2,BC=4,设BM=a,NF=b,试比较(a+1)(b+1)与9+6之间的大小关系,并证明.14.已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.15.如图,已知点A(0,8),B(16,0),点P是x轴上的一个动点(不与原点O重合),连结AP,把△OAP沿着AP折叠后,点O落在点C处,连结PC,BC,设P(t,0).(1)如图1,当AP∥BC时,试判断△BCP的形状,并说明理由.(2)在点P的运动过程中,当∠PCB=90°时,求t的值.(3)如图2,过点B作BH⊥直线CP,垂足为点H,连结AH,在点P的运动过程中,是否存在AH=BC?若存在,求出t的值:若不存在,请说明理由.16.问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC 是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.解决问题:(1)如图1,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE ∥AC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当△DEC绕点C继续旋转到如图2所示的位置时,连接AE、AD、BD,他们提出S△BDC =S△AEC,请你帮他们验证这一结论是否正确,并说明理由.17.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE 的长.18.如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C 顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.参考答案1.解:(1)如图1,过A点作直线l⊥OB于点F,l与y轴的交点即为所确定的P点位置.理由如下:如图2所示,过点O作OD⊥l于D,过点B作BC⊥l于C.∵S△OAB=FA•OD+FA•BC=FA(OD+BC)=3为定值.要使点O、B到直线l的距离之和最大,即OD+BC最大,只要使FA最小,∴过A点作直线l⊥OB于点F,此时FA即为最小值(此时,点F、D、C重合).∴l与y轴的交点即为所确定的P点位置;(2)由(1)的解题过程知,如图2所示,延长BA到G点,使BA=AG,连接OG,则S△OAG =S△OAB,旋转直线l至l⊥OG于点F,与y轴的交点即为所确定的P点,过点B作BE⊥OA于点E,∵B(1,3),A(4,0),∴EB=EA=3,过点G作GH⊥x轴于点H,∴△ABE≌△AGH(AAS),∴AH=GH=3,∴OH=7,∴tan∠HOG=,又∵直线l⊥OG于点F,∴∠OPA=∠HOG,∴tan∠OPA=tan∠HOG=,∴=,∴=,∴OP=,∴P(0,﹣),故答案为:(0,﹣).2.(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠DCE=∠ABC=∠ABF=90°,∵GF⊥CF,GH⊥AB,∴∠F=∠GHB=∠FBH=90°,∴四边形FBHG是矩形,∵ED=EG,∠DEG=90°,∵∠DEC+∠FEG=90°,∠DEC+∠EDC=90°,∴∠FEG=∠EDC,∵∠F=∠DCE=90°,∴△DCE≌△EFG(AAS),∴FG=EC,EF=CD,∵CB=CD,∴EF=BC,∴BF=EC,∴BF=GF,(2)证明:延长BC到J,使得CJ=AI.∵DA=DC,∠A=∠DCJ=90°,AI=CJ,∴△DAI≌△DCJ(SAS),∴DI=DJ,∠ADI=∠CDJ,∴∠IDJ=∠ADC=90°,∵∠IDE=45°,∴∠EDI=∠EDJ=45°,∵DE=DE,∴△IDE≌△JDE(SAS),∴∠DEI=∠DEJ,∴DE平分∠IEC.(3)解:∵△IDE≌△JDE,∴IE=EJ,∵EJ=EC+CJ,AI=CJ,∴IE=EC=AI,∴△BIE的周长=BI+BE+IE=BI+AI+BE+EC=2AB=6.故答案为6.3.解:(1)四边形A1A2B2B1是平行四边形,理由:∵∠ACB=∠B2C=90°,∴B1C∥C2B2,∵再将△A1B1C沿CB向右平移,∴B1C=C2B2,122∴B 2B 1∥B 1C ,∴B 2B 1∥A 1A 2,∵再将△A 1B 1C 沿CB 向右平移,∴A 1B 1∥A 2B 2,∴四边形A 1A 2B 2B 1是平行四边形;(2)在Rt △ABC 中,BC ===3,由题意:BC =CB 1=C 2B 2=3,∴AB 1=1,∵B 1B 2∥BC ,∴△AB 1B 2∽△ACB , ∴, ∴, ∴B 1B 2=,∴B 1B 2=CC 2=,∴CA 2=A 2C 2﹣CC 2=4﹣=.4.(1)证明:四边形ABCD 是菱形,∴BC =DC ,AB ∥CD ,∴∠PBM =∠PBC =∠ABC =30°,∠ABC +∠BCD =180°,∴∠BCD =180°﹣∠ABC =120°由旋转的性质得:PC =QC ,∠PCQ =120°,∴∠BCD =∠DCQ ,∴∠BCP =∠DCQ ,在△BCP 和△DCQ 中,,∴△BCP ≌△DCQ (SAS );(2)解:过点C作CG⊥PQ于点G,连接AC,∵PC=QC,∠PCQ=120°,∴∠PCG=60°,PG=QG,∴PG=PC,∴PQ=PC.∵PM=QN,∴MN=PQ=PC,∴当PC⊥BD时,PC最小,此时MN最小,∴PC=2,BC=2PC=4,∵菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴=4,∴菱形ABCD的面积=2S=2×4=8;△ABC5.解:(1)∵∠PAD=45°,DE⊥AP,∴∠DAE=∠EDA,∴AE=DE,∴AD=AE,∵四边形ABCD是正方形,∴AD=AB=BF=AE,∴=;(2)过点B作BH⊥AP于H,∵四边形ABCD是正方形,∴AD=AB,∠ABD=45°,∠BAD=90°,∴∠BAH+∠DAE=90°,又∵∠BAH+∠ABH=90°,∴∠ABH=∠DAE,又∵AD=AB,∠DEA=∠AHB=90°,∴△ADE≌△BAH(AAS),∴AE=BH,∵将射线DE绕点D逆时针旋转45°与直线PA交于点F,∴∠EDF=45°,∴∠EFD=45°=∠ABD,∴点A,点F,点B,点D四点共圆,∴∠BFH=∠ADB=45°,又∵BH⊥AP,∴∠FBH=∠BFH=45°,∴BH=FH,∴BF=BH=AE,∴==.6.解:(1)如图1,过点C作CH⊥AB于点H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,∴CH==,∵∠CDH=45°,CH⊥AB,∴∠CDH=∠DCH=45°,∴DH=CH=,CD=CH=;(2)①如图2,延长BC到N,使CN=BC,∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°,∠NCA=60°,∵△ECD是等边三角形,∴EC=CD,∠ECD=60°,∴∠NCA=∠ECD,∴∠NCE=∠DCA,又∵CE=CD,AC=BC=CN,∴△CEN≌△CDA(SAS),∴EN=AD,∠N=∠A=30°,∵BC=CN,BF=EF,∴CF∥EN,CF=EN,∴∠BCF=∠N=30°,∴∠ACF=∠ACB﹣∠BCF=90°,又∵DG⊥AC,∴CF∥DG,∵∠A=30°,DG⊥AC,∴DG=AD,∴DG=CF,∴四边形CFDG是平行四边形,又∵∠ACF=90°,∴四边形CFDG是矩形,∴∠CFD=90°∴CF⊥DF;②如图3,连接BD',∵将△CFD沿CF翻折得△CFD′,∴CD=CD',DF=D'F,∠CFD=∠CFD'=90°,又∵EF=BF,∠EFD=∠BFD',∴△EFD≌∠BFD'(SAS),∴BD'=DE,∴BD'=CD,∵当BD'取最小值时,有最小值,∴当CD取最小值时,有最小值,∵当CD⊥AB时,CD有最小值,∴AD=CD,AB=2AD=2CD,∴最小值=.7.解:(1)∵BD⊥AC于D,CE⊥AB于E,∴∠AEC=∠BDC=90°,∴∠A+∠ACE=90°,∠ACE+∠CFD=90°,∴∠CFD=∠A∴∠BFC=180°﹣∠DFC=180°﹣∠A=140°.(2)由题意∠A=40°+10°×t,∠BFC=180°﹣∠A=140°﹣10°×t.①当0<t<5时,∠BFC=2∠A,则有140﹣10t=2(40+10t),解得t=2.②当5<t<14时,∠A=2∠BFC,∴40+10t=2(140﹣10t),解得t=8,综上所述,当t=2或8时,∠BFC,∠A两个角中,一个角是另一个角的两倍.(3)如图,结论∠BGC是定值.理由:∵BD⊥AC于D,CE⊥AB于E,∴∠AEC=∠ADB=90°,∴∠A+∠ABD=90°,∠A+∠ACE=90°,∴∠ABD=∠ACE,∵BG平分∠ABD,CG平分∠ACB,∠ABG=∠ABD,∠ACG=∠ACE,∴∠ABG+∠ACG=(∠ABD+∠ACE)=∠ABD,∵∠A+∠ABG+∠GBC+∠GCB+∠ACG=180°,∠G+∠GBC+∠GCB=180°,∴∠G=∠A+∠ABG+∠ACG=∠A+∠ABD=90°,∴∠BGC是定值.8.解:(1)DL=EN+GM.证明:如图1,过点G作GK∥BM,∵四边形EFGD是正方形,∴∠DEF=∠DGF=∠EDG=90°,DG=DE,∴∠EDN+∠NDG=∠NDG+∠DGK=90°,∴∠EDN=∠DGK,∴△DKG≌△END(ASA),∴EN=DK,在平行四边形DKMG中,GM=KL,∵DL=DK+KL,∴DL=EN+GM;(2)如图2,过点E作EP⊥BG于点P,在Rt△DCG中,CD=6,DG=10,CG=8,∴tan∠CGD=,∵∠CDL=∠CGD,∴tan∠CDL=,在Rt△CDL中,LC=,DL=,∴BL=8﹣=,EL=10﹣=,同理,在Rt△ELP中,PE==2,PL==,∴BP==2,∴在Rt△BPE中,BE===2.9.解:(1)如图1中,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=100°,∵AE平分∠BAC,∴∠CAE=∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣50°=40°,∴∠EAD=∠EAC﹣∠DAC=50°﹣40°=10°.(2)如图2中,设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形内角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)如图3中,设∠FAC=∠FAB=x.则有∠AEC=∠DEF=180°﹣n﹣x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°﹣(180°﹣n﹣x)=n+x﹣90°,∵CF平分∠BCG,∴∠FCG=(180°﹣n),∵∠AFC=∠FCG﹣∠FAC=(180°﹣n)﹣x=90°﹣n﹣x,∴∠DFE﹣∠AFC=2n+2x﹣180°,∵2x+30°+n=180°,∴2x=150°﹣n,∴∠DFE﹣∠AFC=n﹣30°.(4)如图4中,设∠FAC=∠FAB=y.由题意同法可得:∠D1F1A=90°﹣(180°﹣n﹣y)=n+y﹣90°,∠AF1C=180°﹣y﹣n﹣(180°﹣n)=135°﹣y﹣n,∴∠D1F1A﹣∠AF1C=n+y﹣90°﹣(135°﹣y﹣n)=n+3y﹣225°,∵2y+30°+n=180°,∴y=75°﹣n,∴∠D1F1A﹣∠AF1C=n+y﹣90°﹣(135°﹣x﹣n)=n+225°﹣n﹣225°=n.10.解:(1)连接OB,∵点O是边长为4的等边三角形ABC的中心,∴∠ABO=∠CBO=30°,∵当E为AB中点时,∴AE=BE=2,OE⊥AB,∴∠BOE=60°,OE==,∵∠EOF=120°,∴∠BOF=60°,∴∠BFO=180°﹣30°﹣60°=90°,∴BF=CF=2,∴OF==,∴四边形OEBF的面积=×2×+×2×=;(2)不变,理由如下:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的中心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=4,∴BN=NC=2,∴ON=tan∠OBC•BN=×2=,∴S=BC•ON=,△OBC∵∠EOF=∠BOC=120°,∴∠EOF﹣∠BOF=∠BOC﹣∠BOF,即∠EOB=∠FOC,,∴△EOB ≌△FOC (ASA ),∴S △EOB =S △FOC ,∴S 四边形OEBF =S △OBC =.11.解:(1)∵△ABM 是等边三角形,BC ⊥AM ,∴∠ABC =ABM =30°,∵∠APD =60°,∴∠BAP =∠ABP =∠PAC =30°,∴AP =PB ,PC =AP ,∵AP =PC ,∴PC =PD ,∴PC =CD ,∵AC =MC ,∠ACP =∠MCD ,∴△APC ≌△MDC (SAS ),∴DM =AP ,∠CMD =∠PAC =30°,∴PB =DM ,∠BMD =60°+30°=90°,故答案为:相等;90°;(2)成立,证明如下:如图②,连接AD ,∵△AMB 是等边三角形,∴AB =AM ,由旋转的性质可得:AP =DP ,∠APD =60°,∴△AMB 是等边三角形,∴PA =PD =AD ,∴∠BAP =∠BAC +∠CAP ,∠MAD =∠PAD +∠CAP ,∠BAC =∠PAD , ∴∠BAP =∠MAD ,∵,∴△BAP≌△MAD(SAS),∴BP=MD,∠AMD=∠ABC=30°.∵∠BMA=60°,∴∠DMB=∠BMA+∠AMD=90°;(3)如图③,由(2)知,∠BMD=90°∵∠BDM=30°,∴∠DBM=60°,∴D在BA的延长线上,由旋转的性质可得:AP=DP,∠APD=60°,∴△AMB是等边三角形,∴PA=PD=AD,∵BM=4,∴BD=8,∴AP=AD=4;如图④,由(2)知,∠BMD=90°,∵∠BDM=30°,∵BM=4,∴DM=4,由旋转的性质可得:AP=DP,∠APD=60°,∴△AMB是等边三角形,∴PA=PD=AD,∠PAD=∠BAM=60°,∴∠PAB=∠DAM,∵AB=AM,∴△ABP≌△AMD(SAS),∴PB=DM=4,∵AC=2,BC=2,∴CP=6,∴AP==4综上所述,线段AP的长度为4或.12.解:(1)BD⊥CE,理由:延长CE交BD于P,∵将线段AD绕点A逆时针旋转90°,得到线段AE,∴AD=AE,∠DAE=90°,∵∠BAC=90°,AB=AC,∵∠DAB+∠BAE=∠CAE+∠BAE=90°,∴∠DAB=∠EAC,∴△DAB≌△EAC(SAS),∴∠ABD=∠ACE,∵∠ABC+∠ACB=∠ABP+∠ABC+∠PCB=90°,∴∠BPC=90°,∴BD⊥CE,故答案为:BD⊥CE;(2)BD和CE的数量是:BD=CE;由(1)知△ABD≌△ACE,∴BD=CE;(3)①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==,同(1)可证△ADB≌△AEC.∵∠AEC=∠BEP,∴∠BPE=∠EAC=90°,∵∠PBE=∠ABD,∴△BPE∽△BAD,∴=,∴=,∴BP=.②当点E在BA延长线上时,BE=3,∵∠EAC=90°,∴CE==,由△BPE∽△BAD,∴=,∴=,∴PB=,综上所述,PB的长为或.13.(1)解:图形如图1所示:(2)证明:如图2中,过点A作AH⊥FE交FE的延长线于H.∵EF∥AD,∠H=90°,∴∠HAD=180°﹣∠H=90°,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,AB=CD,BC=AD,∵∠CAE=∠DAH=90°,∴∠HAE=∠DAC,∵∠H=∠ADC=90°,AE=AC,∴△AHE≌△ADC(AAS),∴EH=CD=AB,AH=AD=EF,∵∠DAH+∠BAD=180°,∴B,A,H共线,∵AH=EF,EH=AB,∴HB=HF,∴∠HBF=∠HFB=45°,∴∠AGB=∠ABG=45°,∴AB=AG,∴EH=AG,∵EH∥AG,∴四边形AHEG是平行四边形,∵∠H=90°,∴四边形AHEG是矩形,∴∠AGE=90°,∴EG⊥AD.(3)解:如图3中,过点A作AH⊥FE交FE的延长线于H.由(2)可知,AB=BG=2,∵∠BAG=90°,∴BG=AB=2,∵AG∥BC,∴==,∴a=BM=BG=,由(2)可知,BH=HF=2+4=6,∵∠H=90°,∴BF=6,∵EF∥BC,∴∠NEF=∠NCB,∵∠ENF=∠CNB,EF=BC,∴△ENF≌△CNB(AAS),∴b=NF=BF=3,∴(a+1)(b+1)=(+1)(3+1)=8++3+1=9+<9+6,∴(a+1)(b+1)<9+6.14.解:(1)∵△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,∴AC=BC=4,AB=AC=4,DE=BE,DB=BE,∠ABC=45°,∠DBE=45°,∵AB=2BD,∴AD=BD=2,∴BE=2,∵∠CBE=∠ABC+∠DBE=90°,∴CE===2,∵点F是CE的中点,∴BF=CE=;(2)如图,连接AN,设DE与AB交于点H,∵点M是AD中点,∴AM=MD,又∵MN=ME,∠AMN=∠DME,∴△AMN≌△DME(SAS),∴AN=DE,∠MAN=∠ADE,∴AN∥DE,∴∠NAH+∠DHA=180°,∵∠NAH=∠NAC+∠CAB=∠NAC+45°,∠DHA=∠EDB+∠DBH=45°+∠DBH,∴∠NAC+45°+45°+∠DBH=180°,∴∠NAC+∠DBH=90°,∵∠CBA+∠DBE=45°+45°=90°,∴∠CBE+∠DBH=90°,∴∠CBE=∠NAC,又∵AC=BC,AN=DE=BE,∴△ACN≌△BCE(SAS),∴∠ACN=∠BCE,∵∠BCE+∠ACE=90°,∴∠ACN+∠ACE=90°=∠NCE,∴CN⊥CE.15.解:(1)等腰三角形,理由如下:∵AP∥BC,∴∠APC=∠BCP,∠APO=∠CBP,∵△OAP沿着AP折叠,∴∠APO=∠APC,∴∠PCB=∠PBC,∴PC=PB,∴△BCP是等腰三角形;(2)当t>0时,如图,∵△OAP沿着AP折叠,∴∠AOP=∠ACP=90°,OP=PC=t,∴∠ACP+∠BCP=180°,∴点A,点C,点B三点共线,∵点A(0,8),B(16,0),∴OA=8,OB=16,∴AB===8,∵tan∠ABO=,∴,∴t=4﹣4;当t<0时,如图,同理可求:t=﹣4﹣4;(3)∵△OAP沿着AP折叠,∴AC=AO=8,∠ACP=∠AOP=90°,∵BH⊥CP,∴∠ACP=∠BHC=90°,∵AH=BC,CH=CH,∴Rt△ACH≌Rt△BHC(HL)∴AC=BH,∴四边形AHBC是平行四边形,如图2,当0≤t≤16时,点H在PC上时,连接AB交CH于G,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t﹣8)2,∴t=8;如图3,当0≤t≤16时,点H在PC的延长线上时,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=;如图4,当t<0时,同理可证:四边形ABHC是平行四边形,又∵AH=BC,∴四边形ABHC是矩形,∴AC=BH=8,AB=CH=4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=16﹣8;当t>16时,如图5,∵四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,CP=OP=t,在Rt△PHB中,PB2=BH2+PH2,∴(t﹣16)2=64+(t﹣8)2,∴t=16+8.综上所述:当t=8或或16﹣8或16+8时,存在AH=BC.16.解:(1)如图1中,∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;(2)结论正确,理由如下:如图2中,作DM⊥BC于M,AN⊥EC交EC的延长线于N.∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC =S△AEC.17.解:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:AF=BE,90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴,∵AB=8,∴BE=AF=4,故BE的长为2或4.18.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴,∴.∴;(3)如图,过C作CG⊥AB于G,则AG=AB,∵∠ACB=90°,AC=BC,∴CG=AB,即=,∵点F为AD的中点,∴FA=AD,∴FG=AG﹣AF=AB﹣AD=(AB﹣AD)=BD,由(1)可得:BD=AE,∴FG=AE,即=,∴=,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。

旋转问题必考题型梳理(精编Word)

旋转问题必考题型梳理(精编Word)

网红“旋转”问题必考题型梳理(57页Word)题型1 旋转的概念旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.旋转对称图形:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.例题1下面是4个能完全重合的正六边形,请仔细观察A、B、C、D四个图案,其中与所给图形不相同的是()A.B.C.D.【分析】将选项中的图形绕正六边形的中心旋转,与题干的图形不相同的即为所求.【解析】观察图形可知,只有选项B中的图形旋转后与图中的正六边形不相同.选B.【小结】此题考查了全等图形以及生活中的旋转现象,关键是掌握旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.变式1如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.144°B.90°C.72°D.60°【分析】如图,由于是正五角星,设O的是五角星的中心,那么∠AOB=∠BOC=∠COD=∠DOE=∠AOE,所以要使正五角星旋转后与自身重合,那么它们就是旋转角,而它们的和为360°,由此即可求出绕中心顺时针旋转的角度.【解析】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.选C.【小结】此题主要考查了旋转对称图形的性质,解答此题的关键是找到对应点,A和B重合,B和C重合…,进而判断出将它绕中心顺时针旋转的最小角度.变式2如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.点N C.点P D.点Q【分析】先确定点A与点E为对应点,点B和点F为对应点,则根据旋转的性质得旋转中心在AE的垂直平分线上,也在BF的垂直平分线上,所以作AE的垂直平分线和BF的垂直平分线,它们的交点即为旋转中心.【解析】∵△ABC经过旋转后得到△EFD,∴点A与点E为对应点,点B和点F为对应点,∴旋转中心在AE的垂直平分线上,也在BF的垂直平分线上,作AE的垂直平分线和BF的垂直平分线,它们的交点为N点,如图,即旋转中心为N点.选B.【小结】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.变式3规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.【解析】(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:【小结】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.题型2 利用旋转求角度解决此类问题的关键是掌握旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.例题2如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°【分析】根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA'=∠CAB+∠BAA′,进而可得∠CAA'的度数.【解析】∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=12(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.选D.【小结】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.变式4 如图,将△OAB 绕点O 逆时针旋转70°,得到△OCD ,若∠A =2∠D =100°,则∠a 的度数是( )A .50°B .60°C .40°D .30°【分析】根据旋转的性质得知∠A =∠C ,∠AOC 为旋转角等于70°,则可以利用三角形内角和定理列出等式进行求解.【解析】∵将△OAB 绕点O 逆时针旋转70°, ∴∠A =∠C ,∠AOC =70°,∴∠DOC =70°﹣α, ∵∠A =2∠D =100°,∴∠D =50°,∵∠C +∠D +∠DOC =180°,∴100°+50°+70°﹣α=180°,解得α=40°,选C .【小结】本题主要考查了旋转的性质及三角形的内角和定理,熟知图形旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角是解决本题的关键.变式5 如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .α2B .23αC .αD .180°﹣α【分析】证明∠ABE +∠ADE =180°,推出∠BAD +∠BED =180°即可解决问题. 【解析】∵∠ABC =∠ADE ,∠ABC +∠ABE =180°, ∴∠ABE +∠ADE =180°, ∴∠BAD +∠BED =180°,∵∠BAD =α,∴∠BED =180°﹣α.选D .【小结】本题考查旋转的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.变式6Rt△ABC,已知∠C=90,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D 逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A.80B.80或120C.60或120D.80或100【分析】分类讨论:当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AB边上的B′点位置,如图1,根据旋转性质得∠BDB′=m,DB′=DB,则∠1=∠B=50°,然后根据三角形内角和定理计算出m=80°;当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AC边上的B′点,如图2,根据旋转性质得∠BDB′=m,DB′=DB,由BD=2CD得到DB′=2CD,利用含30度直角三角形三边关系得∠CB′D=30°,则∠B′DC=60°,所以∠BDB′=120°,即m=120°.【解析】当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AB边上的B′点,如图1,∴∠BDB′=m,DB′=DB,∴∠1=∠B=50°,∴∠BDB′=180°﹣∠1﹣∠B=80°,即m=80°;当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AC边上的B′点位置,如图2,∴∠BDB′=m,DB′=DB,∵BD=2CD,∴DB′=2CD,∴∠CB′D=30°,则∠B′DC=60°,∴∠BDB′=180°﹣∠B′DC=120°,即m=120°,综上所述,m的值为80°或120°.选B.【小结】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用含30度的直角三角形三边的关系也是解决问题的关键.题型3 旋转作图(坐标系)例题3在如图所示平面直角坐标系中(每个小方格都是边长为1个单位长度的正方形),解答下列问题:(1)画出与△ABC关于y轴对称的△A1B1C1;(2)画出以C1为旋转中心,将△A1B1C1顺时针旋转90°后的△A2B2C1;(3)连接A1A2,则△C1A1A2是三角形,并直接写出△C1A1A2的面积.【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A1、B1的对应点A2、B2即可;(3)利用勾股定理的逆定理可判断△C1A1A2是等腰直角三角形,然后根据三角形面积公式计算它的面积.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)∵C1A12=12+22=5,C1A22=12+22=5,A1A22=12+32=10,∴C1A12+C1A22=A1A22,∴△C1A1A2是直角三角形,而C1A1=C1A2,∴△C1A1A2是等腰直角三角形,它的面积=12×√5×√5=52.故答案为等腰直角.【小结】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后图形.变式7在平面直角坐标系中,△ABC的点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:(1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1,在坐标系中画出△A1B1C1,写出A1、B1、C1的坐标;(2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.(3)作出△ABC关于点O的中心对称图形△A2B2C2.【分析】(1)依据点(0,0)为旋转中心,将△ABC顺时针转动90°,即可得到△A1B1C1;(2)依据旋转前后坐标的变化规律,即可得到对应点P1的坐标;(3)依据中心对称的性质,即可得到△ABC关于点O的中心对称图形△A2B2C2.【解析】(1)如图所示,△A1B1C1即为所求,A1(4,﹣2)、B1(2,﹣1)、C1(3,﹣5);(2)若△ABC上有一点P(m,n),则对应点P1的坐标为(n,﹣m).(3)如图所示,△A2B2C2即为所求.【小结】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.变式8如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,坐标分别为A(2,2),B(1,0),C(3,1).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出将△ABC绕原点O顺时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,直接写出对称中心的坐标.【分析】(1)利用利用y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A2、B2、C2,从而得到△A2B2C2;(3)根据中心对称的定义进行判断.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)△A1B1C1与△A2B2C2成中心对称图形,对称中心的坐标为(−12,−12).【小结】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.变式9如图,在平面直角坐标系中,A(1,1).(1)若△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1,并写出点B1的坐标;(2)点C绕O点逆时针方向旋转90°后所对应点C2的坐标为;(3)在x轴上存在一点P,且满足点P到点B1和点C1距离之和最小,请直接写出PB1+PC1的最小值.【分析】(1)根据中心对称图形的性质,△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1,并写出点B1的坐标即可;(2)根据旋转的性质即可写出点C绕O点逆时针方向旋转90°后所对应点C2的坐标;.(3)根据两点之间线段最短,作点C1关于x轴的对称点,连接C′B1与x轴交于一点P,且满足点P到点B1点C1离之和最小,根据勾股定理,即可写出PB1+PC1的最小值.【解析】(1)如图,△A1B1C1即为所求,点B1的坐标为(﹣4,﹣4);(2)点C2的坐标为(﹣1,5);(3)点P即为所求,PB1+PC1的最小值为√26:【小结】本题考查了作图﹣旋转变换,轴对称、最短路线问题,解决本题的关键是掌握旋转的性质.题型4 与旋转有关的点的坐标例题4如图,在平面直角坐标系中,A(1,0),B(﹣2,4),AB绕点A顺时针旋转90°得到AC,则点C的坐标是()A.(4,3)B.(4,4)C.(5,3)D.(5,4)【分析】如图,过点B作BE⊥x轴于E,过点C作CF⊥x轴于F.利用全等三角形的性质求出AF,CF即可解决问题.【解析】如图,过点B作BE⊥x轴于E,过点C作CF⊥x轴于F.∵A(1,0),B(﹣2,4),∴OA=1,BE=4,OE=2,AE=3,∵∠AEB=∠AFC=∠BAC=90°,∴∠B+∠BAE=90°,∠BAE+∠CAF=90°,∴∠B=∠CAF,∵AB=AC,∴△BEA≌△AFC(AAS),∴CF=AE=3,AF=BE=4,OF=1+4=5,∴C(5,3),选C.【小结】本题考查坐标与图形的变化﹣旋转,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.变式10如图,等边△OAB的边OB在x轴上,点B坐标为(2,0),以点O为旋转中心,把△OAB逆时针旋转90°,则旋转后点A的对应点A'的坐标是()A.(﹣1,√3)B.(√3,﹣1)C.(−√3,1)D.(﹣2,1)【分析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.利用全等三角形的性质解决问题即可.【解析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴AE=√AO2−OE2√22−12=√3,∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,OH=AE=√3,∴A′(−√3,1),选C.【小结】本题考查坐标与图形变化﹣旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.变式11如图,在平面直角坐标系中,△AOB的顶点B在第一象限,点A在y轴的正半轴上,AO=AB=2,∠OAB=120°,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是()A.(﹣2−√32,√3)B.(﹣2−√32,2−√32)C.(﹣3,2−√32)D.(﹣3,√3)【分析】如图,作B′H⊥x轴于H.解直角三角形求出B′H,OH即可.【解析】作B′H⊥x轴于H.由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=12A′B′=1,B′H=√3,∴OH=3,∴B′(﹣3,√3),选D.【小结】本题考查坐标与图形变化﹣旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.变式12如图,在平面直角坐标系中,长方形ABCD的顶点B在坐标原点,顶点A、C分别在y轴、x轴的负半轴上,其中A(0,﹣4),C(﹣2,0),将矩形ABCD绕点D逆时针旋转得到矩形A'B'C'D,点B'恰好落在x轴上,线段B'A'与CD交于点E的坐标为()A.(﹣2,−32)B.(﹣2,−34)C.(﹣2,﹣2)D.(﹣2,−54)【分析】连接BD,B'D,根据矩形ABCD绕点D逆时针旋转得到矩形A'B'C'D,可得BD=B'D,再根据DC ⊥BB',即可得到BC=B'C=2=A'D,再判定△B'EC≌△DEA',得到B'E=DE,设CE=x,则B'E=DE=4﹣x,根据Rt△B'EC中,CE2+B'C2=B'E2,可得x2+22=(4﹣x)2,求得x的值即可得到点E的坐标.【解析】如图,连接BD,B'D,∵矩形ABCD绕点D逆时针旋转得到矩形A'B'C'D,∴BD=B'D,又∵DC⊥BB',A(0,﹣4),C(﹣2,0),∴BC=B'C=2=A'D,又∵∠B'CE=∠DA'E=90°,∠B'EC=∠DEA',∴△B'EC≌△DEA',∴B'E=DE,设CE=x,则B'E=DE=4﹣x,∵Rt△B'EC中,CE2+B'C2=B'E2,∴x2+22=(4﹣x)2,解得x=32,∴E(﹣2,−32),选A.【小结】本题考查了矩形的性质,坐标与图形性质以及等腰三角形的性质的运用,解题时注意题中辅助线的作法.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.题型5 与旋转有关的点的坐标(周期规律)例题5 如图,Rt △AOB 中,∠AOB =90°,OA =3,OB =4,将△AOB 沿x 轴依次以三角形三个顶点为旋转中心顺时针旋转,分别得图②,图③,则旋转到图⑩时直角顶点的坐标是( )A .(28,4)B .(36,0)C .(39,0)D .(912,32√3)【分析】根据勾股定理列式求出AB 的长度,然后根据图形不难发现,每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合,所以,第10个图形的直角顶点与第9个图形的直角顶点重合,然后求解即可.【解析】∵∠AOB =90°,OA =3,OB =4,∴AB =√OA 2+OB 2=√32+42=5,根据图形,每3个图形为一个循环组,3+5+4=12,所以,图⑨的直角顶点在x 轴上,横坐标为12×3=36,所以,图⑨的顶点坐标为(36,0),又∵图⑩的直角顶点与图⑨的直角顶点重合,∴图⑩的直角顶点的坐标为(36,0).选B .【小结】本题考查了坐标与图形的变化﹣旋转,仔细观图形,判断出旋转规律“每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合”是解题的关键.变式13如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2020次得到正方形OA2020B2020C2020,如果点A的坐标为(1,0),那么点B2020的坐标为()A.(﹣1,1)B.(−√2,0)C.(﹣1,﹣1)D.(0,−√2)【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.【解析】∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=√2,由旋转得:OB=OB1=OB2=OB3=⋯=√2,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,√2),B2(﹣1,1),B3(−√2,0),B(﹣1,﹣1),…,发现是8次一循环,所以2020÷8=252…4,∴点B2020的坐标为(﹣1,﹣1),选C.【小结】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法..变式14 如图,在平面直角坐标系中,点P 1的坐标为(√22,√22),将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;又将线段OP 2绕点O 按顺时针方向旋转45°,长度伸长为OP 2的2倍,得到线段OP 3;如此下去,得到线段OP 4,OP 5,…,OP n (n 为正整数),则点P 2020的坐标是 .【分析】根据题意得出OP 1=1,OP 2=2,OP 3=4,如此下去,得到线段OP 4=8=23,OP 5=16=24…,OP n =2n ﹣1,再利用旋转角度得出点P 2020的坐标与点P 4的坐标在同一直线上,进而得出答案. 【解析】∵点P 1的坐标为(√22,√22),将线段OP 1绕点O 按逆时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;∴OP 1=1,OP 2=2, ∴OP 3=4,如此下去,得到线段OP 4=23,OP 5=24…,∴OP n =2n ﹣1, 由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P 2020的坐标与点P 4的坐标在同一直线上,正好在y 轴的负半轴上,∴点P 2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).【小结】此题主要考查了点的变化规律,根据题意得出点P 2020的坐标与点P 4的坐标在同一直线上是解题关键.变式15如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x 轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O,…,依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为.【分析】根据题意得出B点坐标变化规律,进而得出点B2020的坐标位置,进而得出答案.【解析】∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).【小结】此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.题型6 与旋转有关的最值问题例题6如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P1,连CP1的最小值为()A.1.6B.2.4C.2D.2√2【分析】过点P′作P′E⊥AC于点E,由旋转的性质及同角的余角相等判断△DAP≌△P′ED,根据全等三角形的对应边相等得出P′E=AD=2,当AP=DE=2时,DE=DC,即点E和点C重合,此时CP′=EP′=2,故线段CP′的最小值为2.【解析】如图,过点P′作P′E⊥AC于点E,则∠A=∠P′ED=90°,由旋转可知:DP=DP′,∠PDP′=90°,∴∠ADP=∠EP′D,∴△DAP≌△P′ED(AAS)∴P′E=AD=2,∴当AP=DE=2时,DE=DC,即点E与点C重合,此时CP′=EP′=2,∴线段CP′的最小值为2.选C.【小结】本题考查了旋转的性质,解决本题的关键是准确作出辅助线构造全等三角形.变式16 如图,△ABC 是等边三角形,AB =4,E 是AC 的中点,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转90°,得到线段EF ,当点D 运动时,则AF 的最小值为( )A .2B .2√3C .√3D .√3+1【分析】作DM ⊥AC 于M ,FN ⊥AC 于N ,如图,设DM =x ,则CM =√33x ,可计算出EM =−3√3x +2,再利用旋转的性质得到ED =EF ,∠DEF =90°,证明△EDM ≌△FEN ,当D 在BC 上时,DM =EN =x ,EM=NF =−√33x +2,接着利用勾股定理得到AF 2=(−√33x +2)2+(2+x )2,配方得到AF 2=43(x +3−√32)2+4+2√3,此时AF 2没有最小值,当D 在BC 的延长线上时,DM =EN =x ,EM =NF =√33x +2,在Rt △AFN 中,AF 2=(√33x +2)2+(2﹣x )2=43(x −3−√32)2+4+2√3,然后利用非负数的性质得到AF 的最小值.【解析】作DM ⊥AC 于M ,FN ⊥AC 于N ,如图,设DM =x ,在Rt △CDM 中,CM =√33DM =√33x ,而EM +√33x =2,∴EM =−√33x +2,∵线段ED 绕点E 逆时针旋转90°,得到线段EF ,∴ED =EF ,∠DEF =90°,易得△EDM ≌△FEN , 当D 在BC 上时,∴DM =EN =x ,EM =NF =−√33x +2,在Rt △AFN 中,AF 2=(−√33x +2)2+(2+x )2=43(x +3−√32)2+4+2√3,此时AF 2没有最小值, 当D 在BC 的延长线上时,∴DM =EN =x ,EM =NF =√33x +2, 在Rt △AFN 中,AF 2=(√33x +2)2+(2﹣x )2=43(x −√33)2+4+2√3,当x =3−√32时,AF 2有最小值4+2√3,∴AF 的最小值为√4+2√3=√3+1.选D . 【小结】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.变式17 如图,△ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,DF 的最小值是 .【分析】取线段AC 的中点G ,连接EG ,根据等边三角形的性质以及角的计算即可得出CD =CG 以及∠FCD =∠ECG ,由旋转的性质可得出EC =FC ,由此即可利用全等三角形的判定定理SAS 证出△FCD ≌△ECG ,进而即可得出DF =GE ,再根据点G 为AC 的中点,即可得出EG 的最小值,此题得解. 【解析】取线段AC 的中点G ,连接EG ,如图所示.∵△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =6,∠ACD =60°, ∵∠ECF =60°,∴∠FCD =∠ECG .在△FCD 和△ECG 中,{FC =EC∠FCD =∠ECG DC =GC ,∴△FCD ≌△ECG (SAS ),∴DF =GE .当EG ∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时EG =DF =12CD =14BC =3.【小结】本题考查等边三角形性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF =GE .本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.变式18如图,等腰直角△ABC中,∠ACB=90°,AC=BC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,则点D在运动过程中ME的最小值为.【分析】连接BE,过点M作MG⊥BE的延长线于点G,过点A作AK⊥AB交BD的延长线于点K,可得△AKB是等腰直角三角形.根据线段AD绕点A逆时针旋转90°得到线段AE,可得△ADE是等腰直角三角形,从而证明△ADK≌△AEB,得∠ABE=∠K=45°,可得△BMG是等腰直角三角形,可求得MG的长,当ME=MG时,ME的值最小,进而可得ME的最小值.【解析】如图,连接BE,过点M作MG⊥BE的延长线于点G,过点A作AK⊥AB交BD的延长线于点K,∵等腰直角△ABC中,∠ACB=90°,∴∠B=45°,∴∠K=45°,∴△AKB是等腰直角三角形.∵线段AD绕点A逆时针旋转90°得到线段AE,∴△ADE是等腰直角三角形,∴∠KAD+∠DAB=∠BAE+∠DAB=90°,∴∠KAD=∠BAE,在△ADK和△AEB中,{AD=AE∠KAD=∠BAEAK=AB∴△ADK≌△AEB(SAS),∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵AC=BC=4,∴AB=4√2,∵M为AB中点,∴BM=2√2,∴MG=BG=2,∠G=90°,∴BM>MG,∴当ME=MG时,ME的值最小,∴ME=BE=2.【小结】本题考查了轨迹,解决本题的关键是综合运用旋转的性质、等腰直角三角形的性质、三角形全等的判定与性质、勾股定理等知识.题型7 旋转综合变换例题7已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAB绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请写出你的猜想,并加以证明.【分析】(1)结论:BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)结论:DN﹣BM=MN.首先证明△ADQ≌△ABM,得DQ=BM,再证明△AMN≌△AQN(SAS),得MN=QN,【解析】(1)BM +DN =MN 成立.证明:如图,把△ADN 绕点A 顺时针旋转90°,得到△ABE ,则可证得E 、B 、M 三点共线(图形画正确).∴∠EAM =90°﹣∠NAM =90°﹣45°=45°, 又∵∠NAM =45°,∴在△AEM 与△ANM 中,{AE =AN∠EAM =∠NAM AM =AM ,∴△AEM ≌△ANM (SAS ),∴ME =MN ,∵ME =BE +BM =DN +BM ,∴DN +BM =MN ; (2)DN ﹣BM =MN . 在线段DN 上截取DQ =BM ,在△ADQ 与△ABM 中,∵{AD =AB∠ADQ =∠ABM DQ =MB ,∴△ADQ ≌△ABM (SAS ),∴∠DAQ =∠BAM ,∴∠QAN =∠MAN .在△AMN 和△AQN 中,{AQ =AM∠QAN =∠MAN AN =AN,∴△AMN ≌△AQN (SAS ),∴MN =QN ,∴DN ﹣BM =MN .【小结】本题考查正方形的性质、旋转变换等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.变式19在△ABC和△DCE中,∠ACB=∠DCE=90°,AC=BC,DC=EC.(1)如图1,点D在BC上,求证:AD=BE,AD⊥BE.(2)将图1中的△DCE绕点C按逆时针方向旋转到图2所示的位置,旋转角为α(α为锐角),线段DE,AE,BD的中点分别为P,M,N,连接PM,PN.①请直接写出线段PM,PN之间的关系,不需证明;②若AE=2PM,求α.【分析】(1)证明△ACD≌△BCE(SAS),可得AD=BE,∠CAD=∠CBE.根据直角三角形两锐角互余可得:∠AFB=90°,所以AD⊥BE;(2)①先证明△ACD≌△BCE(SAS),得AD=BE,∠CAD=∠OBQ,再证明AD⊥BE,根据三角形的中位线定理得:PM=12AD,PM∥AD,PN=12BE,PN∥BE,所以PM=PN,PM⊥PN;②证明△ACE≌△BCE.得∠ACE=∠BCE.根据周角定义和直角可得α的值.【解答】(1)证明:如图1,延长AD交BE于F.在△ACD和△BCE中,{AC=BC∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS).∴AD=BE,∠CAD=∠CBE.∵∠ACB=90°,∴∠CEB+∠CBE=∠ACB=90°,∴∠AFB=∠CEB+∠CAD=∠CEB+∠CBE=90°,∴AD⊥BE.(2)①PM =PN ,PM ⊥PN .理由是:如图2,连接BE ,AD ,交于点Q , ∵∠ACB =∠ECD =90°,∴∠ACB +∠BCD =∠BCD +∠ECD , 即∠ACD =∠BCE ,在△ACD 和△BCE 中,∵{AC =BC∠ACD =∠BCE CD =CE ,∴△ACD ≌△BCE (SAS ),∴AD =BE ,∠CAD =∠OBQ ,∵∠AOC =∠BOQ ,∴∠BQO =∠ACO =90°,∴AD ⊥BE , ∵M 是AE 的中点,P 是ED 的中点,∴PM =12AD ,PM ∥AD , 同理得:PN =12BE ,PN ∥BE ,∴PM =PN ,PM ⊥PN . ②由①知PM =PN , 又∵AE =2PM ,∴AE =BE .在△ACE 和△BCE 中,{AC =BCAE =BE CE =CE ,∴△ACE ≌△BCE (SSS ),∴∠ACE =∠BCE .∵∠ACB =∠DCE =90°,∴∠ACE =∠BCE =(360°﹣∠ACB )÷2=135°, ∴α=∠BCD =∠BCE ﹣∠DCE =135°﹣90°=45°.【小结】本题考查几何变换综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、三角形的中位线定理等知识,解题的关键是灵活运用这些知识,学会利用三角形全等的性质解决问题,属于中考压轴题.变式20【操作发现】如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,将线段CD 绕点C顺时针旋转60°得到线段CF,连接AF、EF,请直接写出下列结果:①∠EAF的度数为;②DE与EF之间的数量关系为;【类比探究】如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB边上的一点,∠DCE=45°,将线段CD绕点C顺时针旋转90°得到线段CF,连接AF、EF.①则∠EAF的度数为;②线段AE,ED,DB之间有什么数量关系?请说明理由;【实际应用】如图3,△ABC是一个三角形的余料,小张同学量得∠ACB=120°,AC=BC,他在边BC上取了D、E两点,并量得∠BCD=15°、∠DCE=60°,这样CD、CE将△ABC分成三个小三角形,请求△BCD、△DCE、△ACE这三个三角形的面积之比.【分析】操作发现:①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;类比探究:①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS 证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论;实际应用:同类比探究的方法:判断出∠EAF=60°,△AEF是直角三角形,即可得出BD,DE,AE的关系,最后用同高的三角形的面积比等于底的比即可得出结论.【解析】操作发现:①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,由旋转知,CD=CF,∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,{AC=BC∠ACF=∠BCDCF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《中考旋转作图题》专题
班级姓名
【2013•鸡西•第22题•6分】如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示.
(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.
(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)
【2012•鸡西•第22题•6分】顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC. 设网格中小正方形的边长为1个单位长度.
⑴在网格中画出△ABC向上平移4个单位后得到的△A1B1C1 .
⑵在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2.
⑶在⑴中△ABC向上平移过程中,求边AC所扫过区域的面积.
C
A B
【2011•鸡西•第22题•6分】如图,每个小方格都是边长为1个单位长度的小正方形. (1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.
(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2.
(3)画出一条直线将△AC1A2的面积分成相等的两部分.
【2010•鸡西•第22题•6分】
△ABC在如图所示的平面直角坐标系中.
⑴画出△ABC关于原点对称的△A1B1C1.
⑵画出△A1B1C1关于y轴对称的△A2B2C2.
⑶请直接写出△AB2A1的形状.
【2009•鸡西•第22题•6分】
△ABC在如图所示的平面直角坐标系中.
(1)画出△ABC关于y 轴对称的△A1B1C1.
(2)画出将△ABC绕点O顺时针旋转90°得到的
△A2B2C2.
(3)求∠CC2C1的度数.。

相关文档
最新文档