整式和分式运算及答案
分式运算的典型例题
分式运算的典型例题————————————————————————————————作者:————————————————————————————————日期:分式运算的典型例题例1. 下列式子中,哪些是整式,哪些是分式?a +b 3,1x +2,3y 2-2,a +b a -b ,10π,-18,x -y xy . 分析:看一个式子是否为分式,关键是看其分母中有无字母,有则是,没有则不是.解:整式有:a +b 3,3y 2-2,10π,-18. 分式有:1x +2,a +b a -b ,x -y xy. 评析:a +b 3虽是分数的形式,但分母中不含有字母,所以它不是分式,对于10π来说,分母中含有字母π. 但π是一个常数,所以它不是分式,而是整式.例2. 分式a 2-1a 2+2a +1有意义的条件是__________,等于0的条件是__________. 分析:当分母a 2+2a +1≠0时,分式有意义;当⎩⎪⎨⎪⎧a 2+2a +1≠0a 2-1=0 时,分式的值为0. 解:当a 2+2a +1≠0,即a ≠-1时,分式有意义;当⎩⎪⎨⎪⎧a 2+2a +1≠0a 2-1=0 时,即a =1时,分式的值为0. 评析:结合具体问题,熟练应用分式有意义和分式值为0的条件例3 分式1a b +,222a a b -,b b a-的最简公分母为 ( ) A .(a 2-b 2)(a+b )(a-b ) B .(a 2-b 2)(a+b )C .(a 2-b 2)(b-a )D .a2-b2解:因为a2-b2=(a+b )(a-b ) b-a=-(a-b )因此最简公分母为a2-b2,故选D .例4 通分:(1)21a b ,21ab ;(2)1x y -,1x y +;(3)221x y -,21x xy +.解:(1)21a b 与21ab 的最简公分母为a2b2,所以21a b =21b a b b g g =22b a b ,21ab =21a a b a g g =22a a b; (2)1x y -与1x y+的最简公分母为(x-y )(x+y ),即x-y ,所以 1x y -=1()()()x y x y x y +-+g =22x y x y +- ,1x y +=1()()()x y x y x y -+-g =22x y x y --; (3)因为x 2-y 2=(x+y )(x-y ),x 2+xy=x (x+y ),所以221x y -与21x xy+的最简公分母为x (x+y )(x-y ),即x (x 2-y 2), 因此221x y -=22()x x x y -,21x xy +=22()x y x x y --. 例5 某人骑自行车匀速爬上一个斜坡后立即匀速下坡回到出发点,若上坡速度为v 1,下坡速度为v 2,求他上、下坡的平均速度为 ( )A .122v v + B .1212v v v v + C .1212v v v v + D .12122v v v v + 分析:设坡长为S ,则上坡时间为1S v ,下坡时间为2S v ,故平均速度为122S S S v v +,•再运用分式的性质即可求解.答案: D例6已知1x -1y=3,求分式2322x xy y x xy y +---的值. 分析:条件分式求值有两种途径:一种是将条件变形,求得待求式的特征;•一种是将待求式进行变形,以适应已知条件.解法一:因为1x -1y=3,所以y-x=3xy , 从而2322x xy y x xy y +---=32()2()xy y x xy y x -----=32323xy xy xy xy ---g =35xy xy --=35. 解法二:=2322x xy y x xy y +---=223112y x y x +---=1132()112()x y x y-----=32323-⨯--=35--=35.。
整式与分式例题和知识点总结
整式与分式例题和知识点总结一、整式整式是代数式的一部分,是有理式的一部分,在有理式中可以包含加、减、乘、除、乘方五种运算,但在整式中除数不能含有字母。
1、单项式由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如:3x 是单项式,系数是 3,次数是 1;-5 是单项式,系数是-5,次数是 0;$x^2y$是单项式,系数是 1,次数是 3。
2、多项式几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
例如:$2x 3$是多项式,有两项,分别是 2x 和-3,其中-3 是常数项,次数是 1;$x^2 + 2x + 1$是多项式,有三项,分别是$x^2$、2x 和 1,次数是 2。
3、整式的加减整式加减的实质是合并同类项。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
例如:3x + 5x = 8x, 7$y^2$ 2$y^2$ = 5$y^2$例题 1:化简$5a^2b 3ab^2 + 2ab^2 4a^2b$解:原式=(5 4)$a^2b +(-3 + 2)ab^2$=$a^2b ab^2$例题 2:已知多项式$A = 3x^2 5x + 1$,$B =-2x^2 + 3x 4$,求$A + B$。
解:$A + B =(3x^2 5x + 1) +(-2x^2 + 3x 4)$=$3x^2 5x + 1 2x^2 + 3x 4$=$(3 2)x^2 +(-5 + 3)x +(1 4)$=$x^2 2x 3$4、整式的乘法(1)单项式乘以单项式系数相乘,同底数幂相乘,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:$2x^2 \cdot 3x^3 = 6x^5$(2)单项式乘以多项式用单项式去乘多项式的每一项,再把所得的积相加。
初二整式与分式练习题
初二整式与分式练习题整式与分式是初中数学中的重要概念,对于学好代数和解决实际问题具有重要意义。
下面我将为大家提供一些初二整式与分式练习题,希望能够帮助大家加深对这两个概念的理解,并提高解题能力。
1. 简化以下整式:(1) $3x + 2y - 4x + 5y$(2) $5a^2 - 2b + 3a^2 + b$(3) $2x^3 - x^2 + 3x^3 - 4x$(4) $10m^2n - 5mn^2 + 2m^2n - 3mn^2$2. 求以下整式的和:(1) $2x^2 + 3xy - 4x^2 + 5xy$(2) $5a^2 - 2b + 3a^2 + b - 6a^2$(3) $3x^3 - x^2 + 5x^3 - 4x + x^2 - 2x^3$(4) $4m^2n - mn^2 + 2m^2n - 3mn^2 + mn^2 - m^2n$3. 将以下分数化简:(1) $\frac{3x - 2}{6x}$(2) $\frac{2m - n}{3m + 4n}$(3) $\frac{5a^2 - 4ab}{2ab}$(4) $\frac{7x^3 - 3x^2}{x^2 - 4}$4. 计算以下分式的值:(1) $\frac{2x^2 - 3x + 1}{x + 2}$,当$x = 3$时(2) $\frac{3a^2 - 2ab}{b}$,当$a = 4, b = 2$时(3) $\frac{5x^3 - 2x}{x^2 + 1}$,当$x = -1$时(4) $\frac{4m^2n - mn^2}{2n^2 - m^2}$,当$n = 1, m = 3$时5. 解方程:(1) $2x - 3 = 5$(2) $3y - 2 = y + 4$(3) $2a^2 - 5a = 3$(4) $4m^2 - 2m = 6$以上是一些初二整式与分式的练习题,希望通过这些题目的训练,大家能够更好地理解整式与分式的概念,并能够熟练地应用到解题中。
数学整式试题答案及解析
数学整式试题答案及解析1.下列运算正确的是【】A.x3+x2=2x6B.3x3÷x=2x2C.x4·x2=x8D.(x3)2=x6【答案】D。
【解析】根据合并同类项,同底幂的除法和乘法,幂的乘方运算法则逐一计算作出判断:A.x3和x2不是同类项,不可以合并,选项错误;B.3x3÷x=3x2,选项错误;C.x4·x2=x4+2=x6,选项错误;D.,选项正确。
故选D。
2.观察下列等式:;;;;……用自然数(其中)表示上面一系列等式所反映出来的规律是.【答案】(n+3)2﹣n2=6n+9.【解析】等式的左边是两个平方项的差,且第一个平方项比第二个平方项多3,所以左边表示为(n+3)2﹣n2.利用平方差公式(n+3)2﹣n2=(n+3-n)(n+3+n)=3(2n+3)=6n+9.3.先化简,再求值:(2a﹣b)2﹣b2,其中a=﹣2,b=3.【答案】40【解析】解:原式=。
将a=﹣2,b=3代入上式得:原式=4×(﹣2)2﹣4×(﹣2)×3=16+24=40。
将整式利用完全平方公式展开,再合并同类项,再将a,b代入求出即可。
4.下列四个算式中正确的算式有()①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(﹣x)3]2=(﹣x)6=x6;④(﹣y2)3=y6.A.0个B.1个C. 2个D.3个【答案】C【解析】根据幂的乘方,底数不变指数相乘的性质计算即可.(a m)n=a mn.解:①应为(a4)4=a4×4=a16,故不对;②[(b2)2]2=b2×2×2=b8,正确;③[(﹣x)3]2=(﹣x)6=x6,正确;④应为(﹣y2)3=﹣y6,故不对.所以②③两项正确.故选C.【考点】幂的乘方与积的乘方.点评:本题考查了幂的乘方的运算法则.应注意运算过程中的符号.5.多项式﹣5(ab)2+ab+1是次项式.【答案】四三【解析】根据多项式的次数与项数的定义作答.解:∵(ab)2=a2b2,∴多项式﹣5(ab)2+ab+1是四次三项式.【考点】幂的乘方与积的乘方;多项式.点评:本题主要考查了多项式的次数与项数的定义.几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,一个多项式含有几项就叫几项式;多项式中次数最高的项的次数叫做多项式的次数.本题运用积的乘方的运算性质将(ab)2写成a2b2,是解题的关键.6.已知(a﹣3)a+2=1,则整数a=.【答案】﹣2、2、4【解析】由于(a﹣3)a+2=1,底数和指数都不确定,所以本题应分三种情况进行讨论.①若a﹣3≠±1时,根据零指数幂的定义,a+2=0,进而可以求出a的值;②若a﹣3=1时,1的任何次幂都等于1;③若a﹣3=﹣1时,﹣1的偶次幂等于1.解:①∵若a﹣3≠±1时,(a﹣3)a+2=1,∴a+2=0,∴a=﹣2.②若a﹣3=1时,1的任何次幂都等于1,∴a=4;③若a﹣3=﹣1时,﹣1的偶次幂等于1,∴a=2;故应填﹣2、2、4.【考点】零指数幂.点评:本题主要考查了一些特殊数据的幂的性质,解题的关键是根据所给代数式的特点,分析a 的值.7.阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为loga b(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?loga M+logaN=;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.【答案】(1)2 4 6(2)log24+log216=log264(3)loga(MN)(4)首先可设loga M=b1,logaN=b2,再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.【解析】首先认真阅读题目,准确理解对数的定义,把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察,不难找到规律:4×16=64,log24+log216=log264;(3)有特殊到一般,得出结论:loga M+logaN=loga(MN);(4)首先可设loga M=b1,logaN=b2,再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.解:(1)log24=2,log216=4,log264=6;(2)4×16=64,log24+log216=log264;(3)loga M+logaN=loga(MN);(4)证明:设loga M=b1,logaN=b2,则=M,=N,∴MN=,∴b1+b2=loga(MN)即logaM+logaN=loga(MN).【考点】幂的乘方与积的乘方.点评:本题是开放性的题目,难度较大.借考查对数,实际考查学生对指数的理解、掌握的程度;要求学生不但能灵活、准确的应用其运算法则,还要会类比、归纳,推测出对数应有的性质.8.若4a2+kab+9b2是完全平方式,则常数k的值为()A.6B.12C.±6D.±12【答案】D【解析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.解:∵4a2+kab+9b2=(2a)2+kab+(3b)2,∴kab=±2•2a•3b,解得k=±12.故选D.【考点】完全平方式点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.若多项式33x2﹣17x﹣26可因式分解成(ax+b)(cx+d),其中a、b、c、d均为整数,则|a+b+c+d|之值为何?()A.3B.10C.25D.29【答案】A【解析】首先利用因式分解,即可确定a,b,c,d的值,即可求解.解:33x2﹣17x﹣26=(11x﹣13)(3x+2)∴|a+b+c+d|=|11+(﹣13)+3+2|=3故选A.【考点】因式分解-十字相乘法等.点评:本题主要考查了利用十字交乘法做因式分解,解题技巧:能了解ac=33,bd=﹣26,ad+bc=﹣17.10.(x﹣y)(x+y)(x2+y2)(x4+y4)(x8+y8)=_________.【答案】x16﹣y16【解析】根据平方差公式,依次计算即可求得答案.解:(x﹣y)(x+y)(x2+y2)(x4+y4)(x8+y8),=(x2﹣y2)(x2+y2)(x4+y4)(x8+y8),=(x4﹣y4)(x4+y4)(x8+y8),=(x8﹣y8)(x8+y8),=x16﹣y16.故答案为:x16﹣y16.【考点】平方差公式点评:此题考查了平方差公式的应用.注意平方差公式为:(a+b)(a﹣b)=a2﹣b2.11.已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为.【答案】2【解析】根据绝对值非负数,平方数非负数的性质可得1﹣a=0,从而得到a的值,然后代入求出x、y的值,再把a、x、y的值代入代数式进行计算即可求解.解:∵|x|=1﹣a≥0,∴a﹣1≤0,﹣a2≤0,∴a﹣1﹣a2≤0,又y2=(1﹣a)(a﹣1﹣a2)≥0,∴1﹣a=0,解得a=1,∴|x|=1﹣1=0,x=0,y2=(1﹣a)(﹣1﹣a2)=0,∴x+y+a3+1=0+0+1+1=2.故答案为:2.【考点】代数式求值;绝对值;多项式乘多项式.点评:本题主要考查了代数式求值问题,把y2的多项式整理,然后根据非负数的性质求出a的值是解题的关键,也是解决本题的突破口,本题灵活性较强.12.分解因式:x(x﹣1)﹣3x+4=.【答案】(x﹣2)2【解析】首先去括号、合并同类项,再运用完全平方公式分解因式.解:x(x﹣1)﹣3x+4,=x2﹣x﹣3x+4,=x2﹣4x+4,=(x﹣2)2.【考点】因式分解-运用公式法.点评:此题考查的是运用公式法进行因式分解,需注意本题应先对所求的代数式进行整理,然后再运用完全平方公式因式分解.13.分解因式:(x4﹣4x2+1)(x4+3x2+1)+10x4=.【答案】(x+1)2(x﹣1)2(x2+x+1)(x2﹣x+1)【解析】首先将x4+1看作一个整体,然后根据十字相乘法进行因式分解,得出结果.解:(x4﹣4x2+1)(x4+3x2+1)+10x4,=[(x4+1)2﹣x2(x4+1)﹣12x4]+10x4,=(x4+1)2﹣x2(x4+1)﹣2x4,=(x4+1﹣2x2)(x4+1+x2),=(x2﹣1)2[(x2+1)2﹣x2],=(x+1)2(x﹣1)2(x2+x+1)(x2﹣x+1).故答案为:(x+1)2(x﹣1)2(x2+x+1)(x2﹣x+1).【考点】因式分解-分组分解法.点评:本题综合考查了十字相乘法和整体思想,解题的关键是将x4+1看作一个整体.14.已知a5﹣a4b﹣a4+a﹣b﹣1=0,且2a﹣3b=1,则a3+b3的值是.【答案】9【解析】观察a5﹣a4b﹣a4+a﹣b﹣1=0式子,可分解为(a﹣b﹣1)(a4+1)=0,那么必为a﹣b ﹣1=0,根据已知a、b还满足2a﹣3b=1.据这两式可解得a、b的值.那么再将a、b的值代入a3+b3即可求出结果.解:∵a5﹣a4b﹣a4+a﹣b﹣1=0⇒(a5+a)﹣(a4b+b)﹣(a4+1)=0⇒a(a4+1)﹣b(a4+1)﹣(a4+1)=0⇒(a﹣b﹣1)(a4+1)=0∵a4+1>0∴a﹣b﹣1=0 ①又∵2a﹣3b=1 ②由①②可得a=2,b=1,∴a3+b3=23+1=9.故答案为:9.【考点】因式分解的应用.点评:本题考查因式分解,解决本题的关键是通过因式分解将a5﹣a4b﹣a4+a﹣b﹣1=0转化为(a﹣b﹣1)(a4+1)=0,同时得到a﹣b﹣1=0.15.计算=.【答案】【解析】首先分式,都含有x4+4的形式.因而对x4+4进行因式分解,转化为[(x+1)2+1][(x﹣1)2+1]形式.套用该规律,将各数代入,将原式写为,通过分子、分母约分化简,即可求得结果.解:x4+4=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)=[(x+1)2+1][(x﹣1)2+1],∴原式=.故答案为:.【考点】因式分解的应用.点评:本题考查因式分解的应用.解决本题的关键是找到题目中蕴含的共性规律x4+4=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2)=[(x+1)2+1][(x﹣1)2+1].16.观察下列各式:(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,(x﹣1)(x4+x3+x2+x+1)=x5﹣1,(1)根据前面各式的规律可得:(x﹣1)(x n+x n﹣1+…+x2+x+1)=_________(其中n为正整数).(2)根据(1)求1+2+22+23+…+262+263的值,并求出它的个位数字.【答案】(1)x n+1﹣1 (2)5【解析】(1)根据各式的规律即可用n表示出结果;(2)将所求式子乘以1,即2﹣1,利用上述规律即可得到结果;再由21=2,22=4,23=8,24=16,25=32,…,个位数字分别为2,4,8,6循环,且64÷4=16,即可得出结果的个位数字.解:(1)根据各式的规律可得:(x﹣1)(x n+x n﹣1+…+x2+x+1)=x n+1﹣1;(2)根据各式的规律得:1+2+22+23+…+262+263=(2﹣1)(263+262+…+23+22+2+1)=264﹣1,∵21=2,22=4,23=8,24=16,25=32,…,且64÷4=16,∴264个位上数字为6,则1+2+22+23+…+262+263的个位数字为5.故答案为:(1)x n+1﹣1.(2)5【考点】平方差公式点评:此题考查了平方差公式的应用,属于规律型试题,弄清题中的规律是解本题的关键.17.设实数a,b,c满足a2+b2+c2=1.若a+b+c=0,求ab+bc+ca的值;【答案】﹣【解析】把a+b+c=0两边平方,然后展开得到a2+b2+c2+2ab+2ac+2bc=0,再把a2+b2+c2=1代入进行计算即可;解:∵a+b+c=0,∴(a+b+c)2=0,∴a2+b2+c2+2ab+2ac+2bc=0,而a2+b2+c2=1,∴ab+bc+ca=﹣;【考点】完全平方公式点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了(a﹣b)2的非负性质以及代数式的变形能力.18.计算:(1)(﹣2.5x3)2(﹣4x3);(2)(﹣104)(5×105)(3×102);(3)(﹣a2b3c4)(﹣xa2b)3【答案】(1)﹣25x9 (2)﹣1.5×1012 (3)a8b6c4x3【解析】(1)先根据积的乘方的运算性质计算乘方,再根据单项式的乘法法则计算即可;(2)根据单项式的乘法法则计算即可;(3)先算乘方,再算乘法.解:(1)(﹣2.5x3)2(﹣4x3),=(6.25x6)(﹣4x3),=6.25×(﹣4)x6•x3,=﹣25x9;(2)(﹣104)(5×105)(3×102),=(﹣1×5×3)×(104×105×102),=﹣15×1011,=﹣1.5×1012;(3)(﹣a2b3c4)(﹣xa2b)3,=(﹣a2b3c4)(﹣x3a6b3),=a8b6c4x3.【考点】单项式乘单项式;同底数幂的乘法;幂的乘方与积的乘方.点评:本题主要考查了积的乘方的运算性质和单项式的乘法法则.积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.19.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]=(1+x)2[1+x]=(1+x)3(1)上述分解因式的方法是法,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2010,则需要应用上述方法次,分解因式后的结果是.(3)请用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数),必须有简要的过程.【答案】(1)提取公因式 2 (2)2010 (1+x)2011 (3)(1+x)n+1【解析】(1)首先提取公因式(1+x),再次将[1+x+x(1+x)]提取公因式(1+x),进而得出答案;(2)根据(1)种方法即可得出分解因式后的结果;(3)参照上式规律即可得出解题方法,求出即可.解:(1)根据已知可以直接得出答案:提取公因式,2;(2)2010,(1+x)2011;(3)解:原式=(1+x)[1+x+x(1+x)+…+x(1+x)(n﹣1)],=(1+x)2[1+x+x(1+x)x(1+x)(n﹣2)],=(1+x)n+1.【考点】因式分解-提公因式法.点评:此题主要考查了提公因式法分解因式,做题的关键是:①正确找到公因式,②注意观察寻找规律.20.因式分解(1)3ax+6ay(2)25m2﹣4n2(3)3a2+a﹣10(4)ax2+2a2x+a3(5)x3+8y3(6)b2+c2﹣2bc﹣a2(7)(a2﹣4ab+4b2)﹣(2a﹣4b)+1(8)(x2﹣x)(x2﹣x﹣8)+12.【答案】(1)3a(x+2y)(2)(5m+2n)(5m﹣2n)(3)(a+2)(3a﹣5)(4)a(x+a)2(5)(x+2y)(x2﹣2xy+4y2)(6)(b﹣c+a)(b﹣c﹣a)(7)(a﹣2b﹣1)2(8)(x﹣2)(x+1)(x﹣3)(x+2)【解析】(1)提取公因式3a即可;(2)直接利用平方差公式进行分解即可;(3)利用十字相乘法进行分解;(4)先提取公因式a,再利用完全平方公式继续分解;(5)运用立方和公式进行分解;(6)前三项为一组利用完全平方公式分解,再利用平方差公式继续分解;(7)把第一项用完全平方公式进行分解,再利用完全平方公式继续分解即可;(8)把(x2﹣x)看作一个整体,先利用单项式乘多项式的运算法则计算,然后再利用十字相乘法分解因式即可.解:(1)3ax+6ay=3a(x+2y);(2)25m2﹣4n2=(5m+2n)(5m﹣2n);(3)3a2+a﹣10=(a+2)(3a﹣5);(4)ax2+2a2x+a3,=a(x2+2ax+a2),=a(x+a)2;(5)x3+8y3=(x+2y)(x2﹣2xy+4y2);(6)b2+c2﹣2bc﹣a2,=(b﹣c)2﹣a2,=(b﹣c+a)(b﹣c﹣a);(7)(a2﹣4ab+4b2)﹣(2a﹣4b)+1,=(a﹣2b)2﹣2(a﹣2b)+1,=(a﹣2b﹣1)2;(8)(x2﹣x)(x2﹣x﹣8)+12,=(x2﹣x)2﹣8(x2﹣x)+12,=(x2﹣x﹣2)(x2﹣x﹣6),=(x﹣2)(x+1)(x﹣3)(x+2).【考点】提公因式法与公式法的综合运用.点评:本题考查了用提公因式法和公式法,十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
2020武汉中考专辑考点04 整式与分式考点总动员(解析版)
专题04 整式与分式考点总动员专题04 整式与分式考点总动员 (1)【考纲要求】 (2)一、聚焦考点 (2)知识点1 整式的加减运算 (2)知识点2 整式的乘除运算 (2)知识点3 分式有意义的条件 (3)知识点4 分式的化简 (3)二、名师点睛 (4)题型1 整式加减运算 (4)题型2 整式的乘除 (5)一、整式的乘除 (5)二、多项式乘多项式 (7)题型3 分式有意义的条件 (9)题型4 分式的化简与计算 (10)三、能力提升 (12)【考纲要求】要求1.整式、分式的概念要求2.整式的加、减、乘法运算要求3.提公因式法、公因式法因式分解要求4.利用分式的性质进行化简、计算一、聚焦考点知识点1 整式的加减运算①同类项:所含字母相同,并且相同字母的指数也相同的项(即仅系数不同或系数也相同的项)②将多项式中的同类项合并成一项叫做合并同类项③同类项合并的计算方法:系数对应相加减,字母及指数不变④去括号法则: 括号前是“+”,去括号后,括号内的符号不变括号前是“﹣”,去括号后,括号内的符号全部要变号。
括号前有系数的,去括号后,括号内所有因素都要乘此系数⑤整式的加减运算步骤:将同类项找出,并置与一起;然后合并同类项。
知识点2 整式的乘除运算①同底幂相乘,底数不变,指数相加,即:,(m,n为正整数)②幂的乘方,底数不变,指数相乘,即:,其中m,n为正整数③积的乘方,等于把积的每个因式分别乘方,再把所得的幂相乘,即:,其中m为正整数④同底数幂相除,底数不变,指数相减(与幂的乘法为逆运算),即:;注:(a≠0)⑤多项式乘多项式:先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。
⑥多项式除单项式:多项式的每一项分别除以单项式,然后再把所得的商相加。
⑦平方差公式:两个式子的和与两个式子的差的乘积,等于这两个数的平方差,即:(a+b)(a-b)=⑧完全平方和(差)公式:等于两式平方和加(减)2倍的积,即:=±2ab+知识点3 分式有意义的条件①A、B表示两个整式,且分母B中含有字母,叫作分式②分式有意义的条件:分母不为0 ,即B≠0③分式的值为0的条件:分子为0,且分母不为0,即A=0且B≠0④分式为正的条件:分子与分母的积为正,即AB>0⑤分式为负的条件:分子与分母的积为负,即AB<0知识点4 分式的化简①分式分子分母同乘除一个不为零的整式,分式大小不变。
初中数学复习---整式及分式化简专项计算题练习(含答案解析)
初中数学复习---整式及分式化简专项计算题练习(含答案解析)1.下列等式正确的是( ) A .3tan 452−+︒=− B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b −=++ D .()()33x y xy xy x y x y −=+−【答案】D 【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可. 【详解】A. 3tan 45314−+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意C. ()2222a b a ab b −=−+,不符合题意D. ()()3322()x y xy xy x y xy x y x y −=−=+−,符合题意故选D . 【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义. 2.下列运算正确的是( ) A .235a a a ⋅= B .()235aa = C .22()ab ab = D .632(0)a a a a=≠【答案】A【分析】根据同底数幂相乘,幂的乘方,积的乘方,分式的化简,逐项判断即可求解. 【详解】解:A 、235a a a ⋅=,故本选项正确,符合题意; B 、()236a a =,故本选项错误,不符合题意;C 、222()ab a b =,故本选项错误,不符合题意;D 、462(0)a a a a=≠,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了同底数幂相乘,幂的乘方,积的乘方,分式的化简,熟练掌握相关运算法则是解题的关键.3.下列运算中,正确的是( ) A .3515x x x ⋅= B .235x y xy +=C .22(2)4x x −=−D .()2242235610x x y x x y ⋅−=−【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. 3515x x x ⋅=,根据同底数幂的乘法法则可知:358⋅=x x x ,故选项计算错误,不符合题意;B. 235x y xy +=,2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C. 22(2)4x x −=−,根据完全平方公式可得:22(2)44−=+−x x x ,故选项计算错误,不符合题意;D. ()2242235610x x y x x y ⋅−=−,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则. 4.计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2aa + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则.5.已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷− ⎪ ⎪⎝⎭⎝⎭的值是( )A 5B .5C 5D .5【答案】B【分析】先将分式进件化简为a bb a+−,然后利用完全平方公式得出a b ab −=5a b ab +,代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷− ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +−⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+−a b b a +=−, ∵223a b ab +=,∴222a ab b ab −+=,∴()2a b ab −=, ∵a>b>0,∴a b ab −=∵223a b ab +=,∴2225a ab b ab ++=,∴()25a b ab +=,∵a>b>0,∴5a b ab +=5abab−5=−B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 6.下列计算正确的是( )A .2m m m +=B .()22m n m n −=−C .222(2)4m n m n +=+D .2(3)(3)9m m m +−=− 【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意; B.()222m n m n −=−,故该选项错误,不符合题意; C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意; D.2(3)(3)9m m m +−=−,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 7.下列计算正确的是( )A .2()a ab a a b +÷=+B .22a a a ⋅=C .222()a b a b +=+D .325()a a = 【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确; B 、23a a a ⋅=,原式计算错误; C 、222()2a b a b ab +=++,原式计算错误;D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键. 8.因式分解:24x −=__________. 【答案】(x+2)(x-2) 【详解】解:24x −=222x −=(2)(2)x x +−; 故答案为(2)(2)x x +− 9.分解因式:34x x −=______. 【答案】x (x+2)(x ﹣2). 【详解】试题分析:34x x −=2(4)x x −=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2). 考点:提公因式法与公式法的综合运用;因式分解. 10.分解因式:2a 3﹣8a=________. 【答案】2a (a+2)(a ﹣2) 【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2−=−−.11.因式分21x −= . 【答案】(1)(1)x x +−. 【详解】原式=(1)(1)x x +−.故答案为(1)(1)x x +−. 考点:1.因式分解-运用公式法;2.因式分解. 12.分解因式:23x x −=_____________. 【答案】x(x-3) 【详解】直接提公因式x 即可,即原式=x(x-3). 13.分解因式:2ab a −=______. 【答案】a (b+1)(b ﹣1). 【详解】解:原式=2(1)a b −=a (b+1)(b ﹣1), 故答案为a (b+1)(b ﹣1). 14.分解因式:24m −=_____. 【答案】(2)(2)m m +− 【分析】直接根据平方差公式进行因式分解即可. 【详解】24(2)(2)m m m −=+−,故填(2)(2)m m +− 【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式. 15.因式分解:24−=x x _____. 【答案】2(1)(1)+−x x x【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)−=−=+−x x x x x x x ,故答案为:2(1)(1)+−x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.16.分解因式:2x x + = ______. 【答案】(1)x x +【分析】利用提公因式法即可分解. 【详解】2(1)x x x x +=+, 故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解. 17.分解因式:x 2-2x+1=__________. 【答案】(x-1)2【详解】由完全平方公式可得:2221(1)x x x −+=− 故答案为2(1)x −.【点睛】错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底. 18.若分式21x −有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x −有意义,∴10x −≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键. 19.计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +−+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减. 20.化简:22a 3a 42a 3a 2a 4a 4−−⋅+−+++ =____________.【答案】2aa + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4−−⋅+−+++=2a 3(a 2)(a 2)2a 3a 2(a 2)−+−⋅+−++ 22222a a a a a −=+=+++故答案为2a a + 【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.21.化简:2291(1)362m m m m −÷−−−. 【解析】2291(1)362m m m m −÷−−− ()()()333322m m m m m m +−−=÷−−()()()332323m m m m m m +−−=⋅−− 33m m+=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 22.先化简,再求值:(1)(1)(2)x x x x +−++,其中12x =. 【答案】12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +−++ 2212x x x =−++12x =+当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键. 23.先化简,再求值:()()()2a b a b b a b +−++,其中1a =,2b =−. 【答案】2a 2ab +,3−【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算.【详解】解:原式222222a b ab b a ab =−++=+, 将1a =,2b =−代入式中得:原式()21212143=+⨯⨯−=−=−.【点睛】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键.24.已知23230x x −−=,求()2213x x x ⎛⎫−++ ⎪⎝⎭的值.【答案】24213x x −+,3【分析】先将代数式化简,根据23230x x −−=可得2213x x −=,整体代入即可求解. 【详解】原式222213x x x x =−+++24213x x =−+.∵23230x x −−=,∴2213x x −=. ∴原式22213x x ⎛⎫=−+ ⎪⎝⎭211=⨯+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键. 25.先因式分解,再计算求值:328x x −,其中3x =. 【答案】()()222+−x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x −=−=+−,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键. 26.先化简,再求值:()()212(2)x x x +++−,其中1x =. 【答案】25x +,7. 【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将1x =代入求值即可得. 【详解】解:原式22214x x x =+++−,25x =+,将1x =代入得:原式2157=⨯+=. 【点睛】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键. 27.先化简,再求值:(2)(2)(1)a a a a +−+−,其中54a =. 【答案】5a - 【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】()()()221a a a a +-+-224a a a =−+− 4a =−当54a =时, 原式5445−= 【点睛】本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 28.先化简,再求值:()()()221x x x x +−−−,其中12x =. 【答案】4x −,132− 【分析】先根据平方差公式和单项式乘以多项式进行计算,再合并同类项,最后代入求出答案即可. 【详解】解:()()()221x x x x +−−−224x x x =−−+4x =−,当12x =时,原式114322=−=−. 【点睛】本题考查了平方差公式,单项式乘以多项式,合并同类项,运用平方差公式是解题的关键. 29.已知112,1x y x y−=−=,求22x y xy −的值. 【答案】-4 【分析】根据已知求出xy=-2,再将所求式子变形为()xy x y −,代入计算即可. 【详解】解:∵2x y −=,∴1121y x x y xy xy−−−===, ∴2xy =−,∴()()22224xy x x y xy y ==−−−⨯=−.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.30.化简:22311(1).m m m m m −+−+÷【答案】11m m −+【分析】直接根据分式的混合计算法则求解即可. 【详解】解:22311(1)m m m m m −+−+÷()()231`11m m m m m m m÷++=−−+ ()()2211`1m m m mm m −+=⋅+−()()()21`11mm mm m +⋅−−=11m m −=+.【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.31.先化简,再求值:211121x x x x ⎛⎫−÷ ⎪+++⎝⎭,其中2x 【答案】1x +21【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121x x x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+−+=⨯+ 1x =+, ∵2x∴原式=121x +.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键.32.计算:(1)()()(2)x y x y y y +−+−;(2)2244124m m m m m −+⎛⎫−÷ ⎪⎝⎭−+. 【答案】(1)22x y −(2)22m − 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可;(2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可.(1)解:()()(2)x y x y y y +−+−=2222x y y y −+−=22x y −(2)解: 2244124m m m m m −+⎛⎫−÷ ⎪⎝⎭−+ =()()()222222m m m m m m −+−÷++− =()()()222222m m m m +−⨯+− =22m − 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.33.先化简,再求值:22211a a a a a ⎫⎛−÷⎪ +−⎝⎭,其中2cos601a =︒+. 【答案】1a a −;12【分析】根据分式的混合运算法则进行化简,再结合特殊角的三角函数值求出a 的值,再代入求解即可.【详解】 解:原式22(1)1(1)(1)a a a a a a a +−=÷++− 2(1)(1)1a a a a a +−=⨯+ 1a a −=; 当12cos6012122a =︒+=⨯+=时, 原式121122a a −−===. 【点睛】本题主要考查分式的化简求值问题,掌握运算法则与顺序,熟记特殊角的三角函数值是解题关键.34.先化简,再求值:21111m m m −⎛⎫+ ⎪−⎝⎭,其中2m =. 【答案】1m +,3【分析】先通分,再约分,将分式化成最简分式,再代入数值即可.【详解】解:原式11(1)(1)1m m m m m−+−+=⋅− (1)(1) 1m m m m m−+=⋅− 1m =+.∵2m =∴原式213=+=.【点睛】本题考查分式的化简求值、分式的通分、约分,正确的因式分解将分式化简成最简分式是关键.35.先化简,再求值:22211a a a a a ⎫⎛−÷⎪ +−⎝⎭,其中2tan45a =︒+1. 【答案】1a a −,23【分析】先去括号,然后再进行分式的化简,最后代值求解即可.【详解】解:原式=2222111a a a a a a a a+−−−⨯=+, ∵2tan45a =︒+1,∴2113a =⨯+=,代入得:原式=31233−=. 【点睛】本题主要考查分式的化简求解及特殊三角函数值,熟练掌握分式的化简求解及特殊三角函数值是解题的关键.36.先化简,再求值: 2212(1)121x x x x x x +++−÷+++,其中x 满足220x x −−=. 【答案】x (x+1);6【分析】先求出方程220x x −−=的解,然后化简分式,最后选择合适的x 代入计算即可.【详解】解:∵220x x −−=∴x=2或x=-1 ∴2212(1)121x x x x x x +++−÷+++=()221212()111x x x x x x +++÷+++− =()2222()11x x x x x ++÷++=()()22112x x x x x ++⨯++=x (x+1)∵x=-1分式无意义,∴x=2当x=2时,x (x+1)=2×(2+1)=6.【点睛】本题主要考查了分式的化简求值、分式有意义的条件以及解一元二次方程等知识点,化简分式是解答本题的关键,确定x 的值是解答本题的易错点.37.先化简,再求值:23219a a a ⎛⎫+⋅ ⎪−⎝⎭,其中2a =. 【答案】23a −,2−. 【分析】先计算括号内的分式加法,再计算分式的乘法,然后将2a =代入求值即可得.【详解】 解:原式32(3)(3)a a a a a a ⎛⎫+⋅+= ⎪−⎝⎭, 32(3)(3)a a a a a +=+⋅−, 23a =−, 将2a =代入得:原式222323a ===−−−. 【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.38.先化简,再求值:23210119x x x x −−⎛⎫⋅− ⎪−−⎝⎭,其中x 是1,2,3中的一个合适的数.【答案】13x x −+,15. 【分析】先计算括号内的异分母分式减法,再计算乘法,最后将可选取的x 值代入计算即可.【详解】 解:23210119x x x x −−⎛⎫⋅− ⎪−−⎝⎭ 2392101(3)(3)(3)(3)x x x x x x x x ⎡⎤−−−=⋅−⎢⎥−+−+−⎣⎦ 23211(3)(3)x x x x x x −−+=⋅−+− 23(1)1(3)(3)x x x x x −−=⋅−+− 13x x −=+, ∵1x ≠,3x ≠±,∴2x =, 原式211235−==+. 【点睛】本题考查了分式的化简求值,正确掌握分式的混合运算法则及确定字母的可取数值是解题的关键.39.先化简2222424421a a a a a a a a a −−−++++−÷,然后从0,1,2,3中选一个合适的a 值代入求解.【答案】2a ,6【分析】将分子、分母因式分解除法转化为乘法,约分、合并同类项,选择合适的值时,a 的取值不能使原算式的分母及除数为0.【详解】解:原式()2(2)(2)(2)(1)212a a a a a a a a a −++−=⨯+−−+2a =因为a=0,1,2时分式无意义,所以3a =当3a =时,原式6=【点睛】本题考查了分式的化简求值,关键是先化简,后代值,注意a 的取值不能使原算式的分母及除数为0.40.先化简,再求值:2293411x x x x x x−+÷+−−,其中2x =. 【答案】1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可.【详解】解:原式()()()313341x x x x x xx −=⨯++−−+ 1x x+=, 当2x =时,原式32=. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.41.先化简,再求值:32212111x x x x x x −−+⎛⎫+÷ ⎪+−⎝⎭,其中31x =. 【答案】21x −23 【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入式子进行计算即可.【详解】 原式21(1)11(1)(1)x x x x x x −−⎛⎫=+÷ ⎪++−⎝⎭22(1)(1)1(1)x x x x x x +−=⋅+− 21x =− 当31x =+时,原式23311==+−【点睛】本题主要考查的是分式的化简求值,最简二次根式,在解答此类型题目时,要注意因式分解、通分和约分的灵活运算,熟练掌握分式的混合运算法则是解题的关键.42.先化简,再求值:222442342x x x x x x−+−÷+−+,其中4x =−. 【答案】x+3,-1【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x=-4代入进行计算即可.【详解】解:原式=()()()()2223222x x x x x x −+⨯++−− =3x +,将4x =−代入得:原式=-4+3=-1,故答案为:-1.【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 43.先化简,再求值:221121m m m m m m−−−÷++,其中m 满足:210m m −−=. 【答案】2m m+1,1. 【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案.【详解】 解:原式为22m -1m-1m-m +2m+1m÷ =2(m+1)(m-1)m m-(m+1)m-1⨯ =m m-m+1=2m m m -m+1m+1+ =2m m+1, 又∵m 满足2m -m-1=0,即2m =m+1,将2m 代入上式化简的结果,∴原式=2m m+1==1m+1m+1. 【点睛】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.44.先化筒,再求值:22221244y x x y x y x xy y−−−÷+++其中11cos3012,(3)()3x y π−==−︒−︒ 【答案】23x y x y++,0 【解析】【分析】直接利用分式的混合运算法则化简,再计算x ,y 的值,进而代入得出答案.【详解】解:22221244y x x y x y x xy y −−−÷+++ ()()()2122x y x y x y x y x y +−−=+÷++, ()()()2212x y x y x y x y x y +−=+⨯++−, 21x y x y+=++, 23x y x y+=+; ∵3cos30122332x ===,()10131323y π−⎛⎫=−−=−=− ⎪⎝⎭所以,原式()()2332032⨯+⨯−==+−. 【点睛】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题的关键.45.先化简,再求值:22244242x x x x x x −+−÷−+,其中12x =. 【答案】2.【解析】【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.【详解】 解:22244242x x x x x x −+−÷−+ ()()()()222222x x x x x x −+=•+−− 1x =当1,2x = 上式11 2.2=÷= 【点睛】本题考查的是分式的除法运算,掌握把除法转化为乘法是解题的关键.46.先化简,再求值:229222a a a −⎛⎫−÷ ⎪−−⎝⎭,其中33=a . 【答案】23a +23【解析】【分析】首先计算小括号里面的分式的减法,然后再计算括号外分式的除法,化简后,再代入a 的值可得答案.【详解】 解:原式226229a a a a −−=⋅−−, 2(3)22(3)(3)a a a a a −−=⋅−+−, 23a =+. 当33=a 时,原式233333===−+ 【点睛】此题主要考查了分式的化简求值以及分母有理化,关键是熟练掌握分式的减法和除法计算法则.47.先化简,再求值:222y y x y x y ⎛⎫− ⎪−−⎝⎭÷2x xy y +,其中x 3,y 31. 【答案】化简结果为2y x y−;求值结果为23 【解析】【分析】根据分式四则运算顺序和运算法则对原式进行化简222y y x y x y ⎛⎫− ⎪−−⎝⎭÷2x xy y +,得到最简形式后,再将x 3、y 31代入求值即可.【详解】 解:222y y x y x y ⎛⎫− ⎪−−⎝⎭÷2x xy y + =2()()()()()y x y y x y x y x y x y ⎡⎤+−⎢⎥+−+−⎣⎦÷()x y x y + =()()xy x y x y +−×()y x y x+ =2y x y− 当x 3,y 31时 2(31)−=23 【点睛】本题考查分式的混合运算,掌握计算法则,依据运算顺序进行计算是得出正确答案的关键.48.先化简,再求值:211()11a a a a a a −−−÷++,其中2a =− 【答案】1a a +;2a =−时,原式=2. 【解析】【分析】先利用分式的运算法则化简,然后代入2a =−计算即可.【详解】 解:211()11a a a a a a−−−÷++ 111a a a a−−=÷+ 111a a a a −=+− 1a a =+2a =−时,原式=2221−=−+ 【点睛】 本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.49.先化简,再求值:2221221(2)1144a a a a a a a a ⎛⎫+−+−⋅⋅+ ⎪+−++⎝⎭,其中2a =. 【答案】31a +,1 【解析】【分析】先根据分式的混合运算步骤进行化简,然后代入求值即可.【详解】 解:2221221(2)1144a a a a a a a a ⎛⎫+−+−⋅⋅+ ⎪+−++⎝⎭ 2212(1)(2)1(1)(1)(2)a a a a a a a ⎡⎤+−=−⋅⋅+⎢⎥++−+⎣⎦ 11(2)1(1)(2)a a a a a ⎡⎤−=−⋅+⎢⎥+++⎣⎦ 2111a a a a +−=−++ 31a =+ 当2a =时,原式3121==+ 【点睛】此题主要考查分式的化简求值,熟练掌握分式混合运算法则是解题关键.50.先化简,再求值:2222221211x x x x x x x x x ⎛⎫+−−÷ ⎪−−++⎝⎭,其中12x = 【答案】11x x +−21 【解析】【分析】先将括号中的两个分式分别进行约分,然后合并后再算括号外的除法,化简后的结果再将12x =+.【详解】解:原式()()()()()22111111x x x x x x x x x ⎡⎤+−+=−⋅⎢⎥⎢⎥⎣⎦+−− 1211x x x x xx +⎛⎫=−⋅⎪⎝⎭− − 11x x x x +=⋅− 11x x +=− 将12x =1121212211212x x ++++===+−−. 【点睛】 本题考查分式的混合运算,遇到分子分母都能因式分解的,可以先把分子分母进行因式分解,将分式进行约分化简之后再进行通分,然后再合并,合并的时候分子如果是多项的话注意符号;求值的时候最后的结果必须是最简的形式.。
整式的乘法与因式分解分式的练习带答案
精品文档整式乘法与因式分解,分式的练习一.解答题(共20小题)2m3m2m2的值.),求(2x﹣(3)1.已知xx=2mm212332)的值.?3÷(,求(﹣mm2.已知3×9)×27m=3.计算下列各题:2﹣(2a+b)(b﹣2a)﹣a﹣2b)4a(a﹣b)((1)22.)﹣2y)+(3xy﹣(4x﹣9y)(4xx(2)(2+3y)+9 4.分解因式(1)4n(m﹣2)﹣6(2﹣m)22﹣1y.﹣2xy+(2)x5.分解因式:3223b;ba+75(1)3ab ﹣30a22.n6)4(m(3m+2n)﹣﹣(2)22)﹣x(7x+y﹣2y)+xy.(3)8(x2233.?x)﹣0.5xy)xy﹣(﹣62.计算:xy?(7.化简:3639+1)(x+x;+1)(1)(xx﹣1)(222222);+(xyy﹣)(xxy+xy+y)(2(x)﹣2222.y)﹣2x)(+2y)xy(x+4(32﹣(a﹣2b)(a+2b)a+2b)8.(9.把下列各式分解因式:33xyy)x﹣(1222x)162)(x﹣+4((3)x(y﹣z)﹣y(z﹣y)523)a+()(1)计算:(﹣a(﹣a)10.1011.8×0.125(2)计算:(﹣)11.因式分解:22﹣28mnmn1()4mn﹣2(m+1)﹣(m)(2m+1)精品文档.精品文档2y+12xy+9y(3)4x222﹣6)﹣15+2(x(4)(x.﹣6)÷的值.=2×,求代数式12.(1)已知a﹣b.(2=)解分式方程:+1.0.解方程:﹣1813=.()=xxx,其中满足(+13x)14+1.先化简,再求值:.﹣=15.解分式方程:.x,其中.先化简,再求值:16(﹣)÷3=.17.解方程﹣2.18.解方程:1+=.=19.解分式方程:+3.解分式方程.201().)2(精品文档.精品文档整式乘法与因式分解,分式的练习参考答案与试题解析一.解答题(共20小题)2m3m2m2的值.32xx)1.已知x)﹣(=2,求(6m2m x﹣【解答】解:原式=4x92m32m x4(x﹣9)=3﹣92×2=4×=14.mm212332)的值.mm?×9)×27÷(=3m,求(﹣2.已知3 mm2m3m1+5m21,3==3×33=×3【解答】解:3×927×∴1+5m=21,∴m=4,233265=﹣m=﹣÷m÷(m4?m.∴(﹣m)=﹣)m3.计算下列各题:2﹣(2a+b)(b﹣2a)﹣4aa(1)(﹣2b)(a﹣b)22.)﹣2y)+9y+(3y)x﹣(4x﹣9y)(4x+3(2)(2x 22222+4ab﹣b4+4)原式=(1aa﹣4ab+4ba﹣【解答】解:22;b+3=a222222﹣12xxy+4+12xy﹣16xy+81)原式=(24xy+9y+9 22.+94=﹣3xy4.分解因式(1)4n(m﹣2)﹣6(2﹣m)22﹣1+yx.﹣2xy2()【解答】解:(1)4n(m﹣2)﹣6(2﹣m)=4n(m﹣2)+6(m﹣2)=(4n+6)(m﹣2)=2(m﹣2)(2n+3).22﹣1yxyx2()﹣2+精品文档.精品文档2﹣)1=(x﹣y=(x﹣y+1)(x﹣y﹣1).5.分解因式:3223b;ab(1)3 ﹣30a b +75a22.n)m﹣+2n)6﹣4((2)(3m22)﹣x(7x+yy)+xy(3)8(x.﹣23223bbaba﹣30a+75【解答】解:(1)322)a10ab3ab(b+25﹣=2;)a﹣b=3ab(522)n﹣6)m﹣4((2)(3m+2n=[(3m+2n)+2(m﹣6n)][(3m+2n)﹣2(m﹣6n)]=(3m+2n+2m﹣12n)(3m+2n﹣2m+12n)=(5m﹣10n)(m+14n)=5(m﹣2n)(m+14n);22)﹣x(7x+﹣2yy)+xy(3)8(x222﹣xy+7x﹣16yxy﹣=8x22yx16﹣==(x+4y)(x﹣4y).2233.xy?﹣(﹣2x6).计算:xxyy?(﹣0.5)2233xy)?﹣(﹣2x解:xy?(﹣0.5xy【解答】)4343yyx+8=0.1x43.y=8.1x7.化简:3639+1)(x+x;+1)(1)(x﹣1)(x222222)y;﹣xyxy++y+)(x)(2(x﹣y()x2222.)y﹣2xy+4x(3)(+2y)(x3639+1)x)x)x)(【解答】解:1(﹣1(+x+1(精品文档.精品文档99+1))(=(xx﹣118﹣1=x;222222)y﹣xy)(﹣yx)(x++xy+(2)(xy 2222)yxy)(x++xy+y﹣)×(x+y﹣=(xy)(x 3333)yy+)(=(xx﹣66;y﹣=x2222)yxy﹣2(x+2y)+4(x(3)222])2xy+4x+2y)(xy﹣=[(332)=(xy+86336yx+64=xy+162﹣(a﹣2b))(a+2b)8.(a+2b2﹣(a﹣2b)(a+2b)【解答】解:(a+2b)2222)b﹣+4b﹣(a=a4+4ab2222baab+4b+4=a﹣+42+4abb.=89.把下列各式分解因式:33xyy1)x﹣(222x﹣+4)((2)x16(3)x(y﹣z)﹣y(z﹣y)33,xyyx解:(1)﹣【解答】22),﹣xy(xy==xy(x+y)(x﹣y);222,x﹣(x+4)16)(222+4﹣4x)x=(x+4+4x)(,22;2)﹣)x=(+2(x精品文档.精品文档(3)x(y﹣z)﹣y(z﹣y),=x(y﹣z)+y(y﹣z),=(x+y)(y﹣z).523)(a)a+10.(1)计算:(﹣a)(﹣1011.×(﹣0.125)8(2)计算:523))a+((1)(﹣a)(﹣a【解答】解:66a+=(﹣a)66a+=a6a=210118×(﹣0.125)(2)101018×80.125=×10×8×8)=(0.125=1×8=811.因式分解:22﹣2mnmmnn﹣84(1)2(m+1)﹣()mm+1)(22y+12xy+9)4xy(3222﹣6)﹣x15x.﹣6)(+2((4)22﹣2mn=2mn(2m﹣4)4mn﹣8mnn﹣1);1【解答】解:(2(m+1)﹣(mm+1)(2)2﹣1)+1)(m=(m2(m﹣1)=(m+1);2y+12xy4)x+9y(32+12x+9)4=y(x2;+3)x(=y2精品文档.精品文档222﹣6)﹣15+2((4)(xx﹣6)22﹣6+5x)﹣3)=(x(﹣622﹣1)9)(=(xx﹣=(x+3)(x﹣3)(x+1)(x﹣1).÷的值.,求代数式×1)已知a﹣b=212.(=)解分式方程:+1(2.)原式=1【解答】解:(×(=a+b)(a﹣b))a=2(﹣b;当a﹣4×2=b=2时,原式=2(2)方程两边都乘x(x﹣1),得22,xx3+x=﹣解得x=3,检验:当x=3时,x(x﹣1)=6≠0,∴原分式方程的解为x=3..解方程:﹣18=0.13=t,则原方程可化为:【解答】解:设2,t18﹣3t﹣=0,即(t﹣0t+3)=6)(,3=﹣t=6,t解得21,3或6即==﹣=.或解得xx=﹣=都是原方程的解.x=﹣或x经检验,.先化简,再求值:,其中x满足x(x+1)=143(x+1).精品文档.精品文档÷解:原式=【解答】×=,=∵x(x+1)=3(x+1),(x+1)(x﹣3)=0,∴x=﹣1或x=3,2﹣1≠0,即又∵xx≠±1,∴x=3,∴原式==4..解分式方程:﹣.=15解:原方程即﹣=,【解答】两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.)÷,其中x﹣(=3.16.先化简,再求值:,÷﹣]【解答】解:原式=[,=×,×=,=时,原式=1=.3x=当172﹣..解方程【解答】解:方程的两边同乘(x﹣3),得:2﹣x=﹣1﹣2(x﹣3),解得:x=3,精品文档.精品文档检验:当x=3时,(x﹣3)=0,∴x=3是原分式方程的增根,原分式方程无解.=.解方程:.1+18【解答】解:方程两边同乘以(x﹣2)得,(x﹣2)+3x=6,解得;x=2,检验:当x=2时,x﹣2=0,∴x=2是原分式方程的增根,∴原分式方程无解.+=193.解分式方程:.【解答】解:去分母得:x﹣2=3x﹣3,=x,解得:=x是分式方程的解.经检验20.解分式方程.)(1.)(2,(1)【解答】解:分式方程的最简公分母为x(x+1),方程两边都乘以x(x+1)得:22=6x(x+1x(+1)+5x),化简得:4x=1,=,解得:x精品文档.精品文档=是原分式方程的解;x 经检验,),(2分式方程的最简公分母为(x+2)(x﹣2),方程两边都乘以(x+2)(x﹣2)得:22,)=(﹣16x)(x﹣2+2化简得:8x=﹣16,解得:x=﹣2,经检验x=﹣2是增根,原分式方程无解.精品文档.。
2整式与分式.习题集A-学生版
考点一整式的运算☞考点说明:本类题型经常会在选择题第4题或5题的位置,以及解答题第14题或第15题的位置出现。
选择题一般考察整指数运算,计算题一般情况下会考察整体代入的基本思想。
【例1】 下列运算正确的是( )A .224236x x x ⋅=B .22231x x -=-C .2222233x x x ÷= D .224235x x x += 【练习】下列计算正确的是( )A .2x x x +=B .22431x x -=C .3322x x x ⋅=D .441x x ÷=【练习】下列运算正确的是( )A .3412x x x ⋅=B .()()623623x x x -÷-=C .()()233xy xy xy ÷=D .2236x x x ⋅=【例2】 若实数a 满足2240a a --=,则=+-5422a a _________。
【练习】若21x y -=-,2xy =,则代数式(1)(1)x y -+的值等于( )A .222+B .222-C .22D .2 【练习】已知整式252x x -的值为6,则652x x -+的值为_________. 【例3】 已知2430x x -+=,求4)1)(1()1(22--+--x x x 的值.【练习】已知2220a ab b ++=,求代数式()()()422a a b a b a b +-+-的值【练习】已知:()310x x +=,求代数式()()22105x x x -++-的值 考点二 乘法公式☞考点说明:本类题型会以选择、填空的形式出现、同时也可能会结合在解答题中进行考察,因此位置不固定。
但不管在什么位置出现,必须让学生熟练掌握平方差公式和完全平方公式【例4】 如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a b >),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A.()2222a b a ab b -=-+B.()2222a b a ab b +=++C.22()()a b a b a b -=+-D.2()a ab a a b +=+ 【例5】 若622=-n m ,且3=-n m ,则=+n m _______.【例6】 若249x kx -+是完全平方式,则k 的值为________.【练习】若229123x x k ++是完全平方式,则k 的值为________.中考满分必做题【例7】 代数式221x x --的最小值是( )A .1B .1-C .2D .2- 【练习】用配方法把代数式245x x -+变形,所得结果是( )A .2(2)1x -+B .2(2)9x --C .2(2)1x +-D .2(2)5x +-【练习】已知2x y +=,则xy ( )A.有最大值1B.有最小值1C.有最大值12D.有最小值12考点三 因式分解☞考点说明:本类型题经常会在填空题的第2题出现,只有很少的可能会出现在选择题中。
初一数学整式试题答案及解析
初一数学整式试题答案及解析1.下列运算正确的是()A.a2•a=a2B.(a-b)3=a3-b3C.a10÷a5=a2D.(a2)3=a6【答案】D.【解析】试题分析:A、a2•a=a3,故A选项错误;B、(a-b)3=a3-3a2b+3ab2+b3,故B选项错误;C、a10÷a5=a5,故C选项错误;D、(a2)3=a6,故D选项正确.故选D.【考点】1.完全平方公式;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.同底数幂的除法.2.化简:(-m)2÷(-m)=.【答案】-m【解析】利用分式的乘法,把(-m)2展开再(-m)相除即可求解.【考点】分式的乘除法3.已知:a+b=,ab=1,化简(a-2)(b-2)的结果是_______.【答案】2【解析】根据多项式相乘的法则展开,然后代入数据计算即可.【考点】整式的混合运算4.你能化简(x-1)(x99+x98+x97+……+x+1)吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.分别计算下列各式的值:①(x-1)(x+1)=x2-1;②(x-1)(x2+x+1)=x3-1;;③(x-1)(x3+x2+1)=x4-1;;……由此我们可以得到:(x-1)(x99+x98+x97+…+x+1)=________________;请你利用上面的结论,完成下面两题的计算:(1) 299+298+297+……+2+1;(2)(-2)50+(-2)49+(-2)48+……+(-2)+1【答案】2100-1;(1)2100-1;(2).【解析】根据平方差公式,和立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果;从而总结出规律是(x-1)(x99+x98+x97+…+x+1)=x100-1,根据上述结论计算下列式子即可.试题解析:根据题意:(1)(x-1)(x+1)=x2-1;(2)(x-1)(x2+x+1)=x3-1;(3)(x-1)(x3+x2+x+1)=x4-1;故(x-1)(x99+x98+x97+…+x+1)=x100-1.根据以上分析:(1)299+298+297+…+2+1=(2-1)(299+298+297+…+2+1)=2100-1;(2)(-2)50+(-2)49+(-2)48+…(-2)+1=-(-2-1)[(-2)50+(-2)49+(-2)48+…(-2)+1]=-(-251-1)=.【考点】规律型:数字的变化类.5.下列运算正确的是()A.B.C.D.【答案】D【解析】由题中A选项结果应为,B选项结果应为,C选项结果应为,只有D选项结果正确。
混合运算整式与分式的结合
混合运算整式与分式的结合在数学中,我们经常会遇到混合运算整式与分式的结合。
混合运算是指利用不同的运算符号(加减乘除)对已知数字、变量或其他表达式进行计算,而整式是由数字、变量和代数运算符号(加减乘除和幂指数)组成的代数表达式。
而分式则由分子和分母组成,分子和分母之间用斜线分隔。
本文将探讨混合运算整式与分式的结合及应用。
一、混合运算整式与分式的基础知识在混合运算整式与分式的结合中,我们需要掌握整数运算、代数运算符号的优先级规则以及分数运算的基本操作。
整数运算包括加法、减法、乘法和除法,通过这些运算符号可以将整数进行计算。
代数运算符号的优先级规则遵循数学的运算法则,即先乘除后加减。
分数运算的基本操作包括分数的加减乘除,需要将分数的分子和分母按照相应的运算符号进行计算。
二、混合运算整式与分式的例题分析以下是几个混合运算整式与分式的例题,通过解答这些例题我们可以更好地理解混合运算整式与分式的结合。
例题1:计算下列混合运算整式与分式的值:\[2(3x + \frac{4y}{2}) - 5\frac{3}{4} + \frac{7}{9}x\]解析:首先,我们按照代数运算符号的优先级规则先计算括号内的内容:\[2(3x + \frac{4y}{2}) - 5\frac{3}{4} + \frac{7}{9}x = 2(3x + 2y) -5\frac{3}{4} + \frac{7}{9}x\]接下来,我们根据乘法的性质将整式与分式相乘,并合并同类项:\[2(3x + 2y) - 5\frac{3}{4} + \frac{7}{9}x = 6x + 4y - 5\frac{3}{4} + \frac{7}{9}x\]最后,我们对整数、整式和分数进行加减运算:\[6x + 4y - 5\frac{3}{4} + \frac{7}{9}x = (6x + \frac{7}{9}x) + 4y -5\frac{3}{4}\]例题2:求解下列混合运算整式与分式的值:\[\frac{2x - 1}{3} + \frac{x + 3}{2}\]解析:首先,我们将分式的分母取公倍数,并通分进行计算:\[\frac{2x - 1}{3} + \frac{x + 3}{2} = \frac{2(2x - 1)}{2(3)} + \frac{3(x + 3)}{3(2)}\]接下来,我们将分式的分子进行合并并进行简化:\[\frac{2(2x - 1)}{2(3)} + \frac{3(x + 3)}{3(2)} = \frac{4x - 2}{6} +\frac{3x + 9}{6}\]最后,我们对分数进行加法运算,并进行合并同类项:\[\frac{4x - 2}{6} + \frac{3x + 9}{6} = \frac{(4x - 2) + (3x + 9)}{6} = \frac{7x + 7}{6}\]三、混合运算整式与分式的应用混合运算整式与分式不仅仅是数学中的一种运算形式,而且在实际生活中也有广泛的应用。
一、整式与分式
初三总复习:(二)整式与分式一、知识点回顾:1、 定义:(1)代数式:用运算符号和括号把数或者表示数的字母连接而成的式子。
(2)单项式:由数与字母的积或字母与字母的积所组成的代数式。
(3)同类项:如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项 (4)多项式:几个单项式的和组成的代数式叫多项式 (5)整式:单项式、多项式统称为整式。
(6)分式:若A 、B 是整式,B 中含字母,则BA叫分式。
2、整式的运算有加法、减法、乘法、除法、乘方。
3、乘法公式平方差公式:()()b a b a -+= 完全平方公式()2b a ±= 4、幂的运算n m a a ∙= ;()nma = ;()nab = ;n m a a ÷= ;o a = ()0≠a ;p a -= ()0≠a ;5、因式分解是指把多项式和的形式转化成几个整式积的形式; 方法有:提取公因式法;公式法;分组分解法;十字相乘法。
6、分式的基本性质: . =BA= 其中 7、约分和通分约分:把一个分式的分子与分母中相同的因式约去的过程叫约分。
通分:把几个异分母的分式分别化为与原来分式的值相等的同分母分式的过程叫通分。
二、要点回顾:1、将下列代数式分别填入相应的大括号内:aa y x x x mn n m xb a 21,3,21,132,1,3,4122223-+-+--+- 单项式{ }, 多项式{ }, 分 式{ }. 2、用代数式表示“a 与b 的差的平方”是 . 3、若单项式()nyx n --122是关于 x 、y 的三次单项式,则n= .4、先去括号,再合并同类项:()()c b b a ---2= .5、若02=+a a ,则2009222++a a = .6、填空:=⋅32a a ; =23)(a ;=÷a a 3; =+222a a ;45x x x ⋅÷= ;()()3222a b b a -⋅-= .7、计算:()⎪⎭⎫⎝⎛⋅-22313xyy x = ,()()53103102⨯⋅⨯-= . 8、多项式b ax x ++2可以分解为()()14+-x x ,则a= ,b= .9、化简:⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+y x y x 2121= ,()221-x = . 10、当21,2==b a 时,()()b a b b a -+-2= . 11、因式分解:42-a = ,x x x 9623+-= ,322-+a a =,c b ac ab -+-= .12、已知36442++mx x 是完全平方式,则m 的值为 .13、已知2,3==n m a a ,则nm a 32-= .14、当2,3=-=y x 时,计算73+-x y 的值为 . 15、当x 时,分式1312++x x 有意义,当x 时,它的值为零.16、化简:y x x 22025-= ,=++--56222x x x x .17、化简:xx x -+-333= , xx x +÷⎪⎭⎫⎝⎛-211 = , ⎪⎭⎫ ⎝⎛-÷b a a 1= , ()22--b a = . 18、在实数范围内因式分解:22-x = ,三、双基练习:1、下列各对单项式中不是..同类项的是( ). A 、43-与34-; B 、b a 22与221ba ; C 、24y x 与()22y x -; D 、y x 223与2xy . 2、已知a 、b 、c 在数轴上的对应点的位置如图所示, 则a b c b c a --+--= .3、整式1232+-x x 减去x x +-2的差为.4、如果代数式832++-b a 的值为18,则代数式269+-a b 的值为 .5、用幂的结果表示:()2333⨯-= ,()()32a b b a -⋅-= .6、计算:t t t t ÷-⋅632= ,()()5224y y -⋅-= .7、若3412121b a b a a n m n m =⎪⎭⎫⎝⎛⋅++,则m= ,n= . 8、填空:=10636b a ( )2,33254⨯=( )3=10().9、计算:()()13+-x x = ,()22y x +-= ,()()2222y x x y +-= ,31303229⨯= . 10、观察并解答问题:(1)填空 :()()11+-x x = ; ()()112++-x x x = ;()()1123+++-x x x x = ;()()11234++++-x x x x x = .(2)猜想 ()()1121++⋅⋅⋅+++---x x xx x n n n的结果应是 .b a c11、多项式62x x +提取公因式2x 后的另一个因式是 .12、因式分解:23ab a -= ,181222+-x x = ,a b ab a +++2= ,1222---y y x = , ()()128222++-+a a a a = , 36524--x x = . 13、在实数范围内因式分解:742-x = ,14、若22425y kxy x ++可以分解为()225y x -,则k 的值是 .15、当x 时,式子65922+--x x x 值为零.16、若分式x353-的值为负数,则x 的取值范围是 . 17、下列运算中,错误的是( ). A 、()0≠=c bc acb a ; B 、1-=+--ba b a ; C 、b a ba b a b a 321053.02.05.0-+=-+; D 、xy x y y x y x +-=+-.18、已知两个分式:xx B x A -++=-=2121,442,其中2±≠x ,则A 与B 的关系 为( ).A 、相等;B 、互为倒数;C 、互为相反数;D 、A 大于B .19、约分:2322515c a b a -= ,()()2222c b a c b a +--+= . 20、计算:x y y x 11⋅÷⋅= ,a ba ab b a +÷⎪⎭⎫ ⎝⎛-= , ⎪⎪⎭⎫⎝⎛-+-⋅+a a a a a a 2422222= . 解答题:1、请从下列三个代数式中任选两个构成一个分式,并化简该分式:12-a , b ab -, ab b +.2、请从下列各式中任选两式作差,并将得到的式子进行因式分解:24a , ()2y x +, 1, 29b .3、先化简,再求值: 1112421222-÷+--⋅+-a a a a a a 其中a 满足02=-a a . 4、长方体中有一个公共顶点的三个面的面积分别是22cm 、23cm 、26cm ,求长方体的体积.5、按下列程序计算,把答案写在表格内:(1)填写表格:(2)请将题中计算程序用代数式表达出来,并给予化简.6、有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b )、宽为(a+b)的矩形,则需要A 类卡片 张,B 类卡片 张,C 类卡片 . 张。
分式与整式的运算综合练习题
分式与整式的运算综合练习题一、填空题1. 计算:$\frac{4}{5}+\frac{1}{3}=$ __________2. 计算:$\frac{3}{8}-\frac{5}{12}=$ __________3. 计算:$5\frac{1}{2}\div\frac{3}{4}=$ __________4. 计算:$(\frac{3}{4})^2=$ __________5. 计算:$1\frac{1}{8}\times\frac{2}{5}=$ __________二、选择题1. 下列哪个整式等于$\frac{5}{6}+\frac{7}{10}$?A. $\frac{1}{2}+\frac{1}{3}+\frac{5}{15}$B. $\frac{1}{3}+\frac{2}{5}+\frac{5}{15}$C. $\frac{1}{6}+\frac{1}{10}+\frac{5}{15}$D. $\frac{1}{2}+\frac{1}{5}+\frac{5}{15}$2. 下列哪个整式等于$1\frac{1}{4}-\frac{3}{8}$?A. $\frac{1}{8}+\frac{1}{4}+\frac{5}{12}$B. $\frac{3}{8}+\frac{2}{8}+\frac{5}{12}$C. $\frac{1}{3}+\frac{1}{4}+\frac{5}{12}$D. $\frac{1}{2}+\frac{1}{5}+\frac{5}{12}$三、解答题1. 计算:$\frac{2}{3}+\frac{1}{4}-\frac{3}{8}=$ __________2. 一块绳子长$\frac{2}{5}$米,如果把它剪成$\frac{1}{10}$米长的小段,一共可以剪成几段?3. (1) 计算:$3\frac{1}{2}\div(\frac{1}{4}+\frac{5}{8})=$ __________(2) 小明想独自吃完$\frac{3}{4}$块蛋糕,他需要准备$\frac{1}{4}$块蛋糕,小明的妈妈准备了$\frac{5}{8}$块蛋糕,还差几块蛋糕?四、应用题1. 小明有$\frac{3}{4}$千克香蕉,小红有$\frac{2}{5}$千克香蕉,他们将香蕉放在一起分装,一共分装成多少千克?2. 一个工程师在设计电路板时,需要用到$\frac{3}{8}$米长的电线,他手头有$\frac{2}{5}$米长的电线,还差多少米电线?3. 琳琳做了$\frac{3}{5}$个作业题,其中做错了$\frac{1}{6}$个题,她一共做了多少个作业题?做对了几个?以上是分式与整式的运算综合练习题,希望能帮助你巩固与练习相关知识点。
整式与分式
A.4B.3C.1D.0
5.(2011•江津区)下列式子是分式的是( )
A、 B、 +1C +yDxπ
6.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是
2.代数式 中,分式的个数是()
A.1B.2C.3D.4
3.计算 的结果为( )
A. B. C. D.
4.把分式 中的分子、分母的 、 同时扩大2倍,那么分式的值( )
A. 扩大2倍 B. 缩小2倍 C. 改变原来的 D. 不改变
5.如果 =3,则 =()A. B.xy C.4 D.
6.若x,y为实数,且 ,则 的值是
21.在解题目:“当 时,求代数式 的值”时,聪聪认为 只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理
22.某开发公司生产的960件新产品需要精加工后才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工数量的 ,公司需付甲工厂加工费用每天80元,需付乙工厂加工费用每天120元.
概念总结
一、整式
1.代数式:用运算符号(加、减、乘、除、乘方、开方)把或表示连接而成的式子叫做代数式.
2.代数式的值:用代替代数式里的字母,按照代数式里的运算关系,计算后所得的叫做代数式的值.
3.整式
(1)单项式:由数与字母的组成的代数式叫做单项式(单独一个数或也是单项式).单项式中的叫做这个单项式的系数;单项式中的所有字母的叫做这个单项式的次数.
分式、因式分解整式乘除综合知识点及练习
基础知识1.同底数幂的乘法:,(m,n 都是正整数),即同底数幂相乘,底数不变,指mnm na a a +=g 数相加。
2.幂的乘方:,(m,n 都是正整数),即幂的乘方,底数不变,指数相乘。
()m nmn a a=3.积的乘方:,(n 为正整数),即积的乘方,等于把积的每一个因式分别乘()n n nab a b =方,再把所得的幂相乘。
4.整式的乘法:(1)单项式的乘法法则:一般地,单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘多项式法则:单项式与多项式相乘,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加.可用下式表示:m (a +b +c )=ma +mb +mc (a 、b 、c 都表示单项式)(3)多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.5.乘法公式:(1)平方差公式:平方差公式可以用语言叙述为“两个数的和与这两个的差积等于这两个数的平方差”,即用字母表示为:(a +b )(a -b )=a 2-b 2;其结构特征是:公式的左边是两个一次二项式的乘积,并且这两个二项式中有一项是完全相同的,另一项则是互为相反数,右边是乘式中两项的平方差.(2)完全平方公式:完全平方公式可以用语言叙述为“两个数和(或差)的平方,等于第一数的平方加上(或减去)第一数与第二数乘积的2倍,加上第二数的平方”,即用字母表示为:(a +b )2=a 2+2ab +b 2;(a -b )2=a 2-2ab +b 2;其结构特征是:左边是“两个数的和或差”的平方,右边是三项,首末两项是平方项,且符号相同,中间项是2ab ,且符号由左边的“和”或“差”来确定. 在完全平方公式中,字母a 、 b 都具有广泛意义,它们既可以分别取具体的数,也可以取一个单项式、一个多项式或代数式(3)添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都变号。
中考数学试题整式与分式试卷及参考答案与试题解析.doc
中考数学试题整式与分式试卷及参考答案与试题解析(共14 小题)【命题方向】这部分内容是初中教学各类计算的基础,是中考的必考内容。
一般是对知识点进行单纯性考查,出题的形式多以选择题、填空题为主,难度较低,也出现一些简单的计算题,一般是利用分式性质化简后求值或与乘法公式综合进行化简。
【备考攻略】对于这部分知识解题要认真,一般不存在思维障碍,失误往往是由于不认真造成的。
例如因式分解时没有注意分解到不能再分解为止,分式化简求值时化简出现错误,等等。
另外,近几年中考题关于分式的化简求值题字母取值是开放性的不少见,这里实际上考查了分式有意义时字母的取值范围。
所以当自己选取字母值时,一定要使化简前和化简后的分式同时有意义才行。
21•已知2a2+3a- 6=0 •求代数式3a (2a+l ) - ( 2a+l)(2a -1)的值•22-已知x- y=V3 '求代数式(x+1)2- 2x+y (y- 2x)的值•23-已知x2- 4x- 1=0,求代数式(2x- 3) 2- (x+y) (x -y) - y2的值•24-已知a2+2ab+b2=0,求代数式a (a+4b) - (a+2b) (a-2b)的值•25-如图中的四边形均为矩形,根据图形,写出一个正确的等式ma b c2 6•分解因式:5x3- 10x2+5x= ___ •(27•分解因式:ax4- 9ay2= ___ .()2 8•分解因式:ab2- 4ab+4a= ___ -()2 9•分解因式:mn2+6mn+9m= ___ •()3 0•分解因式:a3- 10a2+25a= ___ •()3 1•如果分式-里-有意义,那么X的取值范围是—x T32•若分式二兰的值为0,则x的值等于 _____ •(),233-如果a+b=2,那么代数(a-虹)• 的值是( )a a _ bA • 2B • - 2C • 1D • - 12 234•已知旦应尹0 '求代数式2b)的值•2 3广a2-4b2整式与分式(共14小题)【命题方向】这部分内容是初中数学各类计算的基础,是中考的必考内容。
《整式与分式》(共59题)2022年中考专练附答案(北京专用)
专题02整式与分式〔共59题〕
一.选择题〔共5小题〕
1.〔2021•北京〕如果m+n=1,那么代数式〔 〕•〔m2﹣n2〕的值为〔 〕
A.﹣3B.﹣1C.1D.3
【分析】原式化简后,约分得到最简结果,把等式代入计算即可求出值.
【解析】原式 •〔m+n〕〔m﹣n〕 •〔m+n〕〔m﹣n〕=3〔m+n〕,
∴5x2﹣x=1,
∴原式=2〔5x2﹣x〕﹣4=﹣2.
一.选择题〔共30小题〕
1.〔2021•门头沟区二模〕以下运算中,正确的选项是〔 〕
A.x2+2x2=3x4B.x2•x3=x5C.〔x3〕2=x5D.〔xy〕2=x2y
【分析】分别根据合并同类项法那么,同底数幂的乘法法那么,幂的乘方运算法那么以及积的乘方运算法那么逐一判断即可.
B、原式=2a5,不符合题意;
C、原式=﹣8a9,符合题意;
D、原式=a2﹣2a+1,不符合题意,
应选:C.
8.〔2021•北京模拟〕以下运算中,正确的选项是〔 〕
A.x2+5x2=6x4B.x3•x2=x6C.〔x2〕3=x6D.〔xy〕3=xy3
【分析】直接利用积的乘方运算法那么以及合并同类项和同底数幂的乘除运算法那么分别分析得出答案.
C、右边是〔a﹣2b〕〔a﹣2b〕,故本选项正确;
D、结果是a〔x+y+1〕,故本选项错误.
应选:C.
10.〔2021•怀柔区二模〕如果m﹣n=1,那么代数式 的值为〔 〕
A.﹣3B.﹣1C.1D.3
【分析】先化简所求的式子得到 ,把m﹣n=1代入即可求结果.
关于整式和分式计算最后结果的格式问题
关于整式和分式计算最后结果的表示方式问题
在代数计算题中,最后计算结果的表示方式(即要求做到哪一步才行),不同书上各不相同,不同老师要求也不尽相同。
中考时,到底有没有统一的标准?哪一种方式是正确的?
下表列举了几对计算结果最后表示方式的例子,哪种方式对?
计算结果是要展开式(如第一种)才行,或是因式形式(如第二种)就可以了?
针对上述问题
我的回答:
一、
计算的最终结果有两个基本原则:1、能不含括号的尽量不含;2、能不用负整数指数幂的尽量不用。
二、
具体回答: 1、2
)1(2a a
-在一般情况下要化成2212a a a
+-;2、)3(21+x 在一般情况下要化成621+x ; 3、5481n m -一定要写成54
8n
m ; 4、y x 11-若是计算的结果,不要继续化简;若是要求计算则要进行异公母的通分运算为xy
x y -; 5、
))((1y x y x -+在一般情况下要化成221y x - 由于很忙,过了这些多天才给您答复!很对不起!。
整式乘法及分式练习题及答案
整式乘法及分式练习题及答案一、选择题:将下列各题正确答案的代号的填在下表中。
每小题3分,共36分。
1.下列计算正确的是 A. a3?a2=aB.b4?b4?bC. x5+x5=x10D. y7?y=y82. 化简:??xx?4?x2?x?2?x?2x结果是 A.xB.x+C.D. -43. 下列各选项中,所求的最简公分母错误的是A.1与1的最简公分母是6xB.1133x6x3a2b3与3a2b3c 最简公分母是3a2bcC.1ax?y 与1by?x的最简公分母是ab?x?y??y?x?D.1m?n 与1m?n的最简公分母是m2-n2. 在式子:12xy3a2b3,c5xy10a?,4,6?x,7?8,9x?y中,分式的个数是A:2B: C:4D:55.化简a4?a2??a3?2的结果正确的是A.a8?aB. a9?aC.aD. a1. 用科学记数法表示-0.0000064为A. -64×10-B. -0.64×10-C. -6.4×10-D. -640×10-.下列计算正确的是A. ?2ab34ab??2a2bB. ?5a5b3c?15a4b=13b2cC. ?xy?3x2yx3yD. ??3ab?3a2b??9a3b2?a2?248. 化简b??1??ab??的结果为 A.11ab4B. -b6C. 1b D. 1b59. 若分式的值为零,则m =A、±B、C、 ?D、 110. 轮船顺流航行80km后返回,共用6h20min,已知水流速度是3km/h,如果设静水中轮船的速度为x km/h,则所列方程正确的是A.80+80=601803B.x?3?80x?3?613C.080180x?3?x?3?6x?3D.x?80?61311.一次课堂练习,一位同学做了4道因式分解题,你认这位同学做得不够完整的题是A. x2?2xy+y2??x?y?2B. x2y-xy2?xy?x?y?C. x2?y2??x?y??x?y?D. x3?x=x?x2?1? 12.若a+b=6,a b=3,则3a2b+3ab2的值是A.B. C. 1 D.413. 约分:?4x2y6xy2? ;14.已知:a5??am?3?a11,则m的值为15.计算???2a2?23a?4?99a?的结果是.16. 若分式2x?1+-3有意义,则x的取值范围是 . 17.分解因式:x4-x2= .18若9x2+m x y+16y2是一个完全平方式,则m的值是.19.已知:x+1=2,求x21x+x220.如果的a=3,则a2+ab+b2值是 .ba+b2三、解答题:1.计算题:⑴.??a3?43x2?2xy+y2a? ⑵. ?xy+x2??x?yxy?x2⑶-3÷ ⑷.2a?baa?b?b?a22.将下列各式因式分解:⑴.-a4?1⑵.16?a?b?2?9?a?b?223.化简求值:⑴.?a?b??a?ba?b?2,其中a=3,b=-13.⑵.3x?33x1x2?1?x?1?x?1,其中x从-1,0,1,2选合适的数值代入求值。