微积分基础第一次作业 (交通大学)
微积分初步形成性考核册答案全
微积分初步形成性考核作业(一)解答一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是 .解:020)2ln({>-≠-x x , 23{>≠x x所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是 .解:05>-x ,5<x 所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是 .解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f.解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x 所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x ,则=)0(f .解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是 .解:因为当01=+x ,即1-=x 时函数无意义所以函数1322+--=x x x y 的间断点是1-=x8.=∞→xx x 1sinlim .解:=∞→x x x 1sinlim 111sinlim =∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim00===→→kkxkx x xk kx x x x 所以2=k10.若23sin lim 0=→kxxx ,则=k .解:因为2333lim 33lim 00===→→kx x sim k kx x sim x x所以23=k 二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y xx x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。
交大刘迎东微积分习题答案
交⼤刘迎东微积分习题答案8.6 多元函数微分学的⼏何应⽤习题8.61. 求曲线sin ,1cos ,4sin 2t x t t y t z =-=-=在02t π=相应的点处的切线及法平⾯⽅程。
解:点为1,1,2π?-,切向量为{21cos ,sin ,2cos .2t t t t π=??-=所以切线为112x y π??--=-=法平⾯⽅程为1102x y z π??--+-+-=,即4.2x y π+=+2. 求曲线21,,1t tx y z t t t+===+在对应于01t =的点处的切线及法平⾯⽅程。
解:点为1,2,12?? ???,切向量为()22 1111,,2,1,2.41t t t t =-=-+????所以切线为1212.1124--==-法平⾯⽅程为()()11221042x y z ??---+-= ,即2816 1.x y z -+=3. 求曲线222,y mx z m x ==-在点()000,,x y z 处的切线及法平⾯⽅程。
解:22,2,ydy mdx zdz dx =??=-?,在点()000,,x y z 处,0022,2,y dy mdx z dz dx =??=-?所以切向量为0 011,,.2m y z ??-所以切线为00000.112x x y y z z m y z ---==-法平⾯⽅程为()()()00000102m x x y y z z y z -+---=。
4. 求曲线22230,23540x y z x x y z ?++-=?-+-=?在点()1,1,1处的切线及法平⾯⽅程。
解:22230,2350,xdx ydy zdz dx dx dy dz ++-=??-+=?,在点()1,1,1处,22230,2350,dx dy dz dx dx dy dz ++-=??-+=?所以切向量为{}16,9,1.-所以切线为111.1691x y z ---==-法平⾯⽅程为()()()1619110x y z -+---=。
微积分第一章课外习题参考答案
p14. 三.1.证明 : 令f ( x) x3 3x 1, 则f ( x)在[1,2]上连续,且
f (1) 3 0, f (2) 1 0, 由闭区间上连续函数的零点定理,
存在 (1,2),使得f ( ) 0,即 3 3 1.
1,
n2
lim
n
n2
1,
n2
1
n
)
1
lim
n
n(
n2
n2
1
2
n2
1
n
)
1.
p8. 2.证明 : (1) x1 2 0, x2 2 x1 x1 0,设xn xn1 0,则
xn1 2 xn 2 xn1 xn 0, 根据数学归纳法原理,{ xn }为单调增加序列, (2) x1 2 2,设xn 2,则
xn1 2 xn 2 2 2, 根据数学归纳法原理,xn 2, n 1,2, ,
(接上页p8.)
{ xn }为单调增加有界序列.
lim
n
xn存在
.
设
lim
n
xn
A,由xn
2 xn1 ,得
lim
n
xn
lim
n
2 xn1 ,
A 2 A, A 2, A 1(舍去),
lim
n
lim n k 1, lim n kAn 1
n
n
lim
n
xn
A
max(a1,a2 ,
ak ).
例如: lim n 1n 2n 8n 8. n
p15. 三.由导数定义知 :
1.
e xh lim
ex.
微积分初步形成性考核册答案
微积分初步形成性考核作业(一)————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是.解:020)2ln({>-≠-x x , 23{>≠x x 所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是.解:05>-x ,5<x 所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是.解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f .解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x 所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x ,则=)0(f .解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是.解:因为当01=+x ,即1-=x 时函数无意义 所以函数1322+--=x x x y 的间断点是1-=x8.=∞→x x x 1sinlim .解:=∞→x x x 1sin lim 111sinlim=∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim00===→→kkxkx x xk kx x x x 所以2=k 10.若23sin lim 0=→kxxx ,则=k .解:因为2333lim 33lim 00===→→k x x sim k kx x sim x x 所以23=k二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y x x x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。
国家开放大学《高等数学基础》第1—4次作业参考答案
3.在下列方程中, y y ( x ) 是由方程确定的函数,求 y :
(1) y cos x e 2 y
(2) y cos y ln x
(3) 2 x sin y
x2
y
(4) y x ln y
(5) ln x e y y 2
(6) y 2 1 e x sin y
D. f ( x) x 1 , g ( x)
x2 1
x 1
2.设函数 f (x) 的定义域为 (,) ,则函数 f ( x) f ( x) 的图形关于(C)对
称.
A.坐标原点
B. x 轴
C. y 轴
D. y x
3.下列函数中为奇函数是(B).
A. y ln(1 x 2 )
(3) y ln x
(4) y x sin x
ห้องสมุดไป่ตู้(四)证明题
设 f (x) 是可导的奇函数,试证 f (x) 是偶函数.
第三次作业
(一)单项选择题
1.若函数 f (x) 满足条件(D),则存在 (a , b) ,使得 f ( )
A. 在 (a , b) 内连续
B. 在 (a , b) 内可导
讨论 f (x) 的连续性.
参考答案:
第二次作业
(一)单项选择题
1.设 f (0) 0 且极限 lim
x 0
f ( x)
f ( x)
存在,则 lim
(B).
x 0
x
x
A. f (0)
B. f (0)
C. f (x)
D. 0
2.设 f (x) 在 x0 可导,则 lim
h 0
【学在交大】大一微积分期中试卷答案
十、讨论函数 f ( x) lim 解:由题意,得
1 x 2n x 的连续性,若有间断点,判别其类型. n 1 x 2 n
x, 0, f ( x ) x, 0, x,
x 1 x 1 1 x 1 x 1 x 1
x 0
'
x.
1 ex 1 x 1 1 1 a x lim , 故令 , 函数 f x 在 x 0 x 0 x 2 e 1 x0 x e x 1 2
处连续。 又
1 1 1 x 2 e x 1 2 x x e x 1 f x f 0 lim lim x e 1 2 lim x 0 x 0 x 0 x x 2 x 2 e x 1 xe x 2e x x 2 e x xe x 2e x 1 lim x 0 x 0 2 x3 6 x2 e x xe x e x 1 lim x 0 12 x 12 1 故当 a 时 f x 在 x 0 处可导, 2 1 ex ,x 0 x2 2 x e 1 ' 且 f x 1 , x 0 12 x sin x 六、求积分 dx. cos 2 x lim
解: (1)若 F x kx h x ,则 h x F x kx ,其为以 T 为周期的函数的充要条件 是
F x T k x T
即
x T
0
f t dt k x T h x T h t f t dt kx.
x 1
a b x b
3x 1 x 3
最新中央电大《微积分初步》形成性考核册参考答案
中央电大《微积分初步》形成性考核册参考答案微积分初步作业1 参考答案1、函数、极限和连续一、填空题(每小题2分,共20分)1.()()3,+∞2,3 或填{}23x x x >≠且; 2.(),5-∞或填{}5x x <;3.()(]2,11,2--⋃-或填{}121x x x -<≤≠-且; 4.26x +; 5.2; 6.21x -; 7.1x =-; 8.1; 9.2; 10.32.二、单项选择题(每小题2分,共24分)1.B2.A3.D4.C5.D6.D7.C8.D9.C 10.B 11.D 12.A三、解答题(每小题7分,共56分) 1.解:原式=()()()()221211limlim .2224x x x x x x x x →→---==+-+ 2.解:原式=()()()()126167lim lim .1112x x x x x x x x →→+-+==+-+ 3.解:原式=()()()()323333limlim .1312x x x x x x x x →→+-+==+-+ 4.解:原式=()()()()422422lim lim .1413x x x x x x x x →→---==--- 5.解:原式=()()()()22244limlim 2.233x x x x x x x x →→---==--- 6.解:原式=111.2x x →→==-7.解:原式=111.8x x →→==-8.解:原式=()()0sin 4242lim16.x x x x x→→⋅⋅==微积分初步作业2 参考答案2、导数与微分3、导数的应用一、填空题(每小题2分,共20分)1.12; 2.10x y -+=; 3.230x y +-=; 41; 5.6-; 6.()271ln3+;7.21x-; 8.2-; 9.()1,+∞; 10. 0a >.二、单项选择题(每小题2分,共24分)1.D2.C3.C4.B5.D6.C7.C8.C9.A 10.B 11.B 12.A三、解答题(每小题7分,共56分)1.解:()111221221xxx y xe x e x e x ⎛⎫'=+-=- ⎪⎝⎭.2.解:24cos43sin cos y x x x '=-. 3.解:21y x '=-. 4.解:sin tan cos x y x x '==. 5.解:方程两边同时对x 求微分,得()()2202222xdx ydy xdy ydx x y dx x y dyx ydy dxx y+--=-=--∴=-6. 解: 原方程可化为()21x y +=1,1x y y x ∴+=±=-±1,y dy dx '∴=-=-7. 解:方程两边同时对x 求微分,得20x y y e dx e dy xe dx xdx +++=()2y x y xe dy e e x dx =-++2x y ye e xdy dx xe++∴=-. 8. 解:方程两边同时对x 求微分,得()()sin 0y x y dx dy e dy -+++=()()sin sin yx y dy dx e x y +∴=-+ 微积分初步作业3 参考答案4、不定积分、极值应用问题一、填空题(每小题2分,共20分)1.2ln 2x x x c -+; 2.24x e --; 3.()1x x e +; 4.2cos 2x ; 5.1x;6.4cos 2x -;7.2x e dx -; 8.sin x c +; 9.()1232F x c -+; 10. ()2112F x c--+.二、单项选择题(每小题2分,共16分) 1.A 3.A 4.A 5.A 6.A 7.C 8.B三、解答题(每小题7分,共35分)1.解:原式=32sin 3ln cos 3x dx x x c x⎛⎫=-+ ⎪⎝⎭⎰.2.解:原式=()()()()10111121212121221122x d x x c x c --=⨯-+=-+⎰.3.解:原式=111sin cos d c x x x⎛⎫-=+ ⎪⎝⎭⎰. 4.解:原式=11111cos 2cos 2cos 2cos 2sin 222224xd x x x xdx x x x c -=-+=-++⎰⎰. 5.解:原式=()1x x x x x x xde xe e dx xe e c x e c -------=-+=--+=-++⎰⎰.四、极值应用题(每小题12分,共24分)1.解: 设矩形ABCD 的一边AB x =厘米,则60BC x =-厘米, 当它沿直线AB 旋转一周后,得到圆柱的体积()()260,060V x x x π=-<<令()()2602600V x x x π⎡⎤'=---=⎣⎦得20x = 当()0,20x ∈时,0V '>;当()20,60x ∈时,0V '<.20x ∴=是函数V的极大值点,也是最大值点.此时6040x -=答:当矩形的边长分别为20厘米和40厘米时,才能使圆柱体的体积最大. 2. 解:设成矩形有土地的宽为x 米,则长为216x米, 于是围墙的长度为()4323,0L x x x=+> 令243230L x'=-=得()12x =取正易知,当12x =时,L 取得唯一的极小值即最小值,此时21618x= 答:这块土地的长和宽分别为18米和12米时,才能使所用的建筑材料最省. 五、证明题(本题5分)()()()()1 0, 01 0, 0,0.x x f x e x e x f x f x x e '=-<<<'∴<>=--∞证:当时当时从而函数在区间是单调增加的微积分初步作业4 参考答案5、定积分及应用一、填空题(每小题2分,共20分)1.23-; 2.2; 3.3221633y x =-; 4.4; 5.24a π; 6.0;7.12;8.x y e =; 9.3x y ce -=; 10. 4.二、单项选择题(每小题2分,共20分)1.A2.A3.A4.D5.D6.B7.B8.D9.C 10.B三、计算题(每小题7分,共56分)1.解:原式=()()()2ln 23ln 20011911133xx x ed e e ++=+=-⎰. 2.解:原式=()()()21111715ln 15ln 15ln 5102e ex d x x ++=+=⎰. 3.解:原式=()111100011x x x xxde xe e dx e e e e =-=-=--=⎰⎰.4.解:原式=02cos 2cos 4sin 4222x x x xd x ππ⎡⎤-=-+=⎢⎥⎣⎦⎰.5.解:原式=22220000cos cos cos 0sin 1xd x x x xdx x ππππ-=-+=+=⎰⎰.6. 解:()()21,1P x Q x x x==+()()()()()()112ln 2ln 342 1 11 111 42P x dx P x dx dx dx x x x xy e Q x e dx c e x e dx c e x e dx c x x dx c x x x c x ---⎡⎤⎰⎰=+⎢⎥⎣⎦⎡⎤⎰⎰=++⎢⎥⎣⎦⎡⎤=++⎣⎦⎡⎤=++⎣⎦⎡⎤=++⎢⎥⎣⎦⎰⎰⎰⎰通解即通解31142c y x x x=++ 7. 解:()()1,2sin 2P x Q x x x x=-=()()()()11ln ln 2sin 2 2sin 21 2sin 2 cos 2P x dx P x dx dx dx x xx x y e Q x e dx c e x xedx c e x xe dx c x x x dx c x x x c ---⎡⎤⎰⎰∴=+⎢⎥⎣⎦⎡⎤⎰⎰=+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=⋅+⎢⎥⎣⎦=-+⎰⎰⎰⎰通解即通解为()cos2y x x c =-+.四、证明题(本题4分)()()()()()()()()()()()000000aaaaaaaa af x dx f x dxf x dx f x dxf x d x f x dx f x dx f x dxf x f x dx ----+=-+=---+=-+=-+=⎡⎤⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰证:左边=右边。
微积分(一)综合测试1试题及答案
《微积分》上册 综合练习题1一、填空题(每小题2分,共10分): 1. 设11(),()1,[()]______________;1x f x g x e f g x x -==-=+则 2.2)(x e x f =,则xf x f x )1()21(lim 0--→= 。
3.)1(1)(2--=x x e x f x 的可去间断点为=0x ;补充定义=)(0x f时,则函数在0x 处连续。
4.已知函数1()sin 3cos 3f x x a x =-在3x π=处取极值,则a = ,()3f π为极 值。
5.若31()x f t dt x -=⎰,则=)7(f 。
二、单项选择(每小题2分,共20分):1. 函数)12ln(2712arcsin )(2--+-=x x x x x f 的定义域区间是( )。
(A )1[,1)(1,2]2 (B )1[,1)(1,2)2(C )1(,1)(1,2]2 (D )1(,2]22. 函数1()sin f x x x=,则)(x f ( )。
(A ) 单调 (B ) 有界 (C )为周期函数 (D )关于原点对称3.曲线2arctan )(2221--=x x x e x f x 有( )条渐近线。
(A ) 1 (B ) 2 (C ) 3 (D )44. 在同一变化过程中,结论( )成立。
(A) 两个穷大之和为无穷大 (B )两个无穷大之差为无穷大(C) 无穷大与有界变量之积为无穷大 (D )有限个无穷大之积为无穷大5.当0→x 时,下列函数那个是其它三个的高阶无穷小( )。
(A )2x (B )1cos x - (C ))1ln(2x + (D )x x tan - 6. 若)(x f 为定义在),(∞+-∞的可导的偶函数,则函数( )为奇函数。
(A )(sin )f x ' (B )()sin f x x ' (C )(cos )f x ' (D )[()sin ]f x x '7.已知函数)(x f 任意阶可导,且2()[()]f x f x '=,则)(x f 的n (n ≥ 2)阶导数=)()(x f n ( )。
微积分初步形成性考核册答案
微积分初步形成性考核作业(一)————函数,极限和连续一、填空题(每小题2分,共20分) 1.函数)2ln(1)(-=x x f 的定义域是 .解:020)2ln({>-≠-x x , 23{>≠x x所以函数)2ln(1)(-=x x f 的定义域是),3()3,2(+∞⋃2.函数xx f -=51)(的定义域是 .解:05>-x ,5<x 所以函数xx f -=51)(的定义域是)5,(-∞3.函数24)2ln(1)(x x x f -++=的定义域是 .解:⎪⎩⎪⎨⎧≥->+≠+04020)2ln(2x x x ,⎪⎩⎪⎨⎧≤≤-->-≠2221x x x 所以函数24)2ln(1)(x x x f -++=的定义域是]2,1()1,2(-⋃-- 4.函数72)1(2+-=-x x x f ,则=)(x f.解:72)1(2+-=-x x x f 6)1(61222+-=++-=x x x 所以=)(x f 62+x5.函数⎩⎨⎧>≤+=0e02)(2x x x x f x ,则=)0(f .解:=)0(f 2202=+6.函数x x x f 2)1(2-=-,则=)(x f .解:x x x f 2)1(2-=-1)1(11222+-=-+-=x x x ,=)(x f 12+x7.函数1322+--=x x x y 的间断点是 .解:因为当01=+x ,即1-=x 时函数无意义所以函数1322+--=x x x y 的间断点是1-=x8.=∞→xx x 1sinlim .解:=∞→x x x 1sinlim 111sinlim =∞→xx x9.若2sin 4sin lim0=→kxxx ,则=k .解: 因为24sin 44sin lim 4sin 4sin lim00===→→kkxkx x xk kx x x x 所以2=k 10.若23sin lim 0=→kxxx ,则=k .解:因为2333lim 33lim 00===→→k x x sim k kx x sim x x所以23=k 二、单项选择题(每小题2分,共24分)1.设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数解:因为y e e e e x y xx x x =+=+=-----22)()( 所以函数2e e xx y +=-是偶函数。
微积分第一章课外习题参考答案
9
p4.3.证明 : { xn }有界, M 0, 使得 | xn | M , n 1,2,
n
.
0, lim yn 0, N ,当n N 时, | yn |
M | xn yn || xn || yn | , lim xn yn 0.
微积分课外习题参考答案
微积分第一章课外习题参考答案
1
第一章 极限与连续
微积分第一章课外习题参考答案
2
预备知识(1-2)
p1. 一.1. { x | x 3且x 0} . 2. [1,1],[2k ,(2k 1) ], k Z . 1 x 3. 1 1 e x 1 1 x1 , x2 , 1 x1 1 e x 1 x 1 . x 1
x0 1 三. f [ g ( x )] 0 x0 1 x 0 e | x | 1 g[ f ( x )] 1 | x | 1 注意作图形. 1 | x | 1 e
微积分第一章课外习题参考答案 5
p2. 四 . 证明: f ( x ) f (2a x ) f (2b 2a x ) f [2(b a ) x ] 周期 T 2 | b a | . 五 . 证明 f ( x ) log a ( x x 1)
8
p4.
2.
解 :由题意,
n 2
1 1 1 ( 1) P1 Pn 1 2 3 2 2 2 2n 2 1 n 1 1 n 1 1 ( ) 2 2( ) 2 2 1 3 1 2 1 n 1 2 2( ) 2 2 lim P1 Pn lim n n 3 3
微积分第一章习题解答
4.(5)
4.(6)
§1.9 部分习题答案
(2)
解
:
故 间断
3.(1)
3.(3)
6.
§1.10 部分习题答案
1.(1)
1.(2)
1.(3)
1.(4)
1.(5) 1.(6)
2.
3.
4.
5.
*6.
LOGO
广东外语外贸大学
5ຫໍສະໝຸດ 5 x 2 12 , 故 lim5 x 2 12.
x 2
sin x 0. 2(2)证明 xlim x
1 sin x sin x 证 0 x x x
,
0, 取 X
sin x 0 , x
1
2
,
则当 x X时恒有
第一章
第一章 习题解答
§1.1 答案 §1.6 答案 §1.7 答案 §1.8 答案 §1.9 答案
§1.2 答案 §1.3 答案
§1.4 答案
§1.5 答案
§1.10 答案
§1.1 部分习题答案
1.(1)
y 1 1 x2 x
(5 )
ye
1 x
故定义域为
,0 0,
sin x 故 lim 0. x x
x 3. 验证 lim 不存在. x0 x
x x lim lim 证 x 0 x x 0 x
lim ( 1) 1
x 0
y
1
o
1
x
x x lim 1 1 lim lim x 0 x 0 x x 0 x 左右极限存在但不相等, lim f ( x ) 不存在.
国家开放大学《微积分基础》形成性考核作业1-4参考答案
国家开放大学《微积分基础》形成性考核作业1-4参考答案形成性考核作业1一、填空题(每小题2分,共20分)1.函数的定义域是 (2,3)U (3,+∞) .2.函数的定义域是 (-∞,5) .3.函数的定义域是 (-2,-1)U (-1,2] .4.函数,则 f(x)=x 2+6 .5.函数,则 2 .6.函数,则 x 2―1 .7.函数的间断点是 x=-1 .8. 1 .9.若,则 2 .10.若,则 3/2 .二、单项选择题(每小题2分,共24分)1.设函数,则该函数是(B ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数2.设函数,则该函数是(A ).)2ln(1)(-=x x f xx f -=51)(24)2ln(1)(x x x f -++=72)1(2+-=-x x x f =)(x f ⎩⎨⎧>≤+=0e 02)(2x x x x f x =)0(f x x x f 2)1(2-=-=)(x f 1322+--=x x x y =∞→xx x 1sinlim 2sin 4sin lim 0=→kxxx =k 23sin lim 0=→kxxx =k 2e e xx y +=-x x y sin 2=A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数3.函数的图形是关于(D )对称.A .B .轴C .轴D .坐标原点4.下列函数中为奇函数是(C ).A .B .C .D . 5.函数的定义域为(D ). A . B . C .且 D .且 6.函数D ). A . B . C . D .222)(xx x x f -+=x y =x y x x sin x ln )1ln(2x x ++2x x +)5ln(41+++=x x y 5->x 4-≠x 5->x 0≠x 5->x 4-≠x 1()ln(1)f x x =-(1,225⋃)(,)(1,225]⋃)(,(5]-∞,),2()2,1(+∞⋃7.设,则(C )A .B .C .D .8.下列各函数对中,(D )中的两个函数相等.A .,B .,C .,D .,9.当时,下列变量中为无穷小量的是(C ).A .B .C .D .10.当(B )时,函数,在处连续.A .0B .1C .D .11.当(D )时,函数在处连续.A .0B .12(1)+21f x x x +=-=)(x f 21x -22x -2+1x 22x +2)()(x x f =x x g =)(2)(x x f =x x g =)(2ln )(x x f =x x g ln 2)(=3ln )(x x f =x x g ln 3)(=0→x x 1xx sin )1ln(x +2x x =k ⎩⎨⎧=≠+=0,,1)(2x k x x x f 0=x 21-=k e 2,0(),0x x f x k x ⎧+≠=⎨=⎩0=xC .D . 12.函数的间断点是(A ) A . B . C . D .无间断点三、解答题(每小题7分,共56分)⒈计算极限=(X ―1)(X ―2)(X +2)(X ―2)=x ―1x +2=142.计算极限=lim x→1(x +6)(x ―1)(x +1)(x ―1)=lim x→1(x +6)(x +1)=72 3.=lim x→3(x +3)(x ―3)(x ―3)(x +1)=lim x→3(x +3)(x +1)=324.计算极限=lim x→4(x ―2)(x ―4)(x ―1)(x ―4)=lim x→4(x ―2)(x ―1)=235.计算极限=lim x→2(x ―2)(x ―4)(x ―2)(x ―3)=lim x→2(x ―4)(x ―3)=26.计算极限=limx→0(1―x ―1)(1―x +1)x(1―x +1)=lim x→0―x x (1―x +1)=lim x→0―1(1―x +1)=―12 7.计算极限=limx→0(1―x ―1)(1―x +1)sin4x(1―x +1)=―188.计算极限=limx→0sin4x(x +4+2)x=16形成性考核作业2一、填空题(每小题2分,共20分)23233)(2+--=x x x x f 2,1==x x 3=x 3,2,1===x x x 42lim 222---→x x x x 165lim 221--+→x x x x 329lim 223---→x x x x 4586lim 224+-+-→x x x x x 6586lim 222+-+-→x x x x x x x x 11lim 0--→x x x 4sin 11lim 0--→244sin lim-+→x x x1.曲线在点的斜率是 1/2 . 2.曲线在点的切线方程是 y=x+1 . 3.曲线在点处的切线方程是 y =―12x +32 .4.2x ln22x.5.若y = x (x – 1)(x – 2)(x – 3),则(0) = -6 . 6.已知,则= 27+3x ln3 . 7.已知,则=―1x 2 8.若,则-2 .9.函数的单调增加区间是 [1,+∞) .10.函数在区间内的驻点为1 .二、单项选择题(每小题2分,共24分) 1.函数在区间是(D ) A .单调增加B .单调减少C .先增后减D .先减后增2.满足方程的点一定是函数的(C ).A .极值点B .最值点C .驻点D .间断点3.若,则=(C ).A . 2B . 1C . -11)(+=x x f )2,1(x x f e )(=)1,0(21-=x y )1,1(=')2(xy 'x x x f 3)(3+=)3(f 'x x f ln )(=)(x f ''()sin f x x x =()2f π''=2)1(3-=x y 31()3f x x x =-(0,2)x =2)1(+=x y )2,2(-0)(='x f )(x f y =x x f x cos e )(-=)0(f 'D . -24.设,则(B ). A . B .C .D .5.设是可微函数,则(D ).A .B .C .D .6.曲线在处切线的斜率是(C ).A .B .C .D .7.若,则(C ).A .B .C .D .8.若,其中是常数,则(C ).x y 2lg ==y dx xd 21x x d 10ln 1x xd 10ln x xd 1)(x f y ==)2(cos d x f x x f d )2(cos 2'x x x f d22sin )2(cos 'x x x f d 2sin )2(cos 2'x x x f d22sin )2(cos '-1e 2+=x y 2=x 4e 2e 42e 2x x x f cos )(=='')(x f x x x sin cos +x x x sin cos -x x x cos sin 2--x x x cos sin 2+3sin )(a x x f +=a ='')(x fA .B .C .D .9.下列结论中(A )不正确.A .在处连续,则一定在处可微.B .在处不连续,则一定在处不可导.C .可导函数的极值点一定发生在其驻点上.D .若在[a ,b ]内恒有,则在[a ,b ]内函数是单调下降的. 10.若函数f (x )在点x 0处可导,则(B )是错误的.A .函数f (x )在点x 0处有定义B .,但C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微11.下列函数在指定区间上单调下降减少的是(B ). A .sin x B .e x C .x 2 D .3 - x12.下列结论正确的有(A ).A .x 0是f (x )的极值点,且(x 0)存在,则必有(x 0) = 0B .x 0是f (x )的极值点,则x 0必是f (x )的驻点C .若(x 0) = 0,则x 0必是f (x )的极值点D .使不存在的点x 0,一定是f (x )的极值点 三、解答题(每小题7分,共56分)⒈设,求. 23cos a x +a x 6sin +x sin -x cos )(x f 0x x =0x )(x f 0x x =0x )(x f 0)(<'x f A x f x x =→)(lim 0)(0x f A ≠),(+∞-∞f 'f 'f ')(x f '3223++=x x y y '2.设,求.3.设,求.4.设,求.5.设,求.6.设是由方程确定的隐函数,求.7.设是由方程确定的隐函数,求.8.设,求.x x y 2cos +=y'x y x2sin e 1+=yd x x x y cos ln +=yd xx x y -++=1)1sin(2yd )(x y y =422=-+xy y x y')(x y y =4e e 2=++x x y x yd 1e )cos(=++y y x y d形成性考核作业3一、填空题(每小题2分,共20分)1.若的一个原函数为,则 1/x 。
国家开放大学《微积分基础》下载作业参考答案
国家开放大学《微积分基础》下载作业参考答案提交作业方式有以下三种,请务必与辅导教师沟通后选择:1. 将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word 文档.3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、计算题(每小题5分,共60分)⒈计算极限. 解:原式= 2.计算极限. 解:原式 3.计算极限. 解:。
4.设,求.解:y '=32x12―4cos4xdy =(32x 12―4cos4x )dx5.设,求. 解:dy =(1x +1+1(x +1)2)dx632lim 223----→x x x x x 54)2()1(lim )2)(3()1)(3(lim 33=++=+-+-→→x x x x x x x x 2211lim 23x x x x →----11(1)(1)11lim lim (1)(3)32x x x x x x x x →-→-+--===+--46lim 222----→x x x x 46lim 222----→x x x x 4523lim )2)(2()2)(3(lim 22=--=+-+-=-→-→x x x x x x x x x x x y 4sin +=y d ln(1)1xy x x =+-+y d6.设,求. 解:dy =e x 2x ―1x7.计算不定积分 解:=―12∫xdcos2x =―12xcos2x +12∫cos2xdx=―12xcos2x +14sin2x +c8.计算不定积分.解:12∫d x 2+1x 2+1=12ln (x 2+1)+c9.计算不定积分 解:2∫de x =2e x +c10.计算定积分解:2∫10xde x =2|xe x |10―∫10e x dx =2(e x ―e x )10=2 11.计算定积分.解:=(x ln x )e 1=112.计算定积分. 解:=―∫π0xdsinx =―(xsinx |π0―∫π0sinxdx)=∫π0sinxdx=―cosx |π0=1+1=2二、应用题(每小题10分,共40分)1.欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省? 解:设底边的边长为,高为,用材料为,由已知令,解得是唯一驻点, 1y x=+y d xx x d 2sin ⎰x x x d 2sin ⎰2d 1x x x +⎰x x x d e ⎰x x x d e 210⎰e1ln d x x ⎰e 1ln d x x ⎰π0cos d x x x ⎰π0cos d x x x ⎰x h y 22108,108xh h x ==x x x x x xh x y 432108442222+=⋅+=+=043222=-='xx y 6=x且,说明是函数的极小值点,所以当,时用料最省。
国开微积分基础形考一答案2022
国开微积分基础形考一答案2022【考查知识点:积分计算】设a≠0,则∫ab9d=选择一项:1.1/10aab102.1/10aab10c3.1/10ab10c答案是:正确答案是:1/10aab10c【考查知识点:积分的几何意义】已知由一条曲线y=f与轴及直线=a,=6 所围成的曲边梯形的面积为a=∫|f|d,则以下说法正确的是选择一项:a若在区间上,f>=-∫d答案是:若在区间上,f>0,则a=∫fd【考查知识点:积分的几何意义】f闭区间上连续,则由曲线y=f与直线=a,=by=0 所围成平面图形的面积为选择一项1.∫|f|d2.|∫fd|3.∫fd4.|答案是:|∫fd|【考查知识点:导数与积分】下列等式成立的是().选择一项:d/d∫fd=f)b∫df=fcd∫f=fd∫fd答案是:正确答案是:d/d∫fd=f)【考查知识点:导数与积分】以下等式成立的是()选择一项:d/12=d121.3d=d3/ln32.d√=d√3.lnd=d1/)答案是:正确答案是:3d=d3/ln3【考查知识点:微分方程】微分方程有(3y4sin-ey=0的阶数是__回答答案是:正确答案是:3【考查知识点:积分计算】∫|-2|d= )答案:答案是:正确答案是:4考查知识点:积分的应用】∫cos/12 d=回答答案是:正确答案是:0【考查知识点:计算】4e2d= d答案:答案是:正确答案是:2【考查知识点:微分方程】y=e2是微分方程yny1-6y=0的解。
选择一项:对错答案是:正确答案是“对”。
【考查知识点:积分的应用】已知曲线y=f在点处切线的斜率为2,且曲线过点1,0,则该曲线方程为y=2-1。
选择一项:对错答案是:正确答案是“对”。
【考查知识点:导数与积分】∫fd=f-c选择一项:对错答案是:正确答案是“对”。
【考查知识点:积分计算】定积分∫cossind=0选择一项:对错答案是:正确答案是“对”。
北京交大大一微积分课件
lim f ( x) 0 ( , X )定义
x
0, X 0,当 x X 时,恒 有 f ( x) .limnxn Nhomakorabea
0
( , N )定义
0,N 0,当n N是,恒有xn .
1.无穷小是变量,不能与很小的数混淆;
“无穷小量”并不是表达量的大小,而是表 达它的变化状态的“.无限变小的量”
北京交大大一微积分课件大一微积分期末考试大一微积分复习资料大一微积分试题大一微积分教学视频大一微积分大一微积分考试重点微积分课件大一微积分公式大一微积分期末试题
思源教学平台: 登陆方法: 用户名:学号 密码:学号 点击:课程资源 点击:学习资源
P28
证明 limsin x sina xa
函数x是当x 0时的无穷小.
函数 1 是当x 0时的无穷大. x
lim x , 函数x是当x 时的无穷大. x
1 lim 0, x x
函数 1 是当x 时的无穷小. x
lim e x , 函数e x是当x 时的无穷大. x
lim
x
1 ex
0,
函 数e x是 当x 时 的 无 穷 小.
lim e x 0, 函 数e x是 当x 时 的 无 穷 小. x
1
lim
x
e
x
,
函 数e x是 当x 时 的 无 穷 大.
y
ex
y ex
1
O
x
1.无穷大是变量,不能与很大的数混淆;
充分性设 f ( x) A ( x), f ( x) A ( x),
其 中 ( x)是 当x x0时 的 无 穷 小,