带电粒子在复合场中的运动典型例题汇编

合集下载

物理试卷分类汇编物理带电粒子在复合场中的运动(及答案)含解析

物理试卷分类汇编物理带电粒子在复合场中的运动(及答案)含解析

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。

极板间存在方向向上的匀强电场,两极板间电压为U 。

质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。

两虚线之间的区域无电场和磁场存在,离子可匀速穿过。

忽略相对论效应和离子所受的重力。

求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。

【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。

【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。

设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。

带电粒子在复合场中的运动习题全集(含答案).

带电粒子在复合场中的运动习题全集(含答案).

图11-4-1例1.如图11-4-1绝缘直棒上的小球,其质量为m 、带电荷量是+q ,小球可在棒上滑动.将此棒竖直放在互相垂直且在水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小球与棒间的动摩擦因数为 ,求小球由静止沿棒下滑的最大加速度和最大速度(小球带电荷量不变)例2.如图11-4-3所示,水平放置的平行金属板,长为l =140cm ,两板之间的距离d =30cm ,板间有图示方向的匀强磁场,磁感应强度的大小为B =1.3×10-3T .两板之间的电压按图所示的规律随时间变化(上板电势高为正).在t =0时,粒子以速度v =4×103m/s 从两板(左端)正中央平行于金属板射入,已知粒子质量m =6.64×10-27kg ,带电量q =3.2×10-19C .试通过分析计算,看粒子能否穿越两块金属板间的空间,如不能穿越,粒子将打在金属板上什么地方?如能穿越,则共花多少时间?【益智演练】1.一个质量为m ,电量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷做匀速圆周运动,磁场方向垂直于它的运动平面,作用在负电荷上的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是:( )A .4qBmB .3qBmC .2qBmD .qB m2.如图11-4-5所示,足够长的光滑三角形绝缘槽,与水平面的夹角分别为α和β(α<β),加垂直于纸面向里的磁场.分别将质量相等、带等量正、负电荷的小球 a 、b 依次从两斜面的顶端由静止释放,关于两球在槽上运动的说法正确的是( ) A .在槽上,a 、b 两球都做匀加速直线运动,且a a >a b B .在槽上,a 、b 两球都做变加速运动,但总有a a >a bC .a 、b 两球沿直线运动的最大位移是s a <s bD .a 、b 两球沿槽运动的时间为t a 和t b ,则t a <t b3.一带正电的小球沿光滑水平桌面向右运动,飞离桌面后进入匀强磁场,如图11-4-6所示,若飞行时间t 1后落在地板上,水平射程为s 1,着地速度大小为v 1,撤去磁场,其他条件不变,小球飞行时间t 2,水平射程s 2,着地速度大小为v 2,则( ) A .s 2>s 1 B .t 1>t 2 C .v 1>v 2 D .v 1=v4.用绝缘细线悬挂一个质量为m 、带电量为+q 的小球,让它处于右图11-4-7所示的磁感应强度为B 的匀强磁场中.由于磁场的运动,小球静止在如图位置,这时悬线与竖直方向夹角为α,并被拉直,则磁场运动的速度和方向是( )A .v =mg /Bq ,水平向右B .v =mg /Bq ,水平向左C .v =mg tan α/Bq ,竖直向上D .v =mg tan α/Bq ,竖直向下5.如图11-4-8所示,有一电量为q ,质量为m 的小球,从两竖直的带等量 异种电荷的平行板上方高h 处自由下落,两板间有匀强磁场,磁场方向垂直纸面向里,那么带电小球在通过正交电磁场时( )图11-4-6图11-4-5B 图11-4-7t/10s3 54 1.图11-4-3C .可能做匀速直线运动D .可能做匀加速直线运动 6.如图11-4-9所示,带电平行板间匀强电场竖直向上,匀强磁场方向垂直纸面向里,某带电小球从光滑轨道上的a 点自由下落,经轨道端点P 进入板间后恰好沿水平方向做直线运动.现使小球从稍低些的b 点开始自由滑下,在经过P 点进入板间后的运动过程中,以下分析中正确的是( )A .其动能将会增大B .其电势能将会增大C .小球所受的洛伦兹力将会逐渐增大D .小球受到的电场力将会增大7.如图11-4-4-10所示,在长方形abcd 区域内有正交的电磁场,ab =bc /2=L ,一带电粒子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从b c 边的中点P 射出,若撤去磁场,则粒子从C点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出8.如图11-4-11所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,已知a 静止,b向右匀速运动,c 向左匀速运动,比较它们的质量应有( )A .a 油滴质量最大B .b 油滴质量最大C .c 油滴质量最大D .a 、b 、c 质量一样9.如图11-4-12中所示虚线所围的区域内,存在电场强度为E 的匀强电场和磁感应强度为B的匀强磁场,已知从左侧水平射入的电子,穿过这一区域时未发生偏转,设重力忽略不计,则在这个区域中的E 和B 的方向可能是( ) A .E 和B 都沿水平方向,并与电子运动方向相同 B .E 和B 都沿水平方向,并与电子运动方向相反C .E 竖直向上,B 垂直于纸面向外D .E 竖直向上,B 垂直于纸面向里10.设空间存在竖直向下的匀强电场和垂直纸面向内的匀强磁场,如图11-4-13所示.已知一离子在电场力和洛仑兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 时速度为零.C 是曲线的最低点,不计重力.以下说法正确的是( )A .离子一定带正电B .A 、B 两点位于同一高度C .离子在C 点速度最大D .离子到达B 点后将沿曲线返回A 点11.如图11-4-14所示,在真空中一个光滑的绝缘的水平面上,有直径相同的两个金属球A 、C .质量m A =0.01 kg ,m C =0.005 kg .静止在磁感应强度B =0.5 T 的匀强磁场中的C 球带正电,电量q C =1×10-2 C .在磁场外的不带电的A 球以速度v 0=20 m/s 进入磁场中与C 球发生正碰后,C 球对水平面压力恰好为零,则碰后A 球的速度为 ( )A .10 m/sB .5 m/sC .15 m/sD .-20 m/s12.三种粒子(均不计重力):质子、氘核和 粒子由静止开始在同一匀强电场中加速后,从同一位置沿水平方向射入图11-4-15中虚线框内区域,虚线框内区域加有匀强电场或匀强磁场,以下对带电粒子进入框内区域后运动情况分析正确的是:( )A .区域内加竖直向下方向的匀强电场时,三种带电粒子均可分离B .区域内加竖直向上方向的匀强电场时,三种带电粒子不能分离 A B 图11-4-13图图11-4-8图11-4-12d 图11-4-10v 图11-4-11图11-4-15aD .区域内加垂直纸面向里的匀强磁场时,三种带电粒子均不可以分离13.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O 在匀强磁场中做逆时针方向的水平匀速圆周运动,磁场方向竖直向下,其俯视图如图11-4-16所示,若小球运动到A 点时,由于某种原因,绳子突然断开,关于小球在绳断开后可能的运动情况,以下说法正确的是( )A .小球仍做逆时针匀速圆周运动,半径不变B .小球仍做逆时针匀速圆周运动,但半径减小C .小球做顺时针匀速圆周运动,半径不变D .小球做顺时针匀速圆周运动,半径减小14.质量为m ,带正电为q 的小物块放在斜面上,斜面倾角为α,物块与斜面间动摩擦因数为μ,整个斜面处在磁感应强度为B 的匀强磁场中,如图11-4-17所示,物块由静止开始沿斜面下滑,设斜面足够长,物块在斜面上滑动能达到的最大速度为多大?若物块带负电量为q ,则物块在斜面上滑动能达到的最大速度又为多大?15.如图11-4-18所示,套在很长的绝缘直棒上的小圆环,其质量为m ,带电量是+q ,小圆环可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小圆环与棒的动摩擦因数为μ,求小圆环由静止沿棒下落的最大加速度和最大速度.E 图11-4-18图11-4-1716.如图11-4-19所示,一带电液滴在相互垂直的匀强电场和匀强磁场中运动,已知电场强度的大小为E ,方向竖直向下,磁感应强度为B ,方向垂直纸面向里.若此液滴在垂直于磁感应强度的平面内做半径为R 的匀速圆周运动,设液滴的质量为m ,求:(1)液滴的速度大小和绕行方向;(2)若液滴运行到轨迹最低点A 时,分裂成大小相同的两滴,其中一个液滴仍在原来的平面内做半径为3R 的圆周运动,绕行方向不变,且此圆周的最低点也是A ,另一滴将如何运动?17.质量为m ,带电量为q 的液滴以速度v 沿与水平成45 角斜向上进入正交的匀强电场和匀强磁场叠加区域,电场强度方向水平向右,磁场方向垂直纸面向里,如图11-4-20所示.液滴带正电荷,在重力、电场力及磁场力共同作用下在场区做匀速直线运动.试求:(1)电场强度E 和磁感应强度B 各多大?(2)当液滴运动到某一点A 时,电场方向突然变为竖直向上,大小不改变,不考虑因电场变化而产生的磁场的影响,此时液滴加速度多少?说明此后液滴的运动情况.18.如图11-4-21所示,匀强磁场垂直纸面向里,磁感应强度B =1T ,匀强电场水平向右,电场强度E =103N/C ,有一带正电的微粒m =2×10-6kg ,电量q =2×10-6C ,在纸面内做匀速直线运动.g 取10m/s 2,问: (1)微粒的运动方向和速率如何?(2)若微粒运动到P 电时突然撤去磁场,经过时间t 后运动到Q 点,P 、Q 连线与电场线平行,那么t 为多少?图11-4-19 P图11-4-2019.如图11-4-22所示,一质量为m ,带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E 、方向沿与x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方的c 点,如图15-76所示.粒子的重力不计,试求: (1)圆形匀强磁场区域的最小面积;(2)c 点到b 点的距离s .20.如图11-4-23所示,置于光滑水平面上的绝缘小车A 、B 质量分别为m A =3kg 、m B =0.5kg ,质量为m C =0.1kg 、带电量为q =+1/75 C 、可视为质点的绝缘物体C 位于光滑小车B 的左端.在A 、B 、C 所在的空间有一垂直纸面向里的匀强磁场,磁感强度B =10T ,现小车B 静止,小车A 以速度v 0=10m/s 向右运动和小车B 碰撞,碰后物体C 在A 上滑动.已知碰后小车B 的速度为9m/s ,物体C 与小车A 之间有摩擦,其他摩擦均不计,小车A 足够长,全过程中C 的带电量保持不变,求:(1)物体C 在小车A 上运动的最大速率和小车A 运动的最小速度.(g 取10m/s 2) (2)全过程产生的热量.21.如图11-4-24所示,在空间有水平方向的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,在磁场中有一长为L 、内壁光滑且绝缘的细筒MN 竖直放置,筒的底部有一质量为m 、带电荷量为+q 的小球,现使细筒MN 沿垂直磁场的方向水平向右匀速运动,设小球带电荷量不变.(1)若使小球能沿筒壁上升,则细筒运动速度v 应满足什么条件?(2)当细筒运动速度为v 0(v 0>v )时,试求小球在沿细筒上升高度h 时小球的速度大小.v 图11-4-22图11-4-2322.如图11-4-25所示,一质量为0.4kg 的足够长且粗细均匀的绝缘的细管置于水平地面上,细管内表面粗糙,外表面光滑;有一质量为0.1kg ,电量为0.1C 的带正电小球沿管的水平向右的速度进入管内,细管内径略大于小球直径,已知细管所在处有沿水平方向且与细管相垂直的匀强磁场,磁感应强度为1T ,g 取10m/s 2. (1)当细管被固定时,小球在管内运动的末速度的可能值为多少?(2)若细管未被固定时,带电小球以20m/s 的初速度进入管内,且整个运动过程中细管没有离开水平地面,则系统最终产生的内能是多少?23.如图11-4-26所示,水平方向的匀强电场的场强为E (场区宽度为L ,竖直方向足够长),紧挨着电场的是垂直纸面向外的两个匀强磁场区,其磁感应强度分别为B 和2B .一个质量为m 、电量为q 的带正电粒子(不计重力),从电场的边界MN 上的a 点由静止释放,经电场加速后进入磁场,经过t=qBm6π时间穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b (虚线为场区的分界面).求: (1)中间磁场的宽度d ;(2)粒子从a 点到b 点共经历的时间t ab ;(3)当粒子第n 次到达电场的边界MN时与出发点a 之间的距离S n .24.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图11-4-27所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴O 1O 的方向进入到两块水平正对放置的平行金属极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点,O '与O 点的竖直间距为d ,水平间距可以忽略不计.此时,在P 点和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为L 1,极板间距为b ,极板右端到荧光屏的距离为L 2(如图所示).(1)求打在荧光屏O 点的电子速度的大小.(2)推导出电子比荷的表达式.2B图11-4-26图11-4-2525.如图11-4-28所示,在直角坐标xoy 的第一象限中分布着指向-y 轴方向的匀强电场,在第四象限中分布着垂直纸面向里方向的匀强磁场,一个质量为m 、带电+q 的粒子(不计重力)在A 点(0,3)以初速v 0=120m/s 平行x 轴射入电场区域,然后从电场区域进入磁场,又从磁场进入电场,并且只通过x 轴上的P 点(6,0)和Q 点(8,0)各一次,已知该粒子的荷质比为q/m =108C/kg .(1)画出带电粒子在电场和磁场中的运动轨迹.(2)求磁感强度B 的大小.26.如图11-4-29所示,oxyz 坐标系的y 轴竖直向上,在坐标系所在的空间存在匀强电场和匀强磁场,电场方向与x 轴平行.从y 轴上的M 点(0,H ,0)无初速释放一个质量为m 、电荷量为q 的带负电的小球,它落在xz 平面上的N (c ,0,b )点(c >0,b >0).若撤去磁场则小球落在xy 平面的P (l ,0,0)点(l >0).已知重力加速度为g. (1)已知匀强磁场方向与某个坐标轴平行,试判断其可能的具体方向;(2)求电场强度E 的大小;(3)求小球落至N 点时的速率v .图11-4-29f图11-4-21.分析与解:在带电小球下滑的过程中,小球受重力、电场力、支持力、摩擦力和f 洛,受力分析如图11-4-2所示. 在y 方向 ma =f mg 摩擦力N μ=f ,压力Eq +Bqv =N 解得:m )qE +qvB (μmg =a随着小球速度v 增加时,小球加速度减小.所以,小球向下做加速度逐渐减小的加速运动,最后加速度减小到零,小球做匀速直线运动.开始时0=v 时,此时加速度最大,mqEμg=a m ; 匀速时,0=a 时,速度最大,m mg (qv B qE)0-m += 所以BE qB μmg=v m . 2分析与解:根据题意可知,两金属板间的匀强电场是间断存在的.有电场时,电场方向由上板指向下板,场强大小为E =U /d =1.56V/0.3m=5.2V/m .粒子进入板间在0~1.0×104s 内受向下的电场力Eq 和向下的磁场力Bqv 作用,由于电场力与磁场力之比1=10×4×10×3.12.5=Bqv qE 33 粒子作匀速直线运动,它的位移34s vt 410110m 0.4m -==创?在接着的1.0×104s ~2.0×10-4s 时间内,电场撤消,α粒子只受磁场力作用,将作匀速圆周运动,轨道半径为273319mv 6.6410410R cm 6.38cm Bq 1.310 3.210---创?===创? 轨道直径d ′=2R =12.76cm<d /2, 可见,粒子在作圆周运动时不会打到金属板上,粒子作匀速圆周运动的周期为2432r 2 3.14 6.3810T s 1.010s v 410--p 创?¢===?´由于粒子作匀速圆周运动的周期恰好等于板间匀强电场撤消的时间,所以粒子的运动将是匀速直线运动与匀速圆周运动交替进行,其运动轨迹如图11-4-4所示,经过时间443l 3s 1.430.4t 3T 3210 6.510s v 410----?=+=创+=?´从两板的正中央射离. 【参考答案】1.AC 2.ACD 3.BD 4.BC 5.A 6.ABC 7.C 8.C 9.ABC 10.ABC 11.A 12.B 13.ACD 14.qB μ)αcos μα(sin mg ,qB αcos mg . 15.g ;qB μEq μ+mg . 16.(1)ERB,顺时针方向;(2)顺时针方向,R ′=R17.(1)qvmg 2=B ,q /mg =E ;(2)a ,2v R a ==,gvπ2=v R π2=T 18.(1)v =20m/s ,θ=60°;(2)t =23s 19.(1)22202q B 4v m π3;(2)Eqmv 2034 20.(1)7.5m/s 和8.25m/s ;(2)24.84J 21.v >Bq m g;v ′=20v +m )mg B qv (h 2 22.(1)v 0≥10m/s 时,v =10m/s , v 0<10m/s 时,v =0;(2)Q =13.75J 23.d =qmEL B 21,t ab =2qE L m2+qB 3m π2,s n =q 2mEL B n )34( 24.Bb U ,m e =)2/L +L (bL B Ud 1212 25.(1)略;(2)1.2×1010T 26.(1)图11-4-4mgl=E;(3)v=磁场方向为-x方向或-y方向;(2)qH。

带电粒子在复合场中的运动大题专题(详细解答)

带电粒子在复合场中的运动大题专题(详细解答)

专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。

高中物理带电粒子在复合场中的运动试题经典及解析

高中物理带电粒子在复合场中的运动试题经典及解析

一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v 0=vcosφ vsinφ=at d=v 0t设电场强度的大小为E ,由牛顿第二定律得 qE=ma 解得:2.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A ,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

带电粒子在复合场中地运动典型例题总汇编

带电粒子在复合场中地运动典型例题总汇编

专题八带电粒子在复合场中的运动考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题1. [带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是( ) A.小球一定带正电图1 B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动D.运动过程中,小球的机械能增大答案CD解析由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直线运动,选项C正确;运动过程中由于电场力做正功,故机械能增大,选项D正确.2. [带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是 ( )A.小球一定带正电图2 B.小球一定带负电C.小球的绕行方向为顺时针D.改变小球的速度大小,小球将不做圆周运动答案BC解析小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场方向可知小球一定带负电,A错误,B正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C正确,D错误.考点梳理一、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.项目名称力的特点功和能的特点重力场大小:G=mg方向:竖直向下重力做功与路径无关重力做功改变物体的重力势能静电场大小:F=qE方向:a.正电荷受力方向与场强方向相同b.负电荷受力方向与场强方向相反电场力做功与路径无关W=qU电场力做功改变电势能磁场洛伦兹力F=qvB方向可用左手定则判断洛伦兹力不做功,不改变带电粒子的动能二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3. [质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有磁感应强度为B0的匀强磁场.下列表述正确的是 ( )A.质谱仪是分析同位素的重要工具图3B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小答案ABC解析 粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向外,选项B 正确;由Eq =Bqv 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到狭缝的距离即为其做匀速圆周运动的直径D =2mvBq,可见D 越小,则粒子的比荷越大,D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误.4. [回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示.置于高真空中的D 形金属盒半径为R ,两 盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的 匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处 粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速, 且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是 ( ) 图4 A .质子被加速后的最大速度不可能超过2πRfB .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变 答案 AC解析 粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πRT=2πRf ,故A 正确;粒子离开回旋加速器的最大动能E km =12mv 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据R =mv Bq ,Uq =12mv 21,2Uq =12mv 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2m π2R 2f2与m 、R 、f 均有关,D 错误.规律总结带电粒子在复合场中运动的应用实例 1. 质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12mv 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB=m v 2r.由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2. 2. 回旋加速器(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB =mv 2r,得E km =q 2B 2r 22m,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6半径r 决定,与加速电压无关.特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度 选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =EB. 图74. 磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图8中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L=qvB 得两极板间能达到的最大电势 图8 差U =BLv .5. 电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负 离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就 图9 保持稳定,即:qvB =qE =q U d ,所以v =U Bd,因此液体流量Q =Sv = πd 24·U Bd =πdU4B.考点一 带电粒子在叠加场中的运动1. 带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题. 2. 带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1 如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B 的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上.图10(1)求两极板间电压U ;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R粒子在电场中做类平抛运动:L -2R =v 0·t 02a =qE mR =12a (t 02)2 在复合场中做匀速运动:q U2R =qv 0B联立各式解得v 0=4R t 0,U =8R 2Bt 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R因为R =12qE m (t 02)2,所以qE m =qv 0B m =8R t20根据牛顿第二定律有qvB =m v 2r,解得v =22-1Rt 0所以,粒子在两板左侧间飞出的条件为0<v <22-1Rt 0答案 (1)8R 2B t 0 (2)0<v <22-1Rt 0技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成. 2.进行受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合. 4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解. (2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解. (3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解. (4)对于临界问题,注意挖掘隐含条件. 5.记住三点:(1)受力分析是基础; (2)运动过程分析是关键;(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.突破训练1 如图11所示,空间存在着垂直纸面向外的水平匀强磁场,磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场 力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已 图11 知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静 电力忽略不计.(1)求两液滴相撞后共同运动的速度大小; (2)求液滴b 开始下落时距液滴a 的高度h .答案 (1)E B (2)2E23gB2解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q , 液滴a 平衡时有qE =mg ①a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态,重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上, 因此满足qvB +qE =2mg ② 由①、②两式,可得相撞后速度v =E B(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE +mg )h =12mv 20 ③a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2EB再代入③式得h =mv 204qE +2mg =v 206g =2E23gB 2考点二 带电粒子在组合场中的运动1. 近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2. 解题时要弄清楚场的性质、场的方向、强弱、范围等. 3. 要进行正确的受力分析,确定带电粒子的运动状态. 4. 分析带电粒子的运动过程,画出运动轨迹是解题的关键.例2 (2012·山东理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极 板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均 为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放, 粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)图12(1)求粒子到达S 2时的速度大小v 和极板间距d .(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小. 审题指导 1.粒子的运动过程是什么?2.要在t =3T 0时使粒子再次到达S 2,且速度为零,需要满足什么条件? 解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12mv 2 ①由①式得v =2qU 0m②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d=ma ③ 由运动学公式得d =12a (T 02)2④联立③④式得d =T 042qU 0m⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得qvB =m v 2R⑥要使粒子在磁场中运动时不与极板相撞,需满足2R >L2⑦联立②⑥⑦式得B <4L2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =vt 1 ⑧ 联立②⑤⑧式得t 1=T 04 ⑨若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v2t 2 ⑩联立⑧⑨⑩式得t 2=T 02 ⑪设粒子在磁场中运动的时间为tt =3T 0-T 02-t 1-t 2 ⑫联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πmqB⑭由题意可知T =t ⑮联立⑬⑭⑮式得B =8πm7qT 0.答案 (1) 2qU 0m T 042qU 0m(2)B <4L2mU 0q(3)7T 04 8πm 7qT 0方法点拨解决带电粒子在组合场中运动问题的思路方法突破训练2 如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E2;区域Ⅱ内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界 图13CD 进入Ⅲ区域的匀强电场中.求:(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离;(3)粒子从M 点出发到第二次通过CD 边界所经历的时间.答案 (1)2mv 0qB (2) 3mv 022qE (3)8+3mv 0qE +πm3qB审题指导 1.粒子的运动过程是怎样的? 2.尝试画出粒子的运动轨迹.3.注意进入磁场时的速度的大小与方向.解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bqv =m v 2R ,所以R =2mv 0qB(2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3mv 0qEO 、M 两点间的距离为L =12at 21=3mv 022qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2 则由几何关系知t 2=T 16=πm3qB设粒子在Ⅲ区域电场中运动时间为t 3,a ′=qE2m =qE2m则t 3=2×2v 0a ′=8mv 0qE粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3mv 0qE +πm 3qB +8mv 0qE =8+3mv 0qE +πm3qB42.带电粒子在交变电场和交变磁场中的运动模型问题的分析解析 (1)粒子在磁场中运动时qvB =mv 2R(2分)T =2πRv(1分)解得T =2πm qB=4×10-3s (1分)(2)粒子的运动轨迹如图所示,t =20×10-3s 时粒子在坐标系内做了两个 圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2m (1分)竖直位移y =12a (3T )2(1分)Eq =ma (1分)解得y =3.6×10-2m故t =20×10-3s 时粒子的位置坐标为:(9.6×10-2m ,-3.6×10-2m) (1分) (3)t =24×10-3s 时粒子的速度大小、方向与t =20×10-3s 时相同,设与水平方向夹角为α (1分)则v =v 20+v 2y (1分)v y =3aT (1分)tan α=v yv 0(1分)解得v =10 m/s (1分)与x 轴正向夹角α为37°(或arctan 34)斜向右下方 (1分)答案 (1)4×10-3s (2)(9.6×10-2m ,-3.6×10-2m) (3)10 m/s 方向与x 轴正向夹角α为37°(或arctan 34)突破训练3 如图15甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5 kg 、电荷量为q =2.0×10-2C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期 性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点,PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g =10 m/s 2)图15(1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时 间t 0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量 的符号表示);(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).答案 (1)3πm 2qB 0 (2)L v 0+m qB 0 (3)2πmv 0qL 6Lv 0解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运 动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周 运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: 甲v 0t 1-L =Rqv 0B 0=mv 20/R所以v 0t 1-L =mv 0qB 0,t 1=L v 0+mqB 0(3)小球运动的速率始终不变,当R 变大时,T0也增加,小球在电 磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有:DQ =2R =L π=2mv 0qB 0B 0=2πmv 0qL ,T 0=2πR v 0=Lv 0乙由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6Lv 0,小球运动轨迹如图乙所示.高考题组1. (2012·课标全国·25)如图16,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、 电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为35R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样 图16 速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.答案 14qRB 25m解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得qvB =m v 2r①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r ②设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④联立②③④式得r =75R ⑤再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设 其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2⑦r =vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m.2. (2012·浙江理综·24)如图17所示,两块水平放置、相距为d的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向 垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷 图17 量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入 电场、磁场共存区域后,最终垂直打在下板的M 点. (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值;(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?答案 (1)负电荷 mgd U (2)v 0U gd 2 (3)4v 0U5gd 2解析 (1)墨滴在电场区域做匀速直线运动,有q Ud=mg ① 由①式得:q =mgdU②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力, 墨滴做匀速圆周运动,有qv 0B =m v 02R③考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之 一圆周运动,则半径R =d ④由②③④式得B =v 0Ugd2(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有qv 0B ′=m v 02R ′⑤由图可得:R ′2=d 2+(R ′-d2)2 ⑥由⑥式得:R ′=54d ⑦联立②⑤⑦式可得:B ′=4v 0U 5gd2.3. (2012·重庆理综·24)有人设计了一种带电颗粒的速率分选装置,其原理如图18所示,两带电金属板间有 匀强电场,方向竖直向上,其中PQNM 矩形区域内 还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间, 图18其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加 速度为g ,PQ =3d , NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求: (1)电场强度E 的大小; (2)磁感应强度B 的大小;(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离. 答案 见解析解析 (1)设带电颗粒的电荷量为q ,质量为m .由于粒子从Q 点离开磁场后做匀速直线运 动,则有Eq =mg 将q m =1k代入,得E =kg .(2)如图所示,粒子在磁场区域内由洛伦兹力提供其做圆周运动的向心力,则有qv 0B =m v20R①而由几何知识有R 2=(3d )2+(R -d )2 ②联立①②解得B =kv 05d. ③(3)设速度为λv 0的颗粒在磁场区域运动时竖直方向的位移为y 1, 离开磁场后做匀速直线运动时竖直方向的位移为y 2,偏转角为θ,如图所示,有qλv 0B =mλv 02R 1④将q m =1k 及③式代入④式,得 R 1=5d λtan θ=221)3(3d R d -y 1=R 1-)3(221d R -y 2=l tan θ则速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离为y =y 1+y 2解得y =d (5λ-25λ2-9)+3l25λ2-9. 模拟题组4. 如图19所示,坐标平面第Ⅰ象限内存在大小为E=4×105N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向 里的匀强磁场.质荷比为m q=4×10-10N/C 的带正电粒子从x轴上的A 点以初速度v 0=2×107m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: 图19 (1)粒子经过y 轴时的位置到原点O 的距离;(2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入 电场后的运动情况.)答案 (1)0.4 m (2)B ≥(22+2)×10-2T解析 (1)设粒子在电场中运动的时间为t ,粒子经过y 轴时的位置与原点O 的距离为y ,则:s OA =12at 2a =F m E =F q y =v 0t联立解得a =1.0×1015m/s 2t =2.0×10-8s y =0.4 m (2)粒子经过y 轴时在电场方向的分速度为:v x =at =2×107 m/s粒子经过y 轴时的速度大小为: v =v x 2+v 02=22×107 m/s与y 轴正方向的夹角为θ,θ=arctan v x v 0=45°要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周 运动的轨道半径为R ,则:R +22R ≤yqvB =m v 2R联立解得B ≥(22+2)×10-2T.5. 如图20甲所示,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x 方向(水平向右)射入该空 间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πmqt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求:图20(1)t 0末小球速度的大小;。

带电粒子在复合场中的运动(经典题例)

带电粒子在复合场中的运动(经典题例)

带电粒子在复合场中的运动一、带电粒子在复合场中运动的轨迹欣赏例1、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。

在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。

一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。

如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)例2、如图所示,在x轴上方有垂直于xy平面的匀强磁场,磁感应强度为B,在x 轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不记)例3、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=√33m,外半径为R2=1.0m,区域内有垂直纸面向外的匀强磁场,已知磁感应强度B=1.0 T,被束缚粒子的比荷qm=4×107C/kg。

(1)若中空区域中的带电粒子沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度V0.(2)若中空区域中的带电粒子以(1)中的最大速度V0沿圆环半径方向射入磁场,求带电粒子从进入磁场开始到第一次回到该点所需要的时间t。

例4、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,由磁场将高温、高密等离子体约束在有限的范围内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=a,外半径为R2=(2√2−1)a,环形区域内有垂直纸面向外的匀强磁场,磁感应强度为B。

【物理】 物理带电粒子在复合场中的运动专题练习(及答案)及解析

【物理】 物理带电粒子在复合场中的运动专题练习(及答案)及解析

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。

极板间存在方向向上的匀强电场,两极板间电压为U 。

质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。

两虚线之间的区域无电场和磁场存在,离子可匀速穿过。

忽略相对论效应和离子所受的重力。

求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。

【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。

【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。

设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。

高中物理带电粒子在复合场中的运动解析版汇编含解析

高中物理带电粒子在复合场中的运动解析版汇编含解析

一、带电粒子在复合场中的运动专项训练1.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限.即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m=12 mv2m-12mv2由题知 v m=ky m若E=0时,粒子以初速度v0沿y轴正向入射,有 qv0B=m2vR在最高处有 v0=kR0联立解得22()mE Ev vB B=++考点:带电粒子在符合场中的运动;动能定理.2.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。

带电粒子在复合场中运动的17个经典例题

带电粒子在复合场中运动的17个经典例题

经典习题1、(15分)如图所示,MN、PQ是平行金属板,板长为L,两板间距离为d,在PQ板的上方有垂直纸面向里的匀强磁场。

一个电荷量为q、质量为m的带负电粒子以速度v0从MN 板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场。

不计粒子重力。

试求:(1)两金属板间所加电压U的大小;(2)匀强磁场的磁感应强度B的大小;(3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。

B2.(16分)如图,在x oy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于x oy平面的匀强磁场,y轴上离坐标原点4 L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电量为e)。

如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求:(1)磁感应强度B和电场强度E的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;(3)电子通过D点时的动能。

3.(12分)如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y 轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求:(1)电子第一次经过x轴的坐标值(2)电子在y方向上运动的周期(3)电子运动的轨迹与x轴的各个交点中,任意两个相邻交点间的距离(4)在图上画出电子在一个周期内的大致运动轨迹4.(16分)如图所示,一个质量为m=2.0×10-11kg,电荷量q=+1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U=100V电压加速后,水平进入两平行金属板间的偏转电场中。

金属板长L=20cm,两板间距d=103cm。

高考物理带电粒子在复合场中的运动试题经典及解析

高考物理带电粒子在复合场中的运动试题经典及解析

一、带电粒子在复合场中的运动专项训练1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A ,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

专题复习《带电粒子在复合场中的运动》经典题型汇编(含答案)

专题复习《带电粒子在复合场中的运动》经典题型汇编(含答案)

专题复习《带电粒子在复合场中的运动》经典题型汇编(含答案)专题复习:带电粒子在复合场中的运动经典题型汇编学习目标:1.会分析带电粒子在组合场、复合场中的运动问题。

2.会分析速度选择器、磁流体发电机、质谱仪、回旋加速器等磁场的实际应用问题。

典型例题1、如图所示,在坐标系xOy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xOy平面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E。

一带电荷量为+q、质量为m的粒子,自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场。

已知OP=d,OQ=2d,不计粒子重力。

(1)求粒子过Q点时速度的大小和方向。

(2)若磁感应强度的大小为一定值B0,粒子将以垂直y轴的方向进入第二象限,求B0。

(3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q点,且速度与第一次过Q点时相同,求该粒子相邻两次经过Q点所用的时间。

1由运动学公式得d=at2②20vy22d=v0t0③ vy=at0④ v=v20+vy⑤ tanθ=⑥ v0联立①②③④⑤⑥式得v=2qEd⑦ θ=45°⑧ m(2)设粒子做圆周运动的半径为R1,粒子在第一象限的运动轨迹如图所示,O1为圆心,由几何关系可知△QOO1为等腰直角三角形,得R1=22d⑨ v2由牛顿第二定律得qvB0=m⑩R1联立⑦⑨⑩得B0=mE? 2qd粒子在第二、第四象限的轨迹是长度相等的线段,得 FG=HQ=2R2?设粒子相邻两次经过Q点所用的时间为t FG+HQ+2πR2则有t=?v联立⑦???式得t=(2+π)答案:(1)2qEd,方向与x轴正方向成45° (2)mmE (3)t=(2+π)2qd2md qE2md? qE【解题思想】这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等。

高中物理带电粒子在复合场中的运动解析版汇编含解析

高中物理带电粒子在复合场中的运动解析版汇编含解析

一、带电粒子在复合场中的运动专项训练1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。

两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q 的粒子由小孔下方2d 处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。

不计粒子的重力。

(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;(3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mv qD,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析) 【答案】(1)2mv qd(2)4mv qD 或43mv qD (3)5.5πD 【解析】【分析】【详解】(1)粒子在电场中,根据动能定理2122d Eq mv ⋅=,解得2mv E qd = (2)若粒子的运动轨迹与小圆相切,则当内切时,半径为/2E R 由211v qvB m r =,解得4mv B qD = 则当外切时,半径为e R由212v qvB m r =,解得43mv B qD = (2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为0010016819U U U ≤≤;Ⅱ区域的磁感应强度为2012qU mv =,则粒子运动的半径为2v qvB m r=; 设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:1112R T v π=;034r L =据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;60α=粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t 1、t 2,可得:r U ∝;1056U L U L =设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2)联立上述各式可得:s=5.5πD2.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析)【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2 由运动定律有2111v Bqv m R = 解得12Bqa v m= (2)如右图所示,O 、A 两点处于同一圆周上,且圆心在x =2a 的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限. 即 sinθ′=sinθ=2a R另有2v Bqv m R= 解得 sinθ′=sinθ=2aqB mv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m =12mv 2m -12mv 20 由题知 v m =ky m若E =0时,粒子以初速度v 0沿y 轴正向入射,有 qv 0B =m 200v R 在最高处有 v 0=kR 0联立解得220()m E E v v B B=++考点:带电粒子在符合场中的运动;动能定理.3.如图所不,在x 轴的上方存在垂直纸面向里,磁感应强度大小为B 0的匀强磁场.位于x 轴下方的离子源C 发射质量为m 、电荷量为g 的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O (坐标原点)垂直x 轴并垂直磁场射入磁场区域,最后打到x 轴上.在x 轴上2a 〜3a 区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N 0,打到x 轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O 射入磁场后打到x 轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B 1;(3)保持磁感应强度B 1不变,求每秒打在探测板上的离子数N ;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU=mv在磁场中洛仑兹力提供向心力:,所以半径:r1==a恰好打在x=2a的位置;对于初速度为v0的离子,qU=mv-m(v0)2r2==2a,恰好打在x=4a的位置故离子束从小孔O射入磁场打在x轴上的区间为[2a,4a](2)由动能定理qU=mv-m(v0)2r3=r3=a解得B1=B0(3)对速度为0的离子qU=mvr4==a2r4=1.5a离子打在x轴上的区间为[1.5a,3a]N=N0=N0对打在x=2a处的离子qv3B1=对打在x=3a处的离子qv4B1=打到x轴上的离子均匀分布,所以=由动量定理-Ft=-0.8Nm+0.2N(-0.6m-m)解得F=N0mv0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a,由半径公式也就能求出磁感应强度;取时间t=1s,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.4.如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h ,质量为m,带电荷量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g.(1)求电场强度的大小和方向;(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)【答案】(1)mgqE=,方向竖直向上(2)min(92)qBhvm-=(3)0.68qBhvm=;0.545qBhvm=;0.52qBhvm=【解析】【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零;(2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度;(3)作出粒子运动轨迹,应用几何知识求出粒子的速度.【详解】(1)粒子在磁场中做匀速圆周运动,电场力与重力合力为零,即mg=qE,解得:mgqE=,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhvm=(﹣;(3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2,粒子第一次通过KL 时距离K 点为x ,由题意可知:3nx =1.8h (n =1、2、3…)3(922h x -≥,x = 解得:120.361)2h r n =+(,n <3.5, 即:n =1时, 0.68qBh v m =, n =2时,0.545qBh v m =, n =3时,0.52qBh v m =; 答:(1)电场强度的大小为mgq E =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 9qBh v m=. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBh v m=、或0.545qBh v m =、或0.52qBh v m=. 【点睛】 本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.5.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q .加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m 1的离子进入磁场时的速率v 1;(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京)【答案】(1)12qU m (2)()1228U m m qB - (3)d m =12122m m m m --L 【解析】(1)动能定理 Uq =12m 1v 12 得:v 1= 12qU m …① (2)由牛顿第二定律和轨道半径有:qvB =2 mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122 mU qB,R 2=222 m U qB ②两种离子在GA 上落点的间距s =2(R 1−R 2)=1228 ()U m m qB - …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④利用②式,代入④式得:2R 1(1−21m m )>d R 1的最大值满足:2R 1m =L-d得:(L −d )(1−21m m )>d 求得最大值:d m =12122m m m m --L6.如图所示,在xOy 平面直角坐标系中,直角三角形ACD 内存在垂直平面向里磁感应强度为B 的匀强磁场,线段CO=OD=L ,CD 边在x 轴上,∠ADC=30°。

带电粒子在复合场中运动专题训练 附参考答案汇编.doc

带电粒子在复合场中运动专题训练 附参考答案汇编.doc

带电粒子在复合场中运动专题训练附参考答案汇编带电粒子在复合场中运动专题训练 1.如图所示,两导体板水平放置,两板间电势差为 U , 带电粒子以某一初速度 v 0 沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场,则粒子射入磁场和射出磁场的 M 、 N 两点间的距离 d 随着 U 和 v 0 的变化情况为() A、 d 随 v 0 增大而增大, d 与 U 无关 B、 d 随 v 0 增大而增大, d 随 U 增大而增大 C、 d 随 U 增大而增大, d 与 v 0 无关 D、 d 随v 0 增大而增大, d 随 U 增大而减小 2.在如图所示的直角坐标系中,在 y0 的区域内有一垂直于 xOy 平面的匀强磁场,在第四象限内有一平行于 x 轴方向的匀强电场。

现使一个质量为 m 的带电粒子,从坐标原点 O 以速度 V 沿 y 轴正方向射入匀强磁场,带电粒子从点 P(a,0)射出磁场,最后再从 Q 点射出匀强电场,射出电场时粒子速度跟 y 轴的夹角为 120 0 。

(粒子重力不计)求:(1)带电粒子从 O 点射入磁场,到达 P 点经历的时间。

(2)匀强电场的场强与匀强磁场的磁感应强度大小的比值 3.在如图所示的空间区域里, y 轴左方有一匀强电场,场强方向跟 y 轴负方向成 30角,大小为E = 4.0105 N/C, y 轴右方有一垂直纸面的匀强磁场,有一质子以速度 0 = 2.0106 m/s 由x 轴上 A 点( OA = 10cm)第一次沿轴正方向射入磁场,第二次沿 x 轴负方向射入磁场,回旋后都垂直射入电场,最后又进入磁场,已知质子质量 m 为 1.610-27 kg,求:(1)匀强磁场的磁感应强度;(2)质子两次在磁场中运动的时间之比;(3)质子两次在电场中运动的时间各为多少. 4.如图所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿 y 轴负方向的匀强电场;第四象限无电场和磁场。

带电粒子在复合场中的运动典型例题汇编

带电粒子在复合场中的运动典型例题汇编

专题八带电粒子在复合场中的运动考纲解读1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是() A.小球一定带正电B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动;D.运动过程中,小球的机械能增大;图1 2.[带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是() A.小球一定带正电B.小球一定带负电;C.小球的绕行方向为顺时针;D.改变小球的速度大小,小球将不做圆周运动图2考点梳理一、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.2.二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3.[质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有磁感应强度为B0的匀强磁场.下列表述正确的是()A.质谱仪是分析同位素的重要工具;B.速度选择器中的磁场方向垂直纸面向外;C.能通过狭缝P的带电粒子的速率等于E/BD.粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小;图3 4.[回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示.置于高真空中的D 形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生的质子质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是()A.质子被加速后的最大速度不可能超过2πRf ;B.质子离开回旋加速器时的最大动能与加速电压U成正比C.质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为2∶1 ;D.不改变磁感应强度B和交流电频率f,该回旋加速器的最大动能不变图4规律总结带电粒子在复合场中运动的应用实例1. 质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12m v 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =m v 2r .由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2. 2. 回旋加速器(1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处 接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由q v B =m v2r,得 E km=q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6半径r 决定,与加速电压无关.(特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.)3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B ,即v =EB . 图74. 磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图8中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q UL =q v B 得两极板间能达到的最大电势差U =BL v . 图85. 电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负 离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就 保持稳定,即:q v B =qE =q U d ,所以v =U Bd ,因此液体流量Q =S v =πd 24·U Bd =πdU 4B . 图9考点一 带电粒子在叠加场中的运动1. 带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存 ①若三力平衡,一定做匀速直线运动. ②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2. 带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1 如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B 的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上. 图10 (1)求两极板间电压U ;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R粒子在电场中做类平抛运动:L -2R =v 0·t 02a =qE mR =12a (t 02)2在复合场中做匀速运动:q U2R=q v 0B联立各式解得v 0=4R t 0,U =8R 2Bt 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R因为R =12qE m (t 02)2,所以qE m =q v 0B m =8R t20根据牛顿第二定律有q v B =m v 2r,解得v =2(2-1)Rt 0所以,粒子在两板左侧间飞出的条件为0<v <2(2-1)Rt 0答案 (1)8R 2Bt 0 (2)0<v <2(2-1)R t 0技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成.2.进行受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合.4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解.(3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.(4)对于临界问题,注意挖掘隐含条件.5.记住三点:(1)受力分析是基础;(2)运动过程分析是关键;(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.方法点拨解决带电粒子在组合场中运动问题的思路方法突破训练。

物理带电粒子在复合场中的运动练习题20篇含解析

物理带电粒子在复合场中的运动练习题20篇含解析

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。

极板间存在方向向上的匀强电场,两极板间电压为U 。

质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。

两虚线之间的区域无电场和磁场存在,离子可匀速穿过。

忽略相对论效应和离子所受的重力。

求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。

【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。

【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。

设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。

高考物理带电粒子在复合场中的运动解析版汇编含解析

高考物理带电粒子在复合场中的运动解析版汇编含解析

一、带电粒子在复合场中的运动专项训练1.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E,由:mg qE=可得电场强度大小:mgqE=方向沿y轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a)所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。

高考物理带电粒子在复合场中的运动试题经典及解析

高考物理带电粒子在复合场中的运动试题经典及解析

一、带电粒子在复合场中的运动专项练习1 .如下图,在坐标系 Oxy 的第一象限中存在沿 y 轴正方向的匀强电场,场强大小为E.在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.原点O 的距离为h ; C 是x 轴上的一点,到O 的距离为L. 一质量为m,电荷量为q 的带负电的粒子以某一初速度沿 x 轴方向从A 点进入电场区域,继而通过域.并再次通过 A 点,此时速度方向与 (1)粒子经过C 点速度的大小和方向;y 轴正方向成锐角.不计重力作用.试求:【来源】2007普通高等学校招生全国统一测试(全国卷n(1)“= arctan 型l1 2mhE h 2l 2\ q试题分析:(1)以a 表示粒子在电场作用下的加速度,有 qE= ma ①加速度沿y 轴负方向.设粒子从 A 点进入电场时的初速度为 时间为t,…1 2 那么有:h -at ②2 l v 0t ③由②③ 式得v 0= l ja ④. 2h设粒子从C 点进入磁场时的速度为 V, v 垂直于x 轴的分量v 1=V2ah ⑤ 由①④⑤ 式得:v 1=J v 02 v 12 = J qE 4h 2 l 2⑥2mh设粒子经过C 点时的速度方向与x 轴的夹角为(2)磁感应强度的大小 B.A 是y 轴上的一点,它到坐标C 点进入磁场区)理综物理局部v 0,由A 点运动到C 点经历的(1)求小滑块运动到 C 点时的速度大小 Vc ;(2)求小滑块从 A 点运动到C 点过程中克服摩擦力做的功Wf ;(2)粒子从C 点进入磁场后在磁场中作速率为v 的圆周运动.假设圆周的半径为 R,2那么有 qvB= m —(§R设圆心为P,那么PC 必与过C 点的速度垂直,且有 夹角,由几何关系得:Rcos Rcos h ⑩Rsin l- Rsin解得R= h 2■匚屈下2hl1 2mhE由⑥⑨式得:B=_2_2J -------------------h 2l 2 \ qR .用 表示前与y 轴的2.如图,绝缘粗糙的竖直平面 MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方 向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B. 一质量为m 、电荷量为q 的带正电的小滑块从 A 点由静止开始沿 MN 下滑,到达C 点时离开MN 做 曲线运动.A 、C 两点间距离为h,重力加速度为g.(3)假设D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点.小滑块在D点时的速度大小为V D,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小V p.【来源】2021年全国普通高等学校招生统一测试物理(福建卷带解析)【答案】(1) E/B⑵ /二叫后一;初三(3) %二/谑上旦工人名【解析】【分析】【详解】小滑块到达C点时离开MN ,此时与MN间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功Wf;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定那么可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qEM滑块离开MN开始做曲线运动,即Bqv qE… E解得:vB1 2八(2)从A到C艮据动能定理:mgh W f - mv 021 E2斛得:W f mgh m —2 B(3)设重力与电场力的合力为F,由图意知,在D点速度V D的方向与F地方向垂直,从D到P1 .2做类平抛运动,在m向做匀加速运动a=F/m, t时间内在F万向的位移为x - at21 2从D到P,根据动能定理:a〔a5 0,其中一mv1 4联立解得:V P於2(qE)2t2%~• m【点睛】解决此题的关键是分析清楚小滑块的运动过程,在与MN别离时,小滑块与MN间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.3.如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.25m的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0 x3V/m.一不带电的绝缘小球甲,以速度V O沿水平轨道向右运动,与静止在B点带正电的小球乙发生弹性碰撞.甲、乙两球的质量均为m=1.0X1Gkg,乙所带电荷量q=2.0 X帝,g取10m/s2.(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点 D,求乙球在B 点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度 比;(3)甲仍以中的速度 V0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的 首次落点到B 点的距离范围.【来源】四川省资阳市高中(2021届)2021级高三课改实验班 【答案】(1) 5m/s ; (2) 5m/s ; (3)氧2m x 273m .2【解析】 【分析】 【详解】(1)对球乙从B 运动到D 的过程运用动能定理可得mg12R qE )2R ;mv Dmv B乙恰能通过轨道的最高点 D,根据牛顿第二定律可得2V D mg qE m —— R联立并代入题给数据可得V B =5m/s(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得mv 0 mv 0 mv B根据机械能守恒可得1 21 2 1 2 一 mv 0- mv 0 - mv B 22 2联立解得1 . 0, v 05m/s定律有Mv 0 Mv M mv m12月月考理综物理试题(3)设甲的质量为 M,碰撞后甲、乙的速度分别为V M 、v m ,根据动量守恒和机械能守恒工Mv 0221M V M 2 21 2二 mv m 22Mv 0 M m 分析可知:当M =m 时,v m 取最小值V 0;当M?m 时,V m 取最大值2v o 可得B 球被撞后的速度范围为V o V m 2V o设乙球过D 点的速度为V D ,由动能定理得mg (2R qE (2R 1 mV D 2mV m 2联立以上两个方程可得3 5m /S <V D 2 30m/s设乙在水平轨道上的落点到B 点的距离为x ,那么有所以可得首次落点到 B 点的距离范围32----- m x 24 .如下图,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为 d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量 q 、重力不计的带电粒子,以初速度 %垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然 后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.粒子第二次在磁场中 运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功 W(2)粒子第n 次经过电场时电场强度的大小 E n (3)粒子第n 次经过电场所用的时间t n(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三 次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标 明坐标刻度值). 【来源】河北省衡水中学滁州分校 2021届高三上学期全真模拟物理试题联立得x V D t ,2R1 J2 gt2.3m5 .如图,空间存在匀强电场和匀强磁场,电场方向为 y 轴正方向,磁场方向垂直于 xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的 一样.一带正电荷的粒子从P(x=0, y=h)点以一定的速度平行于 x 轴正向入射.这时假设只有磁场,粒子将做半径为 圆的圆周运动;假设同时存在电场和磁场,粒子恰好做直线运 动.现在,只加电场,当粒子从P 点运动到x=R o 平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与 x 轴交于M 点.不计重力.求: (1)粒子到达x=R 平面时速度方向与 x 轴的夹角以及粒子到 x 轴的距离; (2) M 点的横坐标XM .23mv 1 2(2n 1)mv 1---------------- (3)2qdt n2d (2n 1)v 1(4)如图;(1) 根据 mvr 一二,由于「2 2r 1,所以V 2 2v 1 ,所以由 qB1 21 2mv 2mv i , 223 4双吗)'一〞网巧尸,=E/d ,所以(1) W i2【解(2)(2篦- 1)第W(4)= — JKK工J,以一而而【来源】磁场1 2【答案】(1) H h -at h2【解析】【详解】(1)做直线运动有,根据平衡条件有: 做圆周运动有:只有电场时,粒子做类平抛,有:00 ,7 2 2 二;〔2〕X M 2& J-Ro &h h.2 , 4qE qBV o①2Vo…qBv o m『② R oqE ma ③R o V o t ④V y at ⑤解得:V y V0⑥粒子速度大小为:V........ ....一TT.速度万向与x轴夹角为:一⑧4粒子与x轴的距离为:H (2)撤电场加上磁场后,有:解得:R Q R⑪.V2 V2 石V o 〔7h 1at2 h 0 ⑨2 22qBV m —⑩ R粒子运动轨迹如下图圆心C 位于与速度v 方向垂直的直线上,该直线与 x 轴和y 轴的夹角均为 一,有几何关系4得C 点坐标为:X c 2R 0 ⑫ R y c H R o h 0 ⑬2过C 作x 轴的垂线,在 4DM 中:CM R V2R 0(14)CD y ch — (15))2 解得:曲 JCM 2 C D 2 J7R 02 R 0h h 2 (16)M 点横坐标为:X M 2R o J ;喏 R o h h 2⑰6.如下图,在xOy 坐标系中,第I 、n 象限内无电场和磁场.第IV 象限内(含坐标轴) 有垂直坐标平面向里的匀强磁场,第出象限内有沿 x 轴正向、电场强度大小为 E 的匀强磁场.一质量为 m 、电荷量为q 的带正电粒子,从 x 轴上的P 点以大小为v o 的速度垂直射入 2电场,不计粒子重力和空气阻力,P 、O 两点间的距离为 3 .2qE(1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离X ;(2)假设粒子由第IV 象限的磁场直接回到第出象限的电场中,求磁场磁感应强度的大小需要 满足的条件.*X K K K M M V XM国・M SMMKX K M NX'、【来源】2021年辽宁省辽阳市高考物理二模试题 【答案】(1) J2v 0; mv 0 (2) B (疙 1) EqE v o【解析】 【详解】解得:v= , 2 v o设此时粒子的速度方向与 y 轴负方向夹角为 0,那么有cos 9=皿v解得:0= 45°• 一 x ....................... 一 ......................... .................... 根据tan 2 - 1 ,所以粒子进入磁场时位置到坐标原点的距离为 PO 两点距离的两y2倍,故x mviqE(2)要使粒子由第IV 象限的磁场直接回到第 出象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如下图,由几何关系有:2v 又:qvB m —R〜日「 〔,2 1〕E 解得:B—v .〔、5 1〕E v o7.如下图,在直角坐标系 0WxW 跖域内有沿y 轴正方向的匀强电场,在边长为 2L 的正方形abcd 区域(包括边界)内有方向垂直纸面向外的匀强磁场.一电子从y 轴上的3LA (0,)点以大小为 V .的速度沿x 轴正方向射入电场,电子的质重为m 、电何重2为e,正方形abcd 的中央坐标为(3L, 0),且ab 边与x 轴平行,匀强电场的电场强度大(1)由动能定理有:2 .mv o1 2qE ------- -mv2qE 21 2一mv o,2 22t mv 0小E ,eLI 1I।■■一 ■ ■ iC-I(1)求电子进入磁场时的位置坐标;(2)假设要使电子在磁场中从 ab 边射出,求匀强磁场的磁感应强度大小 B 满足的条件.【来源】【全国市级联考】河北省邯郸市2021届高三第一次模拟测试理综物理试题【答案】 (1) (2L, 0) (2)(& 1)mv 0 WK 心 1)mv 02eLeL【解析】试题分析:电子在电场中做类平抛运动,分别列出竖直和水平方向的方程,即可求出电子 进入磁场时的位置坐标;电子从ab 边界射出,其运动轨迹的临界状态分别与ab 相切和bc相切,根据几何关系求出相应半径,由洛伦兹力提供向心力即可求出强磁场的磁感应强度 大小B 满足的条件.(1)电子在电场中做类平抛运动,轨迹如下图:那么有:一、…1 2 竖直万 向有: y at ; 2..、. eE加速度为:a 一 m 水平方方向为:t 1 -V 0所以电子射出电场时的速度方向与 x 轴成45°角,那么电子在电场中沿方向运动的距离分别为 L 和L ,又由于A 点的坐标是(0,匹),电子在无电场和磁场的2 2区域内做匀速直线运动,那么电子射入磁场区的位置坐标为( 2L, 0)且射入磁场区的速度大x 轴正方向和沿y 轴负竖直速度:V y= at 1小:v=J2V0,方向与x轴成45°角.(2)分使电子从ab边界射出,其运动轨迹的临界状态分别与当运动轨ab相切和bc相切迹与ab相切时,有r i + r i sin45 = L2mv电子在磁场中运动,由洛伦兹力提供向心力,有:evB ---------------r1解得:B1( 2 1)mV0Le当运动轨迹与bc相切时,有:「2+r2sin45 °=2L2电子在磁场中运动,由洛伦兹力提供向心力,有:eva m-「2( 2 1)mV0解得:B22Le匀强磁场的磁感应强度大小B满足的条件:(叵1)mV0由v (叵1)mV02Le Le点睛:此题主要考查了带电粒子由电场进入磁场的情况,电子在电场中做类平抛运动,分别列出竖直和水平方向的方程列式分析求解;在磁场中,关键要画出轨迹图分析,根据几何关系求解.8 .如图甲所示,在xOy平面内有足够大的匀强电场E,在y轴左侧平面内有足够大的磁场,磁感应强度B随时间t变化的规律如图乙所示,选定磁场垂直纸面向里为正方向.在y轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3m的圆形区域(图中未画出)且圆的左侧与y轴相切,磁感应强度a=0.8T, t=0时刻,一质量m=8X 10 4kg、电荷量q=+2 x 104C的微粒从x轴上x p=—0.8m处的P点以速度V=0.12m/s向x轴正方向入射.该带电微粒在电磁场区域做匀速圆周运动. (g取10m/s2)(1)求电场强度.(2)假设磁场15兀s后消失,求微粒在第二象限运动过程中离x轴的最大距离;(3)假设微粒穿过y轴右侧圆形磁场时速度方向的偏转角最大,求此圆形磁场的圆心坐标(x, y).【来源】陕西榆林市2021届高考模拟第三次测试理科综合物理试题【答案】(1) E 40N/C ,方向竖直向上(2) 2.4m⑶(0.30,2.25)【解析】【详解】(1)由于微粒射入电磁场后做匀速圆周运动受到的电场力和重力大小相等,那么: 解得:E 40N/C,方向竖直向上2r v(2)由牛顿第二定律有: qvB m--R〜 _ mv所以R 1 —— 0.6m qB i2由牛顿第二定律,有 qvB 2 m — R 2mv所以 R0.6m 2r qB 2所以最大偏转角为 60. 所以圆心坐标x 0.30m1y s' rcos60 2.4 0.3 m 2.25m 2即磁场的圆心坐标为0.30,2.259 .在平面直角坐标系 xOy 中,第n 、出象限 y 轴到直线PQ 范围内存在沿x 轴正方向的 匀强电场,电场强度大小E 500N/C ,第I 、IV 象限以 0.4,0为圆心,半径为的圆形范围内,存在垂直于坐标平面向外的匀强磁场,磁感应强度B 0.5T .大量质量为m 1 10 10kg ,电荷量q 1 10 6C 的带正电的粒子从 PQ 上任意位置由静止进入电 场.直线PQ 到y轴的距离也等于 R.不计粒子重力,求:qE mgqB i10 s从图乙可知在0 5 s 内微粒做匀速圆周运动,在 动.在10 15 s 内微粒又做匀速圆周运动,在穿过y 轴.离x 轴的最大距离s' 2R 2 4R 2.4m(3)如图,微粒穿过圆形磁场要求偏转角最大,入射点 直径.5 10 s 内微粒向左做匀速直线运15 s 内微粒向右做匀速直线运动,之后A 与出射点B 的连线必须为磁场圆的(1)粒子进入磁场时的速度大小;(2)假设某个粒子出磁场时速度偏转了 120:,那么该粒子进入电场时到(3)粒子在磁场中运动的最长时间.【来源】天津市耀华中学 2021届高三高考二模物理试题 【答案】(1) 2000m/s (2) 0.2m (3) 2 104s【解析】 【详解】12(1)粒子在电场中加速,那么有: EqR -mv2解得:v 2000m/s2(2)在磁场中,有:q V B m —r解得:r 0.4m R即正好等于磁场半径,如图,轨迹圆半径与磁场圆半径正好组成一个菱形由此可得h Rsin30 0.2m(3)无论粒子从何处进入磁场,(2)中菱形特点均成立,所有粒子均从同一位置射出磁 场,故t max10 .实验中经常利用电磁场来改变带电粒子运动的轨迹.如下图,M (y 轴的距离h 多大?10 4s假设虚线PQ 右侧还存在一垂直于纸面的匀强磁场区域出,经该磁场作用后三种粒子均能会聚于MN 上的一点,求该磁场的最小面积 S 和同时进入复合场的五、瓶运动到会聚点的时间差A t.[Failed to download image :://192.168.0.10:8086 /QBM/ 2021/6/13/2224672582623232/2224907340759040/STEM/dc3c33c ca5564bb396bf46dd7f953dfa.png]【来源】江苏省苏州市 2021届高三上学期期末阳光指标调研测试物理试题 【答案】⑴巨(2).⑶B qdB E(1)粒子在电磁复合场中做直线运动是匀速直线运动,根据电场力与洛伦兹力平衡,可求 粒子的速度大小;(2)由粒子的轨迹与边界垂直,可求轨迹半径,由洛伦兹力提供向心力,可求磁感应强度 的大小; (3)由瓶粒子圆周运动直径可求磁场的最小面积.根据五、瓶得运动周期,结合几何关 系,可求五、瓶到会聚点的时间差. 【详解】(1)由电场力与洛伦兹力平衡, Bqv= Eq 解得v= E/B.(2)由洛伦兹力提供向心力,2v Bivq= m —r由几何关系得r = d,2 3(1H )、瓶(1H )三种粒子同时沿直线在纸面内通过电场强度为E 、磁感应强度为B 的复合场区域.进入时代与笊、笊与瓶的间距均为d,射出复合场后进入(其夹角为0 )垂直于纸面向外的匀强磁场区域I ,然后均垂直于边界 y 轴与MN 之间 MN 射出.虚线MN 与PQ 间为真空区域H 且 PQ 与MN 平行.质子比荷为 —,不计重力.m(2) 求粒子做直线运动时的速度大小求区域I 内磁场的磁感应强度v ; Bi ;(3)… mE解得Bi = --------qdB(3)分析可得瓶粒子圆周运动直径为 3r22............. 1 3r r 磁场取小面积 S=—兀 — 一222解得S=兀d 2 由题意得R=2Bi,T 2 r /口丁 2 m由T= ------- 得T= -----------v qB由轨迹可知 Ati= (3Ti-Ti) ——,其中2At2= 1(3T2-T2),其中 T2= 2-^)2 'qB 2 '11 .如下图,处于竖直面内的坐标系x 轴水平、y 轴竖直,第二象限内有相互垂直的匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直坐标平面向里.带电微粒从 x 轴上M 点以某一速度射入电磁场中,速度与x 轴负半轴夹角 〞=53.,微粒在第二象限做匀速圆周运动,并垂直 y 轴进入第一象限.微粒的质量为 m,电荷量为-q, OM 间距离为L,重力加速度为 g, sin53 =0. 8, cos53 =0. 6.求⑴匀强电场的电场强度 E ;(2)假设微粒再次回到x 轴时动能为 M 点动能的2倍,匀强磁场的磁感应强度B 为多少.【来源】【市级联考】山东省滨州市 2021届高三第二次模拟(5月)测试理综物理试题 【答案】⑴mg (2) B=8mJ L 或B=8m Gq5qL 5q ,L2 mTi = --------qB i解得tt i+ t 2(2 )Bd Emg(1)微粒在第二象限做匀速圆周运动,那么qE=mg,解得:E=」q(2)微粒垂直y 轴进入第一象限,那么圆周运动圆心在y 轴上,由几何关系得:rsin aL2由向心力公式可知: qvB=m vrE k 2 1 mv 22联立解得:B= 8m M 或B=8m g5qL 5q ' L12 .如下图,在平面直角坐标系中, AO 是/ xOy 的角平分线,x 轴上方存在水平向左的匀强电场,下方存在竖直向上的匀强电场和垂直纸面向里的匀强磁场,两电场的电场强度大小相等.一质量为 m 、电荷量为+ q 的质点从OA 上白M M 点由静止释放,质点恰能沿 AO 运动且通过O 点,经偏转后从 x 轴上的C 点(图中未画出)进入第一象限内并击中 AO 上的D 点(图中未画出). OM 的长度L 1 2072 m,匀强磁场的磁感应强度大小为B(1)两匀强电场的电场强度 E 的大小; (2)OC 的长度以⑶质点从M 点出发到击中D 点所经历的时间t. 【来源】2021?单元滚动检测卷?高考物理(四川专用)精练第九章物理试卷mg【答案】(1) E(2)40m (3)7.71 sq【解析】 【详解】(1)质点在第一象限内受重力和水平向左的电场,沿AO 做匀加速直线运动,所以有mg qEmg微粒在第一象限中 mgr(1 cos )E k1 2mv 2(2)质点在x轴下方,重力与电场力平衡,质点做匀速圆周运动,从类平抛运C点进入第一象限后做动,其轨迹如下图,2 v 有:qvB m一R由运动规律知v22aL i由牛顿第二定律得:a J2g解得:R 20,2m由几何知识可知OC的长度为:L2=2Rcos45 =40m一一一一,,. v -⑶质点从M到O的时间为:tk一2s a3 2 R 3质点做圆周运动时间为:t23 2—R —s 4.71s 4 v 2R质点做类平抛运动时间为:t3= R 1sv质点全过程所经历的时间为:t=t 1+t2+t3=7.71s.13 .如下图为一匚〞字型金属框架截面图,上下为两水平且足够长平行金属板,通过左侧长度为L= 1m的金属板连接.空间中有垂直纸面向里场强大小B=0.2T的匀强磁场,金属框架在外力的作用下以速度v0= 1m/s水平向左做匀速直线运动.框架内O处有一质量为m= 0.1kg、带正电q=1C的小球.假设以某一速度水平向右飞出时,那么沿图中虚线OO做直线运动;假设小球在O点静止释放,那么小球的运动轨迹沿如图曲线(实线)所示,此曲线在最低点P的曲率半径(曲线上过P点及紧邻P点两侧的两点作一圆,在极限情况下,这个圆的半径叫做该点的曲率半径)为P点到.点竖直高度h的2倍,重力加速度g 取10 m/s2.求:箕续KNKN 乂(1)小球沿图中虚线OO做直线运动速度v大小(2)小球在O点静止释放后轨迹最低点P到O点竖直高度h【来源】江西省名校(临川一中、南昌二中)2021-2021学年高三5月联合考理综物理试题【答案】(1) v 4m/s ; (2) h 4m【解析】【详解】解:⑴框架向左运动,产生感应电动势:U BLv o板间场强:E U Bv0小球做匀速直线运动,受力平衡:Eq qvB mg可解得:v 4m/s(2)最大速率点在轨迹的最低点1 2根据动能TE理可得:Eqh mgh 2mv m 02最低点根据牛顿第二定律和圆周运动规律有:Eq qv m B mg m—m2h联立可解得:h 4 m14 .如下图,ABCD与MNPQ均为边长为l的正方形区域,且A点为MN的中点.ABCD 区域中存在有界的垂直纸面方向匀强磁场,在整个MNPQ区域中存在图示方向的匀强电场.质量为m、电荷量为e的电子以大小为列的初速度垂直于BC射入正方形ABCD区域, 且都从A点进入电场,从C点进入磁场的粒子在ABCD区域中运动时始终位于磁场中,不计电子重力,求:(1)匀强磁场区域中磁感应强度B的大小和方向;(2)要使所有粒子均能打在PQ边上,电场强度E至少为多大;(3) ABCD区域中磁场面积的最小值是多少.【来源】【全国百强校】天津市耀华中学【答案】(1) —T,方向为垂直纸面向外;■b f 2021届高三高考一模物理试题(2)等;(3)泊仔mvi 已现B =r由题意那么有:… m 氏 ____________ ____ _________ 解得:B = J,万向为垂直纸面向外el(2)在匀强电场中做内平抛运动,那么有: eE = ma 11 =刊? 12 = V ^解得:E = ---------el(3)图中阴影局部为磁场面积最小范围,由几何关系可知:15.如下图,荧光屏 MN 与x 轴垂直放置,荧光屏所在位置的横坐标 X 0=60cm,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E=1.6X15N/C,在第二象限有半径R=5cm 的圆形磁场,磁感应强度 B=0.8T,方向垂直xOy 平面向外.磁场的边界和 x 轴相切于P 点.在P 点有一个粒子源,可以向 x 轴上方180.范围内的各个方向发射比荷为 — =1.0 x 8C/kg 的带正电的粒子,粒子的发射速率v 0=4.0 X6m/s.不考虑粒子的重m(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点的最远距离.【来源】陕西省西安市 2021年高三物理三模理综物理试题 【答案】(1) 5cm ; (2) 0WyW 10cm (3) 9cm 【解析】 【详解】解:(1)由洛伦磁力提供向心力可得: 111^min = 2 X 〔产=/产一I-力、粒子间的相互作用.求:(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:2V0 qvB=m一r一mV. _ _ 2斛得:r= 5 10 m=5cmBq(2)由(1)问可知r=R,取任意方向进入磁场的粒子,画出粒子的运动轨迹如下图:由几何关系可知四边形PO FO为菱形,所以FQ//O'P,又O'睡直于x轴,粒子出射的速度方向与轨迹半径FQ垂直,那么所有粒子离开磁场时的方向均与x轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0或w 10cm(3)假设粒子没有射出电场就打到荧光屏上,有:X0=v0 t0「1/ h=—at0 2m解得:h=18cm> 2R=10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y的点进入电场的粒子在电场中沿x 轴方向的位移为X,那么:X=V0t1.2y=2at代入数据解得:x=、2 y设粒子最终到达荧光屏的位置与Q点的最远距离为H,粒子射出电场时速度方向与x轴正方向间的夹角为仇qE xv y m V n —tan y - . 2yV o V o '所以:H= (x o — x) tan 0= (x o —22y ?^y 由数学知识可知,当(x o -那么)=.为时,即y=4.5cm时H有最大值所以H max=9cm。

高中物理带电粒子在复合场中的运动真题汇编

高中物理带电粒子在复合场中的运动真题汇编

一、带电粒子在复合场中的运动专项训练1.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t时间内收集到的离子个数为N,总电荷量Q = ItQ = NqM =" Nm" =(3)由以上分析可得:R =设m/为铀238离子质量,由于电压在U±ΔU之间有微小变化,铀235离子在磁场中最大半径为:R max=铀238离子在磁场中最小半径为:R min=这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max<R min即:<得:<<其中铀235离子的质量m = 235u(u为原子质量单位),铀238离子的质量m,= 238u 则:<解得:<0.63%2.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x >0;理由见解析 【解析】 【详解】(1)带电微粒平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E ,由:mg qE =可得电场强度大小:mg qE =方向沿y 轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。

物理带电粒子在复合场中的运动练习题20篇含解析

物理带电粒子在复合场中的运动练习题20篇含解析

一、带电粒子在复合场中的运动专项训练1.如图所示,在坐标系Oxy 的第一象限中存在沿y 轴正方向的匀强电场,场强大小为E .在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 的距离为L .一质量为m ,电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域.并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用.试求: (1)粒子经过C 点速度的大小和方向;(2)磁感应强度的大小B .【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分【答案】(1)α=arctan 2h l(2)B 2212mhE h l q+【解析】【分析】【详解】 试题分析:(1)以a 表示粒子在电场作用下的加速度,有qE ma =①加速度沿y 轴负方向.设粒子从A 点进入电场时的初速度为0v ,由A 点运动到C 点经历的时间为t , 则有:212h at =② 0l v t =③由②③式得02a v h= 设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah =⑤由①④⑤式得:22101v v v +=()2242qE h l mh+⑥设粒子经过C 点时的速度方向与x 轴的夹角为α,则有1vtanvα=⑦由④⑤⑦式得2harctanlα=⑧(2)粒子从C点进入磁场后在磁场中作速率为v的圆周运动.若圆周的半径为R,则有qvB=m2vR⑨设圆心为P,则PC必与过C点的速度垂直,且有PC=PA R=.用β表示PA与y轴的夹角,由几何关系得:Rcos Rcos hβα=+⑩Rsin l Rsinβα=-解得222242h lR h lhl++=由⑥⑨式得:B=2212mhEh l q+2.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p(t)进入弹性盒后,通过与铰链O相连的“”型轻杆L,驱动杆端头A处的微型霍尔片在磁场中沿x轴方向做微小振动,其位移x与压力p成正比(,0x pαα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d,单位体积内自由电子数为n的N型半导体制成,磁场方向垂直于x轴向上,磁感应强度大小为(1)0B B xββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C方向的电流I,则在侧面上D1、D2两点间产生霍尔电压U0.(1)指出D 1、D 2两点那点电势高;(2)推导出U 0与I 、B 0之间的关系式(提示:电流I 与自由电子定向移动速率v 之间关系为I=nevbd ,其中e 为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t = 【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力00U qvB qb= ① 由电流I nevbd = 得:I v nebd= ② 将②带入①得00IB U ned =(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0所以,频率为: 012f t = 当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=-取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=-所以:00011(1)1IB U ned IB A U Anedββ==-- 解得:010U U A U β-= 根据压力与唯一关系x p α=可得x p α=因此压力最大振幅为:010m U U p U αβ-=3.如图所不,在x 轴的上方存在垂直纸面向里,磁感应强度大小为B 0的匀强磁场.位于x 轴下方的离子源C 发射质量为m 、电荷量为g 的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O (坐标原点)垂直x 轴并垂直磁场射入磁场区域,最后打到x 轴上.在x 轴上2a 〜3a 区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N 0,打到x 轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O 射入磁场后打到x 轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B 1;(3)保持磁感应强度B 1不变,求每秒打在探测板上的离子数N ;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU=mv在磁场中洛仑兹力提供向心力:,所以半径:r1==a恰好打在x=2a的位置;对于初速度为v0的离子,qU=mv-m(v0)2r2==2a,恰好打在x=4a的位置故离子束从小孔O射入磁场打在x轴上的区间为[2a,4a](2)由动能定理qU=mv-m(v0)2r3=r3=a解得B1=B0(3)对速度为0的离子qU=mvr4==a2r4=1.5a离子打在x轴上的区间为[1.5a,3a]N=N0=N0对打在x=2a处的离子qv3B1=对打在x=3a处的离子qv4B1=打到x轴上的离子均匀分布,所以=由动量定理-Ft=-0.8Nm+0.2N(-0.6m-m)解得F=N0mv0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a,由半径公式也就能求出磁感应强度;取时间t=1s,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.4.对铀235的进一步研究在核能的开发和利用中具有重要意义.如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动.离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I.不考虑离子重力及离子间的相互作用.(1)求加速电场的电压U;(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;(3)实际上加速电压的大小会在U+ΔU范围内微小变化.若容器A中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中会发生分离,为使这两种离子在磁场中运动的轨迹不发生交叠,应小于多少?(结果用百分数表示,保留两位有效数字)【来源】2012年普通高等学校招生全国统一考试理综物理(天津卷)【答案】(1)(2)(3)0.63%【解析】解:(1)设离子经电场加速后进入磁场时的速度为v,由动能定理得:qU =mv2离子在磁场中做匀速圆周运动,由牛顿第二定律得:qvB=解得:U =(2)设在t时间内收集到的离子个数为N,总电荷量Q = ItQ = NqM =" Nm" =(3)由以上分析可得:R =设m/为铀238离子质量,由于电压在U±ΔU之间有微小变化,铀235离子在磁场中最大半径为:R max=铀238离子在磁场中最小半径为:R min=这两种离子在磁场中运动的轨迹不发生交叠的条件为:R max<R min即:<得:<<其中铀235离子的质量m = 235u(u为原子质量单位),铀238离子的质量m,= 238u则:<解得:<0.63%5.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA边且垂直于磁场的方向射入磁场,运动到GA边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m1和m2(m1>m2),电荷量均为q.加速电场的电势差为U,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m1的离子进入磁场时的速率v1;(2)当磁感应强度的大小为B时,求两种离子在GA边落点的间距s;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA边长为定值L,狭缝宽度为d,狭缝右边缘在A处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA边且垂直于磁场.为保证上述两种离子能落在GA边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京)【答案】(1)12qU m (2)()1228U m m qB - (3)d m =12122m m m m --L 【解析】 (1)动能定理 Uq =12m 1v 12 得:v 1= 12qU m …① (2)由牛顿第二定律和轨道半径有:qvB =2 mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122 mU qB,R 2=222 m U qB …② 两种离子在GA 上落点的间距s =2(R 1−R 2)=1228()U m m qB - …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④利用②式,代入④式得:2R 1(1−21m m >d R 1的最大值满足:2R 1m =L-d得:(L −d )(1−21m m >d求得最大值:d m =12122m m m m --L6.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东)【答案】(1)32lm t qU π= (2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mU B L q≥)(4)1122B L B L = 【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv = ①211v qvB m R = ② 由几何知识得12sin L R θ= ③联立①②③,带入数据得012mU B L q= ④ 设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t 12R T v π=⑤ 22t T θπ= ⑥ 联立②④⑤⑥式,带入数据得32Lm t qUπ= ⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧ 由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.7.如图为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D 分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM =d .现有一正离子束以小发散角(纸面内)从C 射出,这些离子在CM 方向上的分速度均为v 0.若该离子束中比荷为qm的离子都能汇聚到D ,试求:(1)磁感应强度的大小和方向(提示:可考虑沿CM 方向运动的离子为研究对象); (2)离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; (3)线段CM 的长度.【来源】电粒子在磁场中的运动 【答案】(1)0mv B qd =,磁场方向垂直纸面向外;(2)cos dR θ'=,()02t d v θα+=;(3)cos CM d t α=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题八带电粒子在复合场中的运动考纲解读 1.能分析计算带电粒子在复合场中的运动.2.能够解决速度选择器、磁流体发电机、质谱仪等磁场的实际应用问题1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图1所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是() A.小球一定带正电图1B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动D.运动过程中,小球的机械能增大答案CD解析由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直线运动,选项C正确;运动过程中由于电场力做正功,故机械能增大,选项D正确.2.[带电粒子在复合场中的匀速圆周运动]如图2所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是()A.小球一定带正电图2 B.小球一定带负电C.小球的绕行方向为顺时针D.改变小球的速度大小,小球将不做圆周运动答案BC解析小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场方向可知小球一定带负电,A错误,B正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C正确,D错误.考点梳理一、复合场1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.二、带电粒子在复合场中的运动形式1. 静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2. 匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3. 较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4. 分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.3. [质谱仪原理的理解]如图3所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是 ( )A .质谱仪是分析同位素的重要工具 图3B .速度选择器中的磁场方向垂直纸面向外C .能通过狭缝P 的带电粒子的速率等于E /BD .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小答案 ABC解析 粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向外,选项B 正确;由Eq =Bq v 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到狭缝的距离即为其做匀速圆周运动的直径D =2m v Bq,可见D 越小,则粒子的比荷越大,D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误.4. [回旋加速器原理的理解]劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图4所示.置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是 ( ) 图4A .质子被加速后的最大速度不可能超过2πRfB .质子离开回旋加速器时的最大动能与加速电压U 成正比C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变答案 AC解析 粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πR T=2πRf ,故A 正 确;粒子离开回旋加速器的最大动能E km =12m v 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据R =m v Bq ,Uq =12m v 21,2Uq =12m v 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,D 错误. 规律总结带电粒子在复合场中运动的应用实例1. 质谱仪(1)构造:如图5所示,由粒子源、加速电场、偏转磁场和照相底片等构成.图5(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12m v 2. 粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =m v 2r. 由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2.2. 回旋加速器 (1)构造:如图6所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由q v B =m v 2r,得 E km =q 2B 2r 22m,可见粒子获得的最大动能由磁感应强度B 和D 形盒 图6 半径r 决定,与加速电压无关.特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动) 的原理.3. 速度选择器(如图7所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B ,即v =E B. 图74. 磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能.(2)根据左手定则,如图8中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L=q v B 得两极板间能达到的最大电势 图8 差U =BL v .5. 电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就 图9保持稳定,即:q v B =qE =q U d ,所以v =U Bd ,因此液体流量Q =S v = πd 24·U Bd =πdU 4B.考点一 带电粒子在叠加场中的运动1. 带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2. 带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例1 如图10所示,带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B 的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上.图10(1)求两极板间电压U ;(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R 粒子在电场中做类平抛运动:L -2R =v 0·t 02a =qE mR =12a (t 02)2 在复合场中做匀速运动:q U 2R=q v 0B 联立各式解得v 0=4R t 0,U =8R 2B t 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R因为R =12qE m (t 02)2, 所以qE m =q v 0B m =8R t20 根据牛顿第二定律有q v B =m v 2r, 解得v =2(2-1)R t 0所以,粒子在两板左侧间飞出的条件为0<v <2(2-1)R t 0答案 (1)8R 2B t 0 (2)0<v <2(2-1)R t 0 技巧点拨带电粒子(带电体)在叠加场中运动的分析方法1.弄清叠加场的组成.2.进行受力分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合.4.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解.(3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.(4)对于临界问题,注意挖掘隐含条件.5.记住三点:(1)受力分析是基础;(2)运动过程分析是关键;(3)根据不同的运动过程及物理模型,选择合适的定理列方程求解.突破训练1 如图11所示,空间存在着垂直纸面向外的水平匀强磁场,磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已 图11知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静 电力忽略不计.(1)求两液滴相撞后共同运动的速度大小;(2)求液滴b 开始下落时距液滴a 的高度h .答案 (1)E B (2)2E 23gB 2解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用.(1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q ,液滴a 平衡时有qE =mg ①a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态, 重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上, 因此满足q v B +qE =2mg ②由①、②两式,可得相撞后速度v =E B(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE +mg )h =12m v 20 ③ a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2E B 再代入③式得h =m v 204qE +2mg =v 206g =2E 23gB 2 考点二 带电粒子在组合场中的运动1. 近几年各省市的高考题在这里的命题情景大都是组合场模型,或是一个电场与一个磁场相邻,或是两个或多个磁场相邻.2. 解题时要弄清楚场的性质、场的方向、强弱、范围等.3. 要进行正确的受力分析,确定带电粒子的运动状态.4. 分析带电粒子的运动过程,画出运动轨迹是解题的关键.例2 (2012·山东理综·23)如图12甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极 板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均 为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不 计粒子重力,不考虑极板外的电场)图12(1)求粒子到达S 2时的速度大小v 和极板间距d .(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件.(3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.审题指导 1.粒子的运动过程是什么?2.要在t =3T 0时使粒子再次到达S 2,且速度为零,需要满足什么条件?解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12m v 2 ① 由①式得v = 2qU 0m② 设粒子的加速度大小为a ,由牛顿第二定律得q U 0d=ma ③ 由运动学公式得d =12a (T 02)2 ④ 联立③④式得d =T 04 2qU 0m⑤ (2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得q v B =m v 2R⑥ 要使粒子在磁场中运动时不与极板相撞,需满足2R >L 2⑦ 联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧联立②⑤⑧式得t 1=T 04⑨ 若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v 2t 2 ⑩ 联立⑧⑨⑩式得t 2=T 02⑪ 设粒子在磁场中运动的时间为tt =3T 0-T 02-t 1-t 2 ⑫ 联立⑨⑪⑫式得t =7T 04⑬ 设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πm qB⑭由题意可知T =t ⑮联立⑬⑭⑮式得B =8πm 7qT 0. 答案 (1) 2qU 0m T 04 2qU 0m (2)B <4L 2mU 0q(3)7T 04 8πm 7qT 0方法点拨解决带电粒子在组合场中运动问题的思路方法突破训练2 如图13所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E 2;区域Ⅱ 内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界 图13CD 进入Ⅲ区域的匀强电场中.求:(1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径;(2)O 、M 间的距离;(3)粒子从M 点出发到第二次通过CD 边界所经历的时间.答案 (1)2m v 0qB (2) 3m v 022qE (3)(8+3)m v 0qE +πm 3qB审题指导 1.粒子的运动过程是怎样的?2.尝试画出粒子的运动轨迹.3.注意进入磁场时的速度的大小与方向.解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bq v =m v 2R ,所以R =2m v 0qB(2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3m v 0qEO 、M 两点间的距离为L =12at 21=3m v 022qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2则由几何关系知t 2=T 16=πm 3qB设粒子在Ⅲ区域电场中运动时间为t 3,a ′=q E 2m =qE 2m则t 3=2×2v 0a ′=8m v 0qE粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3m v 0qE +πm 3qB +8m v 0qE =(8+3)m v 0qE +πm 3qB42.带电粒子在交变电场和交变磁场中的运动模型问题的分析解析 (1)粒子在磁场中运动时q v B =m v 2R(2分) T =2πR v (1分)解得T =2πm qB=4×10-3 s (1分) (2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系内做了两个 圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2 m (1分)竖直位移y =12a (3T )2 (1分) Eq =ma (1分) 解得y =3.6×10-2 m故t =20×10-3 s 时粒子的位置坐标为:(9.6×10-2 m ,-3.6×10-2 m) (1分) (3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为α (1分) 则v =v 20+v 2y (1分)v y =3aT (1分) tan α=v yv 0 (1分)解得v =10 m/s (1分)与x 轴正向夹角α为37°(或arctan 34)斜向右下方 (1分)答案 (1)4×10-3 s (2)(9.6×10-2 m ,-3.6×10-2 m) (3)10 m/s 方向与x 轴正向夹角α为37°(或arctan 34)突破训练3 如图15甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102 N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5 kg 、电荷 量为q =2.0×10-2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期 性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点, PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g = 10 m/s 2)图15(1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时 间t 0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量 的符号表示);(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).答案 (1)3πm 2qB 0 (2)L v 0+mqB 0 (3)2πm v 0qL 6L v 0解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周 运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: 甲 v 0t 1-L =R q v 0B 0=m v 20/R所以v 0t 1-L =m v 0qB 0,t 1=L v 0+mqB 0(3)小球运动的速率始终不变,当R 变大时,T0也增加,小球在电 磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有:DQ =2R =L π=2m v 0qB 0B 0=2πm v 0qL ,T 0=2πR v 0=L v 0 乙由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6Lv 0,小球运动轨迹如图乙所示.高考题组1. (2012·课标全国·25)如图16,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、 电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为35R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样 图16 速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计 重力,求电场强度的大小.答案 14qRB 25m解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得q v B =m v 2r ①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此 ac =bc =r ②设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④联立②③④式得r =75R ⑤再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设 其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2 ⑦r =v t ⑧式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m .2. (2012·浙江理综·24)如图17所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向 垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷 图17 量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入 电场、磁场共存区域后,最终垂直打在下板的M 点. (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值;(3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?答案 (1)负电荷 mgdU (2)v 0U gd 2 (3)4v 0U 5gd 2解析 (1)墨滴在电场区域做匀速直线运动,有q Ud=mg ① 由①式得:q =mgdU ②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力, 墨滴做匀速圆周运动,有q v 0B =m v 02R ③考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知墨滴在该区域恰完成四分之 一圆周运动,则半径R =d ④由②③④式得B =v 0Ugd 2(3)根据题设,墨滴运动轨迹如图所示,设墨滴做圆周运动的半径为R ′,有q v 0B ′=m v 02R ′ ⑤由图可得:R ′2=d 2+(R ′-d2)2 ⑥由⑥式得:R ′=54d ⑦联立②⑤⑦式可得:B ′=4v 0U 5gd 2.3. (2012·重庆理综·24)有人设计了一种带电颗粒的速率分选装置,其原理如图18所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM 矩形区域内 还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间, 图18其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加 速度为g ,PQ =3d , NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求: (1)电场强度E 的大小; (2)磁感应强度B 的大小;(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离. 答案 见解析解析 (1)设带电颗粒的电荷量为q ,质量为m .由于粒子从Q 点离开磁场后做匀速直线运 动,则有Eq =mg 将q m =1k 代入,得 E =kg .(2)如图所示,粒子在磁场区域内由洛伦兹力提供其做圆周运动的向心力,则有q v 0B =m v 20R ①而由几何知识有R 2=(3d )2+(R -d )2 ②联立①②解得B =k v 05d . ③(3)设速度为λv 0的颗粒在磁场区域运动时竖直方向的位移为y 1, 离开磁场后做匀速直线运动时竖直方向的位移为y 2,偏转角为θ,如图所示,有qλv 0B =m (λv 0)2R 1④将q m =1k 及③式代入④式,得 R 1=5d λ tan θ=221)3(3d R d -y 1=R 1-)3(221d R - y 2=l tan θ则速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离为 y =y 1+y 2 解得y =d (5λ-25λ2-9)+3l25λ2-9.模拟题组4. 如图19所示,坐标平面第Ⅰ象限内存在大小为E=4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为m q =4×10-10 N/C 的带正电粒子从x轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: 图19 (1)粒子经过y 轴时的位置到原点O 的距离;(2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入 电场后的运动情况.)答案 (1)0.4 m (2)B ≥(22+2)×10-2 T解析 (1)设粒子在电场中运动的时间为t ,粒子经过y 轴时的位置与原点O 的距离为y ,则:s OA =12at 2a =F m E =F qy =v 0t联立解得a =1.0×1015 m/s 2 t =2.0×10-8 s y =0.4 m (2)粒子经过y 轴时在电场方向的分速度为: v x =at =2×107 m/s粒子经过y 轴时的速度大小为: v =v x 2+v 02=22×107 m/s 与y 轴正方向的夹角为θ,θ=arctanv xv 0=45°要使粒子不进入第三象限,如图所示,此时粒子做匀速圆周 运动的轨道半径为R ,则: R +22R ≤y q v B =m v 2R联立解得B ≥(22+2)×10-2 T.5. 如图20甲所示,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x 方向(水平向右)射入该空 间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πmqt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求:图20(1)t 0末小球速度的大小;(2)小球做圆周运动的周期T 和12t 0末小球速度的大小;(3)在给定的xOy 坐标系中,大体画出小球在0到24t 0内运动轨迹的示意图; (4)30t 0内小球距x 轴的最大距离. 答案 (1)10gt 0 (2)2t 0 13gt 0 (3)见解析图(4)⎝ ⎛⎭⎪⎫92+3+32πgt 20 解析 (1)由题图乙知,0~t 0内,小球只受重力作用,做平抛运动,在t 0末:v =v 0x 2+v 0y 2=(3gt 0)2+(gt 0)2=10gt 0(2)当同时加上电场和磁场时,电场力F 1=qE 0=mg ,方向向上因为重力和电场力恰好平衡,所以小球只受洛伦兹力而做匀速圆周运动,有q v B 0=m v 2r运动周期T =2πrv ,联立解得T =2t 0由题图乙知,电场、磁场同时存在的时间正好是小球做匀速圆周运动周期的5倍,即在 这10t 0内,小球恰好做了5个完整的匀速圆周运动.所以小球在t 1=12t 0时刻的速度相 当于小球做平抛运动t =2t 0时的末速度. v y 1=g ·2t 0=2gt 0,v x 1=v 0x =3gt 0 所以12t 0末v 1=v x 12+v y 12=13gt 0(3)24t 0内运动轨迹的示意图如图所示.(4)分析可知,小球在30t 0时与24t 0时的位置相同,在24t 0内小球相当于做了t 2=3t 0的平 抛运动和半个圆周运动.23t 0末小球平抛运动的竖直分位移大小为y 2=12g (3t 0)2=92gt 20竖直分速度v y 2=3gt 0=v 0,所以小球与竖直方向的夹角为θ=45°,速度大小为 v 2=32gt 0此后小球做匀速圆周运动的半径r 2=m v 2qB 0=32gt 20π30t 0内小球距x 轴的最大距离:y 3=y 2+(1+cos 45°)r 2=⎝ ⎛⎭⎪⎫92+3+32πgt 2专题突破练 带电粒子在复合场中的运动(限时:60分钟)►题组1 对带电粒子在叠加场中运动的考查1. 如图1所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m , 电荷量为+q ,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦 因数为μ,重力加速度为g .小球由静止开始下滑直到稳定的过程中。

相关文档
最新文档