第六章 因子分析.

合集下载

因子分析方法ppt课件

因子分析方法ppt课件

10
因子分析数学模型中几个相关概念
举例说明:
11
12
因子分析的五大基本步骤
第一步:因子分析的前提条件
由于因子分析的主要任务之一是对原有变量进行浓缩,即将 原有变量中的信息重叠部分提取和综合成因子,进而最终实 现减少变量个数的目的。因此它要求原有变量之间应存在较 强的相关关系。否则,如果原有变量相互独立,相关程度很 低,不存在信息重叠,它们不可能有共同因子,那么也就无 法将其综合和浓缩,也就无需进行因子分析。本步骤正是希 望通过各种方法分析原有变量是否存在相关关系,是否适合 进行因子分析。
2
因子分析的基本模型
因子分析模型中,假定每个原始变量由两部分组成: 共同因子和唯一因子。 共同因子是各个原始变量所共有的因子,解释变 量之间的相关关系。
唯一因子顾名思义是每个原始变量所特有的因子, 表示该变量不能被共同因子解释的部分。原始变量 与因子分析时抽出的共同因子的相关关系用因子负 荷表示。
18
第四步:决定因素与命名
• 转轴后,要决定因素数目,选取较少因素 层面,获得较大的解释量。在因素命名与 结果解释上,必要时可将因素计算后之分 数存储,作为其它程序分析之输入变量。
19
第五步:计算各样本的因子得分
• 因子分析的最终目标是减少变量个数,以 便在进一步的分析中用较少的因子代替原 有变量参与数据建模。本步骤正是通过各 种方法计算各样本在各因子上的得分,为 进一步的分析奠定基础。
因子分析方法
1
因子分析的基本概念
因子分析的概念 就是在尽可能不损失信息或少损失信息的情况下,将多个变量减少为 少数几个潜在的因子。也就是用少数几个因子来描述许多指标或因素之 间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方 法 主成分分析(Principal component analysis): 是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标 变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相 关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少 变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信 息。 两者关系:主成分分析(PCA)和因子分析(FA)是两种把变量维数降 低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子 分析的一个特例

06 第六章 R-Q型因子分析

06 第六章  R-Q型因子分析

X = nW
于是有
(6.24)
F=
nWU
∧−1 2
=
nF R
∧−1 2

(6.24)
FR =
1
F
∧−1 2
n
(6.25)
其中各记号同前文一致。 现在用图 4-9 中汇水盆地的样本为例说明R-Q型因子分析的计算与应用。由样本中 25
个样品 6 个变量作R型因子分析后得因子负载矩阵A于表 5-2。它就是R-Q型因子分析中要求 的R型负载AR。表 5-2 对应的R型因子得分矩阵F列表 5-3,由(6.25)式可求得R-Q型因子分 析中要求的Q型的负载AQ=FR,所得结果列于表 6-1。
三、R-Q 型因子分析的图示
矩阵AR和AQ都是p列的,这意味着m维变量空间和n维样品空间样品都可用一p维因子空
3
间代替,因为p<<min(n,m),故原始空间维数约简了许多。 由于下面的关系成立
AR ARΤ = W ΤW
AQ AQΤ = WW Τ
可见,变量间关系完全保留在ARARΤ中,样品间关系完全保留在AQAQΤ中。
一、R-Q 型因子分析的相似性矩阵
我们考虑用相关系数作为变量间相似性的度量,用欧氏距离作为样品间的相似性度量,并
以此建立起变量间相似性矩阵与样品间相似性矩阵的联系。设原始数据矩阵为如下的形式:
Xn×m=(xij)n×m 其中xij为样品i变量j的观测值;并对数据作如下变换,即类似与标准化变换:
(6.1)
n
j =1
j =1
∑ (xij − x j )2
i =1
(6.8)
∑m
=
(xkj − xLj ) 2
n
= hkk + hLL − 2hkL

第六章 因子分析

第六章 因子分析


因此:因子也是综合变量;因子具有更 明确的指标意义;具有不同意义的因子 便于揭示事物变化的内在结构;提取少 量重要因子可以达到降维和简化分析的 作用。
(二)因子分析的一般模型:
令因子为 F(factor),当我们研究 m 个因子对实 际问题的影响时可以建立因子模型,即
X i ai1F1 ai 2 F2 aim Fm + i 。 其中的 F 是对所有
(三)基本思想:

基于对因子的认识,因子分析的基本思想就是通过变 量(或样品)的相关系数矩阵(或相似系数矩阵)内 部结构的研究,找出能控制所有变量(或样品)的少 数几个随机变量去描述多个变量(或样品)之间的相 关(或)相似关系。在分解原始变量的基础上,从中 归纳出潜在的“类别”,相关性较强的变量归为一类, 不同类间变量的相关性则较低。从而实现因子分析的 两个目的:一简化分析,二将原变量分类,对公因子 的意义作出合理可信的解释。

而进行因子分析的起点就是因子模型,我们通 过估计因子模型中的参数即因子负荷和方差对 各因子的重要程度进行衡量,并利用因子负荷 矩阵所体现的各变量或样品之间的相关程度提 取出具有明确意义的公因子F,赋予其有实际 背景的解释进而给以命名,从而达到降维和分 类的目的。
三、因子分析的数学原理。
因R型因子分析应用广泛,故本章的解释均是 以R型因子分析为对象。 (一)正交因子模型: 因子分析的一般模型为:

X 1 a11F1 a12 F2 a1m Fm 1 X 2 a21F1 a22 F2 a2 m Fm 2 X p a p1F1 a p 2 F2 a pm Fm p
i

可将上式写成简单的矩阵形式

因子分析ppt课件剖析

因子分析ppt课件剖析
L 1L 为一个对角阵,使L得以很好的确定。
样本总方差
归因于第 个j =
因子的比例
lˆ12j lˆ22j s11 s22
lˆp2j s pp
*因子旋转
为什么要旋转因子? 建立因子分析模型的目的不仅是找出公共因子,
更重要的是知道每个公共因子的意义,以便对实际问 题进行分析。如果求出因子解后,各个因子的典型代 表变量不很突出,还需要进行因子旋转,通过适当的 旋转得到比较满意的公共因子。
假设公共因子F和特殊因子 是正态分布的,则可以根
据极大似然的思想得到因子载荷和特殊方差的极大似然 估计。
当 Fj 和 j 是联合正态时,观测值 X j LFj j
就是正态的。它通过 LL 依赖于 L 和 。
**正因为正交变化而使 Lˆ 的多重选择成为可能,仍然不
能很好的确定这个模型。施加可方便计算的唯一性条件
因子分析的思想和目的:
把每个研究变量分解为几个影响因素变量,将每个 原始变量分解成两部分因素,一部分是由所有变量 共同具有的少数几个公共因子组成的,另一部分是 每个变量独自具有的因素,即特殊因子。
因子分析的目的之一,简化变量维数。即要使因素 结构简单化,希望以公共因子,能对总信息量作最 大的解释,因而抽取得因子愈少愈好,但抽取因子 的累积解释的信息量愈大愈好。
利用谱分解,令 有特征值-特征向量 i,ei ,且
1 2 p 0 则
1e1e1 2e2e2
p
ep
e
p
=
1 e1 2 e2
p
ep
1 e1
2 e2
p ep
令 m p是公共因子的个数,则所估计的因子载荷矩
阵 l为ij
L [ ˆ1eˆ1 ˆ2 eˆ2

第六章 因子分析 (2)

第六章 因子分析  (2)

第五章主成分分析clearset more offcd"C:\Users\zhou\OneDrive\Lectures_ebook\multivariate_statistics\labora tory\03principal"use data*定义变量的标签label var area "省份"label var x1 "GDP(亿元)"label var x2 "居民消费水平(元)"label var x3 "固定资产投资(亿元)"label var x4 "职工平均工资(元)"label var x5 "货物周转量(亿吨公里)"label var x6 "居民消费价格指数(上年100)"label var x7 "商品零售价格指数(上年100)"label var x8 "工业总产值(亿元)"describesumcorr//findit factortest//ssc install factortest//check the datafactortest x1-x8pca x1-x8, correlation /*主成分估计*/pca x1-x8, covariance component(3) /*主成分估计*///testestat kmo /*KMO检验,越高越好*/estat smc /*SMC检验,值越高越好*/screeplot /* 碎石图(特征值等于1处的水平线标示保留主成分的分界点)*/ loadingplot , yline(0) xline(0)/*载荷图 */loadingplot , combined factors(3) yline(0) xline(0)/*载荷图 */predict f1 f2 f3 /*预测变量得分*/scoreplot,mlabel(area) yline(0) xline(0) /*得分图*/scoreplot,xtitle("经济社会总量") ytitle("人民生活水平") mlabel(area) yline(0) xline(0) /*得分图*/scatter f2 f3,xtitle("人民生活水平") ytitle("物价水平") mlabel(area) yline(0) xline(0) /*得分图*/scoreplot, factors(3) mlabel(area) /*得分图*/scoreplot,combined factors(3) mlabel(area) yline(0) xline(0) /*得分图*///ranking by scoredescribe f1-f3sort f1 //sortinggen rank_nature=_n //rankingbrowse area f1 rank_nature // show datgsort -f1 //generalized sortinggen rank_nature1=_n //rankingbrowse area f1 rank_nature rank_nature1 // show datcor x1-x8matrix CM=r(C) //define covariance matrixpcamat CM, comp(3) n(1000) names(a1 a2 a3 a4 a5 a6 a7 a8)//rotate /*旋转*/。

第六章因子分析

第六章因子分析

第六章因子分析第六章因子分析§6.1因子分析的基本原理与模型一、因子分析的基本思想基本思想:根据相关性的大小将变量分组,使得同组内变量间的相关性较高,不同组间的相关性较低。

每组变量代表一个基本结构,并用一个不可观测的综合变量形式表示,这个基本结构成为公共因子。

此时的原始变量就可以分解成两部分之和的形式,一部分是少数几个不可测的所谓公共因子的线性函数,另一部分是与公共因子无关的特殊因子。

目的:从一些有错综复杂的问题中找出几个主要因子,每个主要因子代表原始变量间相互依赖的一种作用。

二、因子分析的基本模型常用的因子分析模型:R型因子分析和Q 型因子分析(一)R型因子分析模型R型因子分析是对变量作因子分析。

R型因子分析中的公共因子是不可直接观测但又客观存在的共同影响因素,每一个变量都可以表示成公共因子的线性函数与特殊因子之和,即:其中:称为公共因子,称为的特殊因子矩阵表达式:且满足:(1)(2),即公共因子与特殊因子是不相关的(3),即各公共因子不相关且方差为1(4),即各个特殊因子不相关,方差不要求相等模型中称为因子载荷,是第个变量在第个因子上的负荷,如果把变量看成维空间中的一个点,则表示它在坐标轴上的投影,因此矩阵称为因子载荷矩阵。

(二)Q型因子分析Q型因子分析是对样品作因子分析。

模型同上注:主成分分析与因子分析的区别主成分分析的数学模型本质上是一种线性变换,是将原始坐标变换到变异程度大的方向上去,相当于从空间上转换观看数据的的角度,突出数据变异的方向,归纳重要信息。

因子分析与主成分分析一样都属降低变量维数的方法。

但因子分析的本质是从显在变量去“提炼”潜在因子的过程。

模型中应注意的问题:(1)变量的协方差阵的分解式为即(2)因子载荷不是唯一的。

三、因子载荷阵的统计意义(一)因子载荷的统计意义对于因子模型可知的协方差若对作标准化处理,的标准差为1,且的标准差为1则(相关系数)综上可知:对于标准化后的,是的相关系数,一方面表示的依赖程度,绝对值越大,密切程度越高;另一方面也反映了变量对公共因子的相对重要性。

第六章 因子分析

第六章 因子分析

9
寻找基本结构
在多元统计中,经常遇到诸多变量之间存在强相关的问题,它 会对分析带来许多困难。通过因子分析,可以找出几个较少的有实
际意义的因子,反映出原来数据的基本结构。
例如:调查汽车配件的价格中,通过因子分析从 20 个指标中概 括出原材料供应商、配件厂商、新进入者、后市场零部件厂商、整 车厂和消费者6个基本指标。从而找出对企业配件价格起决定性作用 的几个指标。
本包含了原来变量的所有信息。
12
主成分分析的数学模型
13
主成分分析与因子分析公式上的区别
y1 a11 x1 a12 x2 a1 p x p
主成分分析
y2 a21 x1 a22 x2 a2 p x p y p a p1 x1 a p 2 x2 a pp x p
由于umn为随机向量X的相关矩阵的特征值对 应的特征向量的分量,特征向量之间彼此正交, 实际上从X到F的转换关系是可逆的,即:
x1 11 F1 21 F2 p1 Fp x2 12 F1 22 F2 p 2 Fp x F F F 1p 1 2p 2 pp p p
1、因子分析的核心:用较少的、相互独立的因 子反映原有变量的绝大部分信息。 因子分析的数学模型:设有p个变量,每个变量 的均值为0,标准差为1。将每个原有变量用k个 (k<p)因子f1,f2,…,fk 的线性组合表示,即
x1 a11 f1 a12 f 2 a1k f k 1 x2 a21 f1 a22 f 2 a2 k f k 2 x p a p1 f1 a p 2 f 2 a pk f k p

第六讲 因子分析

第六讲  因子分析

第五讲 因子分析在许多实际问题中,涉及的变量众多,各变量间还存在错综复杂的相关关系,这时最好能从中提取少数综合变量,这些综合变量彼此不相关,而且包含原变量提供的大部分信息。

因子分析就是为解决这一问题提供的统计分析方法。

以后,如无特别说明,都假定总体是一个p 维变量:),...,,(21'=p X X X x它的均值向量μ=)(x E ,协方差矩阵V =(σij )p ⨯p 都存在。

第一节 正交因子模型1.1 公共因子与特殊因子从总体中提取的综合变量:F 1, F 2, … , F m (m <p )称为(总体的)公共因子。

一般来说,公共因子不可能包含总体的所有信息,每个变量X i 除了可以由公共因子解释的那部分外,总还有一些公共因子解释不了的部分,称这部分为变量X i 的特殊因子,记为:εi 。

于是,我们有:变量X i 的信息=公共因子可以表达部分+公共因子不可表达部分这就是所谓因子模型。

目前,公共因子可以表达的部分由公共因子的线性组合表示。

即上面的因子模型可以写成以下的形式:p i F a F a F a X i m im i i i i ,...,2,1,2211=++++=-εμ1.2 正交因子模型设总体),...,,(21'=pX X X x ,均值向量μ=)(x E ,协方差矩阵p p V x Va r ⨯=)( 。

因子模型有形式:其中m<p ,F 1,F 2,…,F m 称为所有变量的公共因子;εi 称为变量X i 的特殊因子。

如果引入以下向量与矩阵:),...,,(,),...,,(2121'='=p m F F F F εεεε⎪⎪⎪⎪⎪⎭⎫⎝⎛=pm p p m m a a a a a a a a a A212222111211则因子模型的矩阵形式为:εμ+=-F A x 对于正交的因子模型,还要进一步要求:z 1. m m I F Var F E ⨯==)(,0)(。

06 第六章 R-Q型因子分析

06 第六章  R-Q型因子分析

-.156
19
-.180
-.104
7
-.142
-.180
20
-.116
.010
8
-.150
-.220
21
-.118
-.030
9
-.054
-.138
22
-.090
.640
10
-.120
-.012
23
.056
1.290
11
-.126
-.246
24
-.110
.134
12
-.012
-.160
25
.082
.124
R-Q 型因子分析是一种广义概念,它可能包括不同的方法。例如周蒂(1985)提到用主分 析可作为一种 R-Q 式因子分析方法,但这一方法至今未被重视。另一种方法是对应分析,或称 对应因子分析,这是目前用得最多的方法。这两种方法都有一定理论基础,在效果上各有特点。 本章主要介绍这两种方法的基本思想、计算方法与应用,更详细的论述可参考专门性文献。
§2 对应分析
对应分析也称作对应因子分析,它也是一种 R-Q 型因子分析。对应分析的理论比较复 杂,在此仅简要介绍其基本原理与计算方法,并给出计算实例。
对应分析的基本思路与上述 R-Q 型因子分析类似,目的在于同时揭示样品与样品、变 量与变量、样品与变量间的相互关系,并用作图方法将这种关系表现出来,因此也将原始的 m 或 n 维空间压缩为同一 p 维(p<<min(m,n))的因子空间。
(6.4)
1
∑ ∑ hkL =
m
(xkj − x j )(xLj − x j ) = n
m
xkj xLj
− x j xkj

06-第六章因子分析

06-第六章因子分析

第六章 因子分析一.基本原理因子分析(Factor anslysis )是用来分析隐藏在表象背后的因子作用的一类统计模型与方法。

起源于心理度量学(Phsycholometrics ),在方法上与主成分分析有密切联系。

因子分析一般有两个用途,一是通过寻求变量的基本结构,对变量进行简化;二是通过因子得分,在因子轴构成的空间中将变量或者样品进行分类。

1.正交因子模型设x 为一个p 维可观测随机向量,假定x 受到m 个不可观测的随机因子的控制,称这m 个影响x 的因子为公共因子,若m 维随机向量f 对x 的影响是线性的,则x 与f 之间的关系可用下述模型来表述:x Lf με=++其中μ为P 维常向量,表示X 的均值;L 为p m ⨯维常数阵,L 的第I 行表示公共因子f 对X 第I 个分量i x 的影响系数;ε为P 维随机变量,表示X 中与f 无关的那一部分,称为特殊因子。

其中f 和ε都是不可观测的,假定它们满足下列条件 (1)f 和ε相互独立 (2)()0,()m E f V f I ==(3)()0,()E V εε==ψ,其中ψ(psai)为对角阵。

由于()m V f I =,即各因子之间不相关,这样的模型便称为正交因子模型。

在正交因子模型中,公共因子f 对X 的各分量都起作用,而特殊因子ε的第I 个分量只对X 的第I 个分量起作用。

L 称为载荷阵(Loading Matrix )。

如果对X 进行标准化处理,则μ为0,原式化为x Af ε=+。

A 为载荷阵。

X 的方差是由载荷阵和特殊因子的方差构成的。

即()Var X AA '=+ψ。

2.因子分析与其他多元分析方法的区别与多元回归的区别:因子分析中,各个公共因子是虚拟的,本身是未知量。

与主成分分析的区别:主成分分析本质上是一种变量变换,而因子分析则是构造出一组新的因子来对原变量进行解释。

二.计算模型1.因子载荷的含义假定在因子分析模型中,对各变量及公共因子、特殊因子均进行了标准化处理。

多元统计分析第六章 因子分析

多元统计分析第六章 因子分析

第6章因子分析6.1 因子分析数学模型因子分析是很有用的统计分析工具,因子分析的实质就是找出少量不可观测的随机变量,用它们表示众多的可观测随机变量。

以下例子能说明因子分析的意义。

例6.1对一个班的学生,进行五门课程(力学、物理、代数、分析、统计)考试,其中力学和物理闭卷考试,代数、分析、统计开卷。

这5门功课的成绩是可观测的随机向量。

每个学生的成绩可以看成5维随机向量的一个观测,见表6-1。

表6-1 五门课程考试成绩经过一定计算(因子分析)后发现存在不可观测的随机变量:1f 、2f ,它们和51,...x x 间有关系 521542143213221212116377.1091469.9750.678264.162258.5364.721559.013358.6909.720269.564838.7523.721220.864570.8409.62v f f x v f f x v f f x v f f x v f f x +-+=+-+=+-+=+++=+++= (6.1) 其中1f 、2f 是不可观测的随机变量。

我们认为它们分别表示学生的学习能力和适应开闭卷能力,所以可分别称为学习因子和适应开闭卷因子。

(6.1)揭示了这两个因子如何影响5门功课的成绩,也揭示5门课成绩的实质:每门课的成绩由学习因子和适应开闭卷因子的线性组合,加上常数,再加上随机变量而得。

这是是很有意义的。

象例6.1那样,找出少量不可观测因子(例如1f 、2f ),并给出它们影响可观测随机变量(例如51,...x x )方式的统计分析,就是因子分析。

因子分析与主成分分析不同:主成分分析是寻求若干个可观测随机变量的少量线性组合,说明其含义;因子分析主要的目的是找出不一定可观测的潜在变量作为公共因子,并解释公共因子的意义,及如何用不可观测随机变量,计算可观测随机变量。

因子分析方法在心理学,经济,医学,生物学,教育学等方面有重要用途。

因子分析PPT课件

因子分析PPT课件

3. 公共因子的方差贡献:是某公共因子对所有原变量载荷的平方和, 它
反映该公共因子对所有原始总变异的解释能力,等于因子载荷矩阵中某 一列载荷的平方和。一个因子的方差贡献越大,说明该因子就越重要。
2024/6/2
15
★ 确定公因子数目的准则
1)因素的特征值(Eigenvalues)大于或等于1;
2)因素必须符合陡阶检验(Screen Test),陡阶检
仅仅是为了化简、浓缩数据,则采用正交旋转(保持
直角90度,不允许公因子相关)。如果研究的目的是
为了得到理论上有意义的研究结果,则采用斜交旋转。
(不呈90度,允许公因子相关;有证据表明公因子之
间是相关的才用)
旋转之后,特征值发生变化,但共同度不变
2024/6/2
18
第六步:单击Scores按纽,弹出对话框
输出旋转后的 因子载荷矩阵
2024/6/2
输出载荷散点图17
★ 因子旋转
为了更好地解释因子分析解的结果,常常需要将
因子载荷转换为比较容易解释的形式(相当于相机的
调焦,使看得更清楚;一般会使各因子对应的载荷尽
可能地向0和1两极分化)。
常用的方法有正交旋转(varimax procedure)
和斜交旋转(oblique rotation),如果研究的目的
2024/6/2
1
二、因子分析思想与方法的由来
● 英国统计学家Scott 1961年对英国157个 城镇发展水平进行调查时,原始测量的变量有57 个,而通过因子分析发现,只需要用5个新的综 合变量(它们是原始变量的线性组合),就可以 解释95%的原始信息。
● 美国统计学家Stone在1947年研究国民经

因子分析方法范文

因子分析方法范文

因子分析方法范文一、引言因子分析是一种主成分分析方法,用于解释观测变量之间的关系和降低变量的维度。

在社会科学和心理学领域,因子分析被广泛应用于问卷调查和测量工具的开发中。

本文将详细介绍因子分析的基本概念、原理、步骤和应用。

二、因子分析的基本概念1.因子因子指的是解释观测变量之间的共同变异的一组变量。

在因子分析中,我们希望找到一组“潜在因子”,这些因子无法直接观测到,但它们通过观测变量的共同变异来解释数据。

2.因子载荷因子载荷是指变量与因子之间的相关系数,表示变量与因子之间的相关程度。

因子载荷的绝对值越大,表示变量与因子之间的相关性越高。

3.因子旋转因子旋转是调整因子载荷和使因子解释变量之间的关系更为清晰和简单的一种方法。

常见的因子旋转方法有正交旋转和斜交旋转两种。

三、因子分析的原理因子分析的核心原理是通过计算观测变量之间的协方差矩阵,并找到一组“最佳”因子,使得这些因子能够解释尽可能多的变异。

最常用的因子提取方法有主成分分析法和极大似然估计法。

四、因子分析的步骤1.数据准备将需要进行因子分析的数据进行标准化处理,确保所有变量的均值为0,标准差为1,以消除不同变量之间的度量单位差异。

2.因子提取使用主成分分析法或极大似然估计法提取因子。

主成分分析法假设所有因子是非相关的,适用于变量间具有明显线性关系的情况。

极大似然估计法则更加强调因子与变量之间的相关性。

3.因子旋转选择适当的因子旋转方法进行旋转,常用的方法有方差最大化旋转、直角旋转和斜向旋转等。

通过旋转可以使得因子与变量之间的相关性更简明清晰。

4.因子命名和解释根据因子载荷矩阵,为每个因子命名,并解释因子与变量之间的关系。

通过因子载荷,可以判断每个变量在每个因子上的贡献程度。

五、因子分析的应用因子分析广泛应用于心理学、教育学、经济学、市场调研等领域。

以心理学领域为例,因子分析可用于测量心理特征和人格特征。

例如,通过问卷调查,可以使用因子分析识别不同人格特征的因子,并进行心理特征分析。

第6章--因子分析

第6章--因子分析

第6章--因子分析第六章因子分析一、填空题1. 因子分析常用的两种类型为 ____________ 和 ___________ 。

2. 因子分析是将具有错综复杂关系的变量(或样品)综合为数量较少的几个因子,以再现______________ 与____________ 间的相互关系。

3•因子分析就是通过寻找众多变量的______________ 来简化变量中存在的复杂关系的一种方法。

4 •因子分析是把每个原始变量分解成两个部分即____________ 、。

5 •变量共同度是指因子载荷矩阵中__________________________ 。

6 •公共因子方差与特殊因子方差之和为________ 。

7.求解因子载荷矩阵常用的方法有______________________ 和________________ &常用的因子旋转方法有 ____________________ 和__________________ 。

9. Spss中因子分析采用__________________ 命令过程。

10•变量X i的方差由两部分组成,一部分为 ___________ ,另一部分为__________二、判断题1. 在因子分析中,因子载荷阵不是唯一的。

()2. 因子载荷阵经过正交旋转后,各变量的共性方差和各个因子的贡献都发生了变化。

()3. 因子分析和主成分分析的核心思想都是降维。

()4.因子分析有两大类,R型因子分析和Q型因子分析;其中R型因子分析是从变量的相似矩阵出发,而Q型因子分析是从样品的相关矩阵出发。

()5. 特殊因子与公共因子之间是相互独立的。

()6. 变量共同度是因子载荷矩阵列元素的平方和。

()7. 公共因子的方差贡献是衡量公共因子相对重要性指标。

()8. 对因子载荷阵进行旋转的目的是使结构简化。

()三、简答题1.因子分析的基本思想是什么,它与主成分分析有什么区别和联系?2 •因子模型的矩阵形式UF ,其中:F F1, ,F m 1, , P U U ij pm请解释式中F、、U的统计意义。

第六章因子分析

第六章因子分析

§6.1.1 因子分析的基本思想
因子分析还可用于对变量或样品的分类处理,我们在得出 因子的表达式之后,就可以把原始变量的数据代入表达式 得出因子得分值,根据因子得分在因子所构成的空间中把 变量或样品点画出来,形象直观地达到分类的目的。
因子分析不仅仅可以用来研究变量之间的相关关系, 还可以用来研究样品之间的相关关系,通常将前者称之 为R 型因子分析,后者称之为Q 型因子分析。我们下面 着重介绍R型因子分析。
第六章 因子分分析
•§6.1 因子分析的基本理论 •§6.2 因子载荷的求解 •§6.3 因子分析的步骤与逻辑框图 •§6.4 因子分析的上机实现
第六章 因子分分析
因子分析(factor analysis)模型是主成分分析的 推广。它也是利用降维的思想,由研究原始变量相关 矩阵内部的依赖关系出发,把一些具有错综复杂关系 的变量归结为少数几个综合因子的一种多变量统计分 析方法。相对于主成分分析,因子分析更倾向于描述 原始变量之间的相关关系;因此,因子分析的出发点 是原始变量的相关矩阵。因子分析的思想始于1904年 Charles Spearman对学生考试成绩的研究。
1。F1, F2 ,, Fm 是彼此独立的公共因子,都满足均值为0,方差 为1。ei为特殊因子,与每一个公共因子均不相关且均值为0。
则ai1, ai2 ,, aim为对第 i门科目考试成绩的因子载荷。对该模型,
有: var( X i ) ai21 ai22 ai2m var(ei ) 1 (6.5)
121
cov(ε)

Σ



2 22

0 ห้องสมุดไป่ตู้
0

2 pp

第六章因子分析分解

第六章因子分析分解

第六章因子分析分解
首先,让我们了解因子分析分解的背后原理。

当我们有多个相关的变量时,通常会遇到数据中的冗余信息。

这些冗余信息可能使分析和解释数据变得困难。

因子分析分解可以帮助我们找到这些变量之间的共同维度,并将其归纳为更少的因子。

这些因子代表了原始变量中的共享信息。

下面,我将介绍因子分析分解的步骤。

首先,我们需要准备多个变量的数据集。

然后,我们将对这些变量进行主成分分析。

主成分分析是一种将多个变量转化为少数几个无关主成分的方法。

在主成分分析中,我们通过计算协方差矩阵来确定主成分。

接下来,我们选择解释变量方差的主成分,并按主成分的大小对它们进行排列。

最后,我们可以从这些主成分中选择最相关的因子,作为我们的最终结论。

那么,因子分析分解有什么实际应用呢?因子分析分解可以在许多领域中使用,例如心理学、市场调研和人社科学。

在心理学中,因子分析分解可以用于理解人们的个性特征和行为模式。

在市场调研中,因子分析分解可以用于确定消费者的购买偏好和行为倾向。

在人社科学中,因子分析分解可以用于研究人口统计学数据中的潜在因素。

总结一下,因子分析分解是一种用于理解多个变量之间关系的方法。

它通过检测数据中的共同变异性,将复杂的数据结构简化为更容易解释和理解的形式。

在进行因子分析分解时,我们需要按照特定步骤进行,包括数据准备、主成分分析和因子选择。

因子分析分解在心理学、市场调研和人社科学中有广泛的应用。

希望通过这篇文章的介绍,可以让读者对因子分析分解有一个初步的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因子分析(factor analysis)是一种数据简化的技术。它通过 研究众多变量之间的内部依赖关系,探求观测数据中的基 本结构,并用少数几个假想变量来表示其基本的数据结构。 这几个假想变量能够反映原来众多变量的主要信息。原始 的变量是可观测的显在变量,而假想变量是不可观测的潜 在变量,称为因子。
(一)正交因子模型: 因子分析的一般模型为:
X1 a11F1 a12F2 a1mFm 1 X 2 a21F1 a22F2 a2mFm 2
X p ap1F1 ap2F2 apmFm p
i
可将上式写成简单的矩阵形式
X AF
因子。
(1) m p ; (2) Cov(F, ε) 0 ,即公共因子与特殊因子是不相关的;
1

(3)
DF

D(F )


1
0
关且方差为 1;
0



Im
,即各个公共因子不相
1
12
(4)D

D(ε)


2 2
0
方差不要求相等。
0

,即各个特殊因子不相关,
第六章 因子分析
因子分析简介 因子分析过程
问题 思考
主成分分析和因子分析的联系与区别 因子分析模型需要满足哪些条件 变量共同度的定义及统计意义 因子分子中的因子载荷矩阵A矩阵和主成
分分析中的U矩阵是什么关系
内容和要求:
本章内容:因子分析的基本思想和原理、相关重要概 念及统计解释、因子分析过程及结果解释。
X 共有的因子,通常称为公共因子或共同因子,其 系数 aij 称为因子载荷,表示第 i 个变量或样品在第
j 个公因子的负荷,即相对重要程度。 i 称为特殊
因子,即未被公因子包含的其他因子。
因子分析一般有两种情况,一种是对变量作因 子分析,我们称为R型因子分析,该分析较为 常见,因为我们通常是为了简化分析变量进行 因子分析;另一种是对样品作因子分析,我们 称为Q型因子分析,该分析的原理与R型因子 分析完全一致,只是应用较少
E( X i Fj ) ai1E(F1Fj ) ai2E(F2Fj ) aimE(FmFj ) E(iFj )
在标准化条件下,有 E(XiFj ) rxiFj
E(Fi Fj ) rFiFj
故上式可以写成:
1Fj ai r2 F2Fj a r im FmFj riFj aij


2 p

因子分析模型要求满足模型基本假定并
且 m p 。其中重要条件是各因子之
间彼此不相关,且各因子方差同等散布, 均为1(因此称为正交模型)。
因此,因子分析就是想利用公因子去代 替原来的X以达到简化分析和寻找变量内 部结构的目的。
(二)重要概念的统计意义:因子载荷、 变量共同度、公因子方差贡献
学习要求: 熟练掌握因子分析的基本思想和基本原理。 熟练掌握公共因子、因子载荷、共同度、因子旋转等
重要概念及其相应统计意义。 能熟练使用软件进行因子分析,并能对因子分析结果
进行准确合理的解释。 能结合实际经济和社会问题利用因子分析考察事物内
部结构。
第一节、因子分析简介
一、什么是因子分析?
(三)基本思想:
基于对因子的认识,因子分析的基本思想就是通过变 量(或样品)的相关系数矩阵(或相似系数矩阵)内 部结构的研究,找出能控制所有变量(或样品)的少 数几个随机变量去描述多个变量(或样品)之间的相 关(或)相似关系。在分解原始变量的基础上,从中 归纳出潜在的“类别”,相关性较强的变量归为一类, 不同类间变量的相关性则较低。从而实现因子分析的 两个目的:一简化分析,二将原变量分类,对公因子 的意义作出合理可信的解释。
假定因子模型中各变量及公因子和特殊因子均 为标准化变量,即均值为0,方差为1的变量
1、因子载荷的统计意义。
已知因子模型为 X i ai1F1 ai2F2 aimFm
将两端右乘 Fj
X i Fj ai1F1Fj ai2F2Fj aimFmFj i Fj
对上式两边同时求期望值有
其中,( X1, X 2 , X p )为实测变量。aij
为因子载荷,表示第i个变量在第j个公因子 上的负荷,因子载荷越大,则说明第i个变 量与第j个因子的关系越密切。该结论将在 后面的分析中得到证明,A矩阵即为因子载 荷矩阵。F向量为不可观测的变量,即为X
的公共因子,是一种综合变量。 i 为特殊
因此:因子也是综合变量;因子具有更 明确的指标意义;具有不同意义的因子 便于揭示事物变化的内在结构;提取少 量重要因子可以达到降维和简化分析的 作用。
(二)因子分析的一般模型:
令因子为 F(factor),当我们研究 m 个因子对实 际问题的影响时可以建立因子模型,即
X i ai1F1 ai2F2 aimFm + i 。其中的 F 是对所有
因此因子载荷的统计意义就是第i个变量与 第j个公共因子的相关系数,表示 X i依赖 Fj 的份量,即是统计学中的权数,心理学上叫
而进行因子分析的起点就是因子模型,我们通 过估计因子模型中的参数即因子负荷和方差对 各因子的重要程度进行衡量,并利用因子负荷 矩阵所体现的各变量或样品之间的相关程度提 取出具有明确意义的公因子F,赋予其有实际 背景的解释进而给以命名,从而达到降维和分 类的目的。
三、因子分析的数学原理。
因R型因子分析应用广泛,故本章的解释均是 以R型因子分析为对象。

二、因子分析的基本思想
(一)什么是因子?
因子与主成分相似,也是一种综合变量,即对原 变量进行线性组合而形成的新变量。但它比主成 分有着更为明确的含义,表现为具有强烈倾向性 的综合变量,其倾向性取决于变量或样品间的相 关系数或相似系数的大小。
因子集中表现影响某现象变化的某类因素,它是 一个较抽象的概念,由一系列具有相同影响方向 的具体因素所构成,因此我们有时也称它为共同 因子,代表同一类变量的影响,提取的多个共同 因子可以揭示系统变化的内在结构,并可以使大 量变量得到简化。
相关文档
最新文档