八年级复习专题1:折叠问题
八年级数学折叠问题(一)(人教版)(专题)(含答案)
折叠问题(一)(人教版)(专题)一、单选题(共6道,每道12分)1.如图,在长方形纸片ABCD中,AB=8,BC=12,点M在BC边上,且CM=4,将矩形纸片折叠使点D落在点M处,折痕为EF,则AE的长为( )A.1B.2C.3D.5答案:B解题思路:如图,过点E作EG⊥BC,交BC于点G在Rt△EGM中,EG=AB=8,EM=ED=12-AE,MG=12-4-AE=8-AE∵∴∴AE=2故选B试题难度:三颗星知识点:略2.如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为8cm,则MN的长为( )A.12cmB.12.5cmC.cmD.13.5cm答案:C解题思路:如图,过N作NF⊥AM于F,∵MN为折痕,A,E为对应点,∴MN⊥AE∴∠AMN+∠MAE=90°∵∠AMN+∠MNF=90°∴∠MAE=∠MNF∵FN=AD∴△ADE≌△NFM(ASA)∴MN=AE∵AB=12,EC=8∴DE=4在Rt△ADE中,∴AE=故选C试题难度:三颗星知识点:略3.如图,矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是( )cm.A. B.3C. D.答案:C解题思路:如图,连接QE,过点Q作QG⊥CD于点G∴QG=PD=3设PQ=x,则GE=x-2,由折叠得,QE=x,在Rt△QGE中,由勾股定理得,即∴故选C试题难度:三颗星知识点:略4.将长方形纸片ABCD按如图所示的方式折叠,AE,EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的处,并且点B落在边上的处.则BC的长为( )A. B.4C.6D.答案:C解题思路:在Rt△ABE中,∠BAE=30°,,∴BE=2,AE=4∵∠BAE=30°∴∵是由∠AEB折叠而来∴∴是等边三角形∴又∵EC折叠后得到∴∴BC=6故选C试题难度:三颗星知识点:略5.如图,先把矩形ABCD对折,折痕为MN,展开后再折叠,使点B落在MN上,此时折痕为AE,点B在MN上的对应点为,则=( )A.15°B.30°C.45°D.60°答案:B解题思路:如图,过点作⊥AD于点F.由第一次折叠,得,由第二次折叠,得,,∴,又∵∴∴∴故选B试题难度:三颗星知识点:略6.如图,将长方形纸片ABCD折叠,使点D与点B重合,折痕为EF,AE=4cm,DE=8cm,则折痕EF的长是( )cm.A.4B.8C. D.答案:B解题思路:如图,由折叠,得∠1=∠2,BE=DE=8.在Rt△ABE中,∵AE=4,BE=8,∴∠ABE=30°,∴∠AEB=60°,∴∠1=∠2=60°.在长方形ABCD中,BC∥AD,∴∠3=∠1=60°,∴△BEF为等边三角形,∴EF=BE=8.故选B试题难度:三颗星知识点:略二、填空题(共2道,每道12分)7.如图,P是平行四边形纸片ABCD的边BC上一点,以过点P的直线为折痕折叠纸片,使点C,D落在纸片所在平面上处,折痕与AD边交于点M;再以过点P的直线为折痕折叠纸片,使点B恰好落在边上处,折痕与AB边交于点N.若∠MPC=75°,则=____°.答案:15解题思路:如图,由折叠性质可知,∵∴∴故填15.试题难度:知识点:略8.如图,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为____.答案:5解题思路:解:由折叠知,∠CBD=∠C′BD,由平行知,∠ADB=∠CBD,∴∠ADB=∠C′BD,EB=ED设ED=x,则EB=x、AE=8-x在Rt△ABE中,由勾股定理可得,AE2+AB2=BE2即(8-x)2+42=x2解得x=5所以DE的长为5.试题难度:知识点:略。
数学初中折叠问题解题技巧
数学初中折叠问题解题技巧
初中数学中的折叠问题是一种常见的问题类型,涉及到几何和代数等多个方面,具有一定的挑战性和趣味性。
下面是一些折叠问题的解题技巧:
1. 观察折叠过程,提取关键信息。
在折叠问题中,通常会涉及到两个或多个图形的折叠,需要观察折叠过程,并提取关键信息。
例如,在将一个矩形折叠成正方形的过程中,关键信息可能是矩形的长和宽,或者是正方形的边长。
2. 利用几何图形的性质,进行推理和计算。
折叠问题通常涉及到几何图形的性质,例如面积、周长、角等。
在解决问题时,需要利用这些性质进行推理和计算。
例如,在将一个矩形折叠成正方形的过程中,可以利用矩形的面积和周长推导出正方形的面积和周长,进而计算出折叠后的形状。
3. 利用代数知识,进行化简和求解。
折叠问题还可以利用代数知识进行化简和求解。
例如,在将一个矩形折叠成正方形的过程中,可以利用矩形的面积和周长推导出正方形的面积和周长,并将它们用代数式表示出来。
然后,通过解方程组或代数式的方法求解答案。
4. 寻找规律,构建模型。
有些折叠问题可以通过寻找规律,构建模型来解决。
例如,在将一个正多边形折叠成平面图形的过程中,可以尝试利用正多边形的边数来构建模型。
通过模型,可以更好地理解和解决问题。
折叠问题是初中数学中的一种重要问题类型,需要学生掌握一定
的几何和代数知识,并学会利用这些知识进行推理和计算。
同时,学生还需要具备较强的逻辑思维能力和分析问题的能力,才能有效地解决折叠问题。
八年级数学翻折变换(折叠问题)参考答案与试题解析
八年级数学翻折变换(折叠问题)参考答案与试题解析work Information Technology Company.2020YEAR八年级数学翻折变换(折叠问题)参考答案与试题解析一.选择题(共12小题)1.如图,矩形纸片ABCD,长AD=9m,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长为()A.7cm B.6cm C.5.5cm D.5cm【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【解答】解:由折叠的性质得:BE=DE,设DE长为xcm,则AE=(9﹣x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(9﹣x)2+32=x2,解得:x=5,即DE长为5cm,故选:D.【点评】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.2.如图,在等边三角形ABC中,点D、E分别是边AC、BC上两点.将△ABC沿DE翻折,点C正好落在线段AB上的点F处,使得AF:BF=2:3.若BE=16,则点F到BC边的距离是()A.8B.12C.D.【分析】作EM⊥AB于M,由等边三角形的性质和直角三角形的性质求出BM=BE=8,ME=BM=8,由折叠的性质得出FE=CE,设FE=CE=x,则AB=BC=16+x,得出BF=(16+x),求出FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得出方程,解方程求出BF=21.作FN⊥BC于N,则∠BFN=30°,由直角三角形的性质得出BN=BF=,得出FN=BN=即可.【解答】解:作EM⊥AB于M,如图所示:∵△ABC是等边三角形,∴BC=AB,∠B=60°,∵EM⊥AB,∴∠BEM=30°,∴BM=BE=8,ME=BM=8,由折叠的性质得:FE=CE,设FE=CE=x,则AB=BC=16+x,∵AF:BF=2:3,∴BF=(16+x),∴FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得:(8)2+(+x)2=x2,解得:x=19,或x=﹣16(舍去),∴BF=(16+19)=21,作FN⊥BC于N,则∠BFN=30°,∴BN=BF=,∴FN=BN=,即点F到BC边的距离是,故选:D.【点评】本题考查了翻折变换的性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握翻折变换和等边三角形的性质,由勾股定理得出方程是解题的关键.3.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB 边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.【分析】根据等腰直角三角形的性质得到AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,得到AH=B′H=AB′,求得AH=B′H=1,根据勾股定理得到BB′===,由折叠的性质得到BF=BB′=,DE ⊥BB′,根据相似三角形即可得到结论.【解答】解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H=AB′,∵AB′=AC=,∴AH=B′H=1,∴BH=3,∴BB′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF=BB′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF=,故答案为:.故选:C.【点评】本题考查了翻折变换(折叠问题),等腰直角三角形的判定和性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图,在△ABC中,AB=AC=2,∠BAC=30°,将△ABC沿AC翻折得到△ACD,延长AD交BC的延长线于点E,则△ABE的面积为()A.B.C.3D.【分析】由折叠的性质可知∠CAD=30°=∠CAB,AD=AB=2.由等腰三角形的性质得出∠BCA=∠ACD=∠ADC=75°.求出∠ECD=30°.由三角形的外角性质得出∠E=75°﹣30°=45°,过点C作CH⊥AE于H,过B作BM⊥AE于M,由直角三角形的性质得出CH=AC=1,AH=CH=.得出HD=AD﹣AH=2﹣.求出EH =CH=1.得出DE=EH﹣HD=﹣1,AE=AD+DE=1+,由直角三角形的性质得出AM=AB=1,BM=AM=.由三角形面积公式即可得出答案.【解答】解:由折叠的性质可知:∠CAD=30°=∠CAB,AD=AB=2.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H,过B作BM⊥AE于M,如图所示:在Rt△ACH中,CH=AC=1,AH=CH=.∴HD=AD﹣AH=2﹣.在Rt△CHE中,∵∠E=45°,∴△CEH是等腰直角三角形,∴EH=CH=1.∴DE=EH﹣HD=1﹣(2﹣)=﹣1,∴AE=AD+DE=1+,∵BM⊥AE,∠BAE=∠BAC+∠CAD=60°,∴∠ABM=30°,∴AM=AB=1,BM=AM=.∴△ABE的面积=AE×BM=×(1+)×=;故选:B.【点评】本题考查了翻折变换的性质、等腰三角形的性质、含30°角的直角三角形的性质、等腰直角三角形的判定与性质、三角形面积等知识;熟练掌握翻折变换和等腰三角形的性质是解题的关键.5.如图,点F是长方形ABCD中BC边上一点将△ABF沿AF折叠为△AEF,点E落在边CD上,若AB=5,BC=4,则BF的长为()A.B.C.D.【分析】根据矩形的性质得到CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,根据折叠的性质得到AE=AB=5,EF=BF,根据勾股定理得到DE===3,求得CE=2,设BF=EF=x,则CF=4﹣x,根据勾股定理列方程即可得到结论.【解答】解:∵四边形ABCD是矩形,∴CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,∵将△ABF沿AF折叠为△AEF,∴AE=AB=5,EF=BF,∴DE===3,∴CE=2,设BF=EF=x,则CF=4﹣x,∵EF2=CF2+CE2,∴x2=(4﹣x)2+22,解得:x=,故选:B.【点评】本题考查了翻折变换(折叠问题),矩形的矩形,勾股定理,熟练掌握折叠的性质是解题的关键.6.如图,在矩形纸片ABCD中,CB=12,CD=5,折叠纸片使AD与对角线BD重合,与点A重合的点为N,折痕为DM,则△MNB的面积为()A.B.C.D.26【分析】由勾股定理得出BD==13,由折叠的性质可得ND=AD=12,∠MND=∠A=90°,NM=AM,得出∠EA′B=90°,BN=BD﹣ND=1,设AM=NM =x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,由勾股定理得出方程,解方程得出NM =AM=,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AD=BC=12,AB=CD=5,∴BD===13,由折叠的性质可得:ND=AD=12,∠MND=∠A=90°,NM=AM,∴∠EA′B=90°,BN=BD﹣ND=13﹣12=1,设AM=NM=x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,NM2+BN2=BM2,∴x2+12=(5﹣x)2,解得:x=,∴NM=AM=,∴△MNB的面积=BN×NM=×1×=;故选:A.【点评】此题考查了折叠的性质、勾股定理以及矩形的性质.熟练掌握折叠的性质和矩形的性质,由勾股定理得出方程是解题的关键.7.如图,在△ABC中∠ACB=90°、∠CAB=30°,△ABD是等边三角形、将四边形ACBD折叠,使点D与点C重合,HK为折痕,则sin∠ACH的是()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵△ABD是等边三角形,∴∠BAD=60°,AB=AD,∵∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,则AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:C.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,熟练掌握折叠的性质和解直角三角形是解题的关键.8.如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A.B.C.D.【分析】由折叠的性质可得AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,由中点性质可得B'E=2C'E,可得BC=AD=3EC,由勾股定理可求可求CE的长,由“AAS”可证△AB'F≌△DC'F,可得C'F=B'F=,即可求解.【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴1+4CE2+1+CE2=9CE2,解得:CE=,∴B'E=BE=,BC=AD=,C'E=,∴B'C'=,在△AB'F和△DC'F中,∴△AB'F≌△DC'F(AAS),∴C'F=B'F=,∴EF=C'E+C'F=,故选:D.【点评】本题考查了翻折变换,矩形的性质,全等三角形的性质,勾股定理,求出CE 的长是本题的关键.9.如图,▱ABCD中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到BC的距离为()A.2B.3C.D.【分析】过B′作B′H⊥AD于H,根据等腰直角三角形的性质得到AH=B′H=AB′,根据折叠的性质得到AB′=AB=6,∠AB′E=∠B=75°,求得∠AEB′=60°,解直角三角形得到HE=B′H=,B′E=2,根据平行线的性质得到∠DAC=∠ACB,推出AE=CE,根据全等三角形的性质得到DE=B′E=2,求得AD=AE+DE=3+3,过A作AG⊥BC于G,根据直角三角形的性质即可得到结论.【解答】解:过B′作B′H⊥AD于H,∵∠B′AE=45°,∴△AB′H是等腰直角三角形,∴AH=B′H=AB′,∵将△ABC沿AC边折叠得到△AB′C,∴AB′=AB=6,∠AB′E=∠B=75°,∴∠AEB′=60°,∴AH=B′H=×6=3,∴HE=B′H=,B′E=2,∵▱ABCD中,AD∥BC,∴∠DAC=∠ACB,∵∠ACB=∠ACB′,∴∠EAC=∠ACE,∴AE=CE,∵∠AB′E=∠B=∠D,∠AEB′=∠CED,∴△AB′E≌△CDE(AAS),∴DE=B′E=2,∴AD=AE+DE=3+3,∵∠AEB′=∠EAC+∠ACE=60°,∴∠ACE=∠CAE=30°,∴∠BAC=75°,∴AC=AD=BC,∠ACB=30°,过A作AG⊥BC于G,∴AG=AC=,故选:C.【点评】本题考查了翻折变换(折叠问题),全等三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.10.如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB 的中点,连结CE并延长交AD于F,如图2,现将四边形ACBD折叠,使D与C重合,HK为折痕,则sin∠ACH的值为()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵∠BAD=60°,∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,∴AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:B.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,注意:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.12.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+2【分析】先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.【解答】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE﹣BG=2﹣1,在Rt△DGE中,DG=GE=2﹣,∴EF=DE=2﹣,在Rt△DEF中,DF=DE=2﹣1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2﹣)+2(2﹣1)=3+2,故选:D.【点评】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.二.填空题(共7小题)13.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE、FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为(6+4)厘米.【分析】根据折叠的性质和含30°的直角三角形的性质解答即可.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∵∠AGE=30°,AE=EG=2厘米,∴AG=6厘米,∴BE=AE=2厘米,GC=AG=6厘米,∴BC=BE+EG+GC=(6+4)厘米,故答案为:(6+4),【点评】此题考查翻折问题,关键是根据折叠的性质和含30°的直角三角形的性质解答.14.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.【点评】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.已知Rt△ABC中,∠ACB=90°,AC=8,BC=4,D为斜边AB上的中点,E是直角边AC上的一点,连接DE,将△ADE沿DE折叠至△A′DE,A′E交BD于点F,若△DEF的面积是△ADE面积的一半,则CE=2.【分析】根据等高的两个三角形的面积比等于边长比可得AD=2DF,A'F=EF,通过勾股定理可得AB的长度,可可求AD,DF,BF的长度,可得BF=DF,可证BEDA'是平行四边形,可得BE=A'D=2,根据勾股定理可得CE的长度【解答】解:如图连接BE∵∠ACB=90°,AC=8,BC=4∴AB=4∵D是AB中点∴BD=AD=2∵折叠∴AD=A'D=2,S△ADE=S△A'DE∵S△DEF=S△ADE∴AD=2DF,S△DEF=S△A'DE∴DF=,A'F=EF∴BF=DF=,且A'F=EF∴四边形BEDA'是平行四边形∴A'D=BE=∴根据勾股定理得:CE=2故答案为2【点评】本题考查了折叠问题,直角三角形斜边上的中线等于斜边的一半,关键是用面积法解决问题.16.如图,在△ABC中,AB=AC=5,tan A=,BC=,点D是AB边上一点,连接CD,将△BCD沿着CD翻折得△B1CD,DB1⊥AC且交于点E,则DE=.【分析】作BF⊥AC于F,证明△B1EC≌△CFB(AAS),得出B1E=CF=1,设DE=3a,则AD=5a,得出BD=B1D=3a+1,得出方程,解方程即可.【解答】解:作BF⊥AC于F,如图所示:则∠AFB=∠CFB=90°,在Rt△ABF中,tan A==,AB=5,∴AF=4,BF=3,sin A==,∴CF=AC﹣AF=1,由折叠的性质得:B1C=BC=,∠CB1E=∠ABC,B1D=BD,∵AB=AC,∴∠ABC=∠BCF,∴∠CB1E=∠BCF,∵DB1⊥AC,∴∠B1EC=90°=∠CFB,在△B1EC和△CBF中,,∴△B1EC≌△CFB(AAS),∴B1E=CF=1,设DE=3a,则AD=5a,∴BD=B1D=3a+1,∵AD+BD=AB,∴3a+1+5a=5,∴a=,∴DE=;故答案为:【点评】本题考查了翻折的性质、等腰三角形的性质、全等三角形的判定与性质、解直角三角形以及方程的解题思想,熟练掌握翻折变换的性质,证明三角形全等是解题的关键.17.如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE 折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.【分析】设HC=HA=x,在Rt△CA′H中,可得x2=32+(4﹣x)2,解得x=,由△CA′H∽△AGE,可得=,由此即可解决问题.【解答】解:由题意四边形ABCA′是矩形,BD=CD=2,AG=GA′=2,∵BC∥AA′,∴∠BCA=∠CAA′,∵∠ACB=∠ACB′,∴∠HCA=∠HAC,∴HC=HA,设HC=HA=x,在Rt△CA′H中,x2=32+(4﹣x)2,∴x=,∴A′H=4﹣=,由△CA′H∽△AGE,可得:=,∴=,∴EG=.【点评】本题考查翻折变换,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3,则B′D的长度为6.【分析】作CM⊥AB于M,由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,由平行四边形的性质得出AD=CB,AB=CD,∠ADC=∠B=30°,求出AD=AC,AM=BM=AB=,∠BAC=∠B=30°,由等腰三角形的性质得出∠ACD=∠ADC=30°,由直角三角形的性质得出CM=,证出AD=BC=2CM=3,再由勾股定理即可得出结果.【解答】解:作CM⊥AB于M,如图所示:由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,∠ADC=∠B=30°,∠BAD=∠BCD=180°﹣∠B=150°,∴∠B'AD=150°﹣30°﹣30°=90°,∵BC=AC,∴AM=BM=AB=,∠BAC=∠B=30°,∴CM=,∴AD=BC=2CM=3,在Rt△AB'D中,由勾股定理得:B'D===6;故答案为:6.【点评】本题考查了翻折变换的性质、平行四边形的性质、等腰三角形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和平行四边形的性质,求出∠B'AD=90°是解题关键.19.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC 边上的F点处.已知折痕AE=10,且CE:CF=4:3,那么该矩形的周长为96.【分析】由CE:CF=4:3,可以假设CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=∠C=∠D=90°,∵CE:CF=4:3,∴可以假设CE=4k,CF=3k∴EF=DE=5k,AB=CD=9k,∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFB=∠CEF,∴△ABF∽△FCE,∴∴∴BF=12k∴AD=BC=15k,在Rt△AED中,∵AE2=AD2+DE2,∴1000=225k2+25k2,∴k=2或﹣2(舍弃),∴矩形的周长=48k=96,故答案为:96【点评】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.。
折叠问题中的“变”与“不变”
折叠问题中的“变”与“不变”折叠问题是初中数学中的一个典型知识,它能极好地锻炼学生的观察能力、分析能力、综合能力和思考能力,尤其在直角三角形、矩形中出现最为常见。
此问题中所包含的方程思想、转化思想更是我们在日常学习中接触到的。
在《勾股定理》的讲授过程中,我全面地总结了各种常见的折叠情况,总结如下,希望能对相互交流,对学生的学习有一些裨益。
1、如图1,把一张长方形纸条,如图1那样折叠,重合部分是一个等腰三角形吗?为什么?(冀教版八年级(上)P67)解:∵纸条是矩形,∴∠1=∠2(两直线平行,内错角相等) ∵折叠∴∠3=∠2 ∴∠1=∠3,∴是等腰三角形。
2、如图2,在长方形ABCD 中,已知AB =8cm ,BC =10cm 。
将AD 沿直线AF 折叠,使点D 落在BC 上的点E 处,求BE 、CF 的长。
解: AE=AD=10cm ,AB=8cm ,则在RT △ABE 中,根据勾股定理,BE 2=102-82=36,BE=6cm ,CE=10-6=4cm而在折叠过程中,DF=EF ,CF=8-DF , 设CF=x ,则EF=8-x , 在RT △CEF 中,根据勾股定理, (8-x)2=42+x 2 ,解之,得x=3 。
这样,在折叠过程中我们会观察到图形是有变形了,但一些“不变”的量,包括线段、角,在新的图形中出现了新的数量关系,分析出它们,我们会发现问题会迎刃而解。
如上题中的AE=AD ,EF=DF ,∠D =∠AEF ,∠DAE =∠EAF 等等,3、如图3,矩形ABCD 纸片长AD=9cm ,宽AD=3cm ,将其折叠,使点D 与点B 重合,则折叠后DE 的长是多少? 解:折叠后出现的特点是BE=DE ,CD=BD ′=3,∠D ′=∠D ,同时, 设DE=x ,则AE=9-x , 在RT △ABE 中,根据勾股定理,x 2=(9-x)2+32,解之,x=5 4、如图4,有一块RT △纸片,两直角边AC=6,BC=8,现将纸片沿直线AD 折叠,使AC 落在斜边AB 上,且点C 与点E 重合,求CD 的长。
人教版初二数学下册 勾股定理之折叠问题 讲义
勾股定理之折叠问题
解题方法:
①由“折叠”找出全等的图形
②设边长为x,不要设折痕
③用勾股定理建立方程,再解答
1、有一块直角三角形纸片,两直角边AC=12cm,BC=16cm,现将直角边AC沿AD折叠,使它落在斜边AB 上,且与AE重合,则DE的长度为_________
2、如图,AB=3cm,AD=9cm,将长方形ABCD折叠,使点B与点D重合,折痕为EF,则△ABE的面积是
_________
3、如图,在长方形ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A’处,则AE的长为___________
4、如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,将△ABC折叠,使点A与点B重合,折痕为DE,则S△
:S△BDE的值为_____________
BCE
5、如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点
B、D恰好都落在点G处,已知BE=1,则EF的长为____________
6、如图,长方形ABCD,AB=3,BC=4,点E是BC边长的一点,连接AE,把∠B沿AE折叠,使点B落在点B’处。
当△CEB’为直角三角形时,求BE的长。
初中数学精品试卷:八年级复习专题1:折叠问题
八年级复习专题1:折叠问题一、折叠问题 如图所示,将长方形纸片ABCD 的一边AD 向下折叠,点D 落在BC 边的F 处。
已知AB=CD=8cm ,BC=AD=10cm ,求EC 的长。
解题步骤归纳: 1、标已知,标问题,明确目标在哪个直角三角形中,设适当的未知数x ; 2、利用折叠,找全等。
3、将已知边和未知边用含x 的代数式表示,转化到同一直角三角形中表示出来。
4、利用勾股定理,列出方程,解方程,得解。
练习1、 如图,将矩形ABCD 纸片沿直线AE 折叠,顶点D 恰好落在边BC 的F 处,已知3,CE cm =8AB cm =,求图中阴影部分的面积.2、 如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,求DE 的长3、如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将三角形ABC 折叠,使AB 落在斜边AC 上得到线段AB ’,折痕为AD ,求BD 的长.4、如图所示,在∆ABC 中,AB=20,AC=12,BC=16,把∆ABC 折叠,使AB 落在直线AC 上,求重叠部分(阴影部分)的面积.5、如图,矩形纸片ABCD 的长AD=9 cm ,宽AB=3 cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少? (你会求折痕EF 长吗?)FCDB A EB'DCB A6、如图,将边长为8 cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在点F处,折痕为MN,求线段CN的长.(你会AM,折痕MN长吗?MN=DE吗?)8.如图,已知△ABC中,△ACB=90°,△CAB=30°,△ABD是等边三角形,AB=8,如果将四边形ACBD折叠,使点D与点C重合,EF为折痕,则AE= .9.(2016年金华中考15题)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.10.(2015•无锡)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.。
八年级折叠问题解题技巧
八年级折叠问题解题技巧一、折叠问题的基本性质1. 对应边相等在折叠过程中,折叠前后重合的边长度相等。
例如,将一个三角形沿着某条直线折叠,那么折叠后重合的两条边是相等的。
例如,在矩形ABCD中,将矩形沿着对角线AC折叠,那么AB = AF(假设F是B折叠后的对应点)。
2. 对应角相等折叠前后重合的角是相等的。
比如将一个四边形进行折叠,原来的角和折叠后对应的角大小相同。
如在上述矩形折叠的例子中,∠B = ∠F,∠BAC = ∠FAC。
3. 对称轴垂直平分对应点连线如果沿着直线l折叠,A点折叠后得到A'点,那么直线l垂直平分AA'。
这一性质在解决折叠问题中常常用于构建直角三角形等。
二、解题技巧与题目解析1. 利用勾股定理求解折叠后的线段长度题目:如图,在矩形ABCD中,AB = 3,BC = 5,将矩形ABCD沿BE折叠,使点A落在边CD上的点F处。
求CF的长。
解析:因为矩形ABCD沿BE折叠,所以AB = BF = 3,AE = EF。
在Rt△BCF中,BC = 5,BF = 3,根据勾股定理公式。
即公式。
2. 利用相似三角形解决折叠问题题目:在Rt△ABC中,∠C = 90°,AC = 6,BC = 8,将△ABC沿AD折叠,使点C落在AB边上的点E处。
求DE的长。
解析:根据勾股定理可得公式。
因为△ABC沿AD折叠,所以△ACD≌△AED,所以AC = AE = 6,CD = DE,那么BE = AB AE=10 6 = 4。
设DE = CD=x,则BD = 8 x。
因为∠DEB = ∠C = 90°,∠B是公共角,所以△BDE∽△BAC。
根据相似三角形的性质公式,即公式,解得公式,所以DE的长为3。
3. 利用折叠性质建立方程求解角度题目:将一张矩形纸片ABCD沿EF折叠,使点D落在点D'处,若∠EFC = 125°,求∠D'EF的度数。
初二折叠后必背三个题解法
初二折叠后必背三个题解法《初二折叠后必背三个题解法》哎呀,同学们,今天我要和大家分享超级有用的初二折叠问题的三个题解法呢。
这可都是我自己在学习过程中慢慢摸索出来,还有老师讲了好多遍我才搞懂的精华内容哦。
咱们先来说说第一个题解法。
这就像是在走迷宫一样,折叠问题的图形就像那复杂的迷宫布局。
那这个解法就是要抓住折叠前后图形的对应边相等、对应角相等这个关键。
比如说有一道题是一个矩形ABCD,沿着对角线AC折叠,让我们求某个角的度数。
那我们就得先找出哪些边和角在折叠前后是对应的。
这就好比在迷宫里找到那些标志性的路口一样重要。
我记得有一次我做这类型的题,我就在那傻愣愣地看,怎么看都觉得图形乱得像一团麻。
后来我就按照老师说的,把相等的边和角都标出来,哇,一下子就像打开了新世界的大门。
这时候我就想,那些不认真找对应关系的同学,是不是就像在迷宫里乱撞的小蚂蚁,永远找不到出口呢?同学们,你们可不能这样呀。
再说说第二个题解法。
这个解法呢,就像是玩拼图游戏。
在折叠问题里,我们常常要利用勾股定理来解题。
比如说把一个直角三角形沿着某条线折叠后,让我们求一条线段的长度。
那我们就得根据折叠后的图形,构造出直角三角形,然后把已知的边长度标出来,再用勾股定理去计算未知的边。
这就跟拼图似的,一块一块地把条件拼起来,最后凑成完整的答案。
我有个同桌,他一遇到这种题就头疼。
有一回做练习的时候,他看着题唉声叹气的,说这题怎么这么难呀。
我就跟他说,你看啊,这就像拼图,你把这些条件当成拼图的小碎片,按照勾股定理这个规则来拼就好了。
他半信半疑地试了试,最后还真做出来了。
他可高兴了,就像中了大奖一样,还说原来这题也没那么可怕嘛。
最后就是第三个题解法啦。
这个解法有点像侦探破案呢。
在一些复杂的折叠问题中,我们要根据折叠后的图形与原图形的面积关系来解题。
就像侦探要从各种蛛丝马迹中找到线索一样,我们要从图形的面积变化中找到解题的关键。
比如说一个四边形折叠后一部分重叠了,让我们求重叠部分的面积。
八年级勾股定理之折叠问题(讲义及答案)
八年级勾股定理之折叠问题【知识点睛】1. 轴对称(折叠)性质(1)全等变换:折叠前后对应边相等,对应角相等; (2)对称轴性质:折叠前后对应点所连的线段被对称轴垂直平分. 对称轴上的点与对应点距离相等.2. 组合搭配:长方形中的折叠常出现等腰三角形.角平分线+平行→等腰 3. 折叠问题处理思路(1)找折痕(所在直线为对称轴); (2)表达、转移; (3)利用勾股定理列方程.【精讲精练】1. 如图,有一张直角三角形纸片,两直角边AC =6cm ,BC =8cm ,点D 在BC边上,将直角边AC 沿直线AD 折叠,点C 恰好落在斜边AB 上的点E 处,则线段CD 的长为__________.DEABCF CB EDA第1题图 第2题图 2. 如图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,若AB =4cm ,BC =5cm ,则EF 的长为________.3. (2019·大连)如图,将长方形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D′F 的长为( ) A. B .4 C .3 D .2N M AC B4. 如图,在△ABC 中,AB =20,AC =12,BC =16,E 为BC 边上一点,把△ABC沿AE 折叠,使AB 落在直线AC 上,则重叠部分(阴影部分)的面积为________.5. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B'处,点A 的对应点为A'.若B'C =3,则CN =______,AM =_______.A'B'A DBC MB FAE N M D第5题图 第6题图6. 如图,将长为4cm ,宽为2cm 的长方形纸片ABCD 折叠,使点B 落在CD 边的中点E 处,压平后得到折痕MN ,则线段AM 的长为__________.7. 如图,在长方形ABCD 中,BC =4,CD =3,将该长方形沿对角线BD 折叠,使点C 落在点F 处,BF 交AD 于点E ,则EF 的长为_______.ADEF (C )D′F E DCB A D (B )A 1EA第7题图 第8题图8. 一张长方形纸片ABCD 按如图所示方式折叠,使顶点B 和顶点D 重合,折痕是EF .若BF =4,CF =2,则∠DEF =________.9. 如图,在长方形ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,则EF 的长为_________.FCBEDAC'10. 如图,在平面直角坐标系中,已知点A 的坐标为(2,1),P 是x 轴上的一个动点,则当△AOP 是等腰三角形时,点P 的坐标为____________.11. (2019·河北)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ),笔直铁路经过A ,B 两地. (1)A ,B 间的距离为___________km ;(2)计划修一条从C 到铁路AB 的最短公路....l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为____________km .C(0,-17),1)【参考答案】1.3cm2.52cm3. C4.365.4,26.138cm7.7 88.60°9.10.(,,(40),,5 (0) 4,11.(1)20(2)13。
八年级数学折叠问题(一)
八年级数学折叠问题(一)相关问题一:什么是八年级数学折叠问题?•八年级数学折叠问题是一种常见的几何问题。
•它通常要求计算折叠纸条的总厚度,或者是折叠N次之后的厚度。
•这个问题可以帮助学生理解指数、幂函数以及几何级数的概念。
相关问题二:如何计算折叠纸条的总厚度?•首先,我们假设每次折叠都会使纸条的厚度翻倍。
•如果初始纸条的厚度为t,那么折叠一次后的厚度为2t。
•类似地,折叠两次后的厚度为4t,折叠三次后的厚度为8t,以此类推。
•因此,折叠N次后的总厚度为2^N * t (其中^表示乘方运算)。
相关问题三:如何计算折叠N次后的厚度?•如果已知折叠一次的厚度t和折叠次数N,可以使用公式:总厚度 = 2^N * t 进行计算。
•例如,如果t=毫米,N=8,那么总厚度 = 2^8 * = 毫米。
•可以看到,每次折叠都会使纸条的厚度快速增加,数量级呈指数增长。
相关问题四:折叠问题与指数函数的关系是什么?•折叠问题中,每次折叠都会使纸条的厚度翻倍,这体现了指数函数的性质。
•具体来说,纸条的厚度随折叠次数呈2的指数增长,这与指数函数的图像形状相吻合。
•因此,折叠问题可以帮助学生理解指数函数的定义、图像、性质和应用。
相关问题五:折叠问题与几何级数的关系是什么?•折叠问题中,每次折叠后的厚度都是初始厚度的倍数,这符合几何级数的定义。
•具体来说,如果初始纸条的厚度为t,那么折叠一次后的厚度为2t,折叠两次后的厚度为4t,以此类推。
•这种倍数关系恰好符合几何级数的通项公式,即第n次折叠的厚度为t * 2^(n-1)。
•因此,折叠问题也可以用来帮助学生理解几何级数的概念和性质。
通过以上列举的相关问题,我们可以更加全面地了解和掌握八年级数学折叠问题的各个方面。
这些问题涉及到了折叠纸条的总厚度计算、指数函数的关系、几何级数的关系等,对于学生来说具有一定的挑战性和启发性。
人教版八年级数学下教学案(新)折叠问题(期末复习)教案导学案课时作业试卷同步练习含答案解析
A B C D M N PQ 折叠问题(专题复习)一、计算角度1.点E 是矩形ABCD 的边CD 上的点,沿着AE 折叠矩形ABCD ,使D 落在BC 边上的F 点处,如果∠BAF =60°,则∠DEA =____________.2.如图,已知正方形纸片ABCD ,M ,N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠PBQ = 度. 2.如图,将矩形纸片ABCD (图①)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使点B 恰好落在AD 边上,折痕与BC 边交于点E (如图②);(2)以过点E 的直线为折痕折叠纸片,使点A 落在BC 边上A 1,折痕EF 交AD 边于点F (如图③);(3)将纸片收展平,则∠AFE =____________.3.如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD =____________.二、折出特殊的四边形1.如图,一张矩形纸片,腰折出一个最大的正方形.小明把矩形的一个角沿折痕AE 翻折上去,使AB 和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形.他判定的方法是_________________.2.如图,把一张矩形的纸ABCD 沿对角线BD 折叠,使点C 落在点E 处,BE 与AD 交于点F . ⑴求证:△ABF ≌△EDF ;⑵若将折叠的图形恢复原状,点F 与BC 边上的点M 正好重合,连接DM ,试判断四边形BMDF 的形状,并说明理由.ABABOOCDE3.在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?4A BCDA B CD E三、计算长度及面积1.如图,已知:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折, 使DC 落在对角线DB 上,则EB ∶CE =_________.2.如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,点C 落在C ´的位置, 若BC =2,则BC ´=_________.3.有一矩形纸片ABCD ,AB =9cm ,BC =12cm ,将纸片沿EF 折叠,使B 与D 重合.求折痕EF 的长.4.如下图,等腰梯形ABCD 中,AD ∥BC ,045=∠DBC .翻折梯形ABCD ,使点B 重合与点D ,折痕分别交边AB 、BC 于点F 、E .若AD =2,BC =8, 求BE 的长;5.如图,矩形纸片ABCD 中,AB =8,将纸片折叠,使顶点B 落在边AD 的E 点上,BG =10.(1)当折痕的另一端F 在AB 边上时,求△EFG 的面积.(2)当折痕的另一端F 在AD 边上时,如图,证明四边形BGEF 为菱形,并求出折痕GF 的长.AB CD E F G H (A)(B)6.(1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.7.已知:如图,矩形AOBC ,以O 为坐标原点,OB 、OA 分别在x 轴、y 轴上. 点A 坐标为(0,3),∠OAB =60°,以AB 为轴对折后,使C 点落在D 点处,求D 点坐标.8.如图,在矩形纸片ABCD 中,AB =33,BC =6,沿EF 折叠后,点C 落在AB 边上的点P 处,点D 落在点Q 处,AD 与PQ 相交于点H ,∠BPE =30°. ⑴ 求BE 、QF 的长.⑵ 求四边形PEFH 的面积. 9.在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,将△ABE 沿AE 翻折后得△AB ′E ,求△AB ′E 与四边形AECD 重叠部分的面积.四、综合型问题1.将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.A 图① A 图② F EE D CF B A 图③ E D C A B FG ' D ' A D E C B F G α 图④ 图⑤(1) 将△ECD 沿直线l 向左平移到图(2)的位置,使E 点落在AB 上,则CC ′=______;(2) 将△ECD 绕点C 逆时针旋转到图(3)的位置,使点E 落在AB 上,则△ECD 绕点C 旋转的度数=______; (3) 将△ECD 沿直线AC 翻折到图(4)的位置,ED ′与AB 相交于点F ,求证AF =FD ′.2.如图,把一个等腰直角△ABC 沿斜边上的中线CD (裁剪线)剪一刀,把分割成的两部分拼成一个四边形A ′BCD ,如示意图(1)。
期末复习专题勾股定理与折叠问题教学设计人教版数学八年级下册
-教师巡回指导,针对学生的疑惑和困难,给予及时解答和指导。
4.实践应用,巩固知识
-设计具有挑战性的实际问题,让学生运用勾股定理及其逆定理解决问题,提高学以致用的能力。
-通过变式练习,引导学生发现勾股定理在不同情境下的应用,巩固知识。
4.结合实际生活中的例子,引导学生将勾股定理与折叠问题应用于实际,培养学生的学以致用能力。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养他们热爱数学的情感。
2.通过勾股定理与折叠问题的学习,让学生体会到数学的实用性和美感,提高审美情趣。
3.培养学生勇于探索、敢于创新的精神,增强他们面对困难、解决问题的信心。
期末复习专题勾股定理与折叠问题教学设计人教Βιβλιοθήκη 数学八年级下册一、教学目标
(一)知识与技能
1.理解并掌握勾股定理的内容、证明和应用,能熟练运用勾股定理解决实际问题。
2.学会运用折叠方法,将复杂的几何问题转化为简单的勾股定理问题,提高解决问题的能力。
3.能够运用勾股定理及折叠问题,解决生活中的实际问题,如建筑、工程等领域。
4.培养学生的团队协作精神,让他们在合作中学会互相尊重、互相帮助,形成良好的集体氛围。
5.引导学生关注生活中的数学,体会数学在现实世界中的广泛应用,增强学生的社会责任感。
本章节教学设计以勾股定理与折叠问题为核心,旨在帮助学生巩固知识、提高能力、培养情感。在教学过程中,教师应关注学生的个体差异,因材施教,充分调动学生的积极性,让每个学生都能在愉快的氛围中学习、成长。
2.选做题:
-鼓励学有余力的学生探索勾股定理在其他领域的应用,例如艺术、工程等,并撰写一篇小报告,分享他们的发现和体会。
八年级勾股定理折叠问题
八年级勾股定理折叠问题在一个阳光明媚的下午,大家聚在一起,准备探讨一个看似简单却又充满乐趣的主题——勾股定理。
想象一下,咱们坐在公园的长椅上,四周的花儿争相斗艳,孩子们在旁边欢声笑语。
嘿,今天咱们就来聊聊这个古老而神奇的数学法则!先别急,听我慢慢说。
勾股定理,说白了就是在直角三角形中,直角两边的平方和等于斜边的平方。
这听上去有点复杂,但其实生活中处处都能碰到它的影子。
你有没有注意过,那个三角形的形状就像个小房子,房子里面有你最爱的甜点,嘿嘿,谁不想一探究竟呢?说到这里,不禁让人想起了小时候的那些小故事。
记得有一次,和小伙伴们一起在院子里玩飞盘,我们决定用勾股定理来测量飞盘落地的位置。
一个个围成一圈,开始比拼,飞盘在空中划出一道优美的弧线,简直是完美得不像话。
然后,我们就开始琢磨怎么用这道理来计算飞盘落点的距离。
想想当时的样子,大家的脸上都写满了“数学探险家”的光辉,真是好玩极了!不知不觉,我们就把这道理运用到了实际,心里那个高兴呀,感觉自己简直成了小小科学家。
勾股定理的魅力不止于此,它在生活中随处可见。
比如,你在搭帐篷的时候,得确保帐篷的每个角都是直角,才能撑得稳。
此时,你心里是不是默念着“勾股定理”呢?而当你用绳子把两根杆子绑在一起时,不妨一试,用三角形的方法,看看能不能搭出个完美的帐篷。
哦,对了,听说过“好马配好鞍”吧,做事情也得讲究技巧,勾股定理就是你在生活中的好搭档,绝对让你事半功倍。
再说说学校的课堂,老师们总是用各种方法来解释这个定理。
有的老师甚至用小动物来举例,像小猫、小狗,真是萌到不行。
想象一下,小狗在追小猫,跑成了一个直角三角形。
大家都笑得前仰后合,而那个小猫就是斜边,追得可真不容易。
每次上课,我都觉得这个定理比吃冰淇淋还要甜。
老师的幽默让这些枯燥的数字变得生动有趣,感觉数学真是个神奇的世界。
勾股定理也不是所有人都能一上来就搞懂的。
有人可能一头雾水,心想:“这和我有什么关系?”别急,慢慢来。
2019年八年级数学——图形的对称-翻折变换(折叠问题)附答案
图形的对称-翻折变换(折叠问题)一.选择题(共30小题)1.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为()A.1 B.2 C.2D.122.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:213.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.4.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:85.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1个B.2个C.3个D.4个6.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()A.70°B.65°C.80°D.35°7.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长()A.3 B.4 C.3.5 D.68.如图,四边形ABCD是矩形,AB=4,AD=3,把矩形沿直线AC折叠,点B 落在点E处,AE交CD于点F.连接DE,则DF的长是()A.B.C.D.9.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM 即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确10.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.2411.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE 沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为()A.B.C.D.12.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD 沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A.cm B.cm C.2cm D.cm13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+14.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为()A.y=x+5 B.y=x+5 C.y=x+5 D.y=x+515.如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,当DE=2时,BC的长为()A.3 B.4 C.5 D.616.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是()A.AF=B.四边形ACDE是矩形C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形17.如图,有一张直角三角形纸片ABC,边AB=6,AC=10,∠ABC=90°,将该直角三角形纸片沿DE折叠,使点C与点B重合,则四边形ABDE的周长为()A.16 B.17 C.18 D.1918.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.19.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为()A.5 B.4 C.3 D.220.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1).将△ABC沿y轴翻折得到△A′B′C′,则点B′的坐标为()A.(2,1)B.(2,3)C.(4,1)D.(0,2)21.如图,△ABC周长为36cm,把其边AC对折,使点C、A重合,折痕交BC 边于点D,交AC边于点E,连结AD,若AE=6cm,则△ABD的周长是()A.24cm B.26cm C.28cm D.30cm22.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.623.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.24.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm25.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.1226.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6 B.8 C.10 D.1227.如图所示,有一块直角三角形纸片,∠C=90°,AC=2,BC=,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.B.C.1 D.28.如图所示,折叠平行四边形的一边AD,使点A落在DC边上的点E处,已知AB=6,BC=4,则EC的长为()A.1 B.2 C.3 D.1.529.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:①△DAG≌△DFG;②BG=2AG;③S△DGF=120;④S△BEF=.其中所有正确结论的个数是()A.4 B.3 C.2 D.130.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为()A.B.C.2 D.1图形的对称-翻折变换(折叠问题)参考答案与试题解析一.选择题(共30小题)1.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为()A.1 B.2C.2D.12【考点】翻折变换(折叠问题);勾股定理的应用;菱形的性质;矩形的性质.【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【解答】解:∵菱形AECF,AB=6,∴假设BE=x,∴AE=6﹣x,∴CE=6﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6﹣x,解得:x=2,∴CE=4,利用勾股定理得出:BC2+BE2=EC2,BC===2,故选:C.【点评】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.2.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:21【考点】翻折变换(折叠问题).【分析】在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.【解答】解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE:S△BDE=:=14:25.故选B.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等,对应角相等.也考查了勾股定理.3.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】在Rt△ABC中,设AB=2a,已知∠ACB=90°,∠CAB=30°,即可求得AB、AC的值,由折叠的性质知:DE=CE,可设出DE、CE的长,然后表示出AE的长,进而可在Rt△AEC中,由勾股定理求得AE、CE的值,即可求∠ACE 的正弦值.【解答】解:∵△ABC中,∠ACB=90°,∠BAC=30°,设AB=2a,∴AC=a,BC=a;∵△ABD是等边三角形,∴AD=AB=2a;设DE=EC=x,则AE=2a﹣x;在Rt△AEC中,由勾股定理,得:(2a﹣x)2+3a2=x2,解得x=;∴AE=,EC=,∴sin∠ACE==.故选:B.【点评】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.4.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A.3:2 B.5:3 C.8:5 D.13:8【考点】翻折变换(折叠问题).【分析】如图,作辅助线;首先求出△BDP的面积,进而求出△DPC的面积;借助三角形的面积公式求出的值;由旋转变换的性质得到AB=PB,即可解决问题.【解答】解:如图,过点D作DE⊥BC于点E;由题意得:S△ABD=S△PBD=30,∴S△DPC=80﹣30﹣30=20,∴=,由题意得:AB=BP,∴AB:PC=3:2,故选A.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的方法是作高线,表示出三角形的面积;解题的关键是灵活运用翻折变换的性质来分析、判断、推理或解答.5.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1个B.2个C.3个D.4个【考点】翻折变换(折叠问题);相似三角形的判定与性质.【分析】根据翻折变换的性质、相似三角形的判定定理解答即可.【解答】解:由翻折变换的性质可知,∠AEB+∠FEC=×180°=90°,则∠AEF=90°,即∠2=90°,①正确;由图形可知,∠1<∠AEC,②错误;∵∠2=90°,∴∠1+∠3=90°,又∠1+∠BAE=90°,∴∠BAE=∠3,④正确;∵∠BAE=∠3,∠B=∠C=90°,∴△ABE∽△ECF,③正确.故选:C.【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于()A.70°B.65°C.80°D.35°【考点】翻折变换(折叠问题).【分析】根据平角的知识可求出∠DED′的度数,再由折叠的性质可得出∠D′EF=∠DEF=∠DED′,从而根据平行线的性质可得出∠EFB的度数.【解答】解:∵∠AED′=40°,∴∠DED′=180°﹣40°=140°,又由折叠的性质可得,∠D′EF=∠DEF=∠DED′,∴∠DEF=70°,又∵AD∥BC,∴∠EFB=70°.故选:A.【点评】此题考查了翻折变换的知识,解答本题的关键是根据折叠的性质得出∠D′EF=∠DEF=∠DED′,难度一般.7.如图,把矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,若∠CFE=60°,且DE=1,则边BC的长()A.3 B.4 C.3.5 D.6【考点】翻折变换(折叠问题).【分析】由矩形的性质得到∠1=∠CFE=60°,由折叠可得∠2=60°,从而求得∠4的度数,得到AE=EC,在Rt△CDE中利用勾股定理可求得EC的长度,即可得到答案.【解答】解:∵矩形ABCD,∴BC∥AD,∴∠1=∠CFE=60°,∵EF为折痕,∴∠2=∠1=60°,AE=EC,∴∠3=180°﹣60°﹣60°=60°,Rt△CDE中,∠4=90°﹣60°=30°,∴EC=2×DE=2×1=2,∴BC=AE+ED=EC+ED=2+1=3.故选:A.【点评】本题考查了翻折问题;由折叠得到角相等,得到AE=EC利用勾股定理求解是正确解答本题的关键.8.如图,四边形ABCD是矩形,AB=4,AD=3,把矩形沿直线AC折叠,点B 落在点E处,AE交CD于点F.连接DE,则DF的长是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】由四边形ABCD是矩形与△AEC由△ABC翻折得到,AD=CE,∠ADF=∠CEF,由AAS证得△ADF≌△CEF,的长FA=FC,设DF=x,则FA=4﹣x,由勾股定理得:DA2+DF2=AF2,即可求出DF的长.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AB=DC=4,∠ADF=90°,∵△AEC由△ABC翻折得到,∴BC=EC,∠CEF=∠ABC=90°,∴AD=CE,∠ADF=∠CEF,在△ADF与△CEF中,,∴△ADF≌△CEF(AAS),∴FA=FC,设DF=x,则FA=FC=DC﹣DF=4﹣x,在Rt△DFA中,由勾股定理得:DA2+DF2=AF2,即32+x2=(4﹣x)2,解得:x=,即DF的长是.故选C.【点评】本题主要考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握折叠的性质,得到相等的线段与角是解决问题的关键.9.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM 即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确【考点】翻折变换(折叠问题).【分析】在图1中,由BM=2BF推出∠BMF=30°,所以∠MBF=60°,再根据等边三角形的判定方法即可证明.在图2中,证明方法类似.【解答】解:图1中,∵四边形ABCD是正方形,∴AB=AD=BC∵AE=ED=BF=FC,AB=BM,∴BM=2BF,∵∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC,∴△MBC是等边三角形,∴张萌的作法正确.在图2中,∵BM=BC=2BF,∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC∴△MBC是等边三角形,∴小平的作法正确.故选D.【点评】本题考查正方形的性质、翻折不变性、直角三角形的性质,解题的关键是在一个直角三角形中如果斜边是直角边的两倍那么这条直角边所对的锐角是30度.10.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.24【考点】翻折变换(折叠问题).【分析】先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC ﹣BF=4,易得△CEF的周长.【解答】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC﹣BF=10﹣6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=12.故选A.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理,利用勾股定理得CF的长是解答此题的关键.11.如图,在矩形ABCD中,AB=3,BC=5,点E在边CD上,连接BE,将△BCE 沿BE折叠,若点C恰好落在AD边上的点F处,则CE的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF中根据勾股定理列出关于x的方程,即可解决问题.【解答】解:设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD﹣CE=3﹣x.在Rt△ABF中,由勾股定理得:AF2=52﹣32=16,∴AF=4,DF=5﹣4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3﹣x)2+12,解得:x=.故选B.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.12.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD 沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A.cm B.cm C.2cm D.cm【考点】翻折变换(折叠问题).【分析】首先由勾股定理求出BC,由折叠的性质可得∠BED=∠C=90°,BE=BC=3cm,得出AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得出方程,解方程即可.【解答】解:∵∠C=90°,AB=5cm,AC=4cm,∴BC==3cm,∵将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,∴△BED≌△BCD,∴∠BED=∠C=90°,BE=BC=3cm,∴AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得:AE2+DE2=AD2,即22+x2=(4﹣x)2,解得:x=.故选:B.【点评】本题主要考查翻折变换的性质,全等三角形的性质,勾股定理;熟练掌握翻折变换的性质,由勾股定理得出方程是解决问题的关键.13.如图,在平面直角坐标系中,点A(0,4)、B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为()A.y=﹣B.y=﹣x+C.y=﹣D.y=﹣2x+【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】由点A(0,4)、B(3,0),可求得AB的长,然后由折叠的性质,求得OA′的长,且△A′OC∽△AOB,再由相似三角形的性质,求得OC的长,继而利用待定系数法求得直线BC的解析式.【解答】解:∵点A(0,4)、B(3,0),∴OA=4,OB=3,∴AB==5,由折叠的性质可得:A′B=AB=5,∠OA′C=∠OAB,∴OA′=A′B﹣OB=2,∵∠A′OC=∠AOB=90°,∴△A′OC∽△AOB,∴,即,解得:OC=,∴点C的坐标为:(0,),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+.故选C.【点评】此题考查了折叠的性质、勾股定理、相似三角形的判定与性质以及待定系数法求一次函数的解析式.注意求得点C的坐标是解此题的关键.14.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,点O落在BC边上的点E处.则直线DE的解析式为()A.y=x+5 B.y=x+5 C.y=x+5 D.y=x+5【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】首先在RT△ABE中,求出EB,再在RT△CDE中利用勾股定理即可解决问题.【解答】解:∵△ADE是由△ADO翻折,∴DE=DO,AO=AE=10,∵四边形OABC是矩形,∴OC=AB=8,AO=BC=10,∠B=∠BCO=∠BAO=90°,在RT△ABE中,∵AE=10,AB=8,∴EB===6,∴EC=4,设DO=DE=x,在RT△DCE中,∵CD2+CE2=DE2,∴(8﹣a)2+42=a2,∴a=5,∴点D(0,5),点E(4,8),设直线DE为y=kx+b,∴解得,∴直线DE为:y=+5.故选A.【点评】本题考查翻折变换、待定系数法确定一次函数的解析式,解题的关键是巧妙利用勾股定理,用方程的思想去思考问题,属于中考常考题型.15.如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,当DE=2时,BC的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】首先由DE∥BC与折叠的性质,可证得DE是△ABC的中位线,继而求得答案.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠EDF=∠BFD,由折叠的性质可得:∠ADE=∠EDF,AD=DF,∴∠B=∠BFD,∴BD=DF,∴AD=BD,同理:AE=EC,∴DE=BC,即BC=2DE=4.故选B.【点评】此题考查了折叠的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.16.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是()A.AF=B.四边形ACDE是矩形C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形【考点】翻折变换(折叠问题);平行四边形的性质.【分析】由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,AD=BC,由折叠的性质得到AB=AE,BC=CE,等量代换得到AE=CD,AD=CE,推出四边形ACDE是平行四边形,于是得到AF=BC,四边形ACDE是矩形,故A,B 正确;根据平行四边形和矩形的性质得到△ACD≌△ACE≌△CDE≌△ADE≌△ABC,于是得到图中与△ABC全等的三角形有4个,故C正确;推出△BCE是等腰三角形,△AEF,△ACF,△CDF,△DEF是等腰三角形,于是得到图中有5个等腰三角形,故D错误.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD=BC,由折叠的性质得到AB=AE,BC=CE,∴AE=CD,AD=CE,∵点B、A、E在同一条直线上,∴AE∥CD,∴四边形ACDE是平行四边形,∴AF=BC,四边形ACDE是矩形,故A,B正确;∵四边形ABCD是平行四边形,四边形ACDE是矩形,∴△ACD≌△ACE≌△CDE≌△ADE≌△ABC,∴图中与△ABC全等的三角形有4个,故C正确;∵BC=CE,∴△BCE是等腰三角形,∵四边形ACDE是矩形,∴AF=EF=CF=DF,∴△AEF,△ACF,△CDF,△DEF是等腰三角形,∴图中有5个等腰三角形,故D错误;故选D.【点评】本题考查了平行四边形的性质、折叠的性质以及等腰三角形的判定和性质,解题的关键是熟记等腰三角形和矩形的判定方法.17.如图,有一张直角三角形纸片ABC,边AB=6,AC=10,∠ABC=90°,将该直角三角形纸片沿DE折叠,使点C与点B重合,则四边形ABDE的周长为()A.16 B.17 C.18 D.19【考点】翻折变换(折叠问题).【分析】根据勾股定理得到BC=8,由折叠的性质得到BD=CD=BC=4,DE⊥BC,根据三角形的中位线的性质得到DE=AB=3,AE=AC=5,于是得到结论.【解答】解:∵AB=6,AC=10,∠ABC=90°,∴BC=8,∵将该直角三角形纸片沿DE折叠,使点C与点B重合,∴BD=CD=BC=4,DE⊥BC,∵∠ABC=90°,∴DE∥AB,∴DE=AB=3,AE=AC=5,∴四边形ABDE的周长=AB+AE+DE+BD=6+5+3+4=18,故选C.【点评】此题考查了折叠的性质,勾股定理,三角形的中位线的性质,注意掌握折叠前后图形的对应关系.18.如图,梯形ABCD中,AD∥BC,AB=DC,∠DBC=45°,点E在BC上,点F在AB上,将梯形ABCD沿直线EF翻折,使得点B与点D重合.如果,那么的值是()A.B.C.D.【考点】翻折变换(折叠问题).【分析】根据对称的性质得到△BFE≌△DFE,得到DE=BE.根据已知条件得到∠DEB=90°,设AD=1,BC=4,过A作AG⊥BC于G,根据矩形的性质得到GE=AD=1,根据全等三角形的性质得到BG=EC=1.5,根据勾股定理得到AB=CD==5,通过△BDC∽△DEF,得到,求出BF=,于是得到结论.【解答】解:∵EF是点B、D的对称轴,∴△BFE≌△DFE,∴DE=BE.∵在△BDE中,DE=BE,∠DBE=45°,∴∠BDE=∠DBE=45°.∴∠DEB=90°,∴DE⊥BC.在等腰梯形ABCD中,∵,∴设AD=1,BC=4,过A作AG⊥BC于G,∴四边形AGED是矩形.∴GE=AD=1,∵Rt△ABG≌Rt△DCE,∴BG=EC=1.5,∴AG=DE=BE=2.5∴AB=CD==5,∵∠ABC=∠C=∠FDE,∵∠CDE+∠C=90°,∴∠FDE+∠CDE=90°∴∠FDB+∠BDC+∠FDB=∠FDB+∠DFE=90°,∴∠BDC=∠DFE,∵∠DEF=∠DBC=45°,∴△BDC∽△DEF,∴,∴DF=,∴BF=,∴AF=AB﹣BF=,∴=.故选B.【点评】此题考查等腰梯形的性质,翻折的性质,三角形全等的判定与性质,等腰直角三角形的性质,相似三角形的判定和性质等知识,注意结合图形,作出常用辅助线解决问题.19.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为()A.5 B.4 C.3 D.2【考点】翻折变换(折叠问题).【分析】利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;利用勾股定理得出GE2=CG2+CE2,进而求出BG 即可;【解答】解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=GF,∵E是边CD的中点,∴DE=CE=6,设BG=x,则CG=12﹣x,GE=x+6,∵GE2=CG2+CE2∴(x+6)2=(12﹣x)2+62,解得x=4∴BG=4.故选B.【点评】此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.20.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1).将△ABC沿y轴翻折得到△A′B′C′,则点B′的坐标为()A.(2,1)B.(2,3)C.(4,1)D.(0,2)【考点】翻折变换(折叠问题);坐标与图形性质.【分析】根据关于y轴对称的点的特点找到B',结合直角坐标系可得出点B′的坐标.【解答】解:∵将△ABC沿y轴翻折得到△A′B′C′,∴点B与点B′关于y轴对称,∴B′(2,3),故选B.【点评】本题考查了翻折变换﹣折叠问题,坐标与图形的关系,熟记关于y轴对称的点的特点是解答本题的关键.21.如图,△ABC周长为36cm,把其边AC对折,使点C、A重合,折痕交BC 边于点D,交AC边于点E,连结AD,若AE=6cm,则△ABD的周长是()A.24cm B.26cm C.28cm D.30cm【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得AE=EC,AD=CD,然后求出△ABD的周长=AB+BC,代入数据计算即可得解.【解答】解:∵△ABC的边AC对折顶点C和点A重合,∴AE=EC,AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=6cm,∴AC=AE+EC=6+6=12,∵△ABC的周长为36cm,∴AB+BC=36﹣12=24cm,∴△ABD的周长是24cm.故选A.【点评】本题考查了翻折变换的性质,熟记翻折前后的两个图形能够完全重合得到相等的边是解题的关键.22.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD于点F,若AF=,则AD的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.【解答】解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.【点评】本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.23.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠使点A落在DC′延长线上的点A′处,若图中,∠A=30°,BC=5cm,则折痕DE的长为()A.B.2C.2D.【考点】翻折变换(折叠问题).【分析】根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.【解答】解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=5÷=cm,在Rt△BDE中,DE=BD•tan30°=×=cm.故选:D.【点评】本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.24.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】首先根据题意得到:△AED≌△ACD;进而得到AE=AC=6,DE=CD;根据勾股定理求出AB=10;再次利用勾股定理列出关于线段CD的方程,问题即可解决.【解答】解:由勾股定理得:==10,由题意得:△AED≌△ACD,∴AE=AC=6,DE=CD(设为x);∠AED=∠C=90°,∴BE=10﹣6=4,BD=8﹣x;由勾股定理得:(8﹣x)2=42+x2,解得:x=3(cm),故选B.【点评】该命题主要考查了翻折变换及其应用问题;解题的关键是借助翻折变换的性质,灵活运用勾股定理、全等三角形的性质等几何知识来分析、判断、推理或解答.25.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.26.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=AE+DE=AE+BE=9.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:A.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.27.如图所示,有一块直角三角形纸片,∠C=90°,AC=2,BC=,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.B.C.1 D.【考点】翻折变换(折叠问题).【分析】由有一块直角三角形纸片,∠C=90°,AC=2,BC=,利用勾股定理即可求得AB的长,然后由折叠的性质,求得AE的长,继而求得答案.【解答】解:∵∠C=90°,AC=2,BC=,∴AB==,由折叠的性质可得:AE=AB=,∴CE=AE﹣AC=.故选A.【点评】此题考查了折叠的性质以及勾股定理.注意掌握折叠前后图形的对应关系是解此题的关键.28.如图所示,折叠平行四边形的一边AD,使点A落在DC边上的点E处,已知AB=6,BC=4,则EC的长为()A.1 B.2 C.3 D.1.5【考点】翻折变换(折叠问题).【分析】利用平行四边形的对边相等得到AD=BC=4,DC=AB=6,再由折叠的性质得到DE=AD,由DC﹣DE求出EC的长即可.【解答】解:由折叠及平行四边形的性质得:AE=AD=BC=4,DC=AB=6,则EC=DC﹣DE=6﹣4=2,故选B.【点评】此题考查了翻折变换(折叠问题),以及平行四边形的性质,熟练掌握折叠的性质是解本题的关键.29.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:。
初二数学专题 图形折叠
初二数学专题:图形的折叠图形折叠问题求解的关键是利用轴对称的性质找到折叠前后的不变量与变量,进而运用全等三角形、直角三角形、勾股定理等建立有关线段、角之间的联系。
一、解题注意事项1. 折叠的性质:①位于折痕两侧的图形关于折痕成轴对称图形,即折叠前后的两部分图形全等,对应边/角均相等。
②折叠之后,对应点的连线被折痕垂直平分。
2.找出隐含的折叠前后的图形中边、角的位置关系和数量关系。
3.一般运用三角形全等、直角三角形等知识内容进行求解。
4.对于含有直角三角形的情况,可以考虑方程思想,设一边长为x,再用含有x的代数式表示其他的边,最后利用勾股定理求解。
二、例题1.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为( )A. 30°B. 45°C. 60°D. 75°解答:AE=AG/2, ∴∠EGA=30°故选:C.2. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是( B )A.3 B.4C.5 D.6解答:利用勾股定理,选B3. 如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E 的位置.如果BC=6,那么线段BE的长度为( D )A.6 B.6C.2 3 D.3 2解答:不变量CD=DE=BD,利用勾股定理。
选D4. 如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B 为( C )A.66°B.104°C.114°D.124°解答:注意平行线内错角相等,选C5. 如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为(D)A.95B.125C.165D.185解答:连接BF ,交AE 于点H.由折叠的性质得BE =EF ,AE ⊥BF ,BH =HF.在Rt △ABE 中,根据S △ABE =12AB·BE =12AE·BH 可求出BH =125,则BF =245. 由EF =BE =CE ,可得出∠BFC =90°在Rt △BFC 中,利用勾股定理CF =BC 2-BF 2=185. 6. 如图,△ABC 中,∠A =60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC =70°,那么∠A′DE 的度数为65°.解答:∠A′EC =70°, ∴∠A′E D =55°, ∠E A′D =60°∴∠A′DE =65°7. 如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′=___________.解答:同样可以利用勾股定理, EB′=x,则 EC=4-x , B′C =5-3=2, 求解得EB′= 328. 如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 边的A′处,折痕所在直线同时经过边AB ,AD(包括端点),设BA′=x ,则x 的取值范围是_____________________.解答:①当折痕经过点D 时,此时BA′有最小值为2;②当折痕经过点B 时,此时BA′有最大值为8.即:x 的取值范围是 2≤x ≤89. 如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3⩽BF⩽4;④当点H与点A重合时, EF=以上结论中,你认为正确的有_____________.(填序号)解答:①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;③点H与点A重合时,设BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出③正确;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.答案为①③④10.(1)观察与发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB 边上,折痕为AD,展开纸片(如图①);在第一次的折叠基础上第二次折叠该三角形纸片,使点A 和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由。
八年级化学折叠问题
八年级化学折叠问题
折叠是一种常见的物理现象,在我们日常生活中经常能够观察到。
化学折叠是指在化学反应中发生的折叠现象,即当原料发生反
应时,其形态和性质发生改变。
折叠的原理
化学折叠发生的原理可以通过分子层面进行解释。
在化学反应中,原子和分子之间的化学键会重新排列,从而形成新的物质。
这
种重新排列可以导致原料的形态和性质发生明显的变化。
折叠的影响
化学折叠可以产生多种影响。
首先,折叠可以改变物质的形态,例如固态转变为液态或气态。
其次,折叠还能改变物质的性质,例
如改变颜色、发生放热或吸热等。
这些性质的改变对于化学反应的
进行和产物的形成具有重要意义。
折叠的应用
化学折叠在各个领域都有广泛的应用。
在生活中,我们常常使用化学折叠来制备药品、化妆品和清洁剂等。
在工业生产中,化学折叠被应用于各种化学工艺中,例如制备塑料、合成化学品和燃料等。
折叠实验
折叠是化学实验中常见的内容之一。
通过折叠实验,我们可以观察和研究不同物质在反应中的折叠现象。
折叠实验不仅可以帮助我们理解化学反应的基本原理,还能培养我们的实验技能和科学思维能力。
结论
化学折叠是一种重要的化学现象,它在化学反应中起着关键作用。
通过对折叠原理的研究和折叠应用的探索,我们可以更好地理解和应用化学知识,为科学的发展做出贡献。
八年级体育折叠问题
八年级体育折叠问题简介这份文档旨在探讨八年级体育教育中的折叠问题。
折叠问题指的是在学生参与体育活动时,是否应该折叠班级,将学生按照不同的能力水平分组。
本文将讨论折叠问题的利与弊,以及一些建议。
利与弊利1. 个性化教学:折叠班级可以将学生按照不同的能力水平分组,提供更加个性化的教学。
这样可以更好地满足学生的研究需求,使每个学生都能够得到适当的挑战和支持。
2. 充分利用资源:折叠班级可以确保每个学生都能够在适合自己能力的组别中研究。
这样可以充分利用学生的潜力,并向每个学生提供相应的资源和支持。
3. 良好的竞争氛围:折叠班级可以在不同能力水平的学生之间营造出良好的竞争氛围。
这样可以激发学生的积极性和竞争意识,提高他们的研究动力和表现。
弊1. 社会隔离:折叠班级可能导致学生之间的社会隔离。
学生只与相同能力水平的同学交往,缺乏与其他能力水平的学生合作和交流的机会。
这可能影响他们的社交能力和团队合作能力的培养。
2. 自卑心理:在折叠班级中,学生可能会因为与其他高水平学生相比而产生自卑心理。
这可能降低他们的自信心,对研究和参与体育活动产生消极影响。
建议1. 综合利弊:教师应综合考虑折叠班级的利与弊,并根据具体情况做出决策。
可以根据学生的实际能力水平,进行灵活的组合和分组。
同时,教师应鼓励跨组合作和交流,帮助学生克服社会隔离问题。
2. 共同目标:无论是否折叠班级,教师都应着眼于培养学生的整体素质和能力。
重点是帮助每个学生充分发展自己的潜力,培养他们的合作精神和竞争意识,促进他们在体育教育中的全面发展。
结论折叠问题在八年级体育教育中是一个备受关注的议题。
我们应该综合考虑折叠班级的利与弊,并针对具体情况做出灵活的决策。
同时,教师应关注学生的整体发展,促进个性化教学、合作精神和竞争意识的培养。
这样才能更好地满足学生的学习需求,促进他们在体育教育中的综合发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级复习专题1:折叠问题
一、折叠问题
如图所示,将长方形纸片ABCD的一边AD向下折叠,点D落在BC边的F
处。
已知AB=CD=8cm,BC=AD=10cm,求EC的长。
解题步骤归纳:
1、标已知,标问题,明确目标在哪个直角三角形中,设适当的未知数x;
2、利用折叠,找全等。
3、将已知边和未知边用含x的代数式表示,转化到同一直角三角形中表示出来。
4、利用勾股定理,列出方程,解方程,得解。
练习
1、如图,将矩形ABCD纸片沿直线AE折叠,顶点D恰好落在边BC的F处,已知3,
CE cm
= 8
AB cm
=,求图中阴影部分的面积.
2、如图,已知矩形ABCD沿着直线BD折叠,使点C落在C'处,BC'交AD于E,AD=8,AB=4,
求DE的长
3、如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将三角形ABC折叠,使AB落在斜边AC上得到线段AB’,折痕为AD,求BD的长.
4、如图所示,在∆ABC中,AB=20,AC=12,BC=16,把∆ABC折叠,使AB
落在直线AC上,求重叠部分(阴影部分)的面积.
5、如图,矩形纸片ABCD的长AD=9 cm,宽AB=3 cm,将其折叠,使点
D与点B重合,那么折叠后DE的长是多少?
6、如图,将边长为8 cm的正方形纸片ABCD折叠,使点D落在BC中点
E处,点A落在点F处,折痕为MN,求线段CN的长.
8.如图,已知△ABC中,△ACB=90°,△CAB=30°,△ABD是等边三角形,AB=8,如果将四边形ACBD 折叠,使点D与点C重合,EF为折痕,则
AE= .
9.(2016年金华中考15题)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.
C
D
B
A
E
2019.4
10.(2015•无锡)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.
2。