导数计算公式

合集下载

导数计算公式

导数计算公式

导数计算公式导数是微积分中最基本的概念之一,用于描述函数在其中一点的变化率。

在数学中,导数的计算是通过极限的概念进行的。

导数的计算公式可以根据函数的不同类型进行分类。

首先,我们来看一下基本函数的导数计算公式。

1.需知导数计算的公式:(1)常数函数的导数:如果f(x)=c,其中c是常数,则f'(x)=0。

(2)幂函数的导数:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。

(3)指数函数的导数:若f(x) = a^x(a>0且a≠1),则f'(x) = ln(a) * a^x。

(4)对数函数的导数:若f(x) = logₐ(x)(a>0且a≠1),则f'(x) = 1 / (ln(a) * x)。

(5)三角函数的导数:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)。

(6)反三角函数的导数:sin^(-1)'(x) = 1 / √(1 - x^2)cos^(-1)'(x) = -1 / √(1 - x^2)tan^(-1)'(x) = 1 / (1 + x^2)。

2.导数的四则运算法则:导数具有以下四则运算法则,对于函数f(x)和g(x),它们的导数可以通过以下公式计算:(1)(f±g)'(x)=f'(x)±g'(x)(2) (cf)'(x) = cf'(x)(3)(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)(4)(f/g)'(x)=(f'(x)*g(x)-f(x)*g'(x))/g^2(x)。

3.链式法则:链式法则是导数计算中的一个重要法则,它用于计算复合函数的导数。

设有函数y=f(u)和u=g(x),则复合函数y=f(g(x))的导数可以通过以下公式计算:dy/dx = dy/du * du/dx。

求函数的导数公式

求函数的导数公式

求函数的导数公式函数的导数公式是描述函数在某一点处斜率的一种数学工具,对于一般的函数f(x),它的导数可以用下面的公式来表示:1.导数的定义公式f'(x) = lim(h->0) [f(x + h) - f(x)]/h在这个公式中,f(x + h)表示以点(x + h, f(x + h))为端点的割线斜率,f(x)是函数f(x)在点x处的函数值,h表示x + h与x之差,即点(x + h, f(x + h))与点(x, f(x))之间的距离。

这个公式是导数定义的最基本形式,通常用于求解复杂函数的导数。

2.基本求导公式f'(x) = k,k为常数[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)[f(g(x))]’ = f'(g(x))g'(x)f’(x)/g(x) = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2[f(x)]^n = nf'(x)[f(x)]^(n-1),n为正整数这里列举了一些常用的求导公式。

对于任何由基本函数组成的函数,都可以使用这些公式求其导数。

3.导数的运算法则导数具有很好的运算性质,常用的运算法则有:(1)线性性质:f(x) ±g(x)的导数为f'(x) ±g'(x),kf(x)的导数为kf'(x),k为常数。

(2)乘积法则:[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)。

(3)商数法则:[f(x)/g(x)]' = [f'(x)g(x) - f(x)g'(x)]/[g(x)]^2。

(4)复合函数的求导法则:如果y = f(g(x)),那么y' = f'(g(x))g'(x)。

以上是函数导数的一些基本公式和运算法则。

高等数学导数公式大全

高等数学导数公式大全

高等数学导数公式大全1.基本导数公式:-若f(x)=c(c为常数),则f'(x)=0;- 若f(x) = x^n(n为正整数),则f'(x) = nx^(n-1);- 若f(x) = a^x(a为常数),则f'(x) = a^x * ln(a);-若f(x)=e^x,则f'(x)=e^x;2.三角函数与反三角函数的导数公式:- 若f(x) = sin(x),则f'(x) = cos(x);- 若f(x) = cos(x),则f'(x) = -sin(x);- 若f(x) = tan(x),则f'(x) = sec^2(x);- 若f(x) = cot(x),则f'(x) = -csc^2(x);- 若f(x) = sec(x),则f'(x) = sec(x) * tan(x);- 若f(x) = csc(x),则f'(x) = -csc(x) * cot(x);- 若f(x) = arcsin(x),则f'(x) = 1 / sqrt(1 - x^2);- 若f(x) = arccos(x),则f'(x) = -1 / sqrt(1 - x^2);- 若f(x) = arctan(x),则f'(x) = 1 / (1 + x^2);- 若f(x) = arccot(x),则f'(x) = -1 / (1 + x^2);- 若f(x) = arcsec(x),则f'(x) = 1 / (x * sqrt(x^2 - 1));- 若f(x) = arccsc(x),则f'(x) = -1 / (x * sqrt(x^2 - 1));3.对数函数与指数函数的导数公式:- 若f(x) = log_a(x),则f'(x) = 1 / (x * ln(a));- 若f(x) = ln(x),则f'(x) = 1 / x;- 若f(x) = ln,u(x),则f'(x) = u'(x) / u(x);- 若f(x) = a^x(a>0且a ≠ 1),则f'(x) = a^x * ln(a);-若f(x)=e^x,则f'(x)=e^x;4.复合函数的导数公式:-若g(x)可导,f(x)可导,则(f(g(x)))'=f'(g(x))*g'(x);-若f(x)可导,f^-1(x)可导,则(f^-1(x))'=1/f'(f^-1(x));5.乘积与商的导数公式:-若f(x)与g(x)都可导,则(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x);-若f(x)与g(x)都可导,且g(x)≠0,则(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x)6.反函数的导数:-若f(x)在x_0处可导,且f'(x_0)≠0,则f^(-1)(x)在f(x_0)处可导,且(f^(-1))'(f(x_0))=1/f'(x_0);7.链式法则:- 若y = f(u)且u = g(x)都可导,则y = f(g(x))也可导,且dy/dx = f'(u) * g'(x) = f'(g(x)) * g'(x);8.泰勒展开式:-若f(x)在x_0处有n阶导数,则它在x_0处的泰勒展开式为:f(x) = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)^2f''(x_0)/2! + ... + (x - x_0)^nf^n(x_0)/n!;这只是高等数学导数公式的部分内容,实际上导数公式非常多且多样化,可以根据需要不断学习和掌握。

24个基本求导公式

24个基本求导公式

24个基本求导公式在微积分中,求导是一个非常基础且重要的概念。

它的作用是用来寻找函数的导数,即函数在给定的点上的斜率。

而求导的基本公式通常用来简化这个过程,使我们能够快速地求得函数的导数。

下面是24个常用的求导公式:1.常数规则:f(x)=c,其中c是常数,则f'(x)=0。

简单来说,常数的导数等于0。

2.幂规则:f(x) = x^n, 其中n是常数,则f'(x) = nx^(n-1)。

换句话说,幂函数的导数是常数乘以幂次减13.指数规则:f(x)=e^x,则f'(x)=e^x。

e是自然对数的底数,它的指数函数的导数就是自身。

4.对数规则:f(x) = ln(x),则f'(x) = 1/x。

这个公式适用于自然对数函数。

5.三角函数规则:f(x) = sin(x),则f'(x) = cos(x)。

即正弦函数的导数是余弦函数。

6.余弦函数规则:f(x) = cos(x),则f'(x) = -sin(x)。

即余弦函数的导数是负的正弦函数。

7.正切函数规则:f(x) = tan(x),则f'(x) = sec^2(x)。

即正切函数的导数是正割平方函数。

8.反三角函数规则:f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。

即反正弦函数的导数是1除以1减去x的平方根。

9.反余弦函数规则:f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。

即反余弦函数的导数是负1除以1减去x的平方根。

10.反正切函数规则:f(x) = arctan(x),则f'(x) = 1/(1+x^2)。

即反正切函数的导数是1除以1加x的平方。

11.双曲正弦函数规则:f(x) = sinh(x),则f'(x) = cosh(x)。

即双曲正弦函数的导数是双曲余弦函数。

12.双曲余弦函数规则:f(x) = cosh(x),则f'(x) = sinh(x)。

求导基本公式16个

求导基本公式16个

求导基本公式16个1. 基本导数公式基本导数公式是求导运算中最基础的公式,用于计算某些常见函数的导数。

- 常数函数的导数为0,即 d/dx(c) = 0,其中c为常数。

- 幂函数的导数为 n * x^(n-1),即 d/dx(x^n) = n * x^(n-1),其中n为实数。

- 指数函数的导数为 e^x,即 d/dx(e^x) = e^x。

- 对数函数的导数为 1/x,即 d/dx(ln(x)) = 1/x。

- 三角函数的导数为余函数,即 d/dx(sin(x)) = cos(x),d/dx(cos(x)) = -sin(x),d/dx(tan(x)) = sec^2(x),其中sec为余割函数。

2. 乘法法则乘法法则用于求导两个函数相乘的结果的导数。

- 若y = f(x) * g(x),则dy/dx = f'(x) * g(x) + f(x) * g'(x)。

3. 除法法则除法法则用于求导两个函数相除的结果的导数。

- 若y = f(x) / g(x),则dy/dx = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2。

4. 链式法则链式法则用于求导复合函数的结果的导数。

- 若y = f(g(x)),则dy/dx = f'(g(x)) * g'(x)。

5. 加法法则加法法则用于求导两个函数相加的结果的导数。

- 若y = f(x) + g(x),则dy/dx = f'(x) + g'(x)。

6. 减法法则减法法则用于求导两个函数相减的结果的导数。

- 若y = f(x) - g(x),则dy/dx = f'(x) - g'(x)。

7. 幂的导数公式幂的导数公式用于求导幂函数。

- 若y = x^r,其中r为实数,则dy/dx = r * x^(r-1)。

8. 指数函数的导数公式指数函数的导数公式用于求导指数函数。

16个基本导数公式

16个基本导数公式

16个基本导数公式
1、恒等公式:若y=f(x),则`dy/dx=f'(x)=1`
2、变量链法:若y=f(u),u=g(x),则
`dy/dx=dy/du*du/dx=f'(u)*g'(x)`
3、复合函数:若y=f(g(x)),则
`dy/dx=f'(g(x))*g'(x)`
4、指数函数:若y=a^x,a>0,a!= 1,则`dy/dx=a^x ln a`
5、对数函数:若y=ln x,则`dy/dx=1/x`
6、三角函数:若y=sinx,则`dy/dx=cosx`
7、反三角函数:若y=arcsinx,则`dy/dx=1/sqrt(1-x^2)`
8、双曲函数:若y=sinhx,则`dy/dx=coshx`
9、反双曲函数:若y=arccoshx,则
`dy/dx=1/sqrt(x^2-1)`
10、椭圆函数:若y=coshx,则`dy/dx=sinhx`
11、反椭圆函数:若y=arctanhx,则`dy/dx=1/(1-
x^2)`
12、幂函数:若y=x^n,n不等于 0,则
`dy/dx=nx^(n-1)`
13、指数型函数:若y=k(x-a)^n,n不等于 0,则`dy/dx=nk(x-a)^(n-1)`
14、指数形式函数:若y=ae^(bx+c),则
`dy/dx=abe^(bx+c)`
15、对数型函数:若y=k(lnx+a)^n,n不等于 0,则`dy/dx=nk(lnx+a)^(n-1)/x`
16、对数形式函数:若y=ae^(bx)lnx+c,则
`dy/dx=ae^(bx)(b+1/x)`。

导数的基本公式与运算法则

导数的基本公式与运算法则

导数的基本公式与运算法则导数是微积分中的一个重要概念,它描述了函数在其中一点附近的变化率。

在计算导数时,有一些基本公式和运算法则可以帮助我们简化计算过程。

一、基本公式1.常数函数的导数公式对于常数函数f(x)=C,其中C是一个常数,其导数为f'(x)=0。

这是因为常数函数在任何点处的斜率都为0,所以其导数为0。

2.幂函数的导数公式对于幂函数f(x) = x^n,其中n是一个实数,其导数为f'(x) =nx^(n-1)。

这个公式可以通过使用极限定义来证明。

3.指数函数的导数公式对于指数函数f(x) = a^x,其中a是一个正实数且a≠1,其导数为f'(x) = ln(a) * a^x。

这个公式可以通过使用极限定义和指数函数的性质来证明。

4.对数函数的导数公式对于对数函数f(x) = log_a(x),其中a是一个正实数且a≠1,其导数为f'(x) = 1 / (x * ln(a))。

这个公式可以通过使用极限定义和对数函数的性质来证明。

5.三角函数的导数公式对于三角函数sin(x),cos(x),tan(x),cot(x),sec(x),csc(x)以及它们的反函数,它们的导数公式如下:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)cot'(x) = -csc^2(x)sec'(x) = sec(x) * tan(x)csc'(x) = -csc(x) * cot(x)这些公式可以通过使用极限定义和三角函数的性质来证明。

二、运算法则1.和差法则如果两个函数f(x)和g(x)都可导,那么它们的和(或差)的导数等于它们的导数之和(或差):(f(x)±g(x))'=f'(x)±g'(x)2.积法则如果两个函数f(x)和g(x)都可导,那么它们的乘积的导数等于第一个函数乘以第二个函数的导数再加上第二个函数乘以第一个函数的导数:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)3.商法则如果两个函数f(x)和g(x)都可导,且g(x)≠0,那么它们的商的导数等于第一个函数乘以第二个函数的导数减去第二个函数乘以第一个函数的导数,再除以第二个函数的平方:(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^24.复合函数的导数如果函数f(x)和g(x)都可导,那么复合函数f(g(x))的导数等于f'(g(x))乘以g'(x):(f(g(x)))'=f'(g(x))*g'(x)这些基本公式和运算法则是在计算导数时非常有用的工具,它们能够帮助我们简化计算过程并得到准确的结果。

导数的基本公式表

导数的基本公式表

导数的基本公式表导数是微积分中的重要概念,用于描述函数在某点处的变化率。

导数的基本公式是求导的重要工具,下面是导数的基本公式表及其相关参考内容。

1. 基本导数公式:(1) 常数函数导数公式:f(x) = c ,其中 c 为常数,导数为 f'(x) = 0 。

(2) 幂函数导数公式:f(x) = x^n ,其中 n 为常数,导数为 f'(x) = nx^(n-1) 。

(3) 指数函数导数公式:f(x) = a^x ,其中 a 为常数,导数为f'(x) = ln(a)·a^x 。

(4) 对数函数导数公式:f(x) = log_a(x) ,其中 a 为常数,导数为 f'(x) = 1/(ln(a)·x) 。

(5) 三角函数导数公式:正弦函数导数公式:f(x) = sin(x) ,导数为 f'(x) = cos(x) 。

余弦函数导数公式:f(x) = cos(x) ,导数为 f'(x) = -sin(x) 。

正切函数导数公式:f(x) = tan(x) ,导数为 f'(x) = sec^2(x) 。

2. 基本导数法则:(1) 基本求导法则:常数倍法则:[c·f(x)]' = c·f'(x) ,其中 c 为常数。

和差法则:[f(x)±g(x)]' = f'(x)±g'(x) 。

乘法法则:[f(x)·g(x)]' = f'(x)·g(x) + f(x)·g'(x) 。

除法法则:[f(x)/g(x)]' = [f'(x)·g(x) - f(x)·g'(x)]/g^2(x) ,其中g(x) ≠ 0 。

(2) 链式法则:若 y = f(g(x)) ,则 y' = f'(g(x))·g'(x) 。

求导公式总结

求导公式总结

求导公式总结
求导公式是微积分中非常重要的一部分,它们可以用于计算函数的导数,帮助我们解决各种问题。

以下是一些常用的求导公式:
1. 常数函数的导数为0
2. 幂函数的导数为其指数乘以系数,即f(x)=ax^n,则
f'(x)=anx^(n-1)
3. 指数函数的导数为其自身乘以常数,即f(x)=a^x,则
f'(x)=a^x * ln(a)
4. 对数函数的导数为其自变量的倒数,即f(x)=ln(x),则
f'(x)=1/x
5. 三角函数的导数为其导数的周期性函数,即f(x)=sin(x),则f'(x)=cos(x),f(x)=cos(x),则f'(x)=-sin(x)
6. 反三角函数的导数为其导函数的形式,即f(x)=arcsin(x),则f'(x)=1/√(1-x^2)
这些公式只是求导公式中的一小部分,但它们是最基本和最常用的公式之一。

理解和熟练掌握这些公式可以帮助我们更好地解决各种求导问题。

- 1 -。

导数的运算公式

导数的运算公式

导数的运算公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x运算法则减法法则:(f(x)-g(x))'=f'(x)-g'(x)加法法则:(f(x)+g(x))'=f'(x)+g'(x)乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2根据导数定义证明数学导数运算法则由基本函数的和、差、积、商或互复合而成的函数的导函数,可由函数的求导法则推出。

的基本推导规则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4.如果有复合函数,则用链式法则求导。

导数的计算方法函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点p0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

根据导数的定义,利用变化率的极限,可以计算出已知函数的导函数。

在实际计算中,最常见的解析函数可以看作是一些简单函数的和、差、积、商或复合结果。

只要知道这些简单函数的导函数,就可以根据求导法则计算更复杂函数的导函数。

常用函数导数公式大全

常用函数导数公式大全

常用函数导数公式大全
导数是微积分中的重要基础概念,用于描述函数在某一点处的变化率。

常用函数的导数公式如下:
1. 常数函数的导数为零。

2. x 的幂函数的导数:y" = yx(x-1)。

3. 指数函数的导数:y" = eax。

4. 对数函数的导数:y" = loga(ex)。

5. 三角函数的导数:
- 正弦函数的导数:y" = cosx。

- 余弦函数的导数:y" = -sinx。

- 正切函数的导数:y" = tanx。

- 余切函数的导数:y" = cotx。

6. 反三角函数的导数:
- 反正弦函数的导数:y" = -cosx。

- 反余弦函数的导数:y" = sinx。

- 反正切函数的导数:y" = -tanx。

- 反余切函数的导数:y" = cotx。

7. 双曲函数的导数:y" = -(abx^2 + 2acy + cy^2)。

8. 反双曲函数的导数:y" = ab(bx^2 - 2acy + cy^2) + 2abcdy。

9. 幂函数的导数:y" = yx^(x-1)。

10. 递归函数的导数:y" = f(x, y) - f(x-1, y)。

这些导数公式只是部分常用函数的导数,还有许多其他函数的导
数公式。

在实际应用中,需要根据具体情况选择适合的函数,并计算出其导数。

高中导数的基本公式14个

高中导数的基本公式14个

高中导数的基本公式14个
高中导数的基本公式是高中数学中需要掌握的基本内容之一,系统
性地掌握这些公式,可以帮助我们更加深入地理解导数的本质和应用。

下面是高中导数的基本公式列表:
一、导数的定义公式
导数的定义公式是利用导数的极限定义来计算导数,公式如下:
f’(x)=lim┬(Δx→0)⁡〖(f(x+Δx)-f(x))/Δx 〗
二、基本导数公式
基本导数公式是我们在计算导数时最基本的公式,它们是:
1.常数函数的导数
(k)’=0
2.幂函数的导数
(x^n)’=n*x^(n-1)
3.指数函数的导数
(a^x)’=a^xlna
4.对数函数的导数
log⁡(a,x)’=1/(xlna)
5.三角函数的导数
sinx’=cosx,cosx’=-sinx,tanx’=sec^2x
三、导数的四则运算公式
导数的四则运算公式是指导数在加减乘除中的运算规则,具体如下:
1.和的导数
(f+g)’=f’+g’
2.差的导数
(f-g)’=f’-g’
3.积的导数
(f*g)’=f’g+fg’
4.商的导数
(f/g)’=(f’g-fg’)/g^2
四、复合函数的导数
复合函数的导数是指由两个简单函数组成的函数对导数的求解,具体如下:
设y=f(u),u=g(x),则y=f(g(x)),则y对x的导数为:
dy/dx=f′(u)·g′(x)
以上就是高中导数的基本公式,自己多加练习,掌握这些公式,将有助于你更加深入地理解导数的本质和应用。

数学 24个基本求导公式 常见导数公式 简介

数学 24个基本求导公式 常见导数公式 简介

数学 24个基本求导公式常见导数公式简介目录1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]2、f(x)=a的导数, f'(x)=0, a为常数3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数5、f(x)=a^x的导数, f'(x)=a^xlna, a>0且a不等于16、f(x)=e^x的导数, f'(x)=e^x7、f(x)=log_a x的导数, f'(x)=1/(xlna), a>0且a不等于18、f(x)=lnx的导数, f'(x)=1/x9、(sinx)'=cosx10、(cosx)'=-sinx11、(tanx)'=(secx)^212、(cotx)'=-(cscx)^213、(secx)'=secxtanx14、(cscx)'=-cscxcotx15、(arcsinx)'=1/根号(1-x^2)16、(arccosx)'=-1/根号(1-x^2)17、(arctanx)'=1/(1+x^2)18、(arccotx)'=-1/(1+x^2)19、(f+g)'=f'+g'20、(f-g)'=f'-g'21、(fg)'=f'g+fg'22、(f/g)'=(f'g-fg')/g^223、(1/f)'=-f'/f^224、(f^(-1)(x))'=1/f'(y)常见导数公式四个基本的导数公式可以分为三类。

第一类是导数的定义公式,即差商极限。

然后由这个公式推导出17个基本初等函数的求导公式,这就是第二类。

求导公式运算法则

求导公式运算法则

求导公式运算法则
运算法则是:加(减)法则,[f(x)+g(x)]'=f(x)'+g(x)';乘法法则,[f(x)*g(x)]'=f(x)'*g (x)+g(x)'*f(x);除法法则,[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

导数也叫导函数值,又名微商,是微积分中的重要基础概念。

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。

求导运算法则是:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)';乘法法则:[f(x)*g(x)]'=f(x)'*g (x)+g(x)'*f(x);除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

然而,可导的函数一定连续;不连续的函数一定不可导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数公式一、基本初等函数的导数公式已知函数:(1)y =f (x )=c ;(2)y =f (x )=x ;(3)y =f (x )=x 2;(4)y =f (x )=1x ;(5)y =f (x )=x .问题:上述函数的导数是什么?提示:(1)∵Δy Δx =f (x +Δx )-f (x )Δx =c -c Δx =0,∴y ′=lim Δx →0 ΔyΔx =0.2)(x )′=1,(3)(x 2)′=2x ,(4)⎝ ⎛⎭⎪⎫1x ′=-1x 2,(5)(x )′=12x.函数(2)(3)(5)均可表示为y =x α(α∈Q *)的形式,其导数有何规律?提示:∵(2)(x )′=1·x 1-1,(3)(x 2)′=2·x 2-1,(5)(x )′=(x 12)′=12x112-=12x,∴(x α)′=αx α-1.基本初等函数的导数公式二、导数运算法则已知f (x )=x ,g (x )=1x .问题1:f (x ),g (x )的导数分别是什么?问题2:试求Q (x )=x +1x ,H (x )=x -1x 的导数. 提示:∵Δy =(x +Δx )+1x +Δx -⎝ ⎛⎭⎪⎫x +1x =Δx +-Δx x (x +Δx ),∴Δy Δx =1-1x (x +Δx ),∴Q ′(x )=lim Δx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤1-1x (x +Δx )=1-1x 2.同理H ′(x )=1+1x 2.问题3:Q (x ),H (x )的导数与f (x ),g (x )的导数有何关系?提示:Q (x )的导数等于f (x ),g (x )导数的和,H (x )的导数等于f (x ),g (x )导数的差. 导数运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ) 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ) 3.⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0)题型一 利用导数公式直接求导[例1] 求下列函数的导数:(1)y =10x ;(2)y =lg x ;(3)x y 21log =;(4)y =4x 3;(5)12cos 2sin 2-⎪⎭⎫ ⎝⎛+=x x y .[解] (1)y ′=(10x )′=10x ln 10;(2)y ′=(lg x )′=1x ln 10;(3)y ′=1x ln 12=-1x ln 2;(4)y ′=(4x 3)′=344x;(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1=sin 2x 2+2sin x 2cos x 2+cos 2x2-1=sin x ,∴y ′=(sin x )′=cos x .练习 求下列函数的导数:(1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x ;(3)y =lg 5;(4)y =3lg 3x ;(5)y =2cos 2x 2-1.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x ln 1e =-1e x =-e -x ;(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110xln 110=-ln 1010x =-10-x ln 10;(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0;(4)∵y =3lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10;(5)∵y =2cos 2x 2-1=cos x ,∴y ′=(cos x )′=-sin x .题型二 利用导数的运算法则求函数的导数 [例2] 求下列函数的导数:(1)y =x 3·e x;(2)y =x -sin x 2cos x 2;(3)y =x 2+log 3x ;(4)y =e x +1e x -1.[解] (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12sin x ,∴y ′=x ′-12(sin x )′=1-12cos x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3.(4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x(e x -1)2=-2e x(e x -1)2.练习 求下列函数的导数:(1)y =cos x x ;(2)y =x sin x +x ;(3)y =1+x 1-x +1-x 1+x ;(4)y =lg x -1x 2.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.(2)y ′=(x sin x )′+(x )′=sin x +x cos x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2. (4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3.题型三 导数几何意义的应用[例3] (1)曲线y =-5e x +3在点(0,-2)处的切线方程为________. (2)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________.[解析] (1)y ′=-5e x ,∴所求曲线的切线斜率k =y ′|x =0=-5e 0=-5,∴切线方程为y -(-2)=-5(x -0),即5x +y +2=0.(2)设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).(1)5x +y +2=0 (2)(2,1) 练习 若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =________.解析:f ′(x )=-a sin x ,g ′(x )=2x +b ,∵曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线, ∴f (0)=a =g (0)=1,且f ′(0)=0=g ′(0)=b ,∴a +b =1.答案:11.切线方程的求法[典例] 已知a ∈R ,函数f (x )=x 3-3x 2+3ax -3a +3,求曲线y =f (x )在点(1,f (1))处的切线方程.[解] 由已知得f ′(x )=3x 2-6x +3a ,故f ′(1)=3-6+3a =3a -3, 且f (1)=1-3+3a -3a +3=1.故所求切线方程为y -1=(3a -3)(x -1),即3(a -1)x -y +4-3a =0.一、已知斜率,求切线方程.此类问题可以设出切点,利用导数与已知直线的斜率关系来确定切点,进而求出切线方程.例:求与直线x+4y+1=0垂直的曲线f(x)=2x2-1的切线方程.解:所求切线与直线x+4y+1=0垂直,所以所求切线的斜率k=4.设切点坐标为(x0,y0),则f′(x0)=4x0=4,即x0=1.所以切点坐标为(1,1).故所求切线方程为y-1=4(x-1),即4x-y-3=0.二、已知过曲线上一点,求切线方程.过曲线上一点的切线,该点不一定是切点,故应先设出切点,再利用该点在切线上来确定切点,进而求出切线方程.例:求过曲线f(x)=x3-2x上的点(1,-1)的切线方程.解:设切点坐标为(x0,y0),因为f′(x)=3x2-2,所以f′(x0)=3x20-2,且y0=f(x0)=x30-2x0.所以切线方程为y-y0=(3x20-2)(x-x0),即y-(x30-2x0)=(3x20-2)(x-x0).因为切线过点(1,-1),故-1-(x30-2x0)=(3x20-2)·(1-x0)即2x30-3x20+1=0,解得x0=1或x0=-1 2,故所求切线方程为x-y-2=0或5x+4y-1=0.三、已知过曲线外一点,求切线方程.这一题型要设出切点,再利用斜率公式及导数的几何意义列方程求出切点,从而求出切线方程.例:已知函数f(x)=x3-3x,过点A(0,16)作曲线y=f(x)的切线,求切线方程.解:由题意知点A(0,16)不在曲线f(x)=x3-3x上,设切点坐标为M(x0,y0).则f′(x0)=3x20-3,故切线方程为y -y 0=3(x 20-1)(x -x 0). 又点A (0,16)在切线上,所以16-(x 30-3x 0)=3(x 20-1)(0-x 0),化简得x 30=-8,解得x 0=-2,即切点为M (-2,-2),故切线方程为9x -y +16=0.课后练习1.给出下列结论:①(cos x )′=sin x ; ②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ; ④⎝ ⎛⎭⎪⎫-1x ′=12x x .其中正确的个数是( )A .0B .1C .2D .3解析: (cos x )′=-sin x ,所以①错误;sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误;⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x -3,所以③错误; ⎝⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x12-x=12x32-=12x x, 所以④正确.答案:B2.函数y =sin x ·cos x 的导数是( )A .y ′=cos 2x +sin 2xB .y ′=cos 2x -sin 2xC .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析: y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 3.若f (x )=(2x +a )2,且f ′(2)=20,则a =________.解析:f (x )=4x 2+4ax +a 2,∵f ′(x )=8x +4a ,∴f ′(2)=16+4a =20,∴a =1.答案:14.已知曲线y =x 4+ax 2+1在点(-1,a +2)处切线的斜率为8,则a =________.解析:y ′=4x 3+2ax ,因为曲线在点(-1,a +2)处切线的斜率为8,所以y ′|x =-1=-4-2a =8,解得a =-6.答案:-6 5.求下列函数的导数: (1)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(2)y =1+cos xx 2; (3)y =(4x -x )(e x +1).解:(1)∵y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3=x 3+1+1x 2,∴y ′=3x 2-2x 3.(2)y ′=(1+cos x )′·x 2-(1+cos x )(x 2)′x 4=-x sin x -2cos x -2x 3.(3)法一:∵y =(4x -x )(e x +1)=4x e x +4x -x e x -x ,∴y ′=(4x e x +4x -x e x -x )′=(4x )′e x +4x (e x )′+(4x )′-[x ′e x +x (e x )′]-x ′=e x 4x ln 4+4x e x +4x ln 4-e x -x e x -1=e x (4x ln 4+4x -1-x )+4x ln 4-1.法二:y ′=(4x -x )′(e x +1)+(4x -x )(e x +1)′=(4x ln 4-1)(e x +1)+(4x -x )e x =e x (4x ln 4+4x -1-x )+4x ln 4-1.。

相关文档
最新文档