大学水文分析及计算课程设计报告
水文分析与水利计算课程设计报告
水文分析与水利计算课程设计报告姓名:李瑶学号:20087007专业:水文班级:08级2班一、设计资料1水库概况黄沙水库是以蓄水灌溉为主,兼有发电、防洪效益的中型水库。
库区处于半山地半丘陵地带,以砂壤土为主,水库坝址以上集雨面积78.0km2,干流河长14.6km,平均坡降0.026。
根据《防洪标准GB50201—94》及《水利水电工程等级划分及洪水标准SL252—2000》规定,该水库属中型水库工程,工程等别为三等,正常运用洪水标准取为50年一遇(P=2%),非常运用洪水标准为1000年一遇(P=0.1%),主要建筑物级别为3级。
别为三等,主要建筑物等级为3级,水库设计洪水标准50年一遇,校核洪水标准1000年一遇。
2水文气象水库流域处于北回归线以南,属亚热带季风型气候,一年四季阳光充足,雨量丰沛。
历年平均气温21.56℃,最高气温是6、7、8月份,且最热是7月份,月平均气温28.3℃,极端最高气温38.2℃(1990年8月17日)。
流域降雨水气主要来自孟加拉湾、太平洋和南海,前汛期西南季风带来丰沛的水汽,与南下的冷空气相遇,形成降水;后汛期太平洋及南海生成的台风带来大量水汽,形成台风雨,如与冷空气相遇,常形成大暴雨。
降水季节性差别十分明显,主要集中在汛期,4~9月占全年降水的78~83%,且暴雨频繁。
据水库站1961~2002年雨量资料统计,多年平均降雨量1900.1mm,最大年雨量2395.8mm (1965年),最小年雨量1254.4mm(1963年)。
多年平均蒸发量为1471mm,一般7、8月蒸发量较大,1~2月份的蒸发量较小,一般相差比例为3~4倍。
区域内受台风影响的范围与台风登陆路径有关,其中以在台山一带登陆影响最大,一般发生在每年的5~10月份。
3、暴雨参数最大三天雨型最大24小时雨型二、计算过程F=78k ㎡ L=14.6㎞ I=0.026 f=4.328 m=1.25 1、洪峰流量的计算P=1%时, %1,1h X =52×(0.35×3.165+1)=109.6%1S =97.11%1,6h X =100×(0.45×3.374+1)=251.83 %1,6'h X =0.936×X6,1%=235.71n=0.505m Q =0.278(S1%/505.0τ-4.328)×78τ=0.278L/m 3/1I 4/1m Q =10.96/4/1m Qm Q =628.412626.0m Q -93.85因为m Q 不活超过87375.0/14.628=1594.26 迭代过程如下m Q =14863m /sτ=1.77c t =117.6>τ,解算正确P=10%时, %10,1h X =52×(0.35×1.3405+1)=76.40 %10,1'h X =67.69 %10S =67.69%10,6h X =100(0.45×1.33+1)=159.85 %10,6'h X =149.62 n=0.560m Q =0.278(%10S /56.0τ-4.328)×78τ=0.278L/m 3/1I 4/1m Q =10.96/4/1m Qm Q =348.0314.0mQ -93.85因为m Q 不会超过1011.76,迭代如下m Q =901.733m /s τ=2.00c t =31.32>τ,解算正确 2、设计净雨量和各时段洪水总量的计算 P=1%时 %1,6'h X =235.71 %1,24h X =464.12 %1,24'h X =448.37%1,72h X =660.52 %1,72'h X =644.67P=10%时,%10,6'h X =149.6 %10,24h X =282.29 %10,24'h X =272.13 %10,72h X =390.14 %10,72'h X =380.183、概化过程线4、结论有的出来的数据可以看出P的取值直接影响值,从而影响p X,pS和n的大小,P取值增大,p X增大,p S减小,n增大,洪峰流量m Q p减小。
水文分析实验报告精选全文完整版
可编辑修改精选全文完整版水文分析实验报告一、实验目的1.理解基于DEM 数据进行水文分析的基本原理。
2.掌握利用ArcGIS 的提供的水文分析工具进行水文分析的基本方法和步骤。
3.利用DEM首先尝试计算水流方向,判别洼地并进行填充。
4.计算水流方向,然后计算累计流量。
二、实验原理1.水文分析使用DEM 数据派生其它水文特征2.提取河流网络、自动划分流域。
这些是描述某一地区水文特征的重要因素。
3.数据基础:无洼地的DEM,被较高高程区域围绕的洼地是进行水文分析的一大障碍,因此在确定水流方向以前,必须先将洼地填充。
4.通过填充洼地(Fill Sinks)得到无洼地的DEM三、实验内容运用水文分析工具(Hydrology Modeling),对实验数据:某地区1:5 万DEM 数据进行水文分析,其实验内容为:1. 获取数据基础:无洼地的DEM2. 关键步骤:流向分析3. 计算流水累积量4. 提取河流网络5.盆域分析四、实验步骤1. 获取数据基础:无洼地的DEM在ArcMap 中加载DEM 数据,2. 关键步骤:流向分析在上一步的基础上进行,执行工具条[ arc tool book]中的菜单命令[ 水文分析]>>[ 流向],在出现的对话框中将参数指定为“Fill dem2”确定后得到流向栅格,了解流向栅格单元的数值表示的含义是什么3. 计算流水累积量在上一步的基础上进行,执行工具条中的菜单命令,在出现的对话框中将参数指定为确定后得到流水累积量栅格4. 提取河流网络(1) 提取河流网络栅格:在上一步的基础上进行,打开,运行工具在中输入公式说明:通过此操作将流水累积量栅格中栅格单元值(流水累积量)大于800 的栅格赋值为1,从而得到河流网络栅格得到的的河流网络栅格:rastercalc关闭除[rastercalc]之外的其它图层(2) 提取河流网络矢量数据在上一步的基础上进行,执行工具条[Hydrology Modeling] 中的菜单命令[ Hydrology ]>>[ Stream Network As Feature ],在出现的对话框中将[Direction Raster]参数指定为“Flow Dir-fill 1”,[Accumulation Raster]参数指定为“rastercalc”,确定后得到河流网络矢量数据(3) 平滑处理河流网络打开[编辑器]工具栏,执行工具栏中的命令[编辑器]>>[开始编辑],确保目标图层为河流网络图层[Shape1], 通过打开[Shape1 属性表,并选择属性表的所有行选择图层[Shape1]中的所有要素,也可以通过要素选择按钮选择图层中所有要素执行[编辑器]工具栏中的命令[编辑器]>>[更多的编辑工具]>>[高级编辑]打开工具条:[高级编辑],点击其上的[平滑]按钮(下图中前头所指):在[平滑]处理对话框中输入参数[允许最大偏移]:3得到平滑后的河流网络矢量图层,执行命令: [编辑器]>>[停止编辑],保存所做修改。
工程水文与水利计算课程设计
工程水文与水利计算课程设计
在课程设计中,学生需要通过理论学习和案例分析,全面了解和掌握
水文学和水利计算的基本原理和方法,同时还需要具备编程和计算能力,
能够运用计算机软件进行水文数据的处理和水利计算的分析。
在设计课程中,可以分为以下几个步骤:
第一步,了解水文数据的处理方法。
水文数据包括降雨、径流和蒸散
发等,学生需要学会如何获取和整理水文数据,如何进行数据质量的评估
和处理。
第二步,学习水文计算的基本原理和方法。
这包括水文过程的模拟与
预报、水力学计算和水文统计学等。
学生需要通过理论学习和实例分析,
掌握水文计算的基本原理和方法。
第三步,学习水利计算的基本原理和方法。
水利计算是指在水利工程
设计中,对水流、水位、水库及渠道的水力条件进行计算。
学生需要学习
水利计算的基本原理和常用的计算方法,如渠道流量计算、堤坝稳定性计
算等。
第四步,运用计算机软件进行水文和水利计算的实践。
在这一步骤中,学生需要学会使用计算机软件进行水文数据的处理和水利计算的分析。
常
用的软件包括E某cel、Matlab和SWMM等。
第五步,进行课程设计的实践。
学生可以选择一个具体的水利工程设
计实例,运用所学的知识和方法,进行水文数据的处理和水利计算的分析。
通过实践,学生可以巩固所学的理论知识,提高实际操作能力。
通过以上的课程设计,学生可以全面掌握工程水文与水利计算的理论和实践,培养学生的水文数据处理和水利计算的能力,提高他们在水利工程领域的应用能力。
这对于培养具有工程实践能力的水利工程专业人才具有重要意义。
水文分析计算课程设计
《水文分析与计算》课程设计指导书———设计年径流及设计洪水的计算一、课程设计的目的1.掌握PIII型频率曲线的制作方法2. 掌握设计年径流及其年内分配的计算方法3.掌握考虑历史特大洪水的设计洪水及其过程的计算方法二、课程设计任务1.根据所给资料推求设计年径流与设计年内分配过程表1是某站1958~1976年各月径流量资料,根据所给资料推求P=10%的设计丰水年、P=50%的设计平水年、P=90%的设计枯水年的设计年径流量;并计算P=90%的设计枯水年径流年内分配过程。
要求:理论频率曲线采用PIII型分布,由矩法作参数无偏估计,并以估计值为初值,用目估适线法选配理想的理论频率曲线,注意比较验证均值X a、变差系数C V、偏态系数C S对频率曲线的影响效果。
检查所选最终的理论频率曲线的合理性,并计算所求设计频率的相应设计年径流,年径流分配过程采用典型年同倍比放大法。
3三、课程设计成果要求要求提交设计成果:一份电子文档,一份打印文档。
设计中的计算可采用采用excel 或编程计算,编程语言可采用FORTRAN 语言、C 语言、Basic 语言或同等功能的语言编程。
要求程序正确、可靠、可运行,符合结构化程序设计思想,具有易读性、可修改性、可验证性、通用性,关键变量应作注释说明。
计算结果要表格化,便于检查、保存和打印。
设计设计报告,其重点是对计算成果的说明和合理性分析及其有关问题的讨论。
要求文字流畅,简明扼要;图表整齐清楚,名称、编号齐全;封面统一,最后装订成册。
四、课程设计的考核平日考勤、设计报告,加上抽查提问及上机操作,对成绩进行综合评定。
五、课程设计时间与地点时间: 2013年5月9日星期四 地点: 学院六、实验原理1.经验频率计算经验频率:P=m/(n+1)*100%,模比系数:Q Q Ki i = 2.线型选择频率曲线一般应采用皮尔逊Ⅲ型。
3.频率曲线参数估计平均值:n1∑==ni iQQ变差系数:()1n 112--=∑=ni iv K C4.偏态系数:Cs=2-3Cv七、实验步骤1、将测站所得数据年份及年平均流量数据复制与Excel 表格中,并列出序号,同时计算出年平均流量的均值。
水文分析与计算课设报告
课 程 设 计 报 告课程名称 水文分析计算学 院资源环境学院学生姓名王莲专 业水文与水资源工程学号222101*********年 级2010 级指导教师靳军英一、根据所给资料推求设计年径流与设计年内分配过程1. 点绘经验频率曲线如表1-1将原始资料按由大到小次序排列,用公式P=m/(n+1)*100%算出经验频率,再求出模比系数Ki=Xi/X,以及Ki-1,(Ki-1)^2。
表1-12. 按无偏估计公式计算统计参数1)年最大洪峰流量的均值Qa=∑Qi/n=10.97m3/s2)变差系数Cv=√【{∑(Ki-1)^2}/(n-1)】=0.31均值SUM((Ki-1)^2)Cv3. 选取理论频率曲线1)Qa=10.97m3/s,取Cv=0.3,并假定Cs=2Cv=0.6,查离势系数表得出相应于不同频率P的※p 值,在得出相应的Qp=Xp*(1+Cv*Φp)值。
理论频率曲线1为蓝色曲线,曲线的中部于经验频率点据配合较好,而理论频率曲线的头部位于经验频率点据的下方而尾部又位于经验频率点据的上方。
2)改变参数,重新配线。
增大Cv值,随着Cv的增大,频率曲线的偏离程度也随之增大,显得越来越陡。
现取Cv=0.325Cs=2Cv=0.65 。
再次计算理论频率曲线,得到红色的第二条理论频率曲线,由于经验点频率据配合较好,即作为采用的理论频率曲线。
表1-24. 推求P=10%的设计丰水年、P=50%的设计平水年、P=90%的设计枯水年的设计年径流量;并计算P=90%的设计枯水年径流年内分配过程。
1)由图可知,查P=10%、P=50%、P=90%的最大流量分别为:P=10% Q=16.08m3/sP=50% Q=10.56m3/sP=90% Q=6.39m3/s2)设计年径流年内分配过程①代表年的选取P=90%的设计枯水年Q=6.39 m3/s,与之相近枯水年年平均流量的实际年份有1959~1960 年 Q=7.78m3/s;1963~1964年Q=4.73m3/s;1964~1965年Q=7.87 m3/s;1971~1972年Q=7.24 m3/s考虑分配不利,即枯水期水量较枯。
昆明理工大学水文分析计算课程设计报告
课程设计任务书课程名称:水文统计及水文分析计算课程设计题目:大跌水水电站径流和洪水分析南安河水库设计洪水计算学院:电力工程学院专业:水文水资源工程年级:2015学生姓名:指导教师:张代青日期:2017.4.25教务处制课程设计任务书电力工程学院学院水文与水资源工程专业2015 年级学生姓名:课程设计题目:大跌水水电站径流和洪水分析、南安河水库设计洪水计算课程设计主要内容:大跌水水电站径流和洪水分析径流分析:依据电站引水口处实测径流资料,进行统计特性分析,绘制频率曲线,确定统计参数、设计代表年年径流量及其年内分配,并作出旬平均流量保证曲线,求得保证出力。
洪水分析:依据电站引水口处实测洪峰流量资料,进行统计特性分析,绘制频率曲线,确定统计参数、设计及校核洪峰流量值。
南安河水库设计洪水计算设计暴雨计算:利用《云南省暴雨径流差算图表》中暴雨区划图及分区综合表,进行设计点暴雨量、面暴雨量及雨型计算,求得设计面暴雨量及其时程分配。
产流计算:利用《云南省暴雨径流差算图表》中产流系数分区图进行产流计算,求得逐时净雨量过程。
汇流计算:利用《云南省暴雨径流差算图表》中汇流系数分区图进行汇流计算,求得瞬时单位线、时段单位线及设计洪水过程。
设计指导教师(签字):教学基层组织负责人(签字):2017年4 月25 日目录课程设计任务书 (I)课程设计任务书 (1)课程设计指导书1 (3)课程设计指导书2 (5)水文统计及水文分析计算课程设计 (7)1-1. 大跌水水电站径流和洪水分析 (7)1-1-1流域概况 (7)1-1-2气象特征 (7)1-1-3 水文资料 (8)1-1-4 其它相关参数 (12)1-2.径流分析 (12)1-2-1 设计年径流及其经验频率计算、统计参数估算 (12)1-2-2 P-Ⅲ曲线计算及绘制 (20)1-2-3 设计代表年年平均流量的确定及典型年的选择 (23)1-2-4典型代表年年内分配计算 (23)1-2-5 旬平均流量保证率计算及曲线绘制 (25)1-2-6设计旬平均流量的确定及保证出力的计算 (26)1-3.洪水分析 (31)1-3-1大跌水电站引水口处洪峰流量资料1.75 (31)1-3-2 洪峰流量经验频率及统计参数估计 (31)1-3-3 洪峰P-Ⅲ曲线计算及绘制 (35)1-3-4设计洪峰流量的确定 (35)1-4 结论 (36)二、南安河水库设计洪水计算 (37)2-1.南安河水库基本资料 (37)2-1-1 基本情况 (37)2-1-2 水库基本资料 (37)2-2.设计暴雨计算 (39)2-2-2 各种历时设计和校核点、面暴雨量计算 (41)2-2-3 设计与校核暴雨雨型计算 (48)2-3.产流计算 (51)2-4.汇流计算 (53)2-4-1 瞬时单位线参数m1、n、k值求取 (54)2-4-2 S(t)曲线计算及一小时时段单位线计算 (54)2-4-3设计和校核洪水过程线计算 (58)2-5结论 (64)课程设计指导书11 课程设计题目大跌水水电站径流和洪水分析(有长期实测径流资料)2 课程设计主要内容(1)径流分析依据电站引水口处实测径流资料进行统计特性分析,绘制频率曲线,确定统计参数、各指定频率、设计代表年的年径流量及其年内分配,并作出旬平均流量和旬平均出力保证率曲线,求出保证出力;(2)洪水分析依据设计流域电站引水口处实测洪峰流量资料,进行统计特性分析,绘制频率曲线,确定各指定频率的年最大洪峰流量。
水文水利分析计算实验报告书
课程设计报告学院资源环境学院学生姓名寇青青专业水文与水资源工程学号 ***************年级 2012级指导教师靳军英老师教务处制表二Ο一五年四月三十日课程名称:水文分析与计算实习周数:1周目录课程设计(一):设计年径流分析计算 (2)一、实验目的: (2)二、实验题目: (2)三、实验过程: (3)1、经验频率的计算和经验点据的绘制 (3)2、理论频率的计算和理论曲线的绘制 (4)3、添加标题和网格线 (8)4、代表年的选择 (8)5、设计年径流年内分配计算 (9)四、实验结果: (10)课程设计(二):考虑历史特大洪水的设计年径流分析计算 (10)一、实验目的: (10)二、实验题目: (10)三、实验过程: (11)1、计算经验频率和绘制经验频率点据 (11)2、计算理论频率和绘制理论频率曲线与经验点据配线 (14)3、独立样本法与统一样本法对经验频率计算的影响分析 (19)四、实验结果: (20)课程设计(三):设计洪水过程线的计算 (20)一、实验目的: (20)二、实验题目: (20)三、实验过程: (21)1、同频率放大法: (21)2、同倍比放大法 (25)3、同频率放大法与同倍比放大法的比较 (28)四、实验结果: (28)课程设计收获与感想 (28)课程设计(一):设计年径流分析计算一、实验目的:1、学习掌握代表年的选取方法;2、学习掌握查询Cs-ΦP-P(%)表,计算不同保证率下的设计径流;3、学习掌握P-III型频率曲线的绘制方法;4、学习掌握设计年径流的分析计算方法;5、学习掌握设计年径流年内分配的计算方法。
二、实验题目:下表是某站1958~1976年各月径流量资料,根据所给资料推求P=20%的设计丰水年、P=50%的设计平水年、P=80%的设计枯水年的设计年径流量;并分别推求P=20%丰水年、P=50%平水年、P=80%枯水年的径流年内分配过程。
要求:理论频率曲线采用PIII型分布,由矩法作参数无偏估计,并以估计值为初值,用目估适线法选配理想的理论频率曲线,注意比较验证均值X a、变差系数C V、偏态系数C S对频率曲线的影响效果。
水文水利计算课程设计报告
⽔⽂⽔利计算课程设计报告《⽔⽂⽔利计算》课程设计报告(⽔⽂与⽔资源⼯程专业)班级姓名指导教师黄红虎⽇期扬州⼤学⽔利科学与⼯程学院⽬录1绪论 (1)1.1题⽬ (1)1.2设计任务 (1)1.3时间安排 (1)1.4流域概况 (1)2⽔⽂⽔利计算过程 (3)2.1设计年径流分析计算 (3)2.1.1 P = 90%的设计年径流量的计算 (3)2.1.2 P = 90%的设计年径流量的年内分配 (4)2.2由流量资料推求设计洪⽔ (4)2.2.1洪量统计时段 (5)2.2.2展延马村站峰量资料 (5)2.2.3马村站峰量系列频率计算 (6)2.2.4 设计洪峰和洪量的移⽤ (7)2.2.5设计洪⽔过程线推求 (8)2.3 由暴⾬资料推求设计洪⽔ (10)2.3.1 统计时段和代表站的确定 (11)2.3.2 代表站设计点暴⾬量的推求 (11)2.3.3 点⾯关系的建⽴ (12)2.3.4设计暴⾬时程分配及设计净⾬过程 (13)2.3.5 设计洪⽔过程 (13)2.3.6 流量与暴⾬推求的设计成果对照分析 (14)3⼼得体会 (16)4参考⽂献 (17)附图: (18)附表: (33)1绪论1.1题⽬亭下以上流域⽔⽂分析计算1.2设计任务为克服剡江下游的洪涝灾害,以及配合其它⼯程解决剡江两岸的灌溉⽤⽔需要,拟在剡江上游亭下站兴建⽔库。
为此需对亭下站上游流域进⾏⽔⽂分析计算,以提供亭下⽔库规划设计所需的⽔⽂数据。
现选定灌溉设计保证率P = 90%,下游地区防洪标准P = 5%;⼤坝防洪:设计标准P = 1%;校核标准P = 0.1%。
根据上述要求本次课程设计的任务是:1、推求P = 90%的设计年径流量及其年内分配;2、⽤流量资料推求P = 1%、P = 0.1%的设计洪⽔;3、⽤暴⾬资料推求P = 1%、P = 0.1%的设计洪⽔。
1.3时间安排表1.3-1时间安排表1.4流域概况亭下⽔库位于浙江省东南沿海奉化县奉化江⼲流剡江上游,坝址在亭下镇处,控制⾯积176平⽅公⾥。
水文水利计算课程设计
水文水利计算课程设计报告书院系:四川水利职业技术学院专业:水文自动化测报技术班级:水文1431姓名:陈波学号:1423116125指导老师:龙贻东设计时间:2015年12月25日某水库设计任务书一、基本情况某河是渭河南岸较大的一级支流,发源于秦岭北麓太白山区,流域面积778.7km2,干流全长51.5km,河道比降1/60~1/70。
流域内林木茂盛,植被良好,水流清澈,水质优良。
该河干流上有一水文站,控制流域面积686 km2。
拟在该河干流上修建一水库,其坝址位于水文站上游1.5公里处,控制流域面积673km2。
该水库将承担着下游和渭河的防洪任务,下游的防洪标准为20年一遇洪水,水库设计标准为100年一遇洪水,校核标准为1000年一遇洪水。
该水库建成后将承担本地区37万亩的农业用水任务和临近城市的供水任务,农业用水的保证率为75%,城市供水的保证率为95%。
二、基本资料1.径流水文站有实测的1951~2000年逐月径流资料,见表1。
2.农业用水根据该灌区的作物组成和灌溉制度,分析计算的灌区不同频率灌溉需水量见表2。
3.城市用水城市供水每年按1.5亿m3计,年内采用均匀供水。
4.水库特性水库库容曲线见图1。
水库死水位已确定为728.0m,泄洪设施为开敞式无闸溢洪道,堰型为曲线型实用堰,断面为矩形,宽度为30米,。
根据本地区气象资料和地质资料,水库月蒸发量和渗漏量分别按当月水库蓄水量的2%和 3.5%计。
5.设计洪水分析资料某水文站历年洪峰流量见表3,典型洪水过程见表4,设计频率洪峰洪量计算成果见表5。
6.水库兴利调节计算分析资料水库的来水资料见表6.三、设计任务1.入库径流特征分析:计算水库年径流频率曲线、确定年径流统计参数及典型年径流的年内分配过程。
(按面积比推算工程地址的径流量)(1)推算时间采用水文年解:将某水文站逐月平均流量表转化为水文年的历年逐月平均流量表(即为将每年的4-12月份与下一年的1-3月份构成一个水文年)见下表转化成水文年后的历年逐月平均流量表(2)确定年径流统计参数、适线分析并求出自己相应学号频率的设计年径流量。
水文分析与水利计算课程设计
⑤ 对还原计算成果,应从单项指标和分项还原水量,上下游、 干支流水量平衡及降雨径流关系等方面检查其合理性。
(三)径流分析计算
1. 径流分析计算的基本要求 径流分析计算应包括下列内容 ① 径流特性分析 ② 人类活动对径流的影响分析及径流还原 ③ 径流资料插补延长 ④ 径流系列代表性分析 ⑤ 年期径流及其时程分配的分析计算 ⑥ 计算成果的合理性检查 径流分析计算应采用天然径流系列,也可采用
径流形成条件基本一致的实测径流系列。
课程设计目的和要求
(二)要求
通过课程设计,掌握水文分析和水利计算的基本 理论和方法。设计结束,提交课程设计说明书一 份,要求手写。要求设计思路正确,结论可靠, 成果质量高。
在设计时应着重理解水利工程设计全过程和各个 环节间的前后联系与配合关系。为此目的,又考 虑到课程设计时间有限,故某些方法、环节可允 许简化,部分资料和某些中间成果可以在同组同 学间相互引用或借用。要求每个学生独立完成。
2. 流域面积等重要特征资料应查明量算所依据地形图的比 例尺和测绘时间必要时应进行复核
3. 水位资料应查明高程系统、水尺零点、水尺位置的变动 情况,并重点复核观测精度较差、断面冲淤变化较大和 受人类活动影响显著的资料。可采用上下游水位相关、 水位过程对照以及本站水位过程的连续性分析等方法进 行复核,必要时应进行现场调查。
4. 流量资料应着重复核测验ห้องสมุดไป่ตู้度较差的资料,主要检查浮 标系数、水面流速系数、借用断面、水位流量关系曲线 等的合理性。可采用历年水位流量关系曲线比较、流量 与水位过程线对照、上下游水量平衡分析等方法进行检 查,必要时应进行对比测验。
[工学]水文 课程设计
[工学]水文课程设计[工学]水文课程设计《水文计算》课程设计任务书天古崖水库水文分析计算太原理工大学水利学院二OO九年二月一、课程设计的性质和意义为了加强学生对基本理论、基本方法的理解和熟悉中小型水利水电工程水文分析与计算,培养学生具有独立分析问题和解决问题的能力,在讲完该门课程内容后,安排1.5周的课程设计,通过进一步的课程设计训练,使学生进一步熟悉和理解水文计算的基本原理和方法,以提高学生综合运用知识的能力。
课程设计又是知识深化、拓宽的重要过程,也是培养学生动手能力、实践能力和分析问题、解决问题的能力重要途径,同是也是实现本专业培养目标的重要手段。
二、课程设计基本要求课程设计是综合性很强的专业能力及技能训练过程,对学生综合素质的提高起着重要的作用。
基本要求如下:1、时间要求:1周;2、任务要求在教师指导下,每位学生独立完成一项给定的课程设计任务,编写出符合综合能力及技能训练要求的设计说明(计算)书以及相关图件。
3、综合能力及技能训练要求在课程设计中,能综合应用本门课及相关课程的知识与技能,分析解决课程设计中的问题,使理论深化,知识系统拓宽,专业能力及技能得到进一步延伸。
通过课程设计,使学生基本学会依据设计任务和所给资料能正确运用所学知识和规范,初步掌握工程水文及水资源的基本理论、基本方法,达到课程设计任务之要求,提高技术报告的编写能力,提高计算机的应用能力。
三、基本资料 1 基本情况(1)自然地理特征岚猗河流域位于山西省西部,东经111°27′~111°52′,北纬38°26′~38 °52′,跨越岚县、岢岚、兴县、五寨、保德等五县,北与保德县朱家川流域相邻,东与汾河流域相望,南与兴县尉汾河流域相连,西以黄河为界。
河流为东西向流向,属于黄河的一级支流。
岚猗河发源于岢岚县境内的饮马池山,流经河口、岢岚及兴县的魏家滩,最后由裴家川汇入黄河。
流域内海拔最高为2222m,位于河源处饮马池山顶;最低为870m,位于流域出口处。
水文分析计算课程设计-2.设计暴雨
2、设计暴雨推求依据良田站控制小流域的特点,本次计算区域设计面降雨首先采用区域综合法计算面设计暴雨量,然后依据暴雨公式计算短历时设计降雨量,并选取典型暴雨同频率放大推求设计暴雨过程。
1. 区域降雨资料检验为推求该区域设计面降雨量,选取吉安、桑庄、寨头与峡江四站降雨检验该区降雨是否选同一总体。
选择四站1957~80年数据(74年出现极值暴雨,不参加检验),对各站数据取自然对数,对转换后数据进行均值与方差检验,各站转换后系列的均值及方差见表2-1。
表2-1 吉安、桑庄、寨头与峡江站最大一日降雨资料取对数转换后的均值与方差项目P吉安P峡江P桑庄P寨头均值X 4.562 4.453 4.519 4.482样本方差0.0980.0970.1460.0711)均值检验选取均值差异最大的吉安站(X 1 )和峡江站(X2)两站进行检验。
假设H : X1 = X2构造统计变量:取α=0.10,查得|tα/2|=1.68>|t|,接受假设H,即可认为吉安、桑庄、寨头与峡江站均值相等。
2)方差检验选取方差差异最大的桑庄站(S1)和寨头站(S2)两站进行检验。
假设H : S 1 = S 2构造统计变量:取α=0.10,查得F1=2.05,F2=0.49。
可认为F2<F<F1,即认为吉安、桑庄、寨头与峡江站方差相等。
综上所述,可认为区域降雨资料来自同一总体,可以进行综合。
2. 频率分析与设计雨量计算对良田站临近区域进行频率分析,分析区域降雨统计参数。
1) 峡江站选取峡江站1953~80年年最大一日降雨数据排频计算,计算时考虑良田站历史(N=80)洪水,将其移植至峡江站进行分析。
由产流模型分析该区域平均稳定下渗率u=4.1mm/h,可计算出地下径流深Rg=4.1*tc。
则直接径流Rs=Xtc-Rg-I,取I=0,得Rs=Xtc-Rg。
根据暴雨公式,即可代换求得直接径流深。
考虑八省一院公式对历史洪峰进行演算,可求得对应一日暴雨量为336.1mm。
水文水利课程设计报告
课程设计报告( 2012—2013 年度第 1 学期)名称:水文水利计算题目:红枫水库设计洪水过程线推求院系:班级:学号:学生姓名:指导教师:设计周数: 1 周成绩:日期:2013年1月4 日一、课程设计的目的与要求1.设计目的1.1.《水文水利计算》是水文水资源工程专业的一门重要专业基础课程,它包括水文分析与计算以及各种水文要素收集、测量和水文资料整编等内容。
它的主要任务是研究和收集各种地表水体的水文要素,把得到的各种水文资料用适当的方法和规定的格式整编成为系统完整的水文资料,并运用这些资料进行设计年径流及设计洪水计算,供国民经济各部门和水利工程建设规划设计等阶段使用。
1.2.该课程的实践性较强,课程设计是实践性教学的重要途径之一。
为了进一步促进学生巩固课本知识,加深对课程内容的消化与吸收,提高学生分析、解决实际问题的能力,并为今后走上工作岗位从事相关的工作打下坚实的基础,进行了这次课程设计。
2.设计要求运用所学的设计洪水计算方面的知识,完成长江流域乌江南岸支流猫跳河梯级红枫水电站的设计洪水计算,推求出满足设计标准和校核标准的设计洪水过程线,为电站规模的确定提供必要的设计资料。
二、基本资料1.水库基本资料1.1流域概况红枫水库所辖猫跳河流域,位于东经105°59′~106°43′,北纬26°09′~26°59′之间。
上游有二源:左源狗桥河,右源羊昌河作为干流,发源于安顺县,两源在红枫汇合后向东北流经清镇、修文和贵阳等县市,于沙坡注入乌江。
河流全长181km,落差549.6m,平均比降3.04‰,流域面积3195km2。
猫跳河流域呈南北向狭长形,介于三岔河与南明河之间,南面以苗岭与珠江水系相隔,分水岭高程在1500m左右。
流域形状呈两头大中间小,中间收缩在红枫附近。
地势自西向东渐减,左岸高于右岸。
全河可分为三段,红枫以上为上游,属浅山丘陵区,沿河两岸多阶地,流域平均高程1327m,干流河长99.5km,河床坡降1.21‰;红枫至百花为中游,由丘陵向山岳过渡,河谷逐渐由宽缓变为窄深,两岸山峰渐高,流域平均高程1295m,干流河长24.lkm,河床坡降2.06‰;百花以下为下游,河流进入高山峡谷,流域平均高程1302m,地形高差达300-400m,两岸多为陡壁,基岩裸露,滩多水急,干流河长57.4km,平均河床坡降7.05‰,猫跳河下游右岸较大支流有李官河、修文河、峡蛤桥河,左岸有羊皮洞等三条暗河汇入。
水文水利计算课程设计报告
《水文水利计算》课程设计报告(水文与水资源工程专业)班级姓名指导教师黄红虎日期扬州大学水利科学与工程学院目录1绪论 (1)1.1题目 (1)1.2设计任务 (1)1.3时间安排 (1)1.4流域概况 (1)2水文水利计算过程 (3)2.1设计年径流分析计算 (3)2.1.1 P = 90%的设计年径流量的计算 (3)2.1.2 P = 90%的设计年径流量的年内分配 (4)2.2由流量资料推求设计洪水 (4)2.2.1洪量统计时段 (5)2.2.2展延马村站峰量资料 (5)2.2.3马村站峰量系列频率计算 (6)2.2.4 设计洪峰和洪量的移用 (7)2.2.5设计洪水过程线推求 (8)2.3 由暴雨资料推求设计洪水 (10)2.3.1 统计时段和代表站的确定 (11)2.3.2 代表站设计点暴雨量的推求 (11)2.3.3 点面关系的建立 (12)2.3.4设计暴雨时程分配及设计净雨过程 (13)2.3.5 设计洪水过程 (13)2.3.6 流量与暴雨推求的设计成果对照分析 (14)3心得体会 (16)4参考文献 (17)附图: (18)附表: (33)1绪论1.1题目亭下以上流域水文分析计算1.2设计任务为克服剡江下游的洪涝灾害,以及配合其它工程解决剡江两岸的灌溉用水需要,拟在剡江上游亭下站兴建水库。
为此需对亭下站上游流域进行水文分析计算,以提供亭下水库规划设计所需的水文数据。
现选定灌溉设计保证率P = 90%,下游地区防洪标准P = 5%;大坝防洪:设计标准P = 1%;校核标准P = 0.1%。
根据上述要求本次课程设计的任务是:1、推求P = 90%的设计年径流量及其年内分配;2、用流量资料推求P = 1%、P = 0.1%的设计洪水;3、用暴雨资料推求P = 1%、P = 0.1%的设计洪水。
1.3时间安排表1.3-1时间安排表1.4流域概况亭下水库位于浙江省东南沿海奉化县奉化江干流剡江上游,坝址在亭下镇处,控制面积176平方公里。
大学水文分析与计算课程设计报告
水文分析计算课程设计报告书学院:水文水资源专业:水文与水资源工程学号:姓名:指导老师:梁忠民、国芳2015年06月12日南京目录1、设计任务 (1)2、流域概况 (1)3、资料情况及计算方案拟定 (1)4、计算步骤及主要成果 (2)4.1 设计暴雨X p(t)计算 (2)4.1.1 区域降雨资料检验 (2)4.1.2 频率分析与设计雨量计算 (3)4.2计算各种历时同频率雨量X t,P (9)4.3 选典型放大推求X P (t) (9)4.4 产汇流计算 (9)4.4.1 径流划分及稳渗μ值率定 (12)4.4.2 地表汇流 (17)4.5 由设计暴雨X P(t)推求Q P(t) (18)4.5.1 产流计算 (18)4.5.2 地面汇流 (18)4.5.3地下汇流计算 (19)4.5.4 设计洪水过程线 (20)5、心得体会 (22)1、设计任务推求良田站设计洪水过程线,本次要求做P校,即推求Q0.01%(t)。
2、流域基本概况良田是赣江的支流站。
良田站以上控制的流域面积仅为44.5km2,属于小流域,如右图所示。
年降水均值在1500~1600mm之,变差系数Cv为0.2,即该地区降雨充沛,年际变化小,地处湿润地区。
暴雨集中。
暴雨多为气旋雨、台风雨,季节为3~8月,暴雨历时为2~3日。
3、资料情况及计算方案拟定3.1资料情况设计站(良田)流量资料缺乏,邻近站雨量资料相对充分,具体如表3-1:表3-1 良田站及邻近地区的实测暴雨系列、历时洪水、特大暴雨资料站名实测暴雨流量系列特大暴雨、历史洪水良田75~78 (4年)Q=216m3/s,N=80(转化成X1日,移置峡江站)峡江53~80 (28年)36~80 (45年)桑庄57~80 (24年)X1日=416mm,N=100~150(74.8.11)寨头57~80 (24年)(设计站(良田)流量资料缺乏,邻近站雨量资料相对充分。
)3.2 方案拟定本次课设采用间接法推求设计洪水,即是由推求的设计暴雨,经过产汇流计算得到设计洪水。
水文水利计算课程设计
水文水利计算课程设计水文水利计算是水利工程中的一个重要方面,它涉及到水文学理论及水文数据分析、水利工程设计及计算等多个方面。
本文将从水文数据的采集与分析、水文模型的建立与应用、水利工程计算等方面对水文水利计算进行探讨。
一、水文数据的采集与分析水文数据是水文水利计算的基础,只有准确、全面的水文数据才能为水利工程的设计与计算提供可靠的依据。
水文数据的采集方式包括定点观测、流量计测量、遥感技术等多种方法,其中定点观测是最为常用的方法。
定点观测需要选取一些代表性河流断面,对这些断面进行长期观测并收集相关数据,如水位、流量、降雨等,以便后续的分析与计算。
水文数据的分析主要包括数据的质量控制、数据的处理与分析等方面,常用的数据处理方法包括平均值法、插值法、回归分析等。
二、水文模型的建立与应用水文模型是指通过对水文过程的描述与分析,建立数学模型以模拟水文过程的变化规律。
常用的水文模型包括降雨径流模型、水文自回归模型、水文单元模型等。
水文模型的建立需要依据实际情况选取合适的模型参数,同时对模型进行优化与验证,以确保模型的准确性与可靠性。
水文模型的应用主要包括洪水预报、水资源评价、水质模拟等方面。
三、水利工程计算水利工程计算是指通过对水文数据与水利工程参数的分析与计算,进行水利工程设计与评估。
常见的水利工程计算包括水库调度优化、河道治理设计、灌溉工程设计等方面。
水利工程计算需要依据实际情况选取合适的计算方法,同时考虑到工程经济性、安全性等因素,以确保工程的可行性与优良性。
水文水利计算是水利工程中的一个重要方面,它涉及到水文学理论及水文数据分析、水利工程设计及计算等多个方面。
水文水利计算的准确性和可靠性直接影响到水利工程的安全性和经济性,因此在实际应用中需要加强对水文数据的采集与分析、水文模型的建立与应用、水利工程计算等方面的研究。
水文计算课设报告
水文计算课程设计报告书姓名班级学号指导老师一、设计任务为江西良田水库提供设计来水系列1.由设计暴雨推求设计(保坝)洪水P=0.1%(P=0.01%)2.PMP计算3.设计年径流计算二、流域基本概况2.1资料良田:赣江支流站,控制面积:44.5Km2(属小流域)其年降水:均值=1500~1600mm ,Cv=0.2(属湿润地区),年际间变化小,暴雨成因:气旋雨、台风雨,暴雨季节:3~8月,暴雨历时:2~3日。
2.2.地图三、资料情况及计算方案拟定3.1.资料情况75图 2 资料情况图3.2.方案拟定(1)“直接法”(直接由良田流量资料推求设计洪水) (2)“间接法”(本次采用)四、设计暴雨XP(t)的计算4.1.方案分析4.1.1良田站为小流域,采用以点代面 4.2.2主要思路根据良田站及临近雨量站资料进行区域设计暴雨计算: X p (t)根据区域内次洪资料建立本区域的产汇流方案4.2.X 1d ,P 的计算4.2.1点雨量的计算方法有三种,本次采用分区综合法中的均值法。
采用均值法应满足同分布假设,即假设区域内各站暴雨同分布(来自同一总体),因此需进行假设检验。
4.2.2同分布检验(1)方差检验22111()m i i s X X m ==-∑=0.14 22211()n i i s X X n ==-∑=0.072122(1)23(231)0.142(1)23(231)0.07m n s F n m s -⨯-⨯===-⨯-⨯由于0.1∂= 则查F 分布表的 0.05(22,22)F =2.039 同时由12211(1,1)0.490(1,1) 2.039Fm n F m n ∂-∂--===-- 所以接受域为(0.490,2.039)则因为F=2在接受域内,故方差检验合格。
(2)均值检验1/21/2221/21/2121111()/()(4.52 4.48)/()23230.409[()/(2)][(230.14230.07)/(23232)]X Y m n F t ms ns m n -+-+====++-⨯+⨯+-接受域22(,)t t ∂∂-由0.052(2)(44)t m n t ∂+-=和0.1∂=查t 分布表得0.05(44) 1.680t =所以接受域为(-1.680,1.680)则因为t=0.409在接受域内,故均值检验合格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水文分析计算课程设计报告书学院:水文水资源专业:水文与水资源工程学号:姓名:指导老师:梁忠民、国芳2015年06月12日南京目录1、设计任务 (1)2、流域概况 (1)3、资料情况及计算方案拟定 (1)4、计算步骤及主要成果 (2)4.1 设计暴雨X p(t)计算 (2)4.1.1 区域降雨资料检验 (2)4.1.2 频率分析与设计雨量计算 (3)4.2计算各种历时同频率雨量X t,P (9)4.3 选典型放大推求X P (t) (9)4.4 产汇流计算 (9)4.4.1 径流划分及稳渗μ值率定 (12)4.4.2 地表汇流 (17)4.5 由设计暴雨X P(t)推求Q P(t) (18)4.5.1 产流计算 (18)4.5.2 地面汇流 (18)4.5.3地下汇流计算 (19)4.5.4 设计洪水过程线 (20)5、心得体会 (22)1、设计任务推求良田站设计洪水过程线,本次要求做P校,即推求Q0.01%(t)。
2、流域基本概况良田是赣江的支流站。
良田站以上控制的流域面积仅为44.5km2,属于小流域,如右图所示。
年降水均值在1500~1600mm之,变差系数Cv为0.2,即该地区降雨充沛,年际变化小,地处湿润地区。
暴雨集中。
暴雨多为气旋雨、台风雨,季节为3~8月,暴雨历时为2~3日。
3、资料情况及计算方案拟定3.1资料情况设计站(良田)流量资料缺乏,邻近站雨量资料相对充分,具体如表3-1:表3-1 良田站及邻近地区的实测暴雨系列、历时洪水、特大暴雨资料站名实测暴雨流量系列特大暴雨、历史洪水良田75~78 (4年)Q=216m3/s,N=80(转化成X1日,移置峡江站)峡江53~80 (28年)36~80 (45年)桑庄57~80 (24年)X1日=416mm,N=100~150(74.8.11)寨头57~80 (24年)沙港特大暴雨X1日=396mm,N=100~150(69.6.30)(设计站(良田)流量资料缺乏,邻近站雨量资料相对充分。
)3.2 方案拟定本次课设采用间接法推求设计洪水,即是由推求的设计暴雨,经过产汇流计算得到设计洪水。
示意图如下:4、设计暴雨XP(t)的计算4.1 设计暴雨X p(t)计算4.1.1区域降雨资料检验为推求该区域设计面降雨量,选取、桑庄、寨头与峡江四站降雨检验该区降雨是否选同一总体。
选择四站1981~2013年数据(74年出现极值暴雨,不参加检验),对各站数据取自然对数,对转换后数据进行均值与方差检验,各站转换后系列的均值及方差见表4-1。
表4-1 、桑庄、寨头与峡江站最大一日降雨资料均值、方差情况1)均值检验选取均值差异最大的站(X 1 )和峡江站(X 2)两站进行检验。
假设H : X 1 = X 2构造统计变量:(移置到寨头站)1/21/2221211()/()()/(2)X Ym ntms ns m n-+=⎡⎤++-⎣⎦统计量= 0.78取α=0.10,查得|tα/2| =1.68 > |t|,接受假设H,即可认为、桑庄、寨头与峡江站均值相等。
2)方差检验选取方差差异最大的桑庄站(S1)和寨头站(S2)两站进行检验。
假设H : S 1 = S 2构造统计变量:=1.19查得Fα/2(55,55)=1.567 ,F1-α/2(55,55)=0.638,所以接受域为(0.638,1.567),则可以认为统计量F满足接受域,即认为四个站的降雨量数据满足方差相等。
综上所述,可认为区域降雨资料来自同一总体,可以进行综合。
4.1.2频率分析与设计雨量计算(1)特大值处理峡江站特大暴雨由良田站历史洪水转换而来,则良田站(峡江站)的X1日=293.9mm。
公式如下(其中,Q为地表净峰流量(m3/s),m为汇流参数,取0.7,F为流域面积(km2),L为出口断面沿主河道至分水岭的最长距离(km),J为沿L的坡面和河道平均比降,t c 为净雨历时(h),为汇流历时(h),R为地表径流深(mm),n为暴雨参数,取0.6,为稳渗率(mm/h),取4.5,用良田站计算):沙港站特大暴雨取重现期N=150年,放置寨头站进行频率计算。
桑庄站最大一日暴雨取重现期N=150年。
(2)排位分析及频率计算先对、峡江、桑庄、寨头四个站进行频率计算,要考虑各站可能存在的特大暴雨系列值。
各站的频率计算见表4-2表4-2各站频率计算(3)四站适线结果图站:峡江站:桑庄站:寨头站:(4)四站均值计算结果及其适线图图4-2 5个雨量站年最大雨量频率曲线(5)推求X1日,P=0.01%由上表查处X(1日,P=0.01%)=461.9mm,则X(24h,P=0.01%)=1.1*X(1 =508.09mm。
日,P=0.01%)4.2计算各种历时同频率雨量X t,P由暴雨公式推算t=3h,6h,9h,12h,15h,18h,21h,24h的设计暴雨值,结果如表4-3。
表4-3 各短历时设计暴雨4.3 选典型放大推求X P (t)4.4 产汇流计算在设计暴雨中,由于稀遇频率的设计暴雨量很大,损失相对较小,因此,一般采用简化模型。
即前段降雨尽量满足土壤蓄水量,即初损,而后假定稳渗率,算定地面径流深R上和地下径流深R下,再列表求出,如与假定的相符,则假定的即为所求值。
径流分割点绘良田站76.6、毛背站75.5、76.7以及77.6的流量和雨量过程。
利用平割法计算R t,利用斜线分割法进行水源划分。
先寻找洪水过程的直接径流终止点B,然后用斜线连接起涨点A与终止点B,将实测流量过程线分为两部分,斜线AB上部分为直接径流RS,下部分为地下径流RG。
本次课设先采用梯形面积法求得RG,再用R t-RG 求得RS。
计算初损,其中,x为总降雨量,R为总径流,R=R t。
率定μ1、假定μ,计算R下和R上。
时段取△t=1h。
若时段的降雨量累积和小于初损量,则全部雨量补充初损值。
当累积降雨量大于初损值时,开始产生径流。
当X(t)≤μ时,全部产生底下径流,则R下(t)=μ,R上(t)=0;当X(t)>μ时,R下(t)=μ,R上(t)=X(t)-μ。
2、判断μ值的正确性。
若RS=ΣR上,RG=ΣR下,则μ值即为良田站76.6所确定的μ值;否则重新假定μ,转1。
4.4.1 径流划分及稳渗μ值率定(1)良田站76年6月17日表4-4良田站1976年6月17日次洪μ值率定(2)毛背站75年5月13日表4-5 毛背站1975年5月13日次洪μ值率定(3)毛背站76年7月9日表4-6 毛背站1976年7月9日次洪μ值率定(4)毛背站77年6月26日表4-7 毛背站1977年6月26日次洪μ值率定(5)各场次洪水的径流分割结果及率定所得μ值表4-8 各场次洪水的径流分割结果及率定所得μ值4.4.2 地表汇流地面汇流的计算方法有经验公式法(如单位线、经验公式等)和推理公式法(如等流时线法、水科院推理公式法、推理△过程线法、汇流系数法等)。
本次采用八省一院公式。
(1)(2)其中,Q为地表洪峰流量(m3/s),m为汇流参数,取0.7,F 为流域面积(km2),L为出口断面沿主河道至分水岭的最长距离(km),J为沿L的坡面和河道平均比降,t c为净雨历时(h),为汇流历时(h),R为地表径流深(mm),n为暴雨参数,取0.6,为稳渗率(mm/h),取4.5。
对于良田流域,,因此采用式(2)。
(1)m初值的确定表4-9 m初值确定故四站综合, =(0.31+0.6+0.8+0.75)/4=0.62(2)m值的检验(以毛背站76.7为例)计算步骤(1)根据表18中计算的初值m、八省一院公式,对该次的降雨过程的每个推求,(2)对每个Q i,假定过程线为三角形,底宽为Q i出现在处。
(3)将各时段的三角形过程进行叠加,与实测洪水(扣除地下径流)对比。
如相差太大重新假定m,重新计算。
表4-10 m=0.62时的地表流量Qs及对应底宽T表4-11m=0.62时的地表流量演算毛背站1976年7月9日地表径流过程线(m=0.62)表4-12 m=0.56时的地表流量Qs及对应底宽表4-13 m=0.56时的地表流量演算毛背站1976年7月9日地表径流过程线(m=0.56)可以看出m=0.56时实测与计算径流量线拟合的更好。
(3)m值综合(以毛背站76.7为例)点绘各次洪水的Q/F~m 图,取上端趋于稳定的m值,为设计暴雨之m值。
表4-14 各场次洪水Qs/F~m关系统计由各次洪水的Q/F~m图,取上端趋于稳定的m值(为0.8),设计暴雨之m值(实际运用时,选用通过检验后的四站m值进行综合,为0.7)。
4.5 由设计暴雨X P(t)推求Q P(t)4.5.1 产流计算由4.4可知,mm/h,再按前面过程分水源,(I=0)。
计算结果见表20。
表4-15 产流计算及分水源4.5.2 地面汇流计算步骤同4.4.2地表汇流计算中m值检验方法相同。
取m=0.7。
表4-16 Qs、T i计算表4-17 地表汇流计算4.5.3地下汇流计算Ts(Δt=1h)为37,则Tg(Δt=1h)为74,Rg(mm)为105.6mm,Q gm(m3/s)为35.3。
具体计算表格如表4-17。
表4-17 地下汇流计算表格4.5.4 设计洪水过程线计算结果见表4-18。
表4-18 设计洪水过程线5、心得体会一周的水文分析计算课设很快结束了。
由于刚结束水利计算枯燥的课程设计,本以为水文分析的工作量应该会有所减少,但事实证明其过程并不如预想的美好。
由于种种原因,我第一天都没有进行课设,所以直到第二天开始入手后,始终有一种追赶者的感觉。
可我并没有敷衍过程,每一步都是经过了自己的认真计算。
在具体计算分析过程中,我遇到了以下几点问题或收获:(1)利用斜线法进行径流分割时,更多地是靠自我感觉,而并没有定量地算出应选择某一段,所以每个人会存在选取误差;(2)对m值检验时,由实测值和计算值的图形拟合程度来判断是否正确。
但拟合程度也是凭个人主观意识,并没有具体的误差要求。
(估计是老师很善良,减少了我们的工作量);(3)在产汇流计算时,涉及到了大量的插值计算工作。
之前我是自己在每一行或列都插入公式,后来运用了trend函数,不过在行列树比较多的情况下也十分繁琐。
但如果能运用VBA程序,就能有效解决这个问题。
这也是我如后需要努力的地方。