2017年高考数学函数真题汇编
2017年浙江省高考数学试卷(真题详细解析)
2017年浙江省高考数学试卷(真题详细解析)1.已知集合P={x|-1<x<1},Q={x|1<x<2},则P∪Q=(-1,2)。
2.椭圆+1的离心率是1/2.3.几何体的三视图无法确定,无法计算体积。
4.若x、y满足约束条件z=x+2y,则z的取值范围是[4.+∞)。
5.函数f(x)=x^2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M-m与a有关,但与b无关。
6.已知等差数列{an}的公差为d,前n项和为Sn,则d>0是S4+S6>2S5的必要不充分条件。
7.函数y=f(x)的图象可能是B。
8.已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<1,则E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)。
9.正四面体D-ABC,P、Q、R分别为AB、BC、CA上的点,AP=PB=√2,记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为α、β、γ,则α<β<γ。
10.平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=OI2/OC,I2=OI3/OD,I3=OI1/OA,则I3<I1<I2.二、填空题:11.XXX创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位。
割圆术的第一步是计算单位圆内接正六边形的面积S6,S6=3√3/2.12.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab=2.13.已知多项式(x+1)(x+2)=x2+3x+2,则a4=34,a5=123.14.已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是2√3,cos∠BDC=1/2.15.已知向量a、b满足||a||=1,||b||=2,则|a+b|+|a-b|-|a|-|b|的最小值是0,最大值是4.16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有56种不同的选法。
2017年高考数学真题合集(含解析)
/("%'#!332-##!332-!& 3#!3"3$#槡#!##.3#!#3!
$!!$本小题满分!$分%已知函数 ,$#%'+;$# /$+0$%;# 0#! $!%讨论 ,$#%的单调性' $$%若 ,$#%有两个零点#求+ 的取值范围!
"!*!12$%&'() $"%& *+,-".'()/01*2 3 - !''() '+! 415*6789:;789<='()*5>?5> @ AB
- ""
)
*
p
:
-
"4
! "
4
".+4"
'!"!
"# *!
,$-.
,!5!12U- P J * r (- 0"- .!### * [
的太极图!正 方 形 内 切 圆 中 的 黑 色 部 分 和 白
色部分关于 正 方 形 的 中 心 成 中 心 对 称!在 正
方形内随机 取 一 点#则 此 点 取 自 黑 色 部 分 的
概 率 是 $! ! %
)%!- !
*%.
第$题图
+%!$ (!设 有 下 面 四 个 命 题
,%-
'!
&若
出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的
17年高考数学真题高考题(3套)
2017年普通高等学校招生全国统一考试全国Ⅰ(文数)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2017·全国Ⅰ卷,文1)已知集合A={x|x<2},B={x|3-2x>0},则( A )(A)A∩B=(x|x<错误!未找到引用源。
)(B)A∩B=(C)A∪B=(x|x<错误!未找到引用源。
)(D)A∪B=R解析:B={x|3-2x>0}=(x|x<错误!未找到引用源。
),A∩B=(x|x<错误!未找到引用源。
),故选A.2.(2017·全国Ⅰ卷,文2)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( B )(A)x1,x2,…,xn的平均数(B)x1,x2,…,xn的标准差(C)x1,x2,…,xn的最大值(D)x1,x2,…,xn的中位数解析:标准差衡量样本的稳定程度,故选B.3.(2017·全国Ⅰ卷,文3)下列各式的运算结果为纯虚数的是( C )(A)i(1+i)2(B)i2(1-i)(C)(1+i)2(D)i(1+i)解析:(1+i)2=2i,故选C.4.(2017·全国Ⅰ卷,文4)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
解析:不妨设正方形的边长为2,则正方形的面积为4,圆的半径为1,圆的面积为πr2=π.黑色部分的面积为圆面积的错误!未找到引用源。
,即为错误!未找到引用源。
,所以点取自黑色部分的概率是错误!未找到引用源。
2017高职高考数学真题
2017高职高考数学真题
2017年的高职高考数学真题给出了以下几个题目:
1.已知函数$f(x)=x^2-2x+3$,求$f(x)$的最小值。
这是一个典型的一元二次函数求最值的问题,通过求导数或者直接变形可以得到函数$f(x)$的最小值。
2.如图所示,ΔABC中,AB=AC,a角A的余角为$120°$,BC=6。
计算$AC=\_\_\_$。
这是一个三角形中,已知一边和夹角的情况下,求另一个边长的问题,需要利用三角函数或者勾股定理等知识来解决。
3.已知曲线C的参数方程为$
\begin{cases}
x=t^2+3\\
y=t^2-3t
\end{cases}
$,点A在曲线C上,点A到原点的距离最大为$4\sqrt{2}$,则A 的坐标为(\_, \_)
这是一个参数方程与距离最值的结合问题,需要通过参数方程求得点A的坐标,进而计算出到原点的距离是否达到最大值。
4.设$y=kx^2+3$通过点$(1,4)$,求k的值。
这是一个通过给定点求函数参数的问题,需要代入已知点求出函数参数的值。
以上是2017年高职高考数学真题的一部分,这些题目涉及到了一些基础的数学知识与技巧,在备考过程中,考生需要熟练掌握相关知识点,灵活运用解题技巧,才能顺利完成考试。
祝愿所有参加2017年高职高考数学考试的考生取得优异的成绩!。
2017山东高考真题数学理(含解析)
2017年普通高等学校招生全国统一考试(山东卷)(理科数学)第一部分(选择题共50分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合,则AB=()A.B.C.D.2.若复数满足,其中i为虚数为单位,则().A.B.C.D.3.要得到函数的图像,只需要将函数的图像().A.向左平移个单位B.向右平移个单位C.向左平移个单位D向右平移个单位4.已知菱形的边长为,,则().A.B.C.D.5.不等式的解集是()A.B.C.D.6.已知x,y满足约束条件,若的最大值为,则().A.B.C.D.7.在梯形中,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.8.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间内的概率为()(附:若随机变量ξ服从正态分布N,则,A.B.C.D.9.一条光纤从点射出,经y轴反射后与圆相切,则反射光线所在直线的斜率为()A.或B..或C.或D.或10.设函数则满足的a取值范围是()A. B.C D.第二部分(非选择题共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.(观察下列各式:;;;;……照此规律,当时,_________.12.若“”是真命题,则实数m的最小值为 .13.执行右边的程序框图,输出的的值为_________14.已知函数的定义域和值域都是,则_________15.平面直角坐标系中,双曲线:(,b>0)的渐近线与抛物线,交于,若的垂心为C2的焦点,则的离心率为__________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分12分)设(Ⅰ)求的单调区间;(Ⅱ)在锐角中,角的对边分别为若求面积的最大值.17.(本题满分12分)如图,在三棱台中,分别为的中点.(Ⅰ)求证:;(Ⅱ)若,求平面与平面所成的角(锐角)的大小.18.(本小题满分12分)设数列的前n项和为.已知(I)求的通项公式;(II)若数列满足,求的前项和.19.(本小题满分12分)若是一个三位正整数,且的个位数字大于十位数字,十位数字大于百位数字,则称为“三位递增数”(如等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被整除,参加者得分;若能被整除,但不能被整除,得分;若能被整除,得分.(I)写出所有个位数字是的“三位递增数”;(II)若甲参加活动,求甲得分的分布列和数学期望.20.(本小题满分13分)平面直角坐标系中,已知椭圆C:的离心率为,左、右焦点分别是F1、F2.以为圆心以为半径的圆与以为圆心为半径的圆相交,且交点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆为椭圆上任意一点,过点P的直线交椭圆E于两点,射线交椭圆于点.(i)求的值(ii)求面积的最大值.21.(本小题满分4分)设函数,其中。
2017年高考数学试卷及答案
2017年高考真题一.解答题(共12小题)1.已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.6.已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.8.已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.10.已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f (x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.12.已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2017年高考真题导数专题参考答案与试题解析一.解答题(共12小题)1.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).2.(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f (a),又因为f(x)min=f(a)≥0,所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;从而当n≥3时,(1+)(1+)…(1+)∈(2,e),因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,所以m的最小值为3.4.(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0的实根,所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,所以b=+(a≥3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].5.(2017•新课标Ⅱ)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1﹣x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).6.(2017•浙江)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].7.(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].8.(2017•北京)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.9.(2017•天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.10.(2017•山东)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(1)当a=2时,f(x)=x3﹣x2,∴f′(x)=x2﹣2x,∴k=f′(3)=9﹣6=3,f(3)=×27﹣9=0,∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0(2)函数g(x)=f(x)+(x﹣a)cosx﹣sinx=x3﹣ax2+(x﹣a)cosx﹣sinx,∴g′(x)=(x﹣a)(x﹣sinx),令g′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina当x=0时,有极大值,极大值为g(0)=﹣a,②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina当x=0时,有极小值,极小值为g(0)=﹣a③当a=0时,g′(x)=x(x+sinx),当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,∴g(x)在R上单调递增,无极值.11.(2017•天津)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x ﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:x(﹣∞,a)(a,4﹣a)(4﹣a,+∞)f'(x)+﹣+f(x)↗↘↗∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i)证明:∵g'(x)=e x(f(x)+f'(x)),由题意知,∴,解得.∴f(x)在x=x0处的导数等于0;(ii)解:∵g(x)≤e x,x∈[x0﹣1,x0+1],由e x>0,可得f(x)≤1.又∵f(x0)=1,f'(x0)=0,故x0为f(x)的极大值点,由(I)知x0=a.另一方面,由于|a|≤1,故a+1<4﹣a,由(Ⅰ)知f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.令t(x)=2x3﹣6x2+1,x∈[﹣1,1],∴t'(x)=6x2﹣12x,令t'(x)=0,解得x=2(舍去),或x=0.∵t(﹣1)=﹣7,t(1)=﹣3,t(0)=1,故t(x)的值域为[﹣7,1].∴b的取值范围是[﹣7,1].12.(2017•新课标Ⅰ)已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(﹣),当x<ln(﹣)时,f′(x)<0,函数f(x)单调递减,当x>ln(﹣)时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得f(x)min=f(ln(﹣))=﹣a2ln(﹣)≥0,∴ln(﹣)≤,∴﹣2≤a<0,综上所述a的取值范围为[﹣2,1]。
2017年高考数学真题试卷(上海卷)及解析
2017年高考数学真题试卷(上海卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.关于x、y的二元一次方程组{x+5y=02x+3y=4的系数行列式D为()A.|0543|B.|1024|C.|1523|D.|6054|2.在数列{an}中,an=(﹣12)n,n∈N*,则limn→∞an()A.等于−12B.等于0C.等于12D.不存在3.已知a、b、c为实常数,数列{xn}的通项xn=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0B.b≤0C.c=0D.a﹣2b+c=04.在平面直角坐标系xOy中,已知椭圆C1:x236+y24=1和C2:x2+ y29=1.P为C1上的动点,Q为C2上的动点,w是OP→⋅OQ→的最大值.记Ω={(P,Q)|P在C1上,Q在C2上,且OP→⋅OQ→=w},则Ω中元素个数为()A.2个B.4个C.8个D.无穷个第II卷(非选择题)请点击修改第II卷的文字说明答案第2页,总16页○…………订…………※订※※线※※内※※答※※题※※○…………订…………二、填空题(题型注释)5.已知集合A={1,2,3,4},集合B={3,4,5},则A∩B= .6.若排列数 P 6m =6×5×4,则m= .7.不等式x−1x>1的解集为 .8.已知球的体积为36π,则该球主视图的面积等于 . 9.已知复数z 满足z+ 3z =0,则|z|= .10.设双曲线 x 29 ﹣ y 2b2 =1(b >0)的焦点为F 1、F 2 , P 为该双曲线上的一点,若|PF 1|=5,则|PF 2|= .11.如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若 DB 1→ 的坐标为(4,3,2),则 AC 1→的坐标是 .12.定义在(0,+∞)上的函数y=f (x )的反函数为y=f ﹣1(x ),若g (x )= {3x −1,x ≤0f(x),x >0为奇函数,则f ﹣1(x )=2的解为 .13.已知四个函数:①y=﹣x ,②y=﹣ 1x ,③y=x 3 , ④y=x12 ,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为 .14.已知数列{a n }和{b n },其中a n =n 2 , n∈N * , {b n }的项是互不相等的正整数,若对于任意n∈N * , {b n }的第a n 项等于{a n }的第b n 项,则 lg(b 1b 4b 9b 16)lg(b 1b 2b 3b 4) = .15.设a 1、a 2∈R,且 12+sinα1+ 12+sin(2α2) =2,则|10π﹣α1﹣α2|的最小值等于 .16.如图,用35个单位正方形拼成一个矩形,点P 1、P 2、P 3、P 4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P 1 , P 2 , P 3 , P 4},点P∈Ω,过P 作直线l P , 使得不在l P 上的“▲”的点分布在l P 的两侧.用D 1(l P )和D 2(l P )分别表示l P 一侧和另一侧的“▲”的点到l P 的距离之和.若过P 的直线l P 中有且只有一条满足D 1(l P )=D 2(l P ),…订…………○………线…………○…_____考号:___________…订…………○………线…………○…则Ω中所有这样的P 为 .三、解答题(题型注释)17.如图,直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. (1)求三棱柱ABC ﹣A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的大小. 18.已知函数f (x )=cos 2x ﹣sin 2x+ 12 ,x∈(0,π). (1)求f (x )的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a= √19 ,角B 所对边b=5,若f (A )=0,求△ABC 的面积. 19.根据预测,某地第n (n∈N *)个月共享单车的投放量和损失量分别为a n 和b n (单位:辆),其中a n = {5n 4+15,1≤n ≤3−10n +470,n ≥4,b n =n+5,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量S n =﹣4(n ﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 20.在平面直角坐标系xOy 中,已知椭圆Γ: x 24+y 2 =1,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点. (1)若P 在第一象限,且|OP|= √2 ,求P 的坐标;(2)设P ( 85 , 35 ),若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若|MA|=|MP|,直线AQ 与Γ交于另一点C ,且 AQ →=2AC →, PQ →=4PM →,求直线AQ 的方程.21.设定义在R 上的函数f (x )满足:对于任意的x 1、x 2∈R,当x 1<x 2时,都有f (x 1)≤f (x 2).(1)若f (x )=ax 3+1,求a 的取值范围;答案第4页,总16页(2)若f (x )是周期函数,证明:f (x )是常值函数;(3)设f (x )恒大于零,g (x )是定义在R 上的、恒大于零的周期函数,M 是g (x )的最大值.函数h (x )=f (x )g (x ).证明:“h(x )是周期函数”的充要条件是“f(x )是常值函数”.参数答案1.C【解析】1.解:关于x 、y 的二元一次方程组 {x +5y =02x +3y =4的系数行列式:D= |1523| . 故选:C .利用线性方程组的系数行列式的定义直接求解. 2.B【解析】2.解:数列{a n }中,a n =(﹣ 12 )n ,n∈N *,则 lim n→∞ a n = lim n→∞(−12)n=0. 故选:B .根据极限的定义,求出 lim n→∞ a n = lim n→∞(−12)n的值.3.A【解析】3.解:存在k∈N *,使得x 100+k 、x 200+k 、x 300+k 成等差数列,可得:2[a (200+k )2+b (200+k )+c]=a (100+k )2+b (100+k )+c+a (300+k )2+b (300+k )+c ,化为:a=0. ∴使得x 100+k ,x 200+k ,x 300+k 成等差数列的必要条件是a≥0. 故选:A .由x 100+k ,x 200+k ,x 300+k 成等差数列,可得:2x 200+k =x 100+k x 300+k ,代入化简即可得出. 4.D【解析】4.解:椭圆C 1: x 236+y 24 =1和C 2:x2+ y 29 =1.P为C 1上的动点,Q 为C 2上的动点,可设P (6cosα,2sinα),Q (cosβ,3sinβ),0≤α\β<2π, 则 OP →⋅OQ →=6cosαcosβ+6sinαsinβ=6cos(α﹣β), 当α﹣β=2kπ,k∈Z 时,w 取得最大值6,则Ω={(P ,Q )|P 在C 1上,Q 在C 2上,且 OP →⋅OQ →=w}中的元素有无穷多对. 另解:令P (m ,n ),Q (u ,v ),则m 2+9n 2=36,9u 2+v 2=9, 由柯西不等式(m 2+9n 2)(9u 2+v 2)=324≥(3mu+3nv )2, 当且仅当mv=nu ,即O 、P 、Q 共线时,取得最大值6, 显然,满足条件的P 、Q 有无穷多对,D 项正确. 故选:D .答案第6页,总16页…○……※※…○……设出P (6cosα,2sinα),Q (cosβ,3sinβ),0≤α\β<2π,由向量数量积的坐标表示和两角差的余弦公式和余弦函数的值域,可得最大值及取得的条件,即可判断所求元素的个数.5.{3,4}【解析】5.解:∵集合A={1,2,3,4},集合B={3,4,5}, ∴A∩B={3,4}.所以答案是:{3,4}.【考点精析】掌握集合的交集运算是解答本题的根本,需要知道交集的性质:(1)A∩B A ,A∩BB ,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB ,反之也成立.6.3【解析】6.解:∵排列数 P 6m =6×5×4, ∴由排列数公式得 P 63=6×5×4 ,∴m=3.所以答案是:m=3.【考点精析】根据题目的已知条件,利用排列与排列数的公式的相关知识可以得到问题的答案,需要掌握从n 个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 7.(﹣∞,0)【解析】7.解:由x−1x >1得:1−1x>1⇒1x<0⇒x <0 ,故不等式的解集为:(﹣∞,0), 所以答案是:(﹣∞,0).8.9π【解析】8.解:球的体积为36π, 设球的半径为R ,可得 43 πR 3=36π, 可得R=3,该球主视图为半径为3的圆, 可得面积为πR 2=9π. 所以答案是:9π.装……………………线…………○…名:__________装……………………线…………○…【考点精析】掌握简单空间图形的三视图是解答本题的根本,需要知道画三视图的原则:长对齐、高对齐、宽相等. 9.【解析】9.解:由z+ 3z =0,得z 2=﹣3,设z=a+bi (a ,b∈R),由z 2=﹣3,得(a+bi )2=a 2﹣b 2+2abi=﹣3,即 {a 2−b 2=−32ab =0,解得: {a =0b =±√3 . ∴ z =±√3i . 则|z|= √3 . 所以答案是: √3 .【考点精析】利用复数的乘法与除法对题目进行判断即可得到答案,需要熟知设则;.10.11【解析】10.解:根据题意,双曲线的方程为: x 29 ﹣ y 2b2 =1,其中a= √9 =3,则有||PF 1|﹣|PF 2||=6, 又由|PF 1|=5,解可得|PF 2|=11或﹣1(舍) 故|PF 2|=11,所以答案是:11.11.(﹣4,3,2)【解析】11.解:如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点, 过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,答案第8页,总16页…………订…………线…………○内※※答※※题…………订…………线…………○∵ DB 1→的坐标为(4,3,2),∴A(4,0,0),C 1(0,3,2), ∴ AC 1→=(−4,3,2) . 所以答案是:(﹣4,3,2). 12.【解析】12.解:若g (x )= {3x −1,x ≤0f(x),x >0为奇函数,可得当x >0时,﹣x <0,即有g (﹣x )=3﹣x ﹣1, 由g (x )为奇函数,可得g (﹣x )=﹣g (x ), 则g (x )=f (x )=1﹣3﹣x ,x >0,由定义在(0,+∞)上的函数y=f (x )的反函数为y=f ﹣1(x ), 且f ﹣1(x )=2,可由f (2)=1﹣3﹣2= 89 , 可得f ﹣1(x )=2的解为x= 89 . 故答案为: 89 .由奇函数的定义,当x >0时,﹣x <0,代入已知解析式,即可得到所求x >0的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值. 13.【解析】13.解:给出四个函数:①y=﹣x ,②y=﹣ 1x ,③y=x 3,④y=x12 ,从四个函数中任选2个,基本事件总数n= C 42=6 ,③④有两个公共点(0,0),(1,1).事件A :“所选2个函数的图象有且只有一个公共点”包含的基本事件有: ①③,①④共2个,……装…_______姓名:_……装…∴事件A :“所选2个函数的图象有且只有一个公共点”的概率为P (A )= 26 = 13 . 故答案为: 13 .从四个函数中任选2个,基本事件总数n= C 42=6 ,再利用列举法求出事件A :“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A :“所选2个函数的图象有且只有一个公共点”的概率. 14.2【解析】14.解:∵a n =n 2,n∈N *,若对于一切n∈N *,{b n }中的第a n 项恒等于{a n }中的第b n 项,∴ b a n = a b n = (b n )2.∴b 1=a 1=1, (b 2)2 =b 4, (b 3)2 =b 9, (b 4)2=b 16. ∴b 1b 4b 9b 16= (b 1b 2b 3b 4)2. ∴ lg(b 1b 4b 9b 16)lg(b 1b 2b 3b 4) =2.故答案为:2.a n =n 2,n∈N *,若对于一切n∈N *,{b n }中的第a n 项恒等于{a n }中的第b n 项,可得 b a n = a b n =(b n )2 .于是b 1=a 1=1, (b 2)2 =b 4, (b 3)2 =b 9, (b 4)2 =b 16.即可得出.15.【解析】15.解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1], 要使 12+sinα1+ 12+sin2α2=2,∴sinα1=﹣1,sin2α2=﹣1. 则: α1=−π2+2k 1π ,k 1∈Z.2α2=−π2+2k 2π ,即 α2=−π4+k 2π ,k 2∈Z.那么:α1+α2=(2k 1+k 2)π −3π4,k 1、k 2∈Z.∴|10π﹣α1﹣α2|=|10π +3π4﹣(2k 1+k 2)π|的最小值为 π4 .故答案为: π4 .答案第10页,总16页…外…………订…………○……内※※答※※题※※…内…………订…………○……由题意,要使 12+sinα1+ 12+sin2α2=2,可得sinα1=﹣1,sin2α2=﹣1.求出α1和α2,即可求出|10π﹣α1﹣α2|的最小值16.P 1、P 3、P 4【解析】16.解:设记为“▲”的四个点为A ,B ,C ,D ,线段AB ,BC ,CD ,DA 的中点分别为E ,F ,G ,H ,易知EFGH 为平行四边形;如图所示,四边形ABCD 两组对边中点的连线交于点P 2, 即符合条件的直线l P 一定经过点P 2, 因此:经过点P 2的直线有无数条; 同时经过点P 1和P 2的直线仅有1条, 同时经过点P 3和P 2的直线仅有1条, 同时经过点P 4和P 2的直线仅有1条, 所以符合条件的点为P 1、P 3、P 4. 故答案为:P 1、P 3、P 4.根据任意四边形ABCD 两组对边中点的连线交于一点,过此点作直线,让四边形的四个顶点不在该直线的同一侧,那么该直线两侧的四边形的顶点到直线的距离之和是相等的;由此得出结论. 17.(1)解:∵直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形, 两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. ∴三棱柱ABC ﹣A 1B 1C 1的体积: V=S △ABC ×AA 1 == =20(2)解:连结AM ,○…………外…………○…………装…………○订…………○…………线…………○…学校:___________姓名:___________班考号:___________○…………内…………○…………装…………○订…………○…………线…………○…∵直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5,M 是BC 中点, ∴AA 1⊥底面ABC ,AM==,∴∠A 1MA 是直线A 1M 与平面ABC 所成角, tan∠A 1MA===,∴直线A 1M 与平面ABC 所成角的大小为arctan .【解析】17.(1)三棱柱ABC ﹣A 1B 1C 1的体积V=S △ABC ×AA 1= 12×AB ×AC ×AA 1 ,由此能求出结果.(2)连结AM ,∠A 1MA 是直线A 1M 与平面ABC 所成角,由此能求出直线A 1M 与平面ABC 所成角的大小. 18.(1)解:函数f (x )=cos 2x ﹣sin 2x+=cos2x+ ,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣ π≤x≤kπ,k∈Z,k=1时, π≤x≤π,可得f (x )的增区间为[ ,π)(2)解:设△ABC 为锐角三角形, 角A 所对边a=,角B 所对边b=5,若f (A )=0,即有cos2A+ =0,答案第12页,总16页外…………○………………○………线………○装※※订※※线※※题※※内…………○………………○………线………○解得2A= π,即A= π,由余弦定理可得a 2=b 2+c 2﹣2bccosA , 化为c 2﹣5c+6=0, 解得c=2或3, 若c=2,则cosB=<0,即有B 为钝角,c=2不成立, 则c=3,△ABC 的面积为S= bcsinA= ×5×3× =【解析】18.(1)由二倍角的余弦公式和余弦函数的递增区间,解不等式可得所求增区间;(2)由f (A )=0,解得A ,再由余弦定理解方程可得c ,再由三角形的面积公式,计算即可得到所求值. 19.(1)解:∵a n =,b n =n+5∴a 1=5×14+15=20 a 2=5×24+15=95 a 3=5×34+15=420 a 4=﹣10×4+470=430 b 1=1+5=6 b 2=2+5=7 b 3=3+5=8 b 4=4+5=9∴前4个月共投放单车为a 1+a 2+a 3+a 4=20+95+420+430=965, 前4个月共损失单车为b 1+b 2+b 3+b 4=6+7+8+9=30,∴该地区第4个月底的共享单车的保有量为965﹣30=935(2)解:令a n ≥b n ,显然n≤3时恒成立, 当n≥4时,有﹣10n+470≥n+5,解得n≤,∴第42个月底,保有量达到最大.当n≥4,{a n }为公差为﹣10等差数列,而{b n }为等差为1的等比数列,…………装………线…………○…校:___________姓名:_______…………装………线…………○…∴到第42个月底,单车保有量为 ×39+535﹣ ×42= ×39+535﹣ ×42=8782.S 42=﹣4×16+8800=8736. ∵8782>8736,∴第42个月底单车保有量超过了容纳量【解析】19.(1)计算出{a n }和{b n }的前4项和的差即可得出答案;(2)令a n ≥b n 得出n≤42,再计算第42个月底的保有量和容纳量即可得出结论. 20.(1)解:设P (x ,y )(x >0,y >0), ∵椭圆Γ: x 24+y 2 =1,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点, P 在第一象限,且|OP|= √2,∴联立 {x 24+y 2=1x 2+y 2=2,解得P (2√33 , √63)(2)解:设M (x 0,0),A (0,1), P ( 85,35 ),若∠P=90°,则 PA →• PM →,即(x 0﹣ 85 ,﹣ 35 )•(﹣ 85 , 25 )=0, ∴(﹣ 85 )x 0+ 6425 ﹣ 625 =0,解得x 0= 2920 .如图,若∠M=90°,则 MA →• MP →=0,即(﹣x 0,1)•( 85 ﹣x 0, 35 )=0, ∴ x 02−85x 0+35 =0,解得x 0=1或x 0= 35 ,答案第14页,总16页○…………装…………※※请※※不※※要※※在※※装※○…………装…………∴点M 的横坐标为 2920 ,或1,或 35(3)解:设C (2cosα,sinα), ∵ AQ →=2AC →,A (0,1),∴Q(4cosα,2sinα﹣1),又设P (2cosβ,sinβ),M (x 0,0),∵|MA|=|MP|,∴x 02+1=(2cosβ﹣x 0)2+(sinβ)2, 整理得:x 0= 34 cosβ,∵ PQ →=(4cosα﹣2cosβ,2sinα﹣sinβ﹣1), PM →=(﹣ 54 cosβ,﹣sinβ), PQ→=4PM →,∴4cosα﹣2cosβ=﹣5cosβ, 且2sinα﹣sinβ﹣1=﹣4sinβ,∴cosβ=﹣ 43 cosα,且sinα= 13 (1﹣2sinα),以上两式平方相加,整理得3(sinα)2+sinα﹣2=0,∴sinα= 23 ,或sinα=﹣1(舍去),此时,直线AC 的斜率k AC =﹣ 1−sinα2cosα = √510 (负值已舍去),如图.∴直线AQ 为y= √510 x+1.【解析】20.(1)设P (x ,y )(x >0,y >0),联立 {x 24+y 2=1x 2+y 2=2,能求出P 点坐标.(2)设M (x 0,0),A (0,1),P ( 85,35 ),由∠P=90°,求出x 0= 2920 ;由∠M=90°,求出x 0=1或x 0= 35 ;由∠A=90°,则M 点在x 轴负半轴,不合题意.由此能求出点M 的横坐标.(3)设C (2cosα,sinα),推导出Q (4cosα,2sinα﹣1),设P (2cosβ,sinβ),M (x 0,0)推导出x 0= 34 cosβ,从而 4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,cosβ=﹣ 43 cosα,且sinα= 13 (1﹣2sinα),由此能求出直线AQ .21.(1)解:由f (x 1)≤f(x 2),得f (x 1)﹣f (x 2)=a (x 13﹣x 23)≤0, ∵x 1<x 2,∴x 13﹣x 23<0,得a≥0. 故a 的范围是[0,+∞)(2)证明:若f (x )是周期函数,记其周期为T k ,任取x 0∈R,则有 f (x 0)=f (x 0+T k ),由题意,对任意x∈[x 0,x 0+T k ],f (x 0)≤f(x )≤f(x 0+T k ), ∴f(x 0)=f (x )=f (x 0+T k ).又∵f(x 0)=f (x 0+nT k ),n∈Z,并且 …∪[x 0﹣3T k ,x 0﹣2T k ]∪[x 0﹣2T k ,x 0﹣T k ]∪[x 0﹣T k ,x 0]∪[x 0,x 0+T k ]∪[x 0+T k ,x 0+2T k ]∪…=R, ∴对任意x∈R,f (x )=f (x 0)=C ,为常数(3)证明:充分性:若f (x )是常值函数,记f (x )=c 1,设g (x )的一个周期为T g ,则 h (x )=c 1•g(x ),则对任意x 0∈R,h (x 0+T g )=c 1•g(x 0+T g )=c 1•g(x 0)=h (x 0), 故h (x )是周期函数;必要性:若h (x )是周期函数,记其一个周期为T h .若存在x 1,x 2,使得f (x 1)>0,且f (x 2)<0,则由题意可知, x 1>x 2,那么必然存在正整数N 1,使得x 2+N 1T k >x 1, ∴f(x 2+N 1T k )>f (x 1)>0,且h (x 2+N 1T k )=h (x 2). 又h (x 2)=g (x 2)f (x 2)<0,而h (x 2+N 1T k )=g (x 2+N 1T k )f (x 2+N 1T k )>0≠h(x 2),矛盾. 综上,f (x )>0恒成立. 由f (x )>0恒成立,任取x 0∈A,则必存在N 2∈N,使得x 0﹣N 2T h ≤x 0﹣T g , 即[x 0﹣T g ,x 0]⊆[x 0﹣N 2T h ,x 0],∵…∪[x 0﹣3T k ,x 0﹣2T k ]∪[x 0﹣2T k ,x 0﹣T k ]∪[x 0﹣T k ,x 0]∪[x 0,x 0+T k ]∪[x 0+T k ,x 0+2T k ]∪…=R,∴…∪[x 0﹣2N 2T h ,x 0﹣N 2T h ]∪[x 0﹣N 2T h ,x 0]∪[x 0,x 0+N 2T h ]∪[x 0+N 2T h ,x 0+2N 2T h ]∪…=R. h (x 0)=g (x 0)•f(x 0)=h (x 0﹣N 2T h )=g (x 0﹣N 2T h )•f(x 0﹣N 2T h ), ∵g(x 0)=M≥g(x 0﹣N 2T h )>0,f (x 0)≥f(x 0﹣N 2T h )>0.因此若h (x 0)=h (x 0﹣N 2T h ),必有g (x 0)=M=g (x 0﹣N 2T h ),且f (x 0)=f (x 0﹣N 2T h )=c . 而由(2)证明可知,对任意x∈R,f (x )=f (x 0)=C ,为常数. 综上,必要性得证【解析】21.(1)直接由f (x 1)﹣f (x 2)≤0求得a 的取值范围;(2)若f (x )是周期函数,记其周期为T k ,任取x 0∈R,则有f (x 0)=f (x 0+T k ),证明对任意x∈[x 0,x 0+T k ],f (x 0)≤f(x )≤f(x 0+T k ),可得f (x 0)=f (x 0+nT k ),n∈Z,再由…∪[x 0﹣3T k ,x 0﹣答案第16页,总16页f (x )=f (x 0)=C ,为常数;(3)分充分性及必要性证明.类似(2)证明充分性;再证必要性,然后分类证明.。
山东高考数学2017真题
山东高考数学2017真题2017年山东高考数学真题2017年山东高考数学试题如下:一、选择题1.已知等差数列${a_n}$的通项公式为$a_n = 3n + 1$(n为正整数),则数列${b_n}$定义为$b_n=a_{n+2}-a_n$.若${b_n}$为等比数列,则${b_1}$=A.$-1$;$B.-3$;$C.-9$;$D.-27$2.$\sqrt{7-4\sqrt{3}}$=A.$\sqrt{5}-\sqrt{3}$;$B.\sqrt{5}-\sqrt{3}$;$C.\sqrt{3}-\sqrt{5}$;$D.\sqrt{3}-\sqrt{5}$3. 若z为复数,且$z^2 = 1+3i$,则z =A.$1+3i$;$B.-1-3i$;$C.1-i$;$D.-1+i$4.已知等差数列${a_n}$的前三项为${a_1=1,a_2=3,a_3=5}$,则$a_{100}=$A.$197$;$B.197$;$C.199$;$D.200$5. 函数$f(x) = \frac{x^2-3x+1}{x-1}$,则$f(x)$的极限值是A.$\infty$;$B.-\infty$;$C.1$;$D.2$二、计算题1.设函数$f(x) = x^3-3x^2+3,(0 \le x \le 4)$,求$f(x)$的单调递增区间;2. 已知函数$f(x) = ax^2+bx+3$的图象过点$(1,6),(-1,6)$,求a,b的值;3. 已知抛物线$y=ax^2+2x-4$的焦点坐标为$(1,0)$,求曲线方程;4.解方程组$\begin{cases} x+y=7 \\ y^2=x^3+18 \end{cases}$5. 已知圆上一定点A(3,4)到圆心的距离为5,过点A的切线方程为2x-y+1=0,求圆的方程。
山东高考数学2017真题完整内容结束。
2017年成人高考高数真题及答案解析
2017年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.当0→x 时,下列变量是无穷小量的为( ) A.21xB.x2 C.x sin D.()e x +ln 2.=⎪⎭⎫⎝⎛+→xx x 21lim 0( ) A.e B.1-e C.2e D.2-e3.若函数()⎪⎩⎪⎨⎧=≠=-0,0,21x a x e x f x,在x=0处连续,则常数a=( ) A.0 B.21C.1D.2 4.设函数()x x x f ln =,则()='e f ( ) A.-1 B.0 C.1 D.25.函数()x x x f 33-=的极小值为( ) A.-2 B.0 C.2 D.46.方程132222=++z y x 表示的二次曲面是( ) A.圆锥面 B.旋转抛物面 C.球面 D.椭球面7.若()1210=+⎰dx k x ,则常数=k ( ) A.-2 B.-1 C.0 D.18.设函数()x f 在[]b a ,上连续且()0>x f ,则( ) A.()0>dx x f ba ⎰B.()0<dx x f ba ⎰C.()0=⎰dx x f ba D.()dx x f ba⎰的符号无法确定9.空间直线231231-=-+=-z y x 的方向向量可取为( ) A.(3,-1,2) B.(1,-2,3) C.(1,1,-1) D.(1,-1,-1)10.一直a 为常数,则幂级数()∑∞=+-121n nan ( ) A.发散 B.条件收敛 C.绝对收敛 D.敛散性与a 的取值有关 二、填空题:11~20小题,每小题4分,共40分。
将答案填写在答题卡相应题号后。
11.()=--→2sin 2lim2x x x _________12.曲线121++=x x y 的水平渐进方程为_________ 13.若函数()x f 满足()21='f ,则()()=--→11lim 21x f x f x _________ 14.设函数()xx x f 1-=,则()='x f _______15.()⎰-=+22cos sin ππdx x x _______16.⎰+∞=+0211dx x __________ 17.一直曲线22-+=x x y 的切线l 斜率为3,则l 的方程为_________ 18.设二元函数()y x z +=2ln ,则=∂∂xz_________ 19.设()x f 为连续函数,则()='⎪⎭⎫ ⎝⎛⎰xdt t f 0__________ 20.幂级数∑∞=03n n nx 的收敛半径为_________三、解答题:21~28题,共70分,接答应写出推理、演算步骤21.求201sin lim x x e x x --→22.设⎪⎩⎪⎨⎧+=+=3211ty tx ,求dx dy23.已知x sin 是()x f 的一个原函数,求()⎰'dx x f x24.计算dx x⎰+401125.设二元函数122+-+=y x y x z ,求yx zx z ∂∂∂∂∂2及26.计算二重积分⎰⎰+Ddxdy y x 22,其中区域(){}4,22≤+=y x y x D27.求微分方程2x dxdyy 的通解28.用铁皮做一个容积为V 的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小2017年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】C【解析】00sin sin lim 0==→x x2.【答案】C【解析】222021lim 21lim e x x xx xx =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅→→3.【答案】B【解析】因为函数()x f 在0=x 处连续,则()()21021lim lim 00====-→→f a e x f x x x4.【答案】D【解析】因为()()1ln ln ln +='+='x x x x x f ,所以()21ln =+='e e f 5.【答案】A【解析】因为()332-='x x f ,令()0='x f ,得驻点11-=x ,12=x ,又()x x f 6='' ()0<61-=-''f ,()0>61=''f ,所以()x f 在12=x 处取得极小值,且极小值()2311-=-=f6.【答案】D【解析】可将原方程化为13121222=++z y x ,所以原方程表示的是椭球面。
高考数学历年函数试题及答案
1. 设(x )是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x1,x2∈[0,]都有(Ⅰ)设);41(),21(,2)1(f f f 求=(Ⅱ)证明)(x f 是周期函数。
2. 设函数.,1|2|)(2R x x x x f ∈--+=(Ⅰ)判断函数)(x f 的奇偶性;(Ⅱ)求函数)(x f 的最小值.3. 已知函数()2sin (sin cos f x x x x =+(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中,画出函数()y f x =在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象4.(本小题满分12分)求函数xx x x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.5.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.6.△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos C B A ++取得最大值,并求出这个最大值7.设a 为实数,函数x a ax x x f )1()(223-+-=在)0,(-∞和),1(+∞都是增函数, 求a 的取值范围.8. 设函数f (x )=2x 3+3ax 2+3bx+8c 在x =1及x =2时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的x ,3,0〕〔∈都有f (x )<c 2成立,求c 的取值范围. 9.已知函数32()1f x x ax x =+++,a ∈R .x(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 10.在ABC ∆中,内角A 、b 、c 的对边长分别为a 、b 、c.已知222a c b -=,且sin 4cos sin B A C =,求b.11. 已知函数42()36f x x x =-+.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线()y f x =上,若该曲线在点P 处的切线l 通过坐标原点,求l 的方程12. 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ; (Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像13. 已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为3,1((Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式;(Ⅱ)若)(x f 的最大值为正数,求a 的取值范围解答: 2. 解:(Ⅰ).7)2(,3)2(=-=f f由于),2()2(),2()2(f f f f -≠-≠-故)(x f 既不是奇函数,也不是偶函数.由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f故函数),()(+∞-∞在x f 内的最小值为.433. 解x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区间]2,2[ππ-上的图象是 4.解:xx x x x x x f cos sin 22cos sin )cos (sin )(22222--+=所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41 5. 解:函数f (x )的导数:.163)(2-+='x ax x f(Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;(II )当3-=a时,133)(23+-+-=x x x x f =,98)31(33+--x由函数3x y =在R 上的单调性,可知当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a时,函数))((R x x f ∈不是减函数.综上,所求a 的取值范围是 6. 解: 由,222,AC B C B A -=+=++ππ得所以有 .2sin 2cos A C B =+当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π7. 解:其判别试.81212124222a a a -=+-=∆(ⅰ)若,26,08122±==-=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞-∞>+∞∈-∞∈x f x f ax x 所以.26±=a (ⅱ) 若,08122<-=∆a .),()(,0)('为增函数在恒有+∞-∞>x f x f所以 ,232>a 即 ).,26()26,(+∞--∞∈ a (ⅲ)若,08122>-=∆a 即,0)(',2626=<<-x f a 令 解得 .323,3232221a a x a a x -+=--=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈-∞∈当.)(,0)(',),(21为减函数时x f x f x x x <∈依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a -解得 1≤.26<a由2x ≤1得,232a -≤3,a -解得 .2626<<-a 从而 .)26,1[∈a综上,a 的取值范围为),26,1[),26[]26, +∞-∞- 即 ∈a ).,1[]26,(+∞--∞ 9. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增; 当23a>,由()0f x '=求得两根为3a x -=即()f x在3a ⎛⎫--∞ ⎪ ⎪⎝⎭,递增,33a a ⎛---+ ⎪⎝⎭,递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增; (2)(法一)∵函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,⎝⎭递减,∴23313a ⎧---⎪⎪-,且23a>,解得:2a ≥。
数学函数解析式高考真题
数学函数解析式高考真题解析式是数学函数的一种表示形式,通常以代数式的形式来表达函数的数学性质。
在高考数学中,解析式的应用十分广泛,尤其是在函数的相关知识点中。
让我们通过几道高考数学真题来深入了解数学函数解析式的具体应用。
1. (2018年高考真题·全国卷II)已知函数 y=f(x) 的解析式为f(x)=ax^2+bx+c,其中 a、b、c 是常数,且 f(x) 在 x=1 处的切线方程为y=6x-2,则 a、b、c 的值分别为()。
A. 3, -4, -1B. 5, -6, -1C. -3, 4, 1D. -5, 6, 1解析:首先根据题意可知,函数 f(x)=ax^2+bx+c 在 x=1 处的切线方程为 y=6x-2,即函数在 x=1 处的导数等于切线斜率为6。
求函数 f(x)在 x=1 处的导数,即求 f'(x) 在 x=1 处的值。
由于 f(x)=ax^2+bx+c,则f'(x)=2ax+b。
将 x=1 代入 f'(x) 中得到 2a+b=6。
又因为函数 f(x) 在 x=1处的函数值为 f(1)=6*1-2=4,则将 x=1 代入原函数 f(x) 得到 a+b+c=4。
联立求解方程组 2a+b=6,a+b+c=4,解得 a=3,b=-4,c=-1。
因此答案为 A. 3, -4, -1。
2. (2017年高考真题·全国卷I)已知函数 y=f(x) 的解析式为f(x)=x^3+ax^2+bx+c,其中a、b、c 是常数,且f(1)=1,f’(1)=4,则a、b、c 的值分别为()。
A. 4, 3, -6B. 3, -4, 5C. -4, -3, 6D. -3, 4, -5解析:根据题意可知,函数 f(x)=x^3+ax^2+bx+c,在 x=1 处的函数值为 f(1)=1,导数值为 f'(1)=4。
首先将 x=1 代入 f(x) 得到 a+b+c=1,然后求函数 f(x) 的导数 f'(x),得到 f'(x)=3x^2+2ax+b。
2017年高考真题分类汇编(理数)专题4数列与不等式(解析版)
2017年高考真题分类汇编(理数):专题4 数列与不等式一、单选题(共13题;共25分)1、(2017·天津)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A、B、1 C、D、32、(2017•北京卷)若x,y满足,则x+2y的最大值为()A、1B、3C、5D、93、(2017•新课标Ⅰ卷)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A、1B、2C、4D、84、(2017•山东)若a>b>0,且ab=1,则下列不等式成立的是()A、a+ <<log2(a+b))B、<log2(a+b)<a+C、a+ <log2(a+b)<D、log2(a+b))<a+ <5、(2017•山东)已知x,y满足约束条件,则z=x+2y的最大值是()A、0B、2C、5D、66、(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件7、(2017•浙江)若x、y满足约束条件,则z=x+2y的取值范围是()A、[0,6]B、[0,4]C、[6,+∞)D、[4,+∞)8、(2017•新课标Ⅰ卷)设x,y满足约束条件,则z=3x﹣2y的最小值为________.9、(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A、﹣15B、﹣9C、1D、910、(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A、1盏B、3盏C、5盏D、9盏11、(2017•新课标Ⅲ)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A、﹣24B、﹣3C、3D、812、(2017·天津)已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R 上恒成立,则a的取值范围是()A、[﹣,2]B、[﹣,]C、[﹣2 ,2]D、[﹣2 ,]13、(2017•新课标Ⅰ卷)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A、440B、330C、220D、110二、填空题(共7题;共7分)14、(2017•新课标Ⅲ)若x,y满足约束条件,则z=3x﹣4y的最小值为________15、(2017•新课标Ⅲ)设等比数列{a n}满足a1+a2=﹣1,a1﹣a3=﹣3,则a4=________16、(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=________.17、(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3= ,S6= ,则a8=________.18、(2017•江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.19、(2017•北京卷)若等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,则=________.20、(2017·天津)若a,b∈R,ab>0,则的最小值为________.三、解答题(共5题;共30分)21、(2017•山东)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(12分)(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1 P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.22、(2017·天津)已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).23、(2017•浙江)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<x n+1<x n;(Ⅱ)2x n+1﹣x n≤ ;(Ⅲ)≤x n≤ .24、(2017•北京卷)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(13分)(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.25、(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(Ⅰ)证明:等差数列{a n}是“P(3)数列”;(Ⅱ)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.答案解析部分一、单选题1、【答案】D【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:变量x,y满足约束条件的可行域如图:目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A(0,3),目标函数z=x+y的最大值为:3.故选:D.【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.2、【答案】D【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选:D.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即可.3、【答案】C【考点】等差数列的通项公式,等差数列的前n项和【解析】【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.4、【答案】B【考点】不等式比较大小【解析】【解答】解:∵a>b>0,且ab=1,∴可取a=2,b= .则= ,= = ,log2(a+b)= = ∈(1,2),∴<log2(a+b)<a+ .故选:B.【分析】a>b>0,且ab=1,可取a=2,b= .代入计算即可得出大小关系.5、【答案】C【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+ z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.6、【答案】C【考点】必要条件、充分条件与充要条件的判断,等差数列的前n项和【解析】【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.7、【答案】A【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过坐标原点时,函数取得最小值,经过A时,目标函数取得最大值,由解得A(0,3),目标函数的直线为:0,最大值为:36目标函数的范围是[0,6].故选:A.【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.8、【答案】-5【考点】简单线性规划【解析】【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.9、【答案】A【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可.10、【答案】B【考点】等比数列的前n项和【解析】【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381= =127a,解得a=3,则这个塔顶层有3盏灯,故选B.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a的值.11、【答案】A【考点】等差数列的通项公式,等差数列的前n项和,等比数列【解析】【解答】解:∵等差数列{a n}的首项为1,公差不为0.a2,a3,a6成等比数列,∴,∴(a1+2d)2=(a1+d)(a1+5d),且a1=1,d≠0,解得d=﹣2,∴{a n}前6项的和为= =﹣24.故选:A.【分析】利用等差数列通项公式、等比数列性质列出方程,求出公差,由此能求出{a n}前6项的和.12、【答案】A【考点】函数恒成立问题,分段函数的应用【解析】【解答】解:当x≤1时,关于x的不等式f(x)≥| +a|在R上恒成立,即为﹣x2+x﹣3≤ +a≤x2﹣x+3,即有﹣x2+ x﹣3≤a≤x2﹣x+3,由y=﹣x2+ x﹣3的对称轴为x= <1,可得x= 处取得最大值﹣;由y=x2﹣x+3的对称轴为x= <1,可得x= 处取得最小值,则﹣≤a≤ ①当x>1时,关于x的不等式f(x)≥| +a|在R上恒成立,即为﹣(x+ )≤ +a≤x+ ,即有﹣(x+ )≤a≤ + ,由y=﹣(x+ )≤﹣2 =﹣2 (当且仅当x= >1)取得最大值﹣2 ;由y= x+ ≥2 =2(当且仅当x=2>1)取得最小值2.则﹣2 ≤a≤2②由①②可得,﹣≤a≤2.故选:A.【分析】讨论当x≤1时,运用绝对值不等式的解法和分离参数,可得﹣x2+ x﹣3≤a≤x2﹣x+3,再由二次函数的最值求法,可得a的范围;讨论当x>1时,同样可得﹣(x+ )≤a≤ + ,再由基本不等式可得最值,可得a的范围,求交集即可得到所求范围.13、【答案】A【考点】数列的求和【解析】【解答】解:设该数列为{a n},设b n= +…+ =2n﹣1,(n∈N+),则= a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n ﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,… ,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n= ,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n= ﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=2,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=17,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选A.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.二、填空题14、【答案】﹣1【考点】二元一次不等式(组)与平面区域,简单线性规划【解析】【解答】解:由z=3x﹣4y,得y= x﹣,作出不等式对应的可行域(阴影部分),平移直线y= x﹣,通过平移可知当直线y= x﹣,经过点B(1,1)时,直线y= x﹣在y轴上的截距最大,此时z取得最小值,将B的坐标代入z=3x﹣4y=3﹣4=﹣1,即目标函数z=3x﹣4y的最小值为﹣1.故答案为:﹣1.【分析】作出不等式组对应的平面区域,结合平移过程,求目标函数z=3x﹣4y的最小值.15、【答案】-8【考点】等比数列的通项公式【解析】【解答】解:设等比数列{a n}的公比为q,∵a1+a2=﹣1,a1﹣a3=﹣3,∴a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解得a1=1,q=﹣2.则a4=(﹣2)3=﹣8.故答案为:﹣8.【分析】设等比数列{a n}的公比为q,由a1+a2=﹣1,a1﹣a3=﹣3,可得:a1(1+q)=﹣1,a1(1﹣q2)=﹣3,解方程组即可得出.16、【答案】【考点】等差数列的前n项和,数列的求和【解析】【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n= ,= ,则=2[1﹣+ +…+ ]=2(1﹣)= .故答案为:.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.17、【答案】32【考点】等比数列的通项公式,等比数列的前n项和【解析】【解答】解:设等比数列{a n}的公比为q≠1,∵S3= ,S6= ,∴= ,= ,解得a1= ,q=2.则a8= =32.故答案为:32.【分析】设等比数列{a n}的公比为q≠1,S3= ,S6= ,可得= ,= ,联立解出即可得出.18、【答案】30【考点】基本不等式,基本不等式在最值问题中的应用【解析】【解答】解:由题意可得:一年的总运费与总存储费用之和= +4x≥4×2× =240(万元).当且仅当x=30时取等号.故答案为:30.【分析】由题意可得:一年的总运费与总存储费用之和= +4x,利用基本不等式的性质即可得出.19、【答案】1【考点】等差数列与等比数列的综合【解析】【解答】解:等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,设等差数列的公差为d,等比数列的公比为q.可得:8=﹣1+3d,d=3,a2=2;8=﹣q3,解得q=﹣2,∴b2=2.可得=1.故答案为:1.【分析】利用等差数列求出公差,等比数列求出公比,然后求解第二项,即可得到结果.20、【答案】4【考点】基本不等式【解析】【解答】解:a,b∈R,ab>0,∴≥==4ab+ ≥2 =4,当且仅当,即,即a= ,b= 或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.【分析】两次利用基本不等式,即可求出最小值,需要注意不等式等号成立的条件是什么.三、解答题21、【答案】解:(I)设数列{x n}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴x n=2n﹣1.(II)过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,即梯形P n P n+1Q n+1Q n的面积为b n,则b n= =(2n+1)×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣T n= +(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1= + ﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴T n= .【考点】等比数列的通项公式,等比数列的前n项和【解析】【分析】(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.22、【答案】解:(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(Ⅱ)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1= 4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1= =﹣(3n﹣2)4n+1﹣8得T n= .所以,数列{a2n b2n﹣1}的前n项和为.【考点】数列的求和,数列递推式,等差数列与等比数列的综合【解析】【分析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{a n}和{b n}的通项公式;(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.23、【答案】解:(Ⅰ)用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则x k>0,那么n=k+1时,若x k+1<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,故x n+1>0,因此x n>0,(n∈N*)∴x n=x n+1+ln(1+x n+1)>x n+1,因此0<x n+1<x n(n∈N*),(Ⅱ)由x n=x n+1+ln(1+x n+1)得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)= +ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1)≥0,故2x n+1﹣x n≤ ;(Ⅲ)∵x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,∴x n≥ ,由≥2x n+1﹣x n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x n≤ ,综上所述≤x n≤ .【考点】利用导数研究函数的单调性,数列的函数特性,数列递推式,数列与不等式的综合,数学归纳法【解析】【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由≥2x n+1﹣x n得﹣≥2(﹣)>0,继续放缩即可证明24、【答案】(1)解:a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n+1﹣c n=﹣1对∀n∈N*均成立,∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d1>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,此时c n+1﹣c n=d2﹣a1,∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此,当n≥s时,c n=b n﹣a n n,此时= =﹣a n+ ,=﹣d2n+(d1﹣a1+d2)+ ,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+ 对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[ +1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[ +1]+B>A• +B=M,此时命题成立;若C<0,取m=[ ]+1,当n≥m时,≥An+B+ ≥Am+B+C>A• +B+C ≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【考点】数列的应用,等差关系的确定【解析】【分析】(1.)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1对∀n∈N*均成立;(2.)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+ 对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.25、【答案】解:(Ⅰ)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(Ⅱ)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【考点】等差数列的通项公式,数列的应用,等差关系的确定,等差数列的性质【解析】【分析】(Ⅰ)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n+a n+2)+(a n﹣1+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;﹣2(Ⅱ)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.。
高考数学真题导数专题及答案
高考数学真题导数专题及答案2017年高考真题:导数专题一、解答题(共12小题)1.已知函数f(x) = ae^(2x) + (a-2)e^x - x。
1) 讨论f(x)的单调性;2) 若f(x)有两个零点,求a的取值范围。
2.已知函数f(x) = ax^2 - ax - xlnx,且f(x) ≥ 0.1) 求a;2) 证明:f(x)存在唯一的极大值点x,且e^-2 < f(x) < 2^-2.3.已知函数f(x) = x^-1 - alnx。
1) 若f(x) ≥ 0,求a的值;2) 设m为整数,且对于任意正整数n,(1+1/n)^m 的最小值。
4.已知函数f(x) = x^3 + ax^2 + bx + 1 (a。
0,b∈R)有极值,且导函数f'(x)的极值点是f(x)的零点。
1) 求b关于a的函数关系式,并写出定义域;2) 证明:b^2.3a;3) 若f(x)和f'(x)这两个函数的所有极值之和不小于 -1,求a的取值范围。
5.设函数f(x) = (1-x^2)e^x。
1) 讨论f(x)的单调性;2) 当x≥1时,f(x) ≤ ax+1,求a的取值范围。
6.已知函数f(x) = (x-1)/(x+1)。
1) 求f(x)的导函数;2) 求f(x)在区间(-1.+∞)上的取值范围。
7.已知函数f(x) = x^2 + 2cosx,g(x) = e^x(cosx-sinx+2x^-2),其中e≈2.…是自然对数的底数。
I) 求曲线y=f(x)在点(π。
f(π))处的切线方程;II) 令h(x) = g(x) - af(x) (a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值。
8.已知函数f(x) = e^x*cosx - x。
1) 求曲线y=f(x)在点(0.f(0))处的切线方程;2) 求函数f(x)在区间[0.π]上的最大值和最小值。
9.设a∈Z,已知定义在R上的函数f(x) = 2x^4 + 3x^3 -3x^2 - 6x + a在区间(1.2)内有一个零点x,g(x)为f(x)的导函数。
17年数学高考真题
17年数学高考真题2017年数学高考真题2017年数学高考真题分为试题卷和答题卡两部分,共有15道题目,满分150分。
下面就具体的题目内容进行分析和解答。
一、选择题部分1.已知函数f(x)=2x^3-x^2-3x+1,那么f(-1)的值为多少?解:将x=-1代入函数f(x),得到f(-1)=2*(-1)^3-(-1)^2-3*(-1)+1=2+1+3+1=7。
故f(-1)的值为7。
2.已知数列{an}满足an=n^2-3n+5,求a1+a2+...+a10的值是多少?解:将数列an=n^2-3n+5中的n分别从1到10代入,并相加起来,得到a1+a2+...+a10=1^2-3*1+5+2^2-3*2+5+...+10^2-3*10+5=385。
因此,a1+a2+...+a10的值为385。
3.某商品的原价是300元,按照打八折的折扣出售后,实际售价是多少?A. 200元B. 240元C. 260元D. 280元解:原价300元,打八折即为300*0.8=240元。
所以实际售价为240元,故正确答案为B。
4.下列哪个数是质数?A. 25B. 36C. 47D. 50解:质数是指除了1和本身之外没有其他因子的数。
25=5*5,36=2*2*3*3,50=2*5。
只有47没有其他因子,所以47是质数,故正确答案为C。
5.已知三角形ABC,角A的大小为30°,边a=4,边b=6,求边c 的长度是多少?解:根据正弦定理有sin30°/4=sinB/6,解方程可得sinB=0.5,即B=30°。
所以角C=180°-30°-30°=120°。
根据余弦定理可得c^2=4^2+6^2-2*4*6*cos120°,解得c=√52。
所以边c的长度为√52。
二、填空题部分6.已知函数f(x)=3x^2-2x,求f(-2)的值是多少?解:将x=-2代入函数f(x),得到f(-2)=3*(-2)^2-2*(-2)=3*4+4=16。
历年高考数学真题汇编专题16 以基本不等式为背景的应用题(解析版)
历年高考数学真题汇编专题16 以基本不等式为背景的应用题1、【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2、【2010年高考江苏卷】某兴趣小组要测量电视塔AE 的高度H (单位:m).示意图如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1) 该小组已测得一组α,β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?规范解答 (1) 由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=Htan β, 解得H =h tan αtan α-tan β=4×1.241.24-1.20=124.因此算出的电视塔的高度H 是124 m. (2) (1) 由题知d =AB ,则tan α=H d.由AB =AD -BD =H tan β-h tan β,得tan β=H -hd,所以tan(α-β)=tan α-tan β1+tan αtan β=()h hH H d d-+,当且仅当d =555时取等号. 又0<α-β<π2,所以当d =555时,tan(α-β)的值最大.因为0<β<α<π2,所以当d =555时,α-β的值最大.3、【2013年高考江苏卷】如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.本小题主要考查函数、方程和基本不等式等基础知识,考查数学阅读能力和解决实际问题的能力.满分14分.规范解答 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10km.(2) 因为a >0,所以炮弹可击中目标等价于存在k >0,使3.2=ka -120(1+k 2)a 2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根, 所以判别式Δ=(-20a )2-4a 2(a 2+64)≥0, 解得a ≤6,所以0<a ≤6.所以当a 不超过6km 时,炮弹可击中目标.一、解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:二、在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.运用基本不等式解决应用题一定要注意满足三个条件:一、正;二、定;三、相等。
2017年全国统一高考真题数学试卷(理科)(新课标ⅲ)(含答案及解析)
2017年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80B.﹣40C.40D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5B.4C.3D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24B.﹣3C.3D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。
近五年(2017-2021)高考数学真题分类汇编试卷含答案(不等式)
2
2
故 sin cos sin cos sin cos 3 , 2
故 sin cos ,sin cos ,sin cos 不可能均大于 1 .
2
取 , , ,
6
3
4
则 sin cos 1 1 ,sin cos 6 1 ,sin cos 6 1 ,
42
42
,
上下平移直线 y 3x z ,数形结合可得当直线过点 A 时, z 取最小值,
此时 zmin 31 3 6 .
故选:C.
3.B
x 1 0
【解析】画出满足约束条件
x
y
0
的可行域,如下图所示:
2x 3y 1 0
目标函数 z x 1 y 化为 y 2x 2z , 2
x 1
x 1
_________.
20.(2020·江苏)已知 5x2 y2 y4 1(x, y R) ,则 x2 y2 的最小值是_______.
x y 0, 21.(2020·全国(文))若 x,y 满足约束条件 2x y 0,,则 z=3x+2y 的最大值为
x 1,
_________.
2x y 2 0, 22.(2020·全国(理))若 x,y 满足约束条件 x y 1 0, 则 z=x+7y 的最大值为
__________.
34.(2017·山东(文))若直线 x y 1(a>0,b>0) 过点(1,2),则 2a+b 的最小值为 ab
______.
四、双空题
x 2,
35.(2019·北京(文))若
x,y
满足
y
1,
则 y x 的最小值为__________,
2017年高考真题(全国Ⅰ卷)数学理科含答解析
2017年普通高等学校招生统一考试全国I 卷理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin pAB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】23 【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+= a b a a b b ,所以|2|1223+==a b . 秒杀解析:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为 .【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by x a=上的点,且(,0)A a ,||||AM AN b ==, 而AP MN ⊥,所以30PAN ∠= , 点(,0)A a 到直线by x a=的距离22||||1b AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =, 由222c a b =+得2c b =, 所以22333c b e a b ===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为.【答案】415 【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =-- ,(2,0,0)CB = ,22(,0,)22PA =- ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩ m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分)已知函数2()e (2)e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则0000()e (e2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f xg x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.- 21 - 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。
高考数学函数真题汇编
精品基础教育教学资料,仅供参考,需要可下载使用!高考数学《不等式》真题汇编1.(2017北京)已知函数1()3()3x xf x =-,则()f x (A )(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数2.(2017北京)已知函数()cos xf x e x x =- (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值.解:(Ⅰ)()cos xf x e x x =-∴()(cos sin )1xf x e x x '=--∴曲线()y f x =在点(0,(0))f 处的切线斜率为0(cos0sin 0)10k e =--=切点为(0,1),∴曲线()y f x =在点(0,(0))f 处的切线方程为1y =(Ⅱ)()(cos sin )1xf x e x x '=--,令()()g x f x '=,则()(cos sin sin cos )2sin xxg x e x x x x e x '=---=-当[0,]2x π∈,可得()2sin 0x g x e x '=-≤,即有()g x 在[0,]2π上单调递减,可得()(0)0g x g ≤=, 所以()f x 在[0,]2π上单调递减,所以函数()f x 在区间[0,]2π上的最大值为0(0)cos 001f e =-=;最小值为2()cos2222f e πππππ=-=-3.(2017全国卷Ⅰ)函数在单调递减,且为奇函数.若,则满足的的取值范围是(D )()f x (,)-∞+∞(11)f =-21()1x f --≤≤xA.B.C.D.-[0,4][1,3] [2,2]-[1,1]4.(2017全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考数学《不等式》真题汇编1.(2017北京)已知函数1()3()3x xf x =-,则()f x (A )(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数(C )是奇函数,且在R 上是减函数(D )是偶函数,且在R 上是减函数2.(2017北京)已知函数()cos xf x e x x =- (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值.解:(Ⅰ)()cos xf x e x x =- ∴()(cos sin )1xf x e x x '=--∴曲线()y f x =在点(0,(0))f 处的切线斜率为0(cos0sin 0)10k e =--= 切点为(0,1),∴曲线()y f x =在点(0,(0))f 处的切线方程为1y = (Ⅱ)()(cos sin )1xf x e x x '=--,令()()g x f x '=,则()(cos sin sin cos )2sin xxg x e x x x x e x '=---=- 当[0,]2x π∈,可得()2sin 0x g x e x '=-≤,即有()g x 在[0,]2π上单调递减,可得()(0)0g x g ≤=, 所以()f x 在[0,]2π上单调递减,所以函数()f x 在区间[0,]2π上的最大值为0(0)cos 001f e =-=; 最小值为2()cos2222f e πππππ=-=-3.(2017全国卷Ⅰ)函数在单调递减,且为奇函数.若,则满足的的取值范围是(D )A .B .C .D .()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]4.(2017全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。
D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形。
沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥。
当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______35.(2017全国卷Ⅰ)已知函数2()(2)x xf x ae a e x =+-- (1)讨论的单调性;(2)若()f x 有两个零点,求a 的取值范围. 解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)xx x x f x aea e ae e '=+--=-+(i )若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减 (ii )若0a >,则由()0f x '=的ln x a =- 当(,ln )x a ∈-∞-时,()0f x '<; 当(ln ,)x a ∈-+∞时,()0f x '>所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增。
(2)(i )若0a ≤,由(1)知,()f x 至多有一个零点(ii )若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+ 当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; 当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; 当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<又()f x又422(2)(2)2220f aea e e ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点。
设正整数0n 满足03ln(1)n a>-,则00000000()(2)20nnnnf n e ae a n e n n =+-->->-> 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点 综上,a 的取值范围为(0,1)6.(2017全国卷Ⅰ)函数sin21cos xy x =-的部分图像大致为(C )7.(2017全国卷Ⅰ)已知函数()ln ln(2)f x x x =+-,则(C ) A.()f x 在(0,2)单调递增B.()f x 在(0,2)单调递减C.y =()f x 的图像关于直线x =1对称D.y =()f x 的图像关于点(1,0)对称8.(2017全国卷Ⅰ)已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.解:(1)函数()f x 的定义域为22(,),()2(2)()x x x xf x e ae a e a e a '-∞+∞=--=+-①若0a =,则2()xf x e =,在(,)-∞+∞单调递增9.(2017全国卷Ⅱ)若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( C )A.1-B.32e -- C.35e - D.110.(2017全国卷Ⅱ)已知函数()2ln f x ax ax x x =--,且()0f x ≥。
(1)求a 的值;(2)证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.解:(1)()f x 的定义域为(0,)+∞设()ln g x ax a x =--,则()(),()0f x xg x f x =≥等价于()0g x ≥ 因为(1)0,()0g g x =≥,故(1)0g '=,而1(),(1)1g x a g a x''=-=-,得1a = 若1a =,则1()1g x x'=-当01x <<时,()0,()g x g x '<单调递减; 当1x >时,()0,()g x g x '>单调递增所以1x =是()g x 的极小值点,故()(1)0g x g ≥=,综上,1a = (2)由(1)知2()ln ,()22ln f x x x x x f x x x '=--=-- 设()22ln h x x x =--,则1()2h x x'=-当1(0,)2x ∈时,()0h x '<;当1(,)2x ∈+∞时,()0h x '>.所以()h x 在1(0,)2单调递减,在1(,)2+∞单调递增.又21()0,()0,(1)02h e h h -><=,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <;当(1,)x ∈+∞时,()0h x >. 因为()()f x h x '=,所以0x x =是()f x 的唯一极大值点. 由0()0f x '=得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由11(0,1),()0e f e --'∈≠得120()()f x f e e -->=.所以220()2e f x --<<11.(2017全国卷Ⅱ)函数2()ln(28)f x x x =-- 的单调递增区间是(D ) A.(-∞,-2) B. (-∞,-1) C.(1, +∞) D. (4, +∞)12.(2017全国卷Ⅱ)设函数2()(1)xf x x e =-. (1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围. 解:(1)2()(12)xf x x x e '=--令()0f x '=得11x x =--=-当(,1x ∈-∞-时,()0f x '<;当(11x ∈---+时,()0f x '>;当(1)x ∈-++∞时,()0f x '<.所以()f x 在(,11)-∞---++∞单调递减,在(11---+单调递增. (2)()(1)(1)x f x x x e =+-,当1a ≥时, 设函数()(1),()0(0)xxh x x e h x xe x '=-=-<<, 因此()h x 在[0,)+∞单调递减,而(0)1h =,故()1h x ≤, 所以()(1)()11f x x h x x ax =+≤+≤+ 当01a <<时,设函数()1,()10(0)xxg x e x g x e x '=--=->>,所以()g x 在[0,)+∞单调递增, 而(0)0g =,故1xe x ≥+当01x <<时,2()(1)(1)f x x x >-+,22(1)(1)1(1x x ax x a x x -+--=---),取012x =,则20000(0,1),(1)(1)10x x x ax ∈-+--=,故00()1f x ax >+当0a ≤时,取012x =,则200000(0,1),()(1)(1)11x f x x x ax ∈>-+=≥+综上,a 的取值范围是[1,)+∞.13.(2017全国卷Ⅲ)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =(C )A .12-B .13C .12D .114.(2017全国卷Ⅲ)设函数1,0,()2,0xx x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是________1(,)4-+∞15.(2017全国卷Ⅲ)函数2sin 1xy x x=++的部分图像大致为(D ) A . B .C .D .16.(2017全国卷Ⅲ)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =(C )A .12-B .13C .12D .117.(2017全国卷Ⅲ)已知函数()2(1)ln 2x ax a x f x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a≤--. 解:(1)f(x)的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a x x++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减。