1了解集合的含义元素与集合的属于关系
2020高中数学精讲精练(新人教A版)第01章 集合与简易逻辑
2020高中数学精讲精练 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合{(,)02,02,,}x y x y x y Z ≤≤≤<∈用列举法表示{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}.2.设集合{21,}A x x k k Z ==-∈,{2,}B x x k k Z ==∈,则A B ⋂=∅.3.已知集合{0,1,2}M =,{2,}N x x a a M ==∈,则集合M N ⋂=_______. 4.设全集{1,3,5,7,9}I =,集合{1,5,9}A a =-,{5,7}I C A =,则实数a 的值为____8或2___.【范例解析】例.已知R 为实数集,集合2{320}A x x x =-+≤.若R B C A R ⋃=,{01R B C A x x ⋂=<<或23}x <<,求集合B .分析:先化简集合A ,由R B C A R ⋃=可以得出A 与B 的关系;最后,由数形结合,利用数轴直观地解决问题.解:(1){12}A x x =≤≤,{1R C A x x ∴=<或2}x >.又R B C A R ⋃=,R A C A R ⋃=, 可得A B ⊆.而{01R B C A x x ⋂=<<或23}x <<,∴{01x x <<或23}x <<.B ⊆借助数轴可得B A =⋃{01x x <<或23}x <<{03}x x =<<.{0,2}【反馈演练】1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A U ⋂=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P +Q 中元素的个数是____8___个.3.设集合2{60}P x x x =--<,{23}Q x a x a =≤≤+.(1)若P Q P ⋃=,求实数a 的取值范围;(2)若P Q ⋂=∅,求实数a 的取值范围;(3)若{03}P Q x x ⋂=≤<,求实数a 的值.解:(1)由题意知:{23}P x x =-<<,P Q P ⋃=,Q P ∴⊆.①当Q =∅时,得23a a >+,解得3a >.②当Q ≠∅时,得2233a a -<≤+<,解得10a -<<.综上,(1,0)(3,)a ∈-⋃+∞.(2)①当Q =∅时,得23a a >+,解得3a >;②当Q ≠∅时,得23,3223a a a a ≤+⎧⎨+≤-≥⎩或,解得3532a a ≤-≤≤或. 综上,3(,5][,)2a ∈-∞-⋃+∞. (3)由{03}P Q x x ⋂=≤<,则0a =.第2课 命题及逻辑联结词【考点导读】1. 了解命题的逆命题,否命题与逆否命题的意义;会分析四种命题的相互关系.2. 了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.3. 理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定.【基础练习】1.下列语句中:①230x -=;②你是高三的学生吗?③315+=;④536x ->.其中,不是命题的有____①②④_____.2.一般地若用p 和q 分别表示原命题的条件和结论,则它的逆命题可表示为若q 则p ,否命题可表示为 p q ⌝⌝若则,逆否命题可表示为q p ⌝⌝若则;原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.【范例解析】例1. 写出下列命题的逆命题,否命题,逆否命题并判断真假.(1) 平行四边形的对边相等;(2) 菱形的对角线互相垂直平分;(3) 设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+.分析:先将原命题改为“若p 则q ”,在写出其它三种命题.解:(1)原命题:若一个四边形是平行四边形,则其两组对边相等;真命题;逆命题:若一个四边形的两组对边相等,则这个四边形是平行四边形;真命题;否命题:若一个四边形不是平行四边形,则其两组对边至少一组不相等;真命题;逆否命题:若一个四边形的两组对边至少一组不相等,则这个四边形不是平行四边形;真命题.(2)原命题:若一个四边形是菱形,则其对角线互相垂直平分;真命题;逆命题:若一个四边形的对角线互相垂直平分,则这个四边形是菱形;真命题;否命题:若一个四边形不是菱形,则其对角线不垂直或不平分;真命题;逆否命题:若一个四边形的对角线不垂直或不平分,则这个四边形不是菱形;真命题.(3)原命题:设,,,a b c d R ∈,若,a b c d ==,则a c b d +=+;真命题;逆命题:设,,,a b c d R ∈,若a c b d +=+,则,a b c d ==;假命题;否命题:设,,,a b c d R ∈,若a b ≠或c d ≠,则a c b d +≠+;假命题;逆否命题:设,,,a b c d R ∈,若a c b d +≠+,则a b ≠或c d ≠;真命题.点评:已知原命题写出其它的三种命题首先应把命题写成“若p则q”的形式,找出其条件p 和结论q,再根据四种命题的定义写出其它命题;对于含大前提的命题,在改写命题时大前提不要动;在写命题p的否定即p⌝时,要注意对p中的关键词的否定,如“且”的否定为“或”,“或”的否定为“且”,“都是”的否定为“不都是”等.例2.写出由下列各组命题构成的“p或q”,“p且q”,“非p”形式的命题,并判断真假. (1)p:2是4的约数,q:2是6的约数;(2)p:矩形的对角线相等,q:矩形的对角线互相平分;(3)p:方程210-+=的两实根的绝对值相等.x xx x-+=的两实根的符号相同,q:方程210分析:先写出三种形式命题,根据真值表判断真假.解:(1)p或q:2是4的约数或2是6的约数,真命题;p且q:2是4的约数且2是6的约数,真命题;非p:2不是4的约数,假命题.(2)p或q:矩形的对角线相等或互相平分,真命题;p且q:矩形的对角线相等且互相平分,真命题;非p:矩形的对角线不相等,假命题.(3)p或q:方程210-+=的两实根的符号相同或绝对值相等,假命题;x xp且q:方程210-+=的两实根的符号相同且绝对值相等,假命题;x x非p:方程210-+=的两实根的符号不同,真命题.x x点评:判断含有逻辑联结词“或”,“且”,“非”的命题的真假,先要把结构弄清楚,确定命题构成的形式以及构成它们的命题p,q的真假然后根据真值表判断构成新命题的真假.例3.写出下列命题的否定,并判断真假.(1)p:所有末位数字是0或5的整数都能被5整除;(2)p:每一个非负数的平方都是正数;(3)p:存在一个三角形,它的内角和大于180°;(4)p:有的四边形没有外接圆;(5)p:某些梯形的对角线互相平分.分析:全称命题“,()∃∈⌝”,特称命题“,()x M p x∃∈”的x M p xx M p x∀∈”的否定是“,()否定是“,()∀∈⌝” .x M p x解:⌝:存在末位数字是0或5的整数,但它不能被5整除,假命题;(1)p⌝:存在一个非负数的平方不是正数,真命题;(2)p⌝:任意一个三角形,它的内角和都不大于180°,真命题;(3)p(4)p ⌝:所有四边形都有外接圆,假命题;(5)p ⌝:任一梯形的对角线都不互相平分,真命题.点评:一些常用正面叙述的词语及它的否定词语列表如下:【反馈演练】1.命题“若a M ∈,则b M ∉”的逆否命题是__________________.2.已知命题p :1sin ,≤∈∀x R x ,则:p ⌝,sin 1x R x ∃∈>.3.若命题m 的否命题n ,命题n 的逆命题p ,则p 是m 的____逆否命题____.4.命题“若b a >,则122->b a ”的否命题为________________________. 5.分别写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.(1)设,a b R ∈,若0ab =,则0a =或0b =;(2)设,a b R ∈,若0,0a b >>,则0ab >.解:(1)逆命题:设,a b R ∈,若0a =或0b =,则0ab =;真命题;否命题:设,a b R ∈,若0ab ≠,则0a ≠且0b ≠;真命题;逆否命题:设,a b R ∈,若0a ≠且0b ≠,则0ab ≠;真命题;(2)逆命题:设,a b R ∈,若0ab >,则0,0a b >>;假命题;否命题:设,a b R ∈,若0a ≤或0b ≤,则0ab ≤;假命题;逆否命题:设,a b R ∈,若0ab ≤,则0a ≤或0b ≤;真命题.若b M ∈,则a M ∉ 若a b ≤,则221a b ≤-第3 课时 充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论:若集合P Q ⊆,则P 是Q 的充分条件;若集合P Q ⊇,则P 是Q 的必要条件;若集合P Q =,则P 是Q 的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力.【基础练习】1.若p q ⇒,则p 是q 的充分条件.若q p ⇒,则p 是q 的必要条件.若p q ⇔,则p 是q 的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)已知:2p x >,:2q x ≥,那么p 是q 的_____充分不必要___条件.(2)已知:p 两直线平行,:q 内错角相等,那么p 是q 的____充要_____条件.(3)已知:p 四边形的四条边相等,:q 四边形是正方形,那么p 是q 的___必要不充分__条件.3.若x R ∈,则1x >的一个必要不充分条件是0x >.【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的___________________条件;(2)(4)(1)0x x -+≥是401x x -≥+的___________________条件; (3)αβ=是tan tan αβ=的___________________条件;(4)3x y +≠是1x ≠或2y ≠的___________________条件.分析:从集合观点“小范围⇒大范围”进行理解判断,注意特殊值的使用.解:(1)因为2,2.x y >⎧⎨>⎩结合不等式性质易得4,4.x y xy +>⎧⎨>⎩,反之不成立,若12x =,10y =,有4,4.x y xy +>⎧⎨>⎩,但2,2.x y >⎧⎨>⎩不成立,所以2,2.x y >⎧⎨>⎩是4,4.x y xy +>⎧⎨>⎩的充分不必要条件.(2)因为(4)(1)0x x -+≥的解集为[1,4]-,401x x -≥+的解集为(1,4]-,故(4)(1)0x x -+≥是401x x -≥+的必要不充分条件. (3)当2παβ==时,tan ,tan αβ均不存在;当tan tan αβ=时,取4πα=,54πβ=,但αβ≠,所以αβ=是tan tan αβ=的既不充分也不必要条件.(4)原问题等价其逆否形式,即判断“1x =且2y =是3x y +=的____条件”,故3x y +≠是1x ≠或2y ≠的充分不必要条件.点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若⌝q 则⌝p ”的真假.【反馈演练】1.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,则“M a ∈”是“N a ∈”的_必要不充分 条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件.3.已知条件2:{10}p A x R x ax =∈++≤,条件2:{320}q B x R x x =∈-+≤.若q ⌝是p ⌝的充分不必要条件,求实数a 的取值范围. 解::{12}q B x R x =∈≤≤,若q ⌝是p ⌝的充分不必要条件,则A B ⊆.若A =∅,则240a -<,即22a -<<;若A ≠∅,则240,a x ⎧-≥≤≤解得522a -≤≤-. 综上所述,522a -≤<.充分不必要。
高中数学_集合的含义与表示教学设计学情分析教材分析课后反思
集合的含义与表示一.学习目标:l.知识与技能(1)了解集合的含义,理解元素与集合之间的属于关系;(2)掌握集合中元素的三要素:确定性.互异性.无序性;(3)掌握常用数集及其专用记号;会用列举法或描述法表示集合。
二. 学习重点、难点:重点:集合的含义与表示方法.难点:集合的三要素:确定性、互异性、无序性.三.自学指导:(一)创设情景,揭示课题1.教师首先提出问题:通过学生对课本的预习,让学生与大家分享自己对集合的了解。
通过举例说明和互相交流.做好教师对学生的活动的梳理引导,并给予积极评价.2.用6分钟时间预习教材P2~P5,完成下列内容:(1)、集合:一般地,我们把统称为元素,把一些元素组成的叫做集合,简称为:。
(2)、集合元素的三要素(三特征):、、;若两个集合相等,那么必须有:。
(3)、元素与集合的关系:若a是集合A的元素,则记作:a A;若a不是集合A的元素,则记作:a A。
(4)、常用数集的记法:自然数集:;有理数集:;整数集:;实数集:;正实数集:;正整数集: .(5)集合的表示方法列举法:把集合中的元素,并用括起来表示集合的方法叫列举法描述法:用集合所含元素的表示集合的方法称为描述法,具体方法是:在内写上表示这个集合元素的及取值(或变化)范围,再画,最后在后写出这个集合中元素所具有的共同特征。
四.教学过程:(一)、集合的含义:元素:我们把研究的对象统称为元素;常用小写字母a, b, c …表示元素集合:把元素组成的全体叫做集合。
简称集.我们常用大写字母A,B,C…表示集合问题导学:检查自学指导内容,并分组探讨一下问题:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?确定性互异性无序性练习1.自学检测:完成以下练习:下列指定的对象,能构成一个集合的是①很小的数 不超过 30的非负实数③直角坐标平面的横坐标与纵坐标相等的点④的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2的整数⑧方程x2+2=0的根根⑨我国的四大发明(三)、集合与元素的关系集合常用大写字母A,B,C,D,……表示,元素常用小写字母a,b,c,d,……表示。
高考数学一轮复习 1.1 集合的概念与运算
2.如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子集,2n-1 个真子集. 3.正确理解交、并、补集的含义是解决集合的运算问题的关键.数轴和 Venn 图是进行集合交、并、补运算的有力工具.
12
核心考点
(4)空集: 不含任何元素的集合
叫做空集,记作: ⌀
.
规定:空集是 任何集合的子集 .
4
知识梳理
双击自测
知识梳理
-5-
3.集合的基本运算
并集
符号 表示
A∪B
图形 表示
交集 A∩B
补集
设全集为 U,集合 A 的 补集∁UA
含义
A∪
B={x|x∈A,或 x∈B}
A∩B={x|x∈A,且 x∈B}
∁UA={x|x∈U,且 x∉ A}
-13-
考点一
考点二
考点三
考点一集合的基本概念
1.设集合 A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则 M 中元素的
个数为( )
A.3
B.4
C.5
D.6
关闭
由题意知 x=a+b,a∈A,b∈B,则 x 的可能取值为 5,6,7,8.因此,集合 M 共有 4 个元素.故选 B.
关闭
B
13 解析 答案
核心考点
-14-
考点一
考点二
考点三
2.若集合 A={x∈R|ax2+ax+1=0}中只有一个元素,则 a=( )
(6)设全集为 R,函数 y= 1-������2的定义域为 M,则∁RM={x|x>1,或 x<1}.( )
新教材人教版高中数学必修1 第五章 复习知识点
A.(1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)
【解析】 由题意M=(1,+∞),N=(0,2), 则M∩N=(1,2),故选A. 【答案】 A
3.设集合A={5,log2(a+3) },集合B={a,b}. 若A∩B={2},则A∪B=________. 【解析】 ∵A∩B={2},∴ log2(a+3) =2. ∴a=1.∴b=2. ∴A={5,2},B={1,2}. ∴A∪B={1,2,5}.
集合中元素的互异性,故a≠1,
∴a=-1,此时集合为{-1,0,1},符合题意, ∴a2012+b2012=(-1)2012+02012=1.
【答案】 1
【发散思维】 在利用集合相等或其他相关概念求字母的 值时,特别需注意利用集合中元素的互异性来检验所得 结果是否正确.
1.集合A={0,2,a},B={1,a2 },
2.(2011·海淀模拟)已知集合S= P={x|a+1<x<2a+15}.
xxx+ -25<0
,
(1)求集合S;
(2)若S⊆P,求实数a的取值范围.
【解析】
(1)由
x+2 x-5
<0得-2<x<5,∴S={x|-2<x<5}
(2)由S⊆P得
a+1≤-2 2a+15≥5
解之得-5≤a≤-3.
(7,1),(5,3),(8,1). 【答案】 C
则A∩( NB )为( )
A.{1,5,7}
B.{3,5,7}
C.{1,3,9}
D.{1,2,3}
【解析】 显然A∩( NB )= A(A∩B), 且A∩B={3,9},所以结果为{1,5,7}.
【答案】 A
2.(2011·东北四校模拟)已知集合M={y|y=2x ,
2022届一轮复习高中数学第一章 集合、常用逻辑用语与不等式
第一章集合、常用逻辑用语与不等式第1课时集合[复习要求] 1.了解集合的含义,元素与集合的属于关系;能用列举法或描述法表示集合.2.理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3.理解并会求并集、交集、补集;能用Venn(韦恩)图表示集合的关系与运算.集合的基本概念(1)集合的概念:把一些元素组成的总体叫做集合(简称为集);(2)集合中元素的三个特性:确定性、无序性、互异性;(3)集合的三种表示方法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N+(或N*)Z Q R集合的基本关系(1)子集:若对于任意的x∈A都有x∈B,则A⊆B;(2)真子集:若A⊆B,且A≠B,则A B;(3)相等:若A⊆B,且B⊆A,则A=B;(4)∅是任何集合的子集,是任何非空集合的真子集.集合的基本运算(1)交集:A∩B={x|x∈A且x∈B};(2)并集:A∪B={x|x∈A或x∈B};(3)补集:若U为全集,A⊆U,则∁U A={x|x∈U且x∉A}.集合的常用运算性质(1)A∩∅=∅;A∩A=A;(2)A∪∅=A;A∪A=A;(3)A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A;(4)A⊆B⇔A∩B=A⇔A∪B=B;A⊆B⇔(∁U A)⊇(∁U B)⇔A∩(∁U B)=∅;(5)∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B);(6)如图所示,用集合A ,B 表示图中Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分所表示的集合分别是A ∩B ;A ∩(∁U B);B ∩(∁U A);∁U (A ∪B)或(∁U B)∩(∁U A);(7)card(A ∪B)=card(A)+card(B)-card(A ∩B).1.判断下列说法是否正确(打“√”或“×”).(1)集合{x ∈N |x 3=x},用列举法表示为{-1,0,1}.(2){x|y =x 2}={y|y =x 2}={(x ,y)|y =x 2}.(3)若5∈{1,m +2,m 2+4},则m 的取值集合为{1,-1,3}.(4)若P ∩M =P ∩N =A ,则A ⊆M ∩N.(5)设U =R ,A ={x|lgx<1},则∁U A ={x|lgx ≥1}={x|x ≥10}.答案 (1)× (2)× (3)× (4)√ (5)×解析 (1)由于-1∉N ,故(1)错.(2)中{x|y =x 2}=R ,{y|y =x 2}={y|y ≥0}=[0,+∞),以上两集合为数集,{(x ,y)|y =x 2}表示抛物线y =x 2上所有点的集合,故(2)错.(3)当m =-1时,m +2=1,与集合中元素的互异性矛盾,故(3)错.(4)正确.(5)中A ={x|0<x<10},∁U A ={x|x ≤0或x ≥10}.故(5)错.2.(课本习题改编)若x ∈R ,则x 2+1=0的解集A =________;不等式x 2≤0的解集B =________;0与A 的关系为________;A 与B 的关系为________.答案 ∅ {0} 0∉A A ⊆B(或填A B)3.(2020·课标全国Ⅱ)已知集合U ={-2,-1,0,1,2,3},A ={-1,0,1},B ={1,2},则∁U (A ∪B)=( )A .{-2,3}B .{-2,2,3}C .{-2,-1,0,3}D .{-2,-1,0,2,3}答案 A解析 由题意,得A ∪B ={-1,0,1,2},则∁U (A ∪B)={-2,3}.故选A.4.(1)(2021·衡水中学调研卷)已知集合A ={x ∈Z |x 2-2x -3≤0},B ={y|y =2x },则A ∩B 的子集的个数为________.(2)已知集合M ={x|x -a =0},N ={x|ax -1=0},若M ∩N =N ,则实数a 的值是________. 答案 (1)8 (2)0或1或-15.(2020·《高考调研》原创题)已知全集U =A ∪B ={x ∈N |0≤x ≤9},若集合B ={1,3,5,7},则A ∩(∁U B)=________.答案 {0,2,4,6,8,9}解析 由题意知集合A 中至少包含0,2,4,6,8,9几个元素,而∁U B ={0,2,4,6,8,9},∴A ∩(∁U B)={0,2,4,6,8,9}.题型一 集合的基本概念例1 (1)已知集合A =⎩⎨⎧⎭⎬⎫x |x =k +12,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x |x =k 2,k ∈Z ,则A 与B 之间的关系是( )A .A =BB .A BC .B AD .无法比较【解析】 方法一(列举法):A =⎩⎨⎧⎭⎬⎫…,-12,12,32,52,72,…, B =⎩⎨⎧⎭⎬⎫…,-12,0,12,1,32,2,52,3,72,…. 显然A B.方法二(描述法):集合A =⎩⎨⎧⎭⎬⎫x |x =k +12,k ∈Z =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =2k +12,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x |x =k 2,k ∈Z ,2k +1可以表示任意奇数,k 可以表示任意整数,故A B. 【答案】 B(2)(2021·重庆八中摸底考试)设集合M ={y|y =2cosx ,x ∈[0,5]},N ={x|y =log 2(x -1)},则M ∩N =( )A .{x|1<x ≤5}B .{x|-1<x ≤0}C .{x|-2≤x ≤0}D .{x|1<x ≤2}【解析】 ∵M ={y|y =2cosx ,x ∈[0,5]}={y|-2≤y ≤2},N ={x|y =log 2(x -1)}={x|x>1},∴M ∩N ={y|-2≤y ≤2}∩{x|x>1}={x|1<x ≤2}.【答案】 D(3)集合A ={1,0,x},B ={|x|,y ,lg(xy)},且A =B ,则x ,y 的值分别为________.【解析】 ∵x ,y 均不能为0,∴lg(xy)=0,故xy =1.又∵x ≠1,∴y ≠1,从而y =1x,且|x|=1,故x =y =-1. 【答案】 -1,-1状元笔记由本例讲透集合的基础知识(1)由本例(1)讲清:列举法与描述法及它们之间的相互转换,并通过此题使学生深刻理解元素与集合,集合与集合之间的关系,并共同总结此类题的解法.(2)本例(2)的难点是对集合M ,N 的识别:M 是函数y =2cosx 的值域,N 是函数y =log 2(x -1)的定义域.(3)由本例(3)深刻理解集合中元素的互异性的应用.思考题1 (1)给出以下四个命题:①{(x ,y)|x =1或y =2}={1,2};②{x|x =3k +1,k ∈Z }={x|x =3k -2,k ∈Z };③由英文单词“apple ”中的所有字母组成的集合有15个真子集;④设2 021∈{x ,x 2,x 2},则满足条件的所有x 组成的集合的真子集的个数为3. 其中正确的命题是________.【解析】 ①中左边集合表示横坐标为1或纵坐标为2的所有点组成的集合,即x =1或y =2两直线上所有点的集合,右边集合表示有两个元素1和2,左、右两集合的元素属性不同.②中3k +1,3k -2(k ∈Z )都表示被3除余1的数,正确.易错点在于认为3k +1与3k-2中的k 为同一个值,对集合的属性理解错误.③中真子集的个数为24-1=15.④中x =-2 021或x =- 2 021,∴集合为{-2 021,- 2 021},∴真子集有22-1=3(个).正确.【答案】 ②③④(2)(2020·课标全国Ⅲ)已知集合A ={(x ,y)|x ,y ∈N *,y ≥x},B ={(x ,y)|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6【解析】 由题意,A ∩B 中的元素满足⎩⎪⎨⎪⎧y ≥x ,x +y =8,且x ,y ∈N *,由x +y =8≥2x ,得x ≤4,所以满足x +y =8的有(1,7),(2,6),(3,5),(4,4),故A ∩B 中元素的个数为4.故选C.【答案】 C(3)(2020·杭州学军中学月考)集合A ={-4,2a -1,a 2},B ={9,a -5,1-a},若A ∩B ={9},则a =( )A .-3B .3或-3C .3D .3或-3或5【解析】 由A ∩B ={9}可知9为集合A 与B 的公共元素,也是唯一公共元素.当2a -1=9时,解得a =5,此时A ={-4,9,25},B ={9,0,-4},不合题意(舍去); 当a 2=9时,解得a =3或-3.若a =3,则A ={-4,5,9},a -5=1-a =-2,集合B 不满足互异性,不合题意(舍去).若a =-3,则A ={-4,-7,9},B ={9,-8,4},符合题意.综上所述,a =-3.【答案】 A题型二 集合的基本关系例2 (1)已知集合A ={x|(x +1)(x -6)≤0},B ={x|m -1≤x ≤2m +1}.若A ∩B =B ,则实数m 的取值范围为________.【解析】 A ={x|-1≤x ≤6}.∵A ∩B =B ,∴B =∅或B ≠∅.当B =∅时,m -1>2m +1,即m<-2,符合题意.当B ≠∅时,⎩⎪⎨⎪⎧m -1≤2m +1,m -1≥-1,2m +1≤6.解得0≤m ≤52.得m<-2或0≤m ≤52. 【答案】 (-∞,-2)∪⎣⎡⎦⎤0,52 (2)设A ={0,-4},B ={x|x 2+2(a +1)x +a 2-1=0},①若B ⊆A ,则实数a 的取值范围为________;②若A ⊆B ,则实数a 的取值范围为________.【解析】 ①A ={0,-4},当B =∅时,Δ=4(a +1)2-4(a 2-1)=8(a +1)<0,解得a<-1;当B 为单元素集合时,a =-1,此时B ={0}符合题意;当B =A 时,由根与系数的关系,得⎩⎪⎨⎪⎧-2(a +1)=-4,a 2-1=0,解得a =1. 综上可知,a ≤-1或a =1.②若A ⊆B ,必有A =B ,由①知a =1.【答案】 ①(-∞,-1]∪{1} ②{1}状元笔记判断两集合关系的常用方法(1)化简集合法:用描述法表示的集合,若代表元素的表达式比较复杂,往往需化简表达式,再寻求两个集合的关系,如本例(2).(2)数形结合法:利用数轴或Venn 图直观判断,如本例(1).易错提醒:当B 为A 的子集时,易漏掉B =∅的情况而致误.思考题2 (1)已知集合A ={1,3,m},B ={1,m},A ∪B =A ,则m =________.【解析】 ∵A ={1,3,m},B ={1,m},A ∪B =A ,∴m =3或m =m.∴m =3或m =0或m =1.当m =1时,与集合中元素的互异性不符.【答案】 0或3(2)设A ={x|x 2-8x +15=0},B ={x|ax -1=0}.①若a =15,试判定集合A 与B 的关系; ②若B A ,求实数a 组成的集合C.【解析】 ①由x 2-8x +15=0,得x =3或x =5,∴A ={3,5}.若a =15,由ax -1=0,得15x -1=0,即x =5. ∴B ={5}.∴B A.②∵A ={3,5},又BA , 故若B =∅,则方程ax -1=0无解,有a =0;若B ≠∅,则a ≠0,由ax -1=0,得x =1a . ∴1a =3或1a =5,即a =13或a =15. 故C =⎩⎨⎧⎭⎬⎫0,13,15. 【答案】 ①B A ②⎩⎨⎧⎭⎬⎫0,13,15题型三 集合的基本运算(微专题)微专题1:集合的交、并、补运算例3 (1)(2021·兰州市高三诊断)设集合M ={x|x 2-3x -4<0},N ={x|0≤x ≤5},则M ∩(∁R N)=( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0)【解析】 ∵M ={x|x 2-3x -4<0}={x|-1<x<4},N ={x|0≤x ≤5},∴∁R N ={x|x<0或x>5}.M ∩(∁R N)={x|-1<x<0}.【答案】 D(2)(2021·湖北黄冈重点中学联考)全集U ={x|x<10,x ∈N *},A ⊆U ,B ⊆U ,(∁U B)∩A ={1,9},A ∩B ={3},(∁U A)∩(∁U B)={4,6,7},则A ∪B =________.【解析】 由已知条件可得U ={1,2,3,4,5,6,7,8,9},画出Venn 图如图所示.从而A ∪B ={1,2,3,5,8,9}.【答案】 {1,2,3,5,8,9} (3)(2021·八省联考)已知M ,N 均为R 的子集,且∁R M ⊆N ,则M ∪(∁R N)=( )A .∅B .MC .ND .R【解析】 方法一:如图所示易知答案为B.方法二:特值法. 不妨设∁R M =(1,2),N =(0,3),则M ∪(∁R N)=M.【答案】 B状元笔记集合运算的基本类型(1)具体集合的运算:高考对集合的考查,多是考查具体集合(给出或可以求出集合的具体元素)的交、并、补运算,如本例(1),(2),其解法依然是化简集合、列举法或借助于数轴、韦恩图等.预测明年对于集合的考查仍以此类题为主.(2)抽象集合的运算:本例(3)是考查抽象集合(没有给出具体元素的集合)间的关系判断和运算的问题.解决此类问题的途径有二:一是利用特例法将抽象集合具体化;二是利用韦恩图化抽象为直观.思考题3(1)(2021·湖北八校联考)已知集合A={x||x|≤2,x∈R},B={x|x ≤4,x∈Z},则A∩B=()A.(0,2) B.[0,2]C.{0,2} D.{0,1,2}【解析】由已知得A={x|-2≤x≤2},B={0,1,…,16},所以A∩B={0,1,2}.【答案】D(2)(2020·《高考调研》原创题)已知复数集U,f(n)=i n,(n∈N*),集合A={z|z=f(n)},集合B=N*,则A∩(∁U B)中有________个元素.【解析】A={1,-1,i,-i},∁U B是由复数集中不属于N*的所有数组成的集合,∴A∩(∁U B)={-1,i,-i}.【答案】3(3)如图,图形中的阴影部分表示集合()A.(A∪B)∩(B∪C) B.(A∪B)∩(A∪C)C.(A∩B)∪C D.(A∪B)∩C【答案】C微专题2:利用集合的运算求参数例4(1)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)【解析】因为A∩B有4个子集,所以A∩B中有2个不同的元素,所以a∈A,所以a2-3a<0,解得0<a<3.又a≠1,所以实数a的取值范围是(0,1)∪(1,3).故选B.【答案】B(2)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.(-1,2] B.(2,+∞)C.[-1,+∞) D.(-1,+∞)【答案】D状元笔记(1)一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.思考题4(1)(2020·启东中学模拟)已知集合A={x∈Z|x2-4x-5<0},B={x|4x >2m },若A ∩B 有三个元素,则实数m 的取值范围是( )A .[3,6)B .[1,2)C .[2,4)D .(2,4]【解析】 ∵A ={x ∈Z |-1<x<5}={0,1,2,3,4},B ={x |x>m 2},A ∩B 有三个元素,∴1≤m 2<2,即2≤m<4. 【答案】 C(2)(2020·课标全国Ⅰ,理)设集合A ={x|x 2-4≤0},B ={x|2x +a ≤0},且A ∩B ={x|-2≤x ≤1},则a =( )A .-4B .-2C .2D .4【解析】 求解二次不等x 2-4≤0可得A ={x|-2≤x ≤2},求解一次不等式2x +a ≤0可得B =⎩⎨⎧⎭⎬⎫x |x ≤-a 2.因为A ∩B ={x|-2≤x ≤1},所以-a 2=1,解得a =-2.故选B. 【答案】 B1.通过例1~例3的讲解使学生对集合的表示及子、交、并、补运算等基础知识再一次巩固并系统化,体现本书:以“基础知识”为根本、以“通性通法”为重点的宗旨.2.解决集合问题的关键是正确地将集合进行化简求解,一般规律为:(1)若给定的集合是点集(离散型),用列举法(或结合Venn 图)求解.(2)若给定的集合是不等式的解集(连续型),用数轴求解.(3)若给定的集合是抽象集合,用Venn 图求解.集合中的创新型问题在知识交汇点处命题的信息迁移题是今后几年高考中的热点题型,解决此类问题,既要有扎实的基本功,又要有创新意识,要迅速阅读理解题意,准确把握新的信息,敢于下笔计算.例1 定义集合的商集运算为A B ={x |x =m n,m ∈A ,n ∈B},已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x |x =k 2-1,k ∈A ,则集合B A ∪B 中的元素个数为( ) A .6 B .7C .8D .9【解析】 由题意知,B ={0,1,2},B A ={0,12,14,16,1,13 },则B A∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素. 【答案】 B例2 当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M ={x|ax 2-1=0,a>0},N ={-12,12,1},若M 与N “相交”,则a =________. 【解析】 M =⎩⎨⎧⎭⎬⎫-1a ,1a ,若1a =12,则a =4,若1a=1,则a =1. 当a =4时,M =⎩⎨⎧⎭⎬⎫-12,12,此时M ⊆N ,不合题意; 当a =1时,M ={-1,1},满足题意.【答案】 1例3 设全集U ={1,2,3,4,5,6},且U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若M ={2,3,6},则∁U M 表示的6位字符串为________;(2)已知A ={1,3},B ⊆U ,若集合A ∪B 表示的字符串为101001,则满足条件的集合B 的个数是________.【解析】 (1)由已知,得∁U M ={1,4,5},则∁U M 表示的6位字符串为100110.(2)由题意可知A ∪B ={1,3,6},而A ={1,3},B ⊆U ,则B 可能为{6},{1,6},{3,6},{1,3,6},故满足条件的集合B 的个数是4.【答案】 (1)100110 (2)4题组层级快练(一)一、单项选择题1.下列各组集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y)|x +y =1},N ={y|x +y =1}D .M ={2,3},N ={(2,3)}答案 B2.集合M ={x ∈N |x(x +2)≤0}的子集个数为( )A .1B .2C .3D .4答案 B解析 ∵M ={x ∈N |x(x +2)≤0}={x ∈N |-2≤x ≤0}={0},∴M 的子集个数为21=2.选B.3.已知集合A =⎩⎨⎧⎭⎬⎫x ∈Z |32-x ∈Z ,则集合A 中的元素个数为( ) A .2B .3C .4D .5答案 C 4.(2021·长沙市高三统一考试)若集合M ={x ∈R |-3<x<1},N ={x ∈Z |-1≤x ≤2},则M ∩N =( )A .{0}B .{-1,0}C .{-1,0,1}D .{-2,-1,0,1,2}答案 B解析 由题意,得N ={x ∈Z |-1≤x ≤2}={-1,0,1,2},M ={x ∈R |-3<x<1},则M ∩N ={-1,0}.故选B.5.(2021·山东新高考模拟)设集合A ={(x ,y)|x +y =2},B ={(x ,y)|y =x 2},则A ∩B =( )A .{(1,1)}B .{(-2,4)}C .{(1,1),(-2,4)}D .∅答案 C6.(2021·清华附中诊断性测试)已知集合A ={x|log 2(x -2)>0},B ={y|y =x 2-4x +5,x ∈A},则A ∪B =( )A .[3,+∞)B .[2,+∞)C .(2,+∞)D .(3,+∞)答案 C解析 ∵log 2(x -2)>0,∴x -2>1,即x>3,∴A =(3,+∞),∴y =x 2-4x +5=(x -2)2+1>2,∴B =(2,+∞),∴A ∪B =(2,+∞).故选C.7.已知集合A ={x ∈N |1<x<log 2k},集合A 中至少有3个元素,则( )A .k>8B .k ≥8C .k>16D .k ≥16答案 C解析 因为集合A 中至少有3个元素,所以log 2k>4,所以k>24=16.故选C.8.(2020·重庆一中月考)已知实数集R ,集合A ={x|log 2x<1},B ={x ∈Z |x 2+4≤5x},则(∁R A)∩B =( )A .[2,4]B .{2,3,4}C .{1,2,3,4}D .[1,4]答案 B解析 由log 2x<1,解得0<x<2,故A =(0,2),故∁R A =(-∞,0]∪[2,+∞),由x 2+4≤5x ,即x 2-5x +4≤0,解得1≤x ≤4,又x ∈Z ,所以B ={1,2,3,4}.故(∁R A)∩B ={2,3,4}.故选B.9.(2021·郑州质检)已知集合A ={x|x>2},B ={x|x<2m ,m ∈R }且A ⊆∁R B ,那么m 的值可以是( )A .1B .2C .3D .4答案 A解析 由B ={x|x<2m ,m ∈R },得∁R B ={x|x ≥2m ,m ∈R }.因为A ⊆∁R B ,所以2m ≤2,m ≤1.故选A.10.(2021·江淮十校联考)已知集合A ={y |y =x +1x,x ≠0},集合B ={x|x 2-4≤0},若A ∩B =P ,则集合P 的子集个数为( )A .2B .4C .8D .16答案 B二、多项选择题11.(2021·沧州七校联考)设集合A =⎩⎨⎧⎭⎬⎫x |12<2x <7,下列集合中,是A 的子集的是( ) A .{x|-1<x<1} B .{x|1<x<3}C .{x|1<x<2}D .∅答案 ACD解析 依题意得,A ={x|-1<x<log 27},∵2=log 24<log 27<log 28=3,∴选ACD.12.设集合M ={x|(x -3)(x +2)<0},N ={x|x<3},则( )A .M ∩N =MB .M ∪N =NC .M ∩(∁R N)=∅D .M ∪N =R答案 ABC解析 由题意知,M ={x|-2<x<3},N ={x|x<3},所以M ∩N ={x|-2<x<3}=M ,M ∪N =N ,因为∁R N ={x|x ≥3},所以M ∩(∁R N)=∅.故选ABC.三、填空题与解答题13.(2021·浙江温州二模)集合A ={0,|x|},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________.答案 {0,1} {1,0,-1} {-1}解析 因为A ⊆B ,所以|x|∈B ,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A ={0,1},则A ∩B ={0,1},A ∪B ={1,0,-1},∁B A ={-1}.14.(1)设全集U =A ∪B ={x ∈N *|lgx<1},若A ∩(∁U B)={m|m =2n +1,n =0,1,2,3,4},则集合B =________.答案 {2,4,6,8}解析 U ={1,2,3,4,5,6,7,8,9},A ∩(∁U B)={1,3,5,7,9},∴B ={2,4,6,8}.(2)已知集合A ={x|log 2x<1},B ={x|0<x<c},c>0.若A ∪B =B ,则c 的取值范围是________.答案 [2,+∞)解析 A ={x|0<x<2},由数轴分析可得c ≥2.15.已知集合A ={x|1<x<3},集合B ={x|2m<x<1-m}.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B =(1,2),求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.答案 (1)(-∞,-2] (2)-1 (3)[0,+∞)解析 (1)由A ⊆B ,得⎩⎪⎨⎪⎧1-m>2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(2)由已知,得⎩⎪⎨⎪⎧2m ≤1,1-m =2⇒⎩⎪⎨⎪⎧m ≤12,m =-1,∴m =-1. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意; ②若2m<1-m ,即m<13时,需⎩⎪⎨⎪⎧m<13,1-m ≤1或⎩⎪⎨⎪⎧m<13,2m ≥3,得0≤m<13或∅,即0≤m<13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).16.已知集合A ={x|1<x<k},集合B ={y|y =2x -5,x ∈A},若A ∩B ={x|1<x<2},则实数k 的值为( )A .5B .4.5C .2D .3.5答案 D解析 B =(-3,2k -5),由A ∩B ={x|1<x<2},知k =2或2k -5=2,因为k =2时,2k -5=-1,A ∩B =∅,不合题意,所以k =3.5.故选D.17.设f(n)=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ^={n ∈N |f(n)∈P},Q ^={n ∈N |f(n)∈Q},则P ^∩(∁N Q ^)=( )A .{0,3}B .{0}C .{1,2}D .{1,2,6,7}答案 B解析 设P 中元素为t ,由方程2n +1=t ,n ∈N ,解得P ^={0,1,2},Q ^={1,2,3},∴P ^∩(∁N Q ^)={0}.18.(2018·课标全国Ⅱ,理)已知集合A ={(x ,y)|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4答案 A解析 方法一:由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 31C 31=9.故选A.方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图象,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数.故选A.第2课时充分条件与必要条件、全称量词与存在量词[复习要求] 1.理解充分条件、必要条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.充分条件与必要条件(1)若p⇒q且q p,则p是q的充分不必要条件.(2)若q⇒p且p q,则p是q的必要不充分条件.(3)若p⇒q且q⇒p,则p是q的充要条件.(4)若p q且q p,则p是q的既不充分也不必要条件.全称量词和存在量词(1)全称量词有:一切,每一个,任给,用符号“∀”表示.存在量词有:有些,有一个,对某个,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题;“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x),读作:“对任意x属于M,有p(x)成立”.(3)含有存在量词的命题,叫做特称命题(存在性命题);“存在M中的元素x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0),读作:“存在M中的元素x0,使p(x0)成立”.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,綈p(x0)∃x0∈M,p(x0)∀x∈M,綈p(x)1.(课本习题改编)(1)x>0是x(x+1)>0的________条件.(2)|a|>0是a>0的________条件.(3)α>β是sinα>sinβ的________条件.答案(1)充分不必要(2)必要不充分(3)既不充分也不必要2.(2021·八省联考)关于x的方程x2+ax+b=0,有下列四个命题:甲:x=1是该方程的根;乙:x=3是该方程的根;丙:该方程两根之和为2;丁:该方程两根异号.如果只有一个假命题,则该命题是()A.甲B.乙C.丙D.丁答案A解析(1)若甲是假命题,则乙、丙、丁是真命题,则x1=3.x2=-1,符合题意.(2)若乙是假命题,则甲、丙、丁是真命题,则x1=1.x2=1,两根不异号,不符合题意.(3)若丙是假命题,则甲、乙、丁是真命题,则两根不异号,不符合题意.(4)若丁是假命题,则甲、乙、丙是真命题,则两根和不为2,不符合题意.故选A.3.(2020·上海春季高考题)“α=β”是“sin2α+cos2β=1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若α=β,则sin2α+cos2β=sin2α+cos2α=1,∴“α=β”是“sin2α+cos2β=1”的充分条件;若sin2α+cos2β=1,则sin2α=sin2β,得不出α=β,∴“α=β”不是“sin2α+cos2β=1”的必要条件,∴“α=β”是“sin2α+cos2β=1”的充分不必要条件.故选A.4.特称命题“存在实数x0,y0,使得x0+y0>1”,用符号表示为________;此命题的否定是________(用符号表示),是________(填“真”或“假”)命题.答案∃x0,y0∈R,x0+y0>1∀x,y∈R,x+y≤1假5.【多选题】下列命题的否定是真命题的是()A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.∃x∈R,sinx+cosx=3D.∀x∈R,|x|+x2≥0答案BC解析此类题的解法有二:①判断原命题的真假,则其否定与其结论相反.②先写出命题的否定,再判断真假,本题宜用方法①.题型一充分、必要条件的判定例1(1)判断下列各题中,p是q的什么条件?①p:a>b,q:a>b-1;②p:a>b,q:lga>lgb;③p :a>b ,q :2a >2b; ④p :a>b ,q :a 2>b 2.【解析】 ①p ⇒q ,q ⇒/p ,∴p 是q 的充分不必要条件.②q ⇒p ,p q ,∴p 是q 的必要不充分条件.③p ⇒q ,且q ⇒p ,∴p 是q 的充要条件.④p q ,q p ,∴p 是q 的既不充分也不必要条件.【答案】 ①充分不必要条件 ②必要不充分条件③充要条件 ④既不充分也不必要条件(2)判断下列各题中,p 是q 的什么条件?①在△ABC 中,p :A>B ,q :BC>AC ;②p :x>1,q :x 2>1;③p :(a -2)(a -3)=0,q :a =3;④p :a<b ,q :a b <1. 【解析】 ①定义法:由三角形中大角对大边可知,若A>B ,则BC>AC ;反之,若BC>AC ,则A>B.因此,p 是q 的充要条件.②方法一(定义法):由x>1可以推出x 2>1;由x 2>1得x<-1或x>1,不一定有x>1.因此p 是q 的充分不必要条件.方法二(集合法):p =(1,+∞),q =(-∞,-1)∪(1,+∞),∴p ⊆q ,故p 是q 的充分不必要条件.③由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3;由a =3可以得出(a -2)(a -3)=0.因此p 是q 的必要不充分条件.④由于a<b ,当b<0时,a b >1;当b>0时,a b <1,故若a<b ,不一定有a b <1.当b>0,a b<1时,可以推出a<b ;当b<0,a b<1时,可以推出a>b.因此p 是q 的既不充分也不必要条件. 【答案】 ①p 是q 的充要条件 ②p 是q 的充分不必要条件 ③p 是q 的必要不充分条件 ④p 是q 的既不充分也不必要条件(3)设a ,b ∈R ,则“a >b ”是“a|a|>b|b|”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 方法一:当a>b>0时,a>b ⇔a|a|>b|b|;当a>0>b 时,a>b ⇔a|a|>b|b|;当b<a<0时,a>b ⇔a|a|>b|b|,∴选C.方法二:构造函数f(x)=x|x|,则f(x)在定义域R 上为奇函数.因为f(x)=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f(x)在R 上单调递增,所以a >b ⇔f(a)>f(b)⇔a|a|>b|b|.选C.【答案】 C状元笔记判断充分必要条件的步骤(1)弄清条件p 和结论q 分别是什么.(2)尝试p ⇒q ,q ⇒p.(3)可简记为:充分条件是小推大,必要条件是大推小.(4)充要条件可以融入到数学各个分支,题型灵活多变,但万变不离其宗,只要紧扣定义,结合其他知识,便可迎刃而解.思考题1 (1)(2020·天津)设a ∈R ,则“a>1”是“a 2>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 定义法:由a 2>a 得a>1或a<0,反之,由a>1得a 2>a ,则“a>1”是“a 2>a ”的充分不必要条件.故选A.【答案】 A(2)“1x>1”是“e x -1<1”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 ∵1x >1,∴x ∈(0,1).∵e x -1<1,∴x<1,即x ∈(-∞,1).∴“1x>1”是“e x -1<1”的充分不必要条件.或用集合法:∵(0,1)(-∞,1),∴“1x>1”是“e x -1<1”的充分不必要条件. 【答案】 A(3)(2021·衡水中学调研卷)如果x ,y 是实数,那么“x ≠y ”是“cosx ≠cosy ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【解析】 “x ≠y ”不能推出“cosx ≠cosy ”,但“cosx ≠cosy ”一定有“x ≠y ”.【答案】 C(4)(2021·合肥一模)已知偶函数f(x)在[0,+∞)上单调递增,则对实数a ,b ,“a>|b|”是“f(a)>f(b)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 因为f(x)为偶函数,所以f(x)=f(-x)=f(|x|),由于f(x)在[0,+∞)上单调递增,因此若a>|b|≥0,则f(a)>f(|b|),即f(a)>f(b),所以“a>|b|”是“f(a)>f(b)”的充分条件;若f(a)>f(b),则f(|a|)>f(|b|),可得|a|>|b|≥0,由于a ,b 的正负不能判断,因此无法得到a>|b|,则“a>|b|”不是“f(a)>f(b)”的必要条件,所以“a>|b|”是“f(a)>f(b)”的充分不必要条件.故选A.【答案】 A题型二 充分、必要条件的应用例2 (1)已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m ≤x ≤1+m}.若x ∈P 是x ∈S 的必要条件,则m 的取值范围是________.【解析】 由x 2-8x -20≤0,得-2≤x ≤10,所以P ={x|-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3,所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].【答案】 [0,3](2)在(1)中若把条件“若x ∈P 是x ∈S 的必要条件”改为“若x ∈P 是x ∈S 的必要不充分条件”,则m 的取值范围是________.【解析】 方法一:由(1)若x ∈P 是x ∈S 的必要条件,则0≤m ≤3,当m =0时,S ={1},满足题意;当m =3时,S ={x|-2≤x ≤4}满足题意,故m 的取值范围为[0,3].方法二:若x ∈P 是x ∈S 的必要且充分条件,则P =S ,即⎩⎪⎨⎪⎧1-m =-2,1+m =10⇒m 无解, ∴m 的取值范围是[0,3].【答案】 [0,3]状元笔记本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题化归为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.思考题2 (1)已知p :1≤x ≤2,q :(x -a)(x -a -1)≤0,若p 是q 的充要条件,则实数a 的值为________.【答案】 1(2)已知p :4x +m<0,q :x 2-x -2>0,若p 是q 的一个充分不必要条件,求m 的取值范围.【解析】 ∵4x +m<0,∴x<-m 4,∴p :x<-m 4. ∵x 2-x -2>0,∴x<-1或x>2,∴q :x<-1或x>2.∵p ⇒q ,∴-m 4≤-1,∴m ≥4. 即m 的取值范围是[4,+∞).【答案】 [4,+∞)(3)(2021·北京西城区期末)已知函数f(x)=sin2x ,x ∈[a ,b],则“b -a ≥π2”是“f(x)的值域为[-1,1]”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 由图可知,若a =0,π2<b<3π4,则b -a>π2,但f(x)=sin2x 的值域不是[-1,1].反之,因为值域是[-1,1],说明b -a ≥12T ,而T =π.所以b -a ≥π2.【答案】B题型三全(特)称命题及其真假的判断例3指出下列命题中,哪些是全称命题,哪些是特称命题,并判断真假.(1)若a>0,且a≠1,则对任意实数x,a x>0;(2)对任意实数x1,x2,若x1<x2,则tanx1<tanx2;(3)∃T∈R,使|sin(x+T)|=|sinx|;(4)∃x0∈R,使x02+1<0.【解析】(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0,a≠1)恒成立,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1<x2,但tan0=tanπ,∴命题(2)是假命题.(3)y=|sinx|是周期函数,π就是它的一个周期,∴命题(3)是真命题.(4)对任意x∈R,x2+1>0,∴命题(4)是假命题.【答案】(1)(2)是全称命题,(3)(4)是特称命题;(1)(3)是真命题,(2)(4)是假命题状元笔记全(特)称命题真假的判断方法(1)要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称命题是假命题,只要能举出集合M中的一个x=x0,使得p(x0)不成立即可(这就是通常所说的“举出一个反例”).(2)要判定一个特称命题是真命题,只要在限定集合M中,至少能找到一个x=x0,使p(x0)成立即可;否则,这一特称命题就是假命题.(3)不管是全称命题还是特称命题,当其真假不易判定时,可先判断其否定的真假.思考题3(2021·湖北宜昌一中月考)下列命题中是假命题的是() A.∃x0∈R,log2x0=0B.∃x0∈R,cosx0=1C.∀x∈R,x2>0 D.∀x∈R,2x>0【解析】因为log21=0,cos0=1,所以A,B项均为真命题,因为02=0,所以C项为假命题,因为2x>0,所以选项D为真命题.【答案】C题型四含量词命题的否定例4写出下列命题的否定,并判断真假.(1)p1:所有的正方形都是矩形;(2)p2:至少有一个整数,它既能被2整除,又能被5整除;(3)p3:∀x∈{x|x是无理数},x2是无理数;(4)p4:∃x0∈{x|x∈Z},log2x0>0.【解析】(1)綈p1:至少存在一个正方形不是矩形,是假命题.(2)綈p2:所有的整数,都不能被2或5整除,是假命题.(3)綈p3:∃x0∈{x|x是无理数},x02不是无理数,是真命题.(4)綈p4:∀x∈{x|x∈Z},log2x≤0,是假命题.【答案】命题的否定见解析,(1)(2)(4)的否定为假命题,(3)的否定为真命题状元笔记(1)全(特)称命题的否定与命题的否定有着一定的区别,全(特)称命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定;而命题的否定则是直接否定结论即可.(2)常见词语的否定形式有:原语句是都是>至少有一个至多有一个对任意x∈A使p(x)真否定形式不是不都是≤一个也没有至少有两个存在x0∈A使p(x0)假思考题4(1)写出下列命题的否定并判断真假.①p:所有末位数字是0或5的整数都能被5整除;②p:每一个非负数的平方都是正数;③p:存在一个三角形,它的内角和大于180°;④p:有的四边形没有外接圆.【解析】①綈p:存在末位数字是0和5的整数不能被5整除,是假命题.②綈p:存在一个非负数的平方不是正数,是真命题.③綈p:任何一个三角形,它的内角和不大于180°,是真命题.④綈p:所有的四边形都有外接圆,是假命题.【答案】命题的否定见解析,①④的否定为假命题,②③的否定为真命题(2)(高考真题·浙江卷)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n∈N*,f(n)∉N*且f(n)>nD.∃n∈N*,f(n)∉N*或f(n)>n【解析】全称量词命题的否定为存在量词命题,因此命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定是“∃n∈N*,f(n)∉N*或f(n)>n”.【答案】D1.充分、必要条件的判定方法.(1)定义法.(2)集合法:若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则①若A⊆B,则p是q的充分条件;②若B⊆A,则p是q的必要条件;③若A=B,则p是q的充要条件.2.含一个量词的命题的否定,既要否定量词,又要否定结论.题组层级快练(二)一、单项选择题1.(2021·开封市一模)若a ,b 是非零向量,则“a ·b >0”是“a 与b 的夹角为锐角”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 B解析 因为a ,b 为非零向量,a ·b >0,所以由向量数量积的定义知,a 与b 的夹角为锐角或a 与b 方向相同;反之,若a 与b 的夹角为锐角,由向量数量积的定义知,a ·b >0成立.故“a ·b >0”是“a 与b 的夹角为锐角”的必要不充分条件.故选B.2.(2021·湖南长郡中学模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A 3.“(m -1)(a -1)>0”是“log a m>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 B解析 (m -1)(a -1)>0等价于⎩⎨⎧m>1,a>1或⎩⎪⎨⎪⎧m<1,a<1,而log a m>0等价于⎩⎨⎧m>1,a>1或⎩⎪⎨⎪⎧0<m<1,0<a<1,所以条件具有必要性,但不具有充分性,比如m =0,a =0时,不能得出log a m>0.故选B.4.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关,黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的( )A .必要条件B .充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 设p :攻破楼兰,q :返回家乡,由已知綈p ⇒綈q ,得q ⇒p ,故p 是q 的必要条件.5.(2019·北京)设A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 C解析 若|AB →+AC →|>|BC →|,则|AB →+AC →|2>|BC →|2,AB →2+AC →2+2AB →·AC →>|BC →|2,∵点A ,B ,C 不共线,∴线段AB ,BC ,AC 构成一个三角形ABC ,设内角A ,B ,C 对应的边分别为a ,b ,c ,则由平面向量的数量积公式及余弦定理可知,c 2+b 2+2bc·cosA>c 2+b 2-2bc·cosA ,∴cosA>0,又A ,B ,C 三点不共线,故AB →与AC →的夹角为锐角.反之,易得当AB →与AC →的夹角为锐角时,|AB →+AC →|>|BC →|,∴“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的充分必要条件.故选C.6.(2019·浙江)设a>0,b>0,则“a +b ≤4”是“ab ≤4”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 因为a>0,b>0,所以a +b ≥2ab ,由a +b ≤4可得2ab ≤4,解得ab ≤4,所以充分性成立;当ab ≤4时,取a =8,b =13,满足ab ≤4,但a +b>4,所以必要性不成立.所以“a +b ≤4”是“ab ≤4”的充分不必要条件.故选A.7.(2018·北京)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 B解析 (定义法)a ,b ,c ,d 是非零实数,若ad =bc ,则b a =dc,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a b =cd ,所以ad =bc ,所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B.8.命题“∀x ∈R ,⎝⎛⎭⎫13x >0”的否定是( ) A .∃x 0∈R ,⎝⎛⎭⎫13x 0<0 B .∀x ∈R ,⎝⎛⎭⎫13x ≤0 C .∀x ∈R ,⎝⎛⎭⎫13x <0 D .∃x 0∈R ,⎝⎛⎭⎫13x 0≤0答案 D解析 全称命题“∀x ∈R ,⎝⎛⎭⎫13x >0”的否定是把量词“∀”改为“∃”,并把结论进行否定,即把“>”改为“≤”.故选D.9.命题“∃x 0∈∁R Q ,x 03∈Q ”的否定是( ) A .∃x 0∉∁R Q ,x 03∈Q B .∃x 0∈∁R Q ,x 03∈Q C .∀x ∉∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3∉Q 答案 D解析 该特称命题的否定为“∀x ∈∁R Q ,x 3∉Q ”.10.(2021·湖南邵阳高三大联考)若命题“∃x 0∈R ,x 02+2mx 0+m +2<0”为假命题,则m 的取值范围是( )A .(-∞,-1)∪[2,+∞)B .(-∞,-1)∪(2,+∞)C .[-1,2]D .(-1,2) 答案 C解析 命题的否定是“∀x ∈R ,x 2+2mx +m +2≥0”,该命题为真命题,所以Δ=4m 2-4(m +2)≤0,解得-1≤m ≤2.故选C.11.“m>2”是“关于x 的方程x 2-mx +m +3=0的两根都大于1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 B解析 设方程x 2-mx +m +3=0有两根,两根分别为x 1,x 2,则Δ≥0,且x 1+x 2=m ,x 1·x 2=m +3.。
高考数学基础知识专题提升训练7--- 集合的概念
高考数学基础知识专题提升训练集合的概念课程标准学科素养1.通过实例,了解集合的含义,理解元素与集合的属于关系.2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.通过对集合概念的学习,提升“数学抽象”、“逻辑推理”的核心素养.[对应学生用书P1]知识点1 集合相关概念(1)元素:一般地,把研究对象统称为元素,常用小写的拉丁字母a,b,c…表示.(2)集合:把一些元素组成的总体叫做集合,简称集,常用大写拉丁字母A,B,C…表示.(3)集合相等:构成两个集合的元素是一样的.(4)集合中元素的特性:确定性、互异性和无序性.[微思考](1)本班所有的“帅哥”能否构成一个集合?(2)一个集合中可以有相同的元素吗?提示:(1)某班所有的“帅哥”不能构成集合,因为“帅哥”没有明确的标准.(2)根据集合元素的互异性可知,集合中不能有相同的元素.知识点2 元素与集合的关系及常用数集(1)如果a是集合A的元素,就说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.(2)数学中一些常用的数集及其记法名称自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R [微体验]1.设集合A只含有一个元素a,则下列各式正确的是( )A.0∈A B.a∉AC.a∈A D.a=A答案C2.用符号“∈”或“∉”填空.(1)1________N*;(2)-3________N;(3)13________Q;(4)π________Q;(5)-12________R.答案(1)∈(2)∉(3)∈(4)∉(5)∈知识点3 集合的表示方法(1)把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.(2)一般地,设A是一个集合,我们把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.[微体验]1.思考辨析(1)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( )(2)集合{(1,2)}中的元素是1和2.( )(3)集合A={x|x-1=0}与集合B={1}表示同一个集合.( )答案(1)×(2)×(3)√2.方程x2=4的解集用列举法表示为( )A.{(-2,2)} B.{-2,2}C.{-2} D.{2}B[由x2=4得x=±2,故用列举法可表示为{-2,2}.]3.集合A={x∈Z|-2<x<3}的元素个数为( )A.1 B.2C.3 D.4D[因为A={x∈Z|-2<x<3},所以x的取值为-1,0,1,2,共4个.]][对应学生用书P2探究一集合的基本概念考察下列每组对象,能构成集合的是( )①中国各地最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2020年第32届奥运会所设比赛项目.A.③④B.②③④C.②③D.②④B[①中“最美”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合.][方法总结]判断一组对象能否组成集合的标准及其关注点(1)标准:判断一组对象能否组成集合,关键看该组对象是否满足确定性.如果该组对象满足确定性,就可以组成集合;否则,不能组成集合.(2)关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性和无序性.[跟踪训练1] 考察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某校2016年在校的所有高个子同学;(4)3的近似值的全体.解(1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合;(2)能构成集合;(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合;(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数,如“2”,是不是它的近似值,所以不能构成集合.探究二元素与集合之间的关系(1)下列所给关系中正确的个数是( )①π∈R;②3∉Q;③0∈N*;④|-4|∉N*.A.1 B.2C.3 D.4(2)已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,那么a为( )A.2 B.2或4C.4 D.0(1)B[根据各数集的意义可知,①②正确,③④错误.](2)B[集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,a=2∈A,6-a=4∈A,所以a=2,或者a=4∈A,6-a=2∈A,所以a=4,综上所述,a=2或4.故选B.] [方法总结]判断元素和集合关系的两种方法(1)直接法:①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现即可.(2)推理法:①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征即可.[跟踪训练2] (1)已知集合A中元素满足2x+a>0,a∈R,若1∉A,2∈A,则( )A .a >-4B .a ≤-2C .-4<a <-2D .-4<a ≤-2 D [由题意可知⎩⎨⎧ 2×1+a ≤0,2×2+a >0,解得-4<a ≤-2.](2)设集合D 是满足方程y =x 2的有序数对(x ,y )的集合,则-1____D ,(-1,1)____D . 解析因为集合D 中的元素是有序数对(x ,y ),而-1是数,所以-1∉D ,(-1,1)∈D . 答案∉∈探究三 列举法表示集合用列举法表示下列给定的集合.(1)不大于10的非负偶数组成的集合A ;(2)小于8的质数组成的集合B ;(3)方程2x 2-x -3=0的实数根组成的集合C ;(4)一次函数y =x +3与y =-2x +6的图象的交点组成的集合D .解(1)不大于10的非负偶数有0,2,4,6,8,10,所以A ={0,2,4,6,8,10}.(2)小于8的质数有2,3,5,7,所以B ={2,3,5,7}.(3)方程2x 2-x -3=0的实数根为-1,32,所以C =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,32. (4)由⎩⎨⎧ y =x +3,y =-2x +6,得⎩⎨⎧ x =1,y =4.所以一次函数y =x +3与y =-2x +6的交点为(1,4),所以D ={(1,4)}.[方法总结]列举法表示集合的步骤(1)分清元素:列举法表示集合,要分清是数集还是点集.(2)书写集合:列元素时要做到不重复、不遗漏.提醒:二元方程组的解集,函数的图象上的点形成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“,”隔开,如{(2,3),(5,-1)}.[跟踪训练3] 用列举法表示下列集合.(1)由book 中的字母组成的集合;(2)方程(x -2)2+|y +1|=0的解集.解(1)由book 中的字母组成的集合为{b ,o ,k }.(2)由方程(x -2)2+|y +1|=0可知,⎩⎨⎧ x -2=0,y +1=0,即⎩⎨⎧ x =2,y =-1.从而方程的解集为{(2,-1)}.探究四 描述法表示集合用描述法表示下列集合.(1)所有正偶数组成的集合;(2)不等式3x -2>4的解集;(3)在平面直角坐标系中,第一、三象限内点的集合.解(1)正偶数都能被2整除,所以正偶数可以表示为x =2n ,(n ∈N *)的形式. 于是这个集合可以表示为{x |x =2n ,n ∈N *}.(2)由3x -2>4,得x >2,故不等式的解集为{x |x >2}.(3)第一、三象限中的点(x ,y )满足xy >0,于是这个集合可以表示为{(x ,y )|xy >0}.[变式探究] 若将本例(3)改为“坐标平面内坐标轴上的点组成的集合”,如何用描述法表示?解坐标平面内,x轴上的点纵坐标为0,横坐标为任意实数;y轴上的点横坐标为0,纵坐标为任意实数.故坐标轴上的点满足xy=0.用集合表示为{(x,y)|xy=0}.[方法技巧]描述法表示集合的步骤(1)确定集合中元素的特征.(2)给出其满足的性质.(3)根据描述法的形式写出其满足的集合.[跟踪训练4] 用适当的方法表示下列集合.(1)由大于5,且小于9的所有正整数组成的集合;(2)使y=2-xx有意义的实数x的集合;(3)抛物线y=x2-2x与x轴的公共点的集合;(4)直线y=x上去掉原点的点的集合.解(1)列举法:{6,7,8}.(2)描述法:{x|x≤2,且x≠0,x∈R}.(3)列举法:{(0,0),(2,0)}.(4)描述法:{(x,y)|y=x,x≠0}.[对应学生用书P4]1.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合就确定了.这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c 组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.在用列举法表示集合时应注意(1)元素间用分隔号“,”;(2)元素不重复;(3)元素无顺序;(4)列举法可表示有限集,也可以表示无限集.若集合中的元素个数比较少,则用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.4.在用描述法表示集合时应注意(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式;(2)当题目中用了其他字母来描述元素所具有的属性时,要去伪存真(元素具有怎样的属性),而不能被表面的字母形式所迷惑.课时作业(一) 集合的概念[见课时作业(一)P]1351.下面有四个语句:①集合N*中最小的数是0;②-a∉N,则a∈N;③a∈N,b∈N,则a+b的最小值是2;④x2+1=2x的解集中含有两个元素.其中正确语句的个数是( )A.0 B.1C.2 D.3A[N*是不含0的自然数,所以①错误;取a=2,则-2∉N,2∉N,所以②错误;对于③,当a=b=0时,a+b取得最小值0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.]2.如果A={x|x>-1},那么( )A.-2∈A B.{0}∈AC.-3∈A D.0∈AD[∵0>-1,故0∈A.]3.集合A={x||x|<2,x∈Z}用列举法表示正确的是( )A.{-2,-1,0,1,2} B.{-2,-1,1,2}C.{-1,0,1} D.{-1,1}C[因为|x|<2,x∈Z,所以-2<x<2,故用列举法表示为{-1,0,1}.]4.(多选题)下列集合中表示数集的是( )A.{0} B.{y|y2=0}C.{x|x=0} D.{x=0}ABC[A,B,C中的元素都是数,且只有一个元素0,D中的元素是式子x=0.故D不是数集,A,B,C是数集.]5.P (1,3)和集合A ={(x ,y )|y =x +2}之间的关系是________.解析集合A 是点集,P (1,3)的坐标满足集合A ,所以P ∈A .答案P ∈A6.用列举法表示集合A ={(x ,y )|(x +2)2+|y -3|=0,x ∈R ,y ∈R }=________. 解析(x +2)2+|y -3|=0,只有x +2=0与y -3=0同时成立,即x =-2,y =3.集合A ={(-2,3)}.答案{(-2,3)}7.集合B ={1,3,4},若a ∈B ,且8-a ∈B ,那么a 的值为________.解析当a =1时,8-a =7∉B 不满足题意.当a =3时,8-a =5∉B 不满足题意.当a =4时,8-a =4满足题意.所以a 的值为4.答案48.若两个集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,a ,b a ,B ={0,a 2,a +b }的元素相同,求a +b 的值.解依题意0∈A ,所以b =0.所以B ={0,a 2,a },又1∈B ,且a ≠1.所以a 2=1,所以a =-1,所以a +b =-1.9.用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x |x =|x |,x <5,且x ∈Z };(4){(x ,y )|x +y =6,x ∈N *,y ∈N *};(5){-3,-1,1,3,5}.解(1){-2,-1,0,1,2}.(2){3,6,9}.(3)∵x=|x|,∴x≥0.又∵x∈Z,且x<5,∴x=0或1或2或3或4.∴集合可以表示为{0,1,2,3,4}.(4){(1,5),(2,4),(3,3),(4,2),(5,1)}.(5){x|x=2k-1,-1≤k≤3,k∈Z}.1.已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是( )A.0∉M B.2∈MC.-4∉M D.4∈MD[结合x,y,z的取值情况,可知当x>0,y>0,z>0时,代数式的值为4,所以4∈M.]2.下列集合表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}B[A中两个坐标不同,C,D中一个点集一个数集.]3.若集合A={x|ax2+ax+1=0}中只有一个元素,则a=( )A .4B .2C .0D .0或4A [当a =0时,1≠0,此时方程无解.当a ≠0时,Δ=a 2-4a =0即a =4,此时满足A 中只有一个元素x =-12.]4.集合A ={1,4,9,16,25,…},若m ∈A ,n ∈A ,则mΔn ∈A ,“Δ”是一种运算,则“Δ”可以是________.(①加法;②减法;③乘法;④除法)解析因为两个整数的平方的乘积必为一个整数的平方.所以③正确.答案③5.已知集合P ={x |x =2k ,k ∈Z },M ={x |x =2k +1,k ∈Z },a ∈P ,b ∈M ,设c =a +b ,则c 与集合M 有什么关系?解∵a ∈P ,b ∈M ,c =a +b ,∴设a =2k 1,k 1∈Z ,b =2k 2+1,k 2∈Z .∴c =2k 1+2k 2+1=2(k 1+k 2)+1.又k 1+k 2∈Z ,∴c ∈M .6.(拓广探索)已知集合A 中的元素全为实数,且满足:若a ∈A ,则1+a 1-a ∈A . (1)若a =2,求出A 中其他所有元素; (2)0是不是集合A 中的元素?请说明理由.解(1)由2∈A ,得1+21-2=-3∈A . 又由-3∈A ,得1-31+3=-12∈A .再由-12∈A ,得1-121+12=13∈A . 由13∈A ,得1+131-13=2∈A . 故A 中除2外,其他所有元素为-3,-12,13. (2)0不是集合A 中的元素.理由如下:若0∈A ,则1+01-0=1∈A ,而当1∈A 时,1+a 1-a 不存在, 故0不是集合A 中的元素.。
高三一轮复习课第2课集合教学设计
高三一轮复习课第一课集合的概念与运算一、教材分析集合的概念、集合间的关系及运算是高考重点考查的内容,正确理解概念是解决此类问题的关键。
二、教学目标(一)集合的含义与表示1、了解集合的含义、元素与集合的“属于”关系2、能用自然语言、图形语言、集合语言描述不同的具体问题(二)集合间的基本关系1、理解集合之间包含与相等的含义,能识别给定集合的子集。
2、在具体情境中,了解全集与空集的含义(三)集合的基本运算1、理解两个集合的的并集与交集的含义,会求两个检点集合的并集与交集。
2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
三、教学重点了解集合的含义,理解集合间包含与相等的含义,理解俩个集合的并集与交集的含义,会用集合语言表达数学对象或数学内容。
四、教学难点集合相关的概念与符号的理解。
教学过程设计:基础知识自查1、集合与元素(1)集合元素的三个特征:______________ _____________ ________________(2)元素与集合的关系是:______________和______________关系,符号是:______________(3)集合的表示方法:________________________________________________________(4)集合的分类:按集合中元素的个数,集合可分为:_____ _____ _____2、集合间的基本关系(1)子集A 是B 的子集,符号:_____或_____(2)真子集:A 是B 的真子集,符号:_____或_____(3)等集:A B ⊆且B A ⊆⇔_____3、集合间的运算及性质(1)并集:符号__________ 图形语言:__________(2)交集: 符号语言__________ 图形语言:__________(3)补集: 符号语言__________ 图形语言:__________4、集合的运算性质并集的性质:(1) A ∪A= ;(2)A ∪∅= ;(3)A ∪B=交集性质: (1) A ∩A= ;例1 是(. 考点2、集合与集合的关系例2、(2010高考浙江卷)设{}4<=x x P ,{}42<=x x Q 则 A Q P ⊆ B P Q ⊆ C ⊆P ∁Q R D ⊆Q ∁P R分析:判断集合间的关系常转化为元素与集合的关系,对描述法表示的集合要抓住元素的属性,可列举出来或借助数轴、韦恩图或函数图像等手段解决。
2023年《师说》高考数学一轮复习 学生用书 第1章 集合与常用逻辑用语
第一节集合课程标准1.了解集合的含义.理解元素与集合的属于关系,能用自然语言、图形语言、符号语言刻画集合.2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义.3.理解集合间的交、并、补的含义,能求两个集合的并集与交集,能求给定子集的补集.4.能使用Venn图表达集合间的基本关系及基本运算.体会图形对理解抽象概念的作用.考情分析2020(Ⅰ)第1题考查了无限集合的并集运算;2021(Ⅰ)第1题考查了无限集与有限集的交集运算;2021(Ⅱ)第2题考查了有限集的交、补运算.核心素养直观想象数学运算教材回扣·夯实“四基”基础知识1.元素与集合(1)集合中元素的三个特性:确定性、________、无序性.(2)元素与集合的关系是________或________,表示符号分别为∈和∉.(3)集合的三种表示方法:________、________、图示法.(4)常用数集及其记法:集合自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中任意一个元素都是集合B中的元素(即若x∈A,则x∈B)________________真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中________________集合相等集合A,B中的元素相同或集合A,B互为子集________【微点拨】空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算文字语言符号语言图形语言记法交集属于A____属于B的所有元素组成的集合{x|x∈A,________x∈B}________并集所有属于A________属于B的元素组成的集合{x|x∈A,________x∈B}________补集全集U中________A的所有元素组成的集合{x|x∈U,且x______A}________【微点拨】用集合运算表示区域[常用结论]1.任何一个集合是它本身的子集.2.若有限集A中有n个元素,则A 的子集有2n个,真子集有(2n-1)个,非空真子集有(2n-2)个.3.子集的传递性:A ⊆B,B⊆C⇒A⊆C.4.A⊆B⇔A=A⇔A=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.5.A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;(∁U A)∩(∁U B)=∁U(A;(∁U A)∪(∁U B)=∁U(A基本技能、思想、活动经验题组一思考辨析(正确的打“√”,错误的打“×”)1.集合{x2+x,0}中的实数x可取任意值.()2.{x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()3.对任意集合A,B,一定有A.()4.若A=A则B=C.()题组二教材改编5.若集合A={x∈N|x≤},a=2,则下面结论中正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A6.已知集合A={x|x2-2x-3≤0},B={x|0<x≤4},则=()A.[-1,4] B.(0,3]C.(-1,0]题组三易错自纠7.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1} B.{1}C.{-1,1} D.{-1,0,1}8.已知集合A={x|y=x2-1},B={(x,y)|y=x2-1},则=()A.R B.{x|y2=x2-1}C.{(x,y)|y=x2-1} D.∅题型突破·提高“四能”题型一集合及其表示[例1](1)[2022·淄博实验中学月考]集合A={x∈N*},用列举法可以表示为()A.B.C.D.(2)[2022·广东实验中学月考]若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=()A.B.C.0 D.0或[听课记录]类题通法与集合中元素有关问题的求解策略[巩固训练1](1)[2022·江苏模拟]设集合A={1,2,3,4},B={5,6},C={x+y|x∈A,y∈B},则C中元素的个数为()A.3 B.4C.5 D.6(2)设a,b∈R,集合{1,a+b,a}=,则b-a=()A.1 B.-1C.2 D.-2题型二集合间的基本关系[例2](1)[2022·福建厦门二中月考]集合M=,N={x =,n∈Z},则下列关系正确的是()A.M⊆N B.M=∅C.N⊆M D.M=Z(2)[2022·重庆蜀都中学月考]已知集合M=,N=(1,4),且M⊆N,则实数a的取值范围是()A.(-∞,2] B.(-∞,0]C.D.[听课记录]类题通法判断集合间关系的常用方法[巩固训练2](1)[2022·海南海口模拟]已知集合A=,B=,则下列判断正确的是()A.B∈A B.A=∅C.A⊆B D.B⊆A(2)[2022·北京师范大学附属中学模拟]已知集合A=,则集合A的子集的个数是()A.2 B.3C.4 D.5题型三集合的基本运算角度1 交、并、补运算[例3](1)[2022·湖北恩施模拟]设集合A=,B=,则A=()A.B.C.D.(2)已知集合U=R,集合A=,B=,则∁U=()A.或B.或C.且D.或[听课记录]类题通法求集合交集、并集或补集的步骤[巩固训练3](1)[2021·新高考Ⅰ卷]设集合A=,B=,则=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}(2)[2022·湖南师大附中月考]已知全集U=,集合A=,B=,则A=()A.B.C.D.角度2 利用集合运算求参数[例4](1)设集合A={x|x2-4≤0},B={x|2x+a≤0},且A={x|-2≤x≤1},则a=()A.-4 B.-2C.2 D.4(2)已知集合A=,集合B={x|2m<x<1-m}.若A=∅,则实数m 的取值范围是()A.≤m<B.m≥0C.m≥D.<m<[听课记录]类题通法利用集合的运算求参数的方法[巩固训练4](1)[2022·山东泰安模拟]集合A=,B=.若A=,则a=()A.±1 B.±2C.±3 D.±4(2)已知集合A={x|x<a},B={x|1<x<2},且A∪(C R B)=R,则实数a的取值范围是()A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}❶集合的新定义问题一、集合的新定义问题的解决方法1.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.2.按新定义的要求,逐条分析、验证、运算,使问题得以解决.3.对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.二、常见的命题角度角度1创新集合新定义创新集合新定义问题是通过重新定义相应的集合,对集合的知识加以创新,结合相应的数学知识,来解决创新集合的新定义问题.[典例1]若一个集合是另一个集合的子集,称两个集合构成“全食”;若两个集合有公共元素,但互不为对方子集,则称两个集合构成“偏食”.对于集合A=,B={x|ax2=1,a≥0},若两个集合构成“全食”或“偏食”,则a的值为________.【解析】因为B={x|ax2=1,a≥0},所以若a=0,则B=∅,满足B为A的真子集,此时A与B构成“全食”;若a>0,则B==,若A与B构成“全食”或“偏食”,则=1或=,解得a=1或a=4.综上,a的值为0或1或4.【答案】0或1或4角度2创新集合新运算创新集合新运算问题是按照一定的数学规则和要求给出新的集合运算规则,并按照此集合运算规则和要求结合相关知识进行逻辑推理和计算等,从而达到解决问题的目的.[典例2](1)(多选)[2022·山东烟台模拟]若非空集合G和G上的二元运算“⊕”满足:①∀a,b∈G,a ⊕b∈G;②∃I∈G,对∀a∈G,a ⊕I=I ⊕a=a;③∃I∈G,使∀a∈G,∃b ∈G,有a ⊕b=I=b ⊕a;④∀a,b,c∈G,(a ⊕b)⊕c=a ⊕(b ⊕c),则称(G,⊕)构成一个群.下列选项对应的(G,⊕)构成一个群的是()A.集合G为自然数集,“⊕”为整数的加法运算B.集合G为正有理数集,“⊕”为有理数的乘法运算C.集合G={-1,1,-i,i}(i为虚数单位),“⊕”为复数的乘法运算D.集合G={0,1,2,3,4,5,6},“⊕”为求两整数之和被7除的余数【解析】A.G=N时,不满足③,若I=0,则由1+b=0得b=-1∉G,若I∈N*⊆N,则在G中设a>I,由a+b=I得b=I-a<0∉G,所以(N,⊕)不能构成群;B.G为正有理数集,①任意两个正有理数的积仍然为正有理数,②显然1∈G,对任意a∈G,a⊕1=a=1⊕a,③对任意正有理数a,也是正有理数,且a⊕=1=⊕a,即I=1,④有理数的乘数满足结合律,B中可构成群;C.G={-1,1,-i,i}(i为虚数单位),①可验证G中任意两数(可相等)的乘积仍然属于G;②I=1,满足任意a∈G,有a ⊕1=1 ⊕a;③I=1,满足任意a∈G,存在b∈G,有a ⊕b=b ⊕a=1,实质上有-1×(-1)=1×1=i×(-i)=1;④复数的乘法运算满足结合律,C中可构成群;D.G={0,1,2,3,4,5,6},①任意两个整数的和不是整数,它除以7的余数一定属于G,②I=0,满足对任意a∈G,a ⊕I=I ⊕a,③I=1,I=0,0+0=0,1+6=2+5=3+4=7除以7的余数为0;④加法满足交换律,又a+b除以7的余数等于a除以7的余数加b除以7的余数的和再除以7所得余数,因此∀a,b,c∈G,(a ⊕b)⊕c=a ⊕(b ⊕c),D 中可构成群;故选BCD.【答案】BCD(2)[2022·湖北联考]对于任意两集合A,B,定义A-B={x|x∈A且x∉B },A *B=(A-B)记A={y|y≥0},B={x|-3≤x≤3},则A*B=________.【解析】由题意知A-B={x|x>3},B-A={x|-3≤x<0},所以 A *B=[-3,0)【答案】[-3,0)角度3创新集合新性质创新集合新性质问题是利用创新集合中给定的定义与性质来处理问题,通过创新性质,结合相应的数学知识来解决有关的集合性质的问题.[典例3][2022·北京东城区模拟]设A是非空数集,若对任意x,y∈A,都有x +y∈A,xy∈A,则称A具有性质P.给出以下命题:①若A具有性质P,则A可以是有限集;②若A1,A2具有性质P,且A1则A1具有性质P;③若A1,A2具有性质P,则A1具有性质P;④若A具有性质P,且A≠R,则∁R A不具有性质P.其中所有真命题的序号是________.【解析】对于①,取集合A=具有性质P,故A可以是有限集,故①正确;对于②,取x,y∈A1则x∈A1,x∈A2,y∈A1,y∈A2,又A1,A2具有性质P,∴x+y∈A1, xy∈A1,x+y∈A2, xy∈A2,∴x+y∈A1所以A1具有性质P,故②正确;对于③,取A 1=,A2=,2∈A1,3∈A2,但2+3∉A1故③错误;对于④,假设∁R A具有性质P,即对任意x,y∈∁R A,都有x +y∈∁R A,xy∈∁R A ,即对任意x,y∉A,都有x +y∉A,xy∉A,举反例A=,取1∉A,3∉A,但1+3=4∈A,故假设不成立,故④正确.【答案】①②④第一章集合与常用逻辑用语第一节集合教材回扣夯实“四基”基础知识1.(1)互异性(2)属于不属于(3)列举法描述法2.A⊆B(或B⊇A)A B(或B A)A=B3.且且A或或A不属于∉∁U A基本技能、思想、活动经验1.× 2.× 3.× 4.×5.解析:因为2不是自然数,所以a∉A.故选D.答案:D6.解析:A={x|x2-2x-3≤0}={x|-1≤x≤3},所以A={x|-1≤x≤4}.故选A.答案:A7.解析:∵B⊆A,当B≠∅,即a≠0时,B=,∴-∈A,即a=±1;当B=∅,即a=0时,满足条件.综上可知实数a所有可能取值的集合是{-1,0,1}.答案:D8.解析:因为集合A的代表元素是实数,而集合B的代表元素是图象上的点,故A=∅.答案:D题型突破提高“四能”例1解析:(1)因为∈Z且x∈N*,所以x的可取值有:1,2,4,5,6,9,所以列举法表示集合为:,故选B.(2)集合A={x∈R|ax2-3x+2=0}中只有一个元素,当a=0时,可得x=,集合A只有一个元素为:.当a≠0时,方程ax2-3x+2=0只有一个解,即Δ=9-8a=0,可得:a=.故选D.答案:(1)B(2)D巩固训练1解析:(1)因集合A={1,2,3,4},B={5,6},又x∈A,y∈B,则当y=5时,x+y的值有:6,7,8,9,当y=6时,x+y的值有:7,8,9,10,于是得C={6,7,8,9,10},所以C中元素的个数为5.故选C.(2)因为{1,a+b,a}=,a≠0,所以a+b=0,则=-1,所以a =-1,b=1,所以b-a=2.故选C.答案:(1)C(2)C例2解析:(1)M=,N=,n+2表示整数,2n+1表示奇数,故N⊆M,故A错误,B错误,C正确,而M中的元素有分数,故D错误.故选C.(2)因M⊆N,而∅⊆N,所以M=∅时,即2a≤1-a,则a≤,M≠∅时,M⊆N,则⇒,无解,综上得a≤,即实数a的取值范围是.故选C.答案:(1)C(2)C巩固训练2解析:(1)∵A==,B=,∴B⊆A,A=B=,故选D.(2)∵A==,有2个元素,则集合A的子集的个数是22=4.故选C.答案:(1)D(2)C例3解析:(1)因集合A=,则A=,又B=,所以A={1,2,3}.故选C.(2)因为A==,B=,则A =或,因此,∁U=或.故选D.答案:(1)C(2)D巩固训练3解析:(1)由题设有A=,故选B .(2)U==,因为B={3,4,5},可得∁U B=,因为A={1,2,3,5},所以A={1,2},故选C.答案:(1)B(2)C例4解析:(1)由已知可得A={x|-2≤x≤2},B=,又∵A={x|-2≤x≤1},∴-=1,∴a=-2.故选B.(2)由A=∅,得:①若2m≥1-m,即m≥时,B=∅,符合题意;②若2m<1-m,即m<时,由A=∅,则或,解得0≤m<,综上可得:m≥0,所以实数m的取值范围是m≥0.故选B.答案:(1)B(2)B巩固训练4解析:(1)由A=知,,解得a=±2.故选B.(2)因为B={x|1<x<2},所以∁R B={x|x≤1或x≥2},又∵A∪(∁R B)=R,∴a≥2.故选C.答案:(1)B(2)C第二节常用逻辑用语课程标准考情分析核心素养1.必要条件、充分条件、充要条件2020和2021年新高考未单独考查,只是在2020年(Ⅱ)卷逻辑推理数学运算基础知识1.充分条件、必要条件与充要条件的概念【微点拨】1.A是B的充分不必要条件是指:A⇒B且BD⇒A.2.A的充分不必要条件是B是指:B⇒A且AD⇒B,在解题中要弄清它们的区别,以免出现错误.2.全称量词和存在量词【微点拨】含有一个量词的命题的否定规律是“改量词、否结论”.[常用结论]1.集合与充要条件:设p ,q 成立的对象构成的集合分别为A ,B , (1)p 是q 的充分不必要条件⇔AB ;(2)p 是q 的必要不充分条件⇔A B ; (3)p 是q 的充要条件⇔A =B .2.若p 是q 的充分不必要条件,则¬q 是¬p 的充分不必要条件.基本技能、思想、活动经验在量词命题.( )2.命题“对顶角相等”的否定是“对顶角不相等”.( ) 3.当q 是p 的必要条件时,p 是q 的充分条件.( )4.“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) 题组二 教材改编5.“(x -1)(x +2)=0”是“x =1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.(多选)下列命题为真命题的是( ) A .任意实数的平方大于或等于0B .对任意实数a ,二次函数y =x 2+a 的图象关于y 轴对称C .存在整数x ,y ,使得2x +4y =3D .存在一个无理数,它的立方是有理数 题组三 易错自纠7.下面四个条件中,使a >b 成立的充分不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 38.命题“∃x <1,1x<1”的否定是________________________________________________________________________.题型突破·提高“四能”[例1] (1)[2022·广东韶关模拟]命题p :x 2-x -2<0是命题q :0<x <1的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件(2)[2022·河北石家庄模拟]a >2是a +2a>3的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 [听课记录]类题通法充分、必要条件的两种常用判断方法[巩固训练1] (1)[2022·湖南长郡中学模拟]设a ,b ∈R ,则“a >b ”是“a 2>b 2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件(2)[2022·山东济南模拟]△ABC 中,“sin A =12 ”是“A =π6”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件题型二 充分条件、必要条件的应用[例2] 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m },若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.[听课记录]变式探究 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.类题通法利用充分、必要条件求参数的两点提醒[巩固训练2] [2022·山东日照模拟]若不等式()x -a 2<1成立的充分不必要条件是1<x <2,则实数a 的取值范围是________.题型三 全称量词命题与存在量词命题角度1 全称量词命题、存在量词命题的真假判断[例3] [2022·江苏盐城模拟]下列4个命题中,真命题的是( )A .∃x ∈()0,+∞ ,⎝⎛⎭⎫14 x <⎝⎛⎭⎫15 xB .∀x ∈⎝⎛⎭⎫0,15 ,⎝⎛⎭⎫15 x <log 15x C .∀x ∈()0,+∞ ,⎝⎛⎭⎫14 x>log 14xD .∃x ∈()1,+∞ ,log 14x >log 15x[听课记录]类题通法判断全称量词命题、存在量词命题真假的思路[巩固训练3] 下列四个命题中的假命题是( ) A .∀x ∈R ,x 2≥0B .∀x ∈R ,2x -1>0 C .∃x ∈R ,lg x <1D .∃x ∈R ,sin x +cos x =2角度2 全称量词命题和存在量词命题的否定[例4] (1)[2022·湖北武汉模拟]命题“∃x ≥0,2x +x -a ≤0”的否定是( ) A .∀x ≤0,2x +x -a ≤0 B .∀x ≥0,2x +x -a >0 C .∃x ≤0,2x +x -a >0 D .∃x ≥0,2x +x -a >0(2)[2022·山东潍坊模拟]命题“∀a >0,a +1a≥2”的否定是( )A .∃a ≤0,a +1a <2B .∃a >0,a +1a <2C .∀a ≤0,a +1a ≥2D .∀a >0,a +1a<2[听课记录]类题通法对全称量词命题与存在量词命题进行否定的步骤[巩固训练4] (1)[2022·山东德州模拟]已知命题p :∀x >0,ln ()x +1 >0,则¬p 为( ) A .∀x >0,ln ()x +1 ≤0 B .∃x >0,ln ()x +1 ≤0 C .∀x <0,ln ()x +1 ≤0 D .∃x ≤0,ln ()x +1 ≤0 (2)[2022·北京二中月考]已知命题p :∃x >0,ln x <0,则¬p 为________.角度3由全称(存在)量词命题的真假求参数的范围[例5][2022·福建上杭一中月考]已知命题p:∃x∈R,mx2+2≤0;命题q:∀x∈R,x2-2mx+1>0.若p、q都为假命题,则实数m的取值范围是()A.[1,+∞) B.(-∞,-1]C.(-∞,-2] D.[-1,1][听课记录]类题通法根据全称(存在)量词命题的真假求参数的一般步骤[巩固训练5][2022·湖北襄阳模拟]若“∃x∈R,x2-2x-a=0”是假命题,则实数a的取值范围为________.温馨提示:请完成课时作业2第二节常用逻辑用语教材回扣夯实“四基”基础知识1.充分必要充分不必要必要不充分充要既不充分也不必要2.∀∃3.∀x∈M∃x∈M∃x∈M∀x∈M基本技能、思想、活动经验1.× 2.× 3.√ 4.√5.解析:若x=1,则(x-1)(x+2)=0显然成立,但反之不成立,即若(x-1)(x+2)=0,则x的值也可能为-2.故选B.答案:B6.解析:A、B为真命题;C为假命题,因为2x+4y=2(x+2y)必为偶数;D为真命题,如x=,x3=2∈Q.故选ABD.答案:ABD7.解析:选项A中,a>b+1>b,所以充分性成立,但必要性不成立,所以“a>b+1”为“a>b”成立的充分不必要条件.故选A.答案:A8.解析:存在量词命题的否定是全称量词命题,否定时,既改量词,又否结论,“<1”的否定是“0≤x≤1”.答案:∀x<1,0<x≤1题型突破提高“四能”例1解析:x2-x-2<0⇔-1<x<2,所以pDq,反之q⇒p.故p是q的必要不充分条件.故选B.答案:B解析:由不等式a+>3,即a+-3==>0,解得0<a<1或a>2,即不等式的解集为{a|0<a<1或a>2},所以a>2是a+>3的充分不必要条件.故选C.答案:C巩固训练1解析:若a=0,b=-2,则a2<b2,故不充分;若a=-2,b=0,则a2>b2,而a<b,故不必要,故选D.答案:D解析:在△ABC中,若sin A=,则A=或,因为,因此,“sin A=”是“A=”的必要不充分条件.故选C.答案:C例2解析:由x2-8x-20≤0得-2≤x≤10.∴P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.又∵S≠∅,如图所示.则,∴0≤m≤3.所以当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].答案:[0,3]变式探究解析:若x∈P是x∈S的充要条件,则P=S,∴,∴,∴不存在实数m,使x∈P是x∈S的充要条件.答案:不存在实数m,使x∈P是x∈S的充要条件巩固训练2解析:由2<1得a-1<x<a+1,因为1<x<2是不等式2<1成立的充分不必要条件,∴满足且等号不能同时取得,即,解得1≤a≤2.答案:例3解析:因为∀x∈,x<x,故A为假命题;∀x∈,x<0==1,即x,故B为真命题;取x=,则=<0=1,所以,故C为假命题;∀x∈,log4x>log5x>0,所以-log4x<-log5x<0,即x,故D为假命题.故选B.答案:B巩固训练3解析:A显然正确;由指数函数的性质知2x-1>0恒成立,所以B正确;当0<x<10时,lg x<1,所以C正确;因为sin x+cos x=sin ,所以-≤sin x+cos x≤,所以D错误.故选D.答案:D例4解析:由存在量词命题的否定为全称量词命题可得,命题“∃x≥0,2x+x-a≤0”的否定是“∀x≥0,2x+x-a>0”故选B.答案:B解析:命题“∀a>0,a+≥2”为全称量词命题,则其的否定为∃a>0,a+<2,故选B.答案:B巩固训练4解析:对命题否定时,全称量词改成存在量词,即∃x>0,ln ≤0;故选B.答案:B解析:根据题意,命题p:∃x>0,ln x<0是存在量词命题,则¬p:∀x>0,ln x≥0.答案:∀x>0,ln x≥0例5解析:p,q都是假命题.由p:∃x∈R,mx2+2≤0为假命题,得∀x∈R,mx2+2>0,∴m≥0.由q:∀x∈R,x2-2mx+1>0为假命题,得∃x∈R,x2-2mx+1≤0为真命题∴Δ=(-2m)2-4≥0,得m≤-1或m≥1.∴m≥1.故选A.答案:A巩固训练5解析:若“∃x∈R,x2-2x-a=0”是假命题,则其否定若“∀x∈R,x2-2x-a≠0”是真命题,所以Δ=(-2)2-4×1×(-a)=4+4a<0,解得a<-1,故实数a的取值范围为(-∞,-1).答案:(-∞,-1)。
集合的概念教学设计
环节一集合的概念◆教学重点:元素与集合之间的关系及其表示,以及用符号语言表示集合.教学难点:选择恰当的方法表示一些简单的集合;描述法中元素所满足的条件利用符号表述及识别.PPT.一、学习章引言,整体概览我们知道,方程x2=2在有理数范围内无解,但在实数范围内有解.在平面内,到定点的距离等于定长的点的集合是圆,而在空间中,到定点的距离等于定长的点的集合是球面,因此,明确研究对象、确定研究范围是研究数学问题的基础.集合论是德国数学家康托在19世纪末创立的,集合语言是现代数学的基本语言.使用集合语言,可以简洁、准确地表达数学的一些内容.我们将集合作为一种语言来学习,将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.集合语言是一种抽象的数学语言,学习集合语言最好的方法就是使用,非洲大草原上生存着几千种动物,它们常常面临着生与死的考验,为了生存,它们过着“群居”的生活,这种“物以类聚”就产生某种动物集合.让我们一起走进“集合”世界,探索集合的奥秘.二、概念的引入问题1:下面的例子,每个问题都由若干个对象组成,每组对象的全体都能组成集合吗?我们把研究的对象统称为元素,例子中的元素分别是什么?(1)1-10之间的所有偶数;(2)立德中学今年入学的全体高一学生;(3)所有的正方形;(4)到直线l的距离等于定长d的所有点;(5)方程x2-3x+2=0的所有实数根;(6)地球上的四大洋.师生活动:学生独立思考、讨论交流.追问:例子中研究的对象分别是什么,构成的集合是什么.预设的答案:(1)1~10之间的每个偶数作为元素,这些元素的全体就是一个集合.(2)立德中学今年入学的每一位高一学生作为元素,这些元素的全体也是一集合.(3)每一个正方形作为元素,所有的正方形构成一个集合.(4)到直线l的距离等于定长d的点作为元素,满足条件的点全体构成的一个集合.(5)方程x2-3x+2=0的根作为元素,这些元素构成了一个集合.(6)地球上的四大洋作为元素,这些大洋构成了一个集合.设计意图:通过初中所学及实例,让学生感知、了解、抽象出元素与集合的含义.提高学生用数学抽象的思维方式思考并解决问题的能力.三、概念的理解例1 判断下列说法是否正确.(1)所有好看的花可以构成一个集合.(2)由1,3,0,5,|-3|这些数组成的集合中有5个元素.(3)高一(3)班的全体同学组成一个集合,调整座位后这个集合发了改变.师生活动:学生独立观察,充分思考,交流讨论.追问:(1)你从哪个角度分析一些研究对象能否构成集合?(从集合中的元素是否确定)(2)集合中的元素能否相同,可以重复吗?(不能重复,如问题(2)中|-3|=3,所以集合只有4个元素1,3,0,5,集合中的元素是互异的)(3)高一(3)班的全体同学调整座位后这个班集体变了吗?(班集体没有变,集合没有变化,集合中的元素是没有顺序的)(4)通过以上的学习你能给出集合中元素的特性吗?请你再举一些相应的例子.(确定性、互异性、无序性)(5)如何判断两个集合相等?(元素是否完全一样,两个集合中元素是一样的,则这两个集合相等)设计意图:通过具体的例子让学生充分经历从观察、分析到抽象、概括出元素的三个特性,深刻理解集合概念.问题2:元素和集合各用什么字母表示?元素和集合之间有哪两种关系?用什么符号表示?常用数集及其记法有哪些?师生活动:学生独立阅读完成.给出练习检测其阅读效果.预设的答案:(1)元素用小写拉丁字母a,b,c…表示;集合用大写拉丁字母A,B,C…表示.(2)元素与集合的关系:“属于”、“不属于”.如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果b不是集合A中的元素,就说b不属于集合A,记作b∉A.(3)常用数集及其记法:非负整数(自然数集)N、正整数集N*或N+、整数集Z、有理数集Q、实数集R.(根据学生的实际情况,适当回顾一下具体数集包含哪些数,对记忆有帮助)设计意图:用数学语言表示集合和元素.元素、集合的字母表示,元素与集合的“属于”或“不属于”关系,常用数集及其记法,建议在运用中逐渐熟练掌握.问题3:上面的例1使用自然语言表示集合,还有其他方法可以表示集合吗?例如,地球上的四大洋组成的集合,我们明确地知道地球上的4大洋是什么,而自然语言表达的不具体,那么该用什么方法呢?再比如,不等式x-3<7的解集,又该用什么方法表示呢?师生活动:学生独立思考,然后交流讨论.教师适时地选择下面问题进行追问.追问1:上述两个例子有什么区别呢?从集合中元素的特点来分析.预设的答案:第1个例子集合中的元素是有限个(4个),可以这样表示{太平洋,大西洋,印度洋,北冰洋}.第2个集合中的元素都小于10,集合中的元素都是实数且是无数多个.追问2:你能总结归纳出列举法的特征吗?使用列举法表示时需要注意什么?预设的答案:把集合的元素一一列举出来,并用大括号“{ }”括起来表示集合的方法叫做列举法.利用列举法表示集合时应注意:①大括号不能缺失,元素中间用逗号隔开;②元素虽然与顺序无关,但是防止不重不漏,按一定的顺序列举较好,如:从小到大或者从大到小等.追问3:显然不能用列举法表示不等式x-3<7的解集.那么解集中元素的共同特点是什么?将这个共同特征描述清楚,写出来也可以表示集合,这就是集合的描述法.阅读课本第4页,什么叫描述法?然后用描述法写出解集对应的集合.设计意图:通过集合的表示法,学生对实例或问题的思考,去体验知识方法.不仅要让学生明白用列举法是集合最基本、最原始的表示方法,还要理解到集合中元素的列举与元素的顺序无关.通过问题的思考,学生认识到仅用列举法表示集合是不够的,有些集合是列举不完或者列举不出来的,由此说明学习描述法的必要性.学习描述法时,先用自然语言描述集合元素具有的共同属性,再介绍用描述法的具体方法.在这个过程中提升学生的数学抽象素养.四、概念的巩固应用例2考查下列每组对象,能构成一个集合的是()①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④我国新型冠状病毒疫情期间支援武汉的白衣天使.A.③④B.②③④C.②③D.②④答案:B设计意图:帮助学生理解集合中元素的特性.判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.例3 下列关系中,正确的有( )①12∈R ;②2∉Q ;③|-3|∈N ;④|-3|∈Q ;⑤0={0} A .1个 B .2个 C .3个 D .4个 答案:C设计意图:促进学生熟练判断元素与集合间的关系.判断元素与集合关系的两种方法:(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.例4 用适当的方法表示下列集合:(1)被3除余1的正整数的集合;(2)坐标平面内第一象限的点的集合;(3)方程x 2-9=0的实数根组成的集合C ;(4)一次函数y =x +3与y =-2x +6的图象的交点组成的集合D .师生活动:学生分析判断,交流讨论写出结果,教师巡视观察学生写的情况,纠正错误写法.预设的答案:(1)根据被除数=商×除数+余数,可知此集合表示为{x |x =3n +1,n ∈N}.(2)第一象限内点的横、纵坐标均大于零,故此集合可表示为{(x ,y )|x >0,y >0}.(3)方程x 2-9=0的实数根为-3,3,所以C ={-3,3}.(4)由⎩⎪⎨⎪⎧ y =x +3,y =-2x +6得⎩⎪⎨⎪⎧x =1,y =4, 所以,一次函数y =x +3与y =-2x +6的交点为(1,4),所以D ={(1,4)}.解题思路:描述法表示集合的2个步骤(如图1):设计意图:检验学生对集合表示方法的理解和掌握,集合作为一种基本的数学语言,学习并掌握它的最好方法是使用.因此,教学中要多引导学生使用集合语言描述对象,进行自然语言与集合语言间的转换.养成良好的数学习惯.用集合思想对实际生活中的对象进行判断与归类,提升数学建模素养.。
集 合(经典导学案及练习答案详解)
§1.1集合学习目标1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.知识梳理1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集,记作A B(或B A).(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集:不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算表示 运算集合语言 图形语言 记法并集{x |x ∈A ,或x ∈B }A ∪B交集 {x |x ∈A ,且x ∈B }A ∩B 补集{x |x ∈U ,且x ∉A }∁U A常用结论1.若集合A 有n (n ≥1)个元素,则集合A 有2n 个子集,2n -1个真子集. 2.A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)集合{x ∈N |x 3=x },用列举法表示为{-1,0,1}.( × ) (2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( × ) (3)若1∈{x 2,x },则x =-1或x =1.( × ) (4)对任意集合A ,B ,都有(A ∩B )⊆(A ∪B ).( √ ) 教材改编题1.(多选)若集合A ={x ∈N |2x +10>3x },则下列结论正确的是( ) A .22∉A B .8⊆A C .{4}∈A D .{0}⊆A答案 AD2.已知集合M ={a +1,-2},N ={b ,2},若M =N ,则a +b =________. 答案 -1解析 ∵M =N ,∴⎩⎨⎧a +1=2,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,∴a +b =-1.3.已知全集U =R ,集合A ={x |1≤x ≤3},B ={x |x 2≥4},则A ∩B =____________,A ∪(∁U B )=____________.答案 {x |2≤x ≤3} {x |-2<x ≤3}解析 ∵全集U =R ,集合A ={x |1≤x ≤3},B ={x |x 2≥4}={x |x ≤-2或x ≥2}, ∴∁U B ={x |-2<x <2},∴A ∩B ={x |2≤x ≤3},A ∪(∁U B )={x |-2<x ≤3}.题型一 集合的含义与表示例1 (1)(2020·全国Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .6 答案 C解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素. (2)若集合A ={a -3,2a -1,a 2-4},且-3∈A ,则实数a =________. 答案 0或1解析 ①当a -3=-3时,a =0, 此时A ={-3,-1,-4}, ②当2a -1=-3时,a =-1, 此时A ={-4,-3,-3}舍去,③当a 2-4=-3时,a =±1,由②可知a =-1舍去,则当a =1时,A ={-2,1,-3}, 综上,a =0或1. 教师备选若集合A ={x |kx 2+x +1=0}中有且仅有一个元素,则实数k 的取值集合是________. 答案 ⎩⎨⎧⎭⎬⎫0,14解析 依题意知,方程kx 2+x +1=0有且仅有一个实数根,∴k =0或⎩⎪⎨⎪⎧k ≠0,Δ=1-4k =0,∴k =0或k =14,∴k 的取值集合为⎩⎨⎧⎭⎬⎫0,14.思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.跟踪训练1 (1)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪4x -2∈Z ,则集合A 中的元素个数为( )A .3B .4C .5D .6答案 C解析 ∵4x -2∈Z ,∴x -2的取值有-4,-2,-1,1,2,4, ∴x 的值分别为-2,0,1,3,4,6, 又x ∈N ,故x 的值为0,1,3,4,6. 故集合A 中有5个元素.(2)已知a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则a 2 023+b 2 023=________.答案 0解析 ∵{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b 且a ≠0,∴a +b =0,∴a =-b , ∴{1,0,-b }={0,-1,b }, ∴b =1,a =-1, ∴a 2 023+b 2 023=0.题型二 集合间的基本关系例2 (1)设集合P ={y |y =x 2+1},M ={x |y =x 2+1},则集合M 与集合P 的关系是( ) A .M =P B .P ∈M C .M P D .PM答案 D解析 因为P ={y |y =x 2+1}={y |y ≥1},M ={x |y =x 2+1}=R ,因此P M .(2)已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},且B ⊆A ,则实数m 的取值范围是________. 答案 [-1,+∞) 解析 ∵B ⊆A ,①当B =∅时,2m -1>m +1,解得m >2; ②当B ≠∅时,⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1≤4,解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞).延伸探究 在本例(2)中,若把B ⊆A 改为B A ,则实数m 的取值范围是________. 答案 [-1,+∞)解析 ①当B =∅时,2m -1>m +1,∴m >2;②当B ≠∅时,⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1<4或⎩⎪⎨⎪⎧2m -1≤m +1,2m -1>-3,m +1≤4.解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞). 教师备选已知M ,N 均为R 的子集,若N ∪(∁R M )=N ,则( ) A .M ⊆N B .N ⊆M C .M ⊆∁R N D .∁R N ⊆M答案 D解析 由题意知,∁R M ⊆N ,其Venn 图如图所示,∴只有∁R N ⊆M 正确.思维升华 (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.跟踪训练2 (1)已知集合A ={x |x 2-3x +2=0},B ={x ∈N |x 2-6x <0},则满足A C ⊆B 的集合C 的个数为( ) A .4 B .6 C .7 D .8答案 C解析 ∵A ={1,2},B ={1,2,3,4,5}, 且A C ⊆B ,∴集合C 的所有可能为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.(2)已知集合M ={x |x 2=1},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值为________. 答案 0,±1解析 ∵M ={-1,1},且M ∩N =N ,若N =∅,则a =0;若N ≠∅,则N =⎩⎨⎧⎭⎬⎫1a ,∴1a =1或1a =-1, ∴a =±1综上有a =±1或a =0. 题型三 集合的基本运算 命题点1 集合的运算例3 (1)(2021·全国乙卷)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T 等于( )A .∅B .SC .TD .Z 答案 C解析 方法一 在集合T 中,令n =k (k ∈Z ),则t =4n +1=2(2k )+1(k ∈Z ),而集合S 中,s =2n +1(n ∈Z ),所以必有T ⊆S , 所以T ∩S =T .方法二 S ={…,-3,-1,1,3,5,…},T ={…,-3,1,5,…},观察可知,T ⊆S ,所以T ∩S =T .(2)(2022·济南模拟)集合A ={x |x 2-3x -4≥0},B ={x |1<x <5},则集合(∁R A )∪B 等于( ) A .[-1,5) B .(-1,5) C .(1,4] D .(1,4)答案 B解析 因为集合A ={x |x 2-3x -4≥0}={x |x ≤-1或x ≥4}, 又B ={x |1<x <5}, 所以∁R A =(-1,4), 则集合(∁R A )∪B =(-1,5).命题点2 利用集合的运算求参数的值(范围)例4 (1)(2022·厦门模拟)已知集合A ={1,a },B ={x |log 2x <1},且A ∩B 有2个子集,则实数a 的取值范围为( ) A .(-∞,0] B .(0,1)∪(1,2] C .[2,+∞)D .(-∞,0]∪[2,+∞)解析 由题意得,B ={x |log 2x <1}={x |0<x <2}, ∵A ∩B 有2个子集, ∴A ∩B 中的元素个数为1; ∵1∈(A ∩B ),∴a ∉(A ∩B ),即a ∉B ,∴a ≤0或a ≥2, 即实数a 的取值范围为(-∞,0]∪[2,+∞).(2)已知集合A ={x |3x 2-2x -1≤0},B ={x |2a <x <a +3},若A ∩B =∅,则实数a 的取值范围是( ) A .a <-103或a >12B .a ≤-103或a ≥12C .a <-16或a >2D .a ≤-16或a ≥2答案 B解析 A ={x |3x 2-2x -1≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤1, ①B =∅,2a ≥a +3⇒a ≥3,符合题意; ②B ≠∅,⎩⎪⎨⎪⎧a <3,a +3≤-13或⎩⎪⎨⎪⎧a <3,2a ≥1, 解得a ≤-103或12≤a <3.∴a 的取值范围是a ≤-103或a ≥12.教师备选(2022·铜陵模拟)已知A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},若A ∩(∁R B )≠∅,则实数a 的取值范围是( ) A .1≤a ≤2 B .1<a <2 C .a ≤1或a ≥2 D .a <1或a >2答案 D解析 A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},所以∁R B ={x |a -1<x <a +1}; 又A ∩(∁R B )≠∅, 所以a -1<0或a +1>3, 解得a <1或a >2,所以实数a 的取值范围是a <1或a >2.思维升华 对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn 图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.跟踪训练3 (1)(2021·全国甲卷)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤5,则M ∩N 等于( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪0<x ≤13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <4 C .{x |4≤x <5} D .{x |0<x ≤5}答案 B解析 因为M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤5, 所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <4. (2)(2022·南通模拟)设集合A ={1,a +6,a 2},B ={2a +1,a +b },若A ∩B ={4},则a =________,b =________. 答案 2 2解析 由题意知,4∈A ,所以a +6=4或a 2=4, 当a +6=4时,则a =-2,得A ={1,4,4},故应舍去; 当a 2=4时,则a =2或a =-2(舍去), 当a =2时,A ={1,4,8},B ={5,2+b }, 又4∈B ,所以2+b =4,得b =2. 所以a =2,b =2.题型四 集合的新定义问题例5 (1)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( ) A .15 B .16 C .20 D .21 答案 D解析 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.(2)非空数集A 如果满足:①0∉A ;②若∀x ∈A ,有1x∈A ,则称A 是“互倒集”.给出以下数集:①{x ∈R |x 2+ax +1=0};②{x |x 2-6x +1≤0};③⎩⎨⎧⎭⎬⎫y ⎪⎪y =2x,x ∈[1,4],其中是“互倒集”的序号是________. 答案 ②③解析 ①中,{x ∈R |x 2+ax +1=0},二次方程判别式Δ=a 2-4,故-2<a <2时,方程无根,该数集是空集,不符合题意; ②中,{x |x 2-6x +1≤0}, 即{x |3-22≤x ≤3+22}, 显然0∉A , 又13+22≤1x ≤13-22,即3-22≤1x ≤3+22,故1x也在集合中,符合题意; ③中,⎩⎨⎧⎭⎬⎫y ⎪⎪y =2x,x ∈[1,4], 易得⎩⎨⎧⎭⎬⎫y ⎪⎪12≤y ≤2,0∉A , 又12≤1y ≤2,故1y 也在集合A 中,符合题意. 教师备选对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={x |x ≥0},B ={x |-3≤x ≤3},则A *B =____________. 答案 {x |-3≤x <0或x >3}解析 ∵A ={x |x ≥0},B ={x |-3≤x ≤3}, ∴A -B ={x |x >3},B -A ={x |-3≤x <0}. ∴A *B ={x |-3≤x <0或x >3}. 思维升华 解决集合新定义问题的关键解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目所给定义和要求进行恰当转化,切忌同已有概念或定义相混淆.跟踪训练4 若集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)是集合A 的同一种分拆.若集合A 有三个元素,则集合A 的不同分拆种数是________. 答案 27解析不妨令A={1,2,3},∵A1∪A2=A,当A1=∅时,A2={1,2,3},当A1={1}时,A2可为{2,3},{1,2,3}共2种,同理A1={2},{3}时,A2各有2种,当A1={1,2}时,A2可为{3},{1,3},{2,3},{1,2,3}共4种,同理A1={1,3},{2,3}时,A2各有4种,当A1={1,2,3}时,A2可为A1的子集,共8种,故共有1+2×3+4×3+8=27(种)不同的分拆.课时精练1.(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},集合N={3,4},则∁U(M∪N)等于()A.{5} B.{1,2}C.{3,4} D.{1,2,3,4}答案 A解析方法一(先求并再求补)因为集合M={1,2},N={3,4},所以M∪N={1,2,3,4}.又全集U={1,2,3,4,5},所以∁U(M∪N)={5}.方法二(先转化再求解)因为∁U(M∪N)=(∁U M)∩(∁U N),∁U M={3,4,5},∁U N={1,2,5},所以∁U(M∪N)={3,4,5}∩{1,2,5}={5}.2.已知集合U=R,集合A={x|x+3>2},B={y|y=x2+2},则A∩(∁U B)等于() A.R B.(1,2]C.(1,2) D.[2,+∞)答案 C解析A={x|x+3>2}=(1,+∞),B={y|y=x2+2}=[2,+∞),∴∁U B=(-∞,2),∴A∩(∁U B)=(1,2).3.已知集合M={1,2,3},N={(x,y)|x∈M,y∈M,x+y∈M},则集合N中的元素个数为() A.2 B.3 C.8 D.9答案 B解析 由题意知,集合N ={(1,1),(1,2),(2,1)},所以集合N 的元素个数为3.4.(2022·青岛模拟)已知集合A ={a 1,a 2,a 3}的所有非空真子集的元素之和等于9,则a 1+a 2+a 3等于( )A .1B .2C .3D .6 答案 C解析 集合A ={a 1,a 2,a 3}的所有非空真子集为{a 1},{a 2},{a 3},{a 1,a 2},{a 1,a 3},{a 2,a 3},则所有非空真子集的元素之和为a 1+a 2+a 3+a 1+a 2+a 1+a 3+a 2+a 3=3(a 1+a 2+a 3)=9,所以a 1+a 2+a 3=3.5.(2022·浙江名校联考)已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是( )A .a <-2B .a ≤-2C .a >-4D .a ≤-4 答案 D解析 集合A ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≤-a 2,由A ∪B =B 可得A ⊆B ,作出数轴如图.可知-a 2≥2,即a ≤-4. 6.(多选)已知集合P ={(x ,y )|x +y =1},Q ={(x ,y )|x 2+y 2=1},则下列说法正确的是( )A .P ∪Q =RB .P ∩Q ={(1,0),(0,1)}C .P ∩Q ={(x ,y )|x =0或1,y =0或1}D .P ∩Q 的真子集有3个答案 BD解析 联立⎩⎪⎨⎪⎧ x +y =1,x 2+y 2=1, 解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =1, ∴P ∩Q ={(1,0),(0,1)},故B 正确,C 错误;又P,Q为点集,∴A错误;又P∩Q有两个元素,∴P∩Q有3个真子集,∴D正确.7.(多选)(2022·重庆北碚区模拟)已知全集U={x∈N|log2x<3},A={1,2,3},∁U(A∩B)={1,2,4,5,6,7},则集合B可能为()A.{2,3,4} B.{3,4,5}C.{4,5,6} D.{3,5,6}答案BD解析由log2x<3得0<x<23,即0<x<8,于是得全集U={1,2,3,4,5,6,7},因为∁U(A∩B)={1,2,4,5,6,7},则有A∩B={3},3∈B,C不正确;对于A选项,若B={2,3,4},则A∩B={2,3},∁U(A∩B)={1,4,5,6,7},矛盾,A不正确;对于B选项,若B={3,4,5},则A∩B={3},∁U(A∩B)={1,2,4,5,6,7},B正确;对于D选项,若B={3,5,6},则A∩B={3},∁U(A∩B)={1,2,4,5,6,7},D正确.8.(多选)已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的是()A.A∩B=∅B.A∩B=BC.A∪B=U D.(∁U B)∪A=A答案CD解析令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠∅,A∩B≠B,故A,B均不正确;由(∁U A)∪B=B,知∁U A⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由∁U A⊆B,知∁U B⊆A,∴(∁U B)∪A=A,故C,D均正确.9.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.解析 由题意可知,A ={x ∈U |x 2+mx =0}={0,3},即0,3为方程x 2+mx =0的两个根,所以m =-3.10.(2022·石家庄模拟)已知全集U =R ,集合M ={x ∈Z ||x -1|<3},N ={-4,-2,0,1,5},则下列Venn 图中阴影部分的集合为________.答案 {-1,2,3}解析 集合M ={x ∈Z ||x -1|<3}={x ∈Z |-3<x -1<3}={x ∈Z |-2<x <4}={-1,0,1,2,3}, Venn 图中阴影部分表示的集合是M ∩(∁R N )={-1,2,3}.11.已知集合A ={m 2,-2},B ={m ,m -3},若A ∩B ={-2},则A ∪B =________. 答案 {-5,-2,4}解析 ∵A ∩B ={-2},∴-2∈B ,若m =-2,则A ={4,-2},B ={-2,-5},∴A ∩B ={-2},A ∪B ={-5,-2,4};若m -3=-2,则m =1,∴A ={1,-2},B ={1,-2},∴A ∩B ={1,-2}(舍去),综上,有A ∪B ={-5,-2,4}.12.已知集合A ={x |y =lg(a -x )},B ={x |1<x <2},且(∁R B )∪A =R ,则实数a 的取值范围是________.答案 [2,+∞)解析 由已知可得A =(-∞,a ),∁R B =(-∞,1]∪[2,+∞),∵(∁R B )∪A =R ,∴a ≥2.13.若x ∈A ,则1x ∈A ,就称A 是“伙伴关系”集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有“伙伴关系”的集合的个数为( )A .15B .16C .32D .256解析 由题意知,满足“伙伴关系”的集合由以下元素构成:-1,1,12,2,13,3,其中12和2,13和3必须同时出现,所有满足条件的集合个数为24-1=15. 14.已知集合A ={x |8<x <10},设集合U ={x |0<x <9},B ={x |a <x <2a -1},若(∁U B )∩A ={x |8<x <9},则实数a 的取值范围是________________.答案 ⎝⎛⎦⎤-∞,92解析 当B =∅时,2a -1≤a ,解得a ≤1,此时∁U B =U ,(∁U B )∩A =U ∩A ={x |8<x <9},符合题意;当B ≠∅时,2a -1>a ,解得a >1,因为集合U ={x |0<x <9},B ={x |a <x <2a -1},所以∁U B ={x |0<x ≤a 或2a -1≤x <9},因为(∁U B )∩A ={x |8<x <9},所以2a -1≤8,解得a ≤92,所以B ≠∅时,1<a ≤92,综上所述,实数a 的取值范围是⎝⎛⎦⎤-∞,92.15.(多选)设集合A ={x |x =m +3n ,m ,n ∈N *},若x 1∈A ,x 2∈A ,x 1x 2∈A ,则运算可能是( )A .加法B .减法C .乘法D .除法答案 AC解析 由题意可设x 1=m 1+3n 1,x 2=m 2+3n 2,其中m 1,m 2,n 1,n 2∈N *,则x 1+x 2=(m 1+m 2)+3(n 1+n 2),x 1+x 2∈A ,所以加法满足条件,A 正确;x 1-x 2=(m 1-m 2)+3(n 1-n 2),当n 1=n 2时,x 1-x 2∉A ,所以减法不满足条件,B 错误;x 1x 2=m 1m 2+3n 1n 2+3(m 1n 2+m 2n 1),x 1x 2∈A ,所以乘法满足条件,C 正确;x 1x 2=m 1+3n 1m 2+3n 2,当m 1m 2=n 1n 2=λ(λ>0)时,x 1x 2∉A , 所以除法不满足条件,D 错误.16.对班级40名学生调查对A ,B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成,另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的三分之一多1人,问对A ,B 都赞成的学生有___________人.答案 18解析 赞成A 的人数为40×35=24,赞成B 的人数为24+3=27,设对A ,B 都赞成的学生有x 人,则13x +1+27-x +x +24-x =40, 解得x =18.。
2023年高考数学(文科)一轮复习——集 合
第1节集合考试要求 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.注意空集:空集是任何集合的子集,是非空集合的真子集.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.思考辨析(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若{x2,1}={0,1},则x=0,1.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()答案(1)×(2)×(3)×(4)√解析(1)错误.空集只有一个子集.(2)错误.{x|y=x2+1}=R,{y|y=x2+1}=[1,+∞),{(x,y)|y=x2+1}是抛物线y=x 2+1上的点集.(3)错误.当x =1时,不满足集合中元素的互异性. 2.若集合P ={x ∈N |x ≤ 2 023},a =22,则( ) A.a ∈P B.{a }∈P C.{a }⊆P D.a ∉P答案 D解析 因为a =22不是自然数,而集合P 是不大于 2 023的自然数构成的集合,所以a ∉P ,只有D 正确.3.(2021·新高考Ⅰ卷)设集合A ={x |-2<x <4},B ={2,3,4,5},则A ∩B =( ) A.{2} B.{2,3} C.{3,4} D.{2,3,4} 答案 B解析 因为A ={x |-2<x <4},B ={2,3,4,5},所以A ∩B ={2,3}.4.(易错题)(2021·宜昌调研)集合A ={-1,2},B ={x |ax -2=0},若B ⊆A ,则由实数a 的取值组成的集合为( ) A.{-2}B.{1}C.{-2,1}D.{-2,1,0} 答案 D解析 对于集合B ,当a =0时,B =,满足B ⊆A ;当a ≠0时,B =⎩⎨⎧⎭⎬⎫2a ,又B ⊆A ,所以2a =-1或2a =2,解得a =-2或a =1.5.(2021·西安五校联考)设全集U =R ,A ={x |y =2x -x 2},B ={y |y =2x ,x ∈R },则(∁U A )∩B =( ) A.{x |x <0}B.{x |0<x ≤1}C.{x |1<x ≤2}D.{x |x >2}答案 D解析易知A={x|0≤x≤2},B={y|y>0}.∴∁U A={x|x<0或x>2},故(∁U A)∩B={x|x>2}.6.(2021·全国乙卷)设集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T =()A. B.S C.T D.Z答案 C解析法一在集合T中,令n=k(k∈Z),则t=4n+1=2(2k)+1(k∈Z),而集合S中,s=2n+1(n∈Z),所以必有T⊆S,所以S∩T=T.法二S={…,-3,-1,1,3,5,…},T={…,-3,1,5,…},观察可知,T⊆S,所以S∩T=T.,考点一集合的基本概念1.已知集合U={(x,y)|x2+y2≤1,x∈Z,y∈Z},则集合U中元素的个数为()A.3B.4C.5D.6答案 C解析当x=-1时,y=0;当x=0时,y=-1,0,1;当x=1时,y=0.所以U={(-1,0),(0,-1),(0,0),(0,1),(1,0)},共有5个元素.2.若集合A={a-3,2a-1,a2-4},且-3∈A,则实数a=________.答案0或1解析①当a-3=-3,即a=0时,此时A={-3,-1,-4},②当2a-1=-3,即a=-1时,此时A={-4,-3,-3}舍,③当a2-4=-3,即a=±1时,由②可知a=-1舍,则a=1时,A={-2,1,-3},综上,a=0或1.3.(2022·武汉调研)用列举法表示集合A={x|x∈Z且86-x∈N}=________.答案{-2,2,4,5}解析由题意x可取-2,2,4,5,故答案为{-2,2,4,5}.4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案 6解析依题意可知,由S的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个整数.∴所求的集合为{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.感悟提升 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.考点二集合间的基本关系例1 (1)已知集合A={-1,1},B={x|ax+1=0}.若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},且B ⊆A ,则实数m 的取值范围是________. 答案 (1)D (2)[-1,+∞) 解析 (1)当B =时,a =0,此时,B ⊆A .当B ≠时,则a ≠0,∴B =⎩⎨⎧⎭⎬⎫x |x =-1a .又B ⊆A ,∴-1a ∈A ,∴a =±1.综上可知,实数a 所有取值的集合为{-1,0,1}. (2)∵B ⊆A ,①当B =时,2m -1>m +1,解得m >2,②当B ≠时,⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1≤4,解得-1≤m ≤2,综上,实数m 的取值范围[-1,+∞). 感悟提升 1.若B ⊆A ,应分B =和B ≠两种情况讨论.2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.合理利用数轴、Venn 图帮助分析及对参数进行讨论.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易增解或漏解.训练1 (1)(2022·大连模拟)设集合A ={1,a ,b },B ={a ,a 2,ab },若A =B ,则a 2 022+b 2 023的值为( ) A.0 B.1 C.-2D.0或-1(2)已知集合A ={x |log 2(x -1)<1},B ={x ||x -a |<2},若A ⊆B ,则实数a 的取值范围为( ) A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3] 答案 (1)B (2)B解析 (1)集合A ={1,a ,b },B ={a ,a 2,ab }, 若A =B ,则a 2=1或ab =1.由集合互异性知a ≠1,当a =-1时, A ={1,a ,b }={1,-1,b }, B ={a ,a 2,ab }={-1,1,-b }, 有b =-b ,得b =0.∴a 2 022+b 2 023=(-1)2 022+02 023=1. 当ab =1时,集合A ={1,a ,b }, B ={a ,a 2,ab }={a ,a 2,1},有b =a 2. 又b =1a ,∴a 2=1a ,得a =1,不满足题意. 综上,a 2 022+b 2 023=1,故选B. (2)由log 2(x -1)<1,得0<x -1<2, 所以A =(1,3).由|x -a |<2得a -2<x <a +2, 所以B =(a -2,a +2).因为A ⊆B ,所以⎩⎪⎨⎪⎧a -2≤1,a +2≥3,解得1≤a ≤3.所以实数a 的取值范围为[1,3]. 考点三 集合的运算角度1集合的基本运算例2 (1)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}(2)(2021·西安测试)设全集U=R,M={x|y=ln(1-x)},N={x|2x(x-2)<1},那么图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}答案(1)A(2)B解析(1)法一因为集合M={1,2},N={3,4},所以M∪N={1,2,3,4}. 又全集U={1,2,3,4,5},所以∁U(M∪N)={5}.故选A.法二因为∁U(M∪N)=(∁U M)∩(∁U N),∁U M={3,4,5},∁U N={1,2,5},所以∁U(M∪N)={3,4,5}∩{1,2,5}={5}.故选A.(2)题图中阴影表示的集合为(∁U M)∩N.易知M={x|x<1},N={x|0<x<2},∴(∁U M)∩N={x|1≤x<2}.角度2利用集合的运算求参数例3 (1)(2021·日照检测)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B 中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)已知集合A={x|x2-4≤0},B={x|2x+a≤0},若A∪B=B,则实数a的取值范围是()A.a <-2B.a ≤-2C.a >-4D.a ≤-4答案 (1)C (2)D解析 (1)因为x 2-4x -5<0,解得-1<x <5,则集合A ={x ∈Z |x 2-4x -5<0}={0,1,2,3,4},易知集合B ={x ⎪⎪⎪x >m2}.又因为A ∩B 中有三个元素, 所以1≤m2<2,解之得2≤m <4. 故实数m 的取值范围是[2,4). (2)集合A ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫x |x ≤-a 2, 由A ∪B =B 可得A ⊆B ,作出数轴如图.可知-a2≥2,即a ≤-4.感悟提升 1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算. 2.数形结合思想的应用:(1)离散型数集或抽象集合间的运算,常借助Venn 图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.训练2 (1)(2021·全国甲卷改编)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x |13≤x <a ,且M ∩N =N ,则a 的取值范围为( ) A.a ≤13 B.a >4 C.a ≤4D.a >13(2)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=,则a 的取值范围是( )A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1] 答案 (1)C (2)B解析 (1)由M ∩N =N ,∴M ⊇N . 当N =时,即a ≤13成立; 当N ≠时,借助数轴易知13<a ≤4.综上,a ≤4.(2)易得M ={x |2x 2-x -1<0} ={x ⎪⎪⎪-12<x <1}.∵N ={x |2x +a >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-a 2,∴∁U N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2. 由M ∩(∁U N )=,则-a 2≤-12,得a ≥1.Venn 图的应用用平面上封闭图形的内部代表集合,这种图称为Venn 图.集合中图形语言具有直观形象的特点,将集合问题图形化.利用Venn 图的直观性,可以深刻理解集合的有关概念,快速进行集合的运算.例 1 设全集U ={x |0<x <10,x ∈N *},若A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},则A =________,B =________. 答案 {1,3,5,7} {2,3,4,6,8}解析 由题知U ={1,2,3,…,9},根据题意,画出Venn 图如图所示,由Venn 图易得A ={1,3,5,7},B ={2,3,4,6,8}.例2 (2020·新高考海南卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A.62%B.56%C.46%D.42%答案 C解析 如图,用Venn 图表示该中学喜欢足球和游泳的学生所占的比例之间的关系,设既喜欢足球又喜欢游泳的学生占该中学学生总数的比例为x ,则(60%-x )+(82%-x )+x =96%,解得x =46%.故选C.例3 向100名学生调查对A ,B 两件事的看法,得到如下结果:赞成A 的人数是全体的35,其余不赞成;赞成B 的人数比赞成A 的人数多3人,其余不赞成.另外,对A ,B 都不赞成的人数比对A ,B 都赞成的学生人数的13多1人,则对A ,B 都赞成的学生人数为________,对A ,B 都不赞成的学生人数为________. 答案 36 13解析 由题意知赞成A 的人数为100×35=60,赞成B 的人数为60+3=63.如图,记100名学生组成的集合为U ,赞成A 的学生的全体记为集合A ,赞成B 的学生的全体记为集合B ,并设对A ,B 都赞成的学生数为x ,则对A ,B 都不赞成的人数为x 3+1,由题意,知(60-x )+(63-x )+x +x 3+1=100,解得x =36.所以对A ,B 都赞成的学生人数为36人,对A ,B 都不赞成的学生人数为13人.1.(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}答案 B解析由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6}.2.(2021·郑州模拟)设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]答案 C解析∵A={x|3x-1<m},1∈A且2∉A,∴3×1-1<m且3×2-1≥m,解得2<m≤5.3.(2021·浙江卷)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}答案 D解析因为集合A={x|x≥1},B={x|-1<x<2},所以A∩B={x|1≤x<2}.故选D.4.(2022·河南名校联考)已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±1答案 A解析由题意a=1或a2=1,当a =1,此时A ={1,1,0}与元素互异性矛盾,∴a =-1,故选A.5.已知集合A ={x ∈Z |y =log 5(x +1)},B ={x ∈Z |x 2-x -2<0},则( )A.A ∩B =AB.A ∪B =BC.B AD.A B答案 C解析 由x +1>0,得x >-1,∴A ={x ∈Z |x >-1}={0,1,2,3,…}.由x 2-x -2<0,得-1<x <2,∴B ={0,1},∴A ∩B =B ,A ∪B =A ,B A .6.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M 的个数是( )A.0B.1C.2D.3 答案 C解析 由⎩⎪⎨⎪⎧x +y =1,x -y =3得⎩⎪⎨⎪⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =或M ={(2,-1)}. 7.(2022·太原模拟)已知集合M ={x |(x -2)2≤1},N ={y |y =x 2-1},则(∁R M )∩N =( )A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)答案 C解析由已知可得M={x|-1≤x-2≤1}={x|1≤x≤3},N={y|y≥-1},∴∁R M={x|x<1或x>3},∴(∁R M)∩N={x|-1≤x<1或x>3}.8.设集合A={x|(x+2)(x-3)≤0},B={a},若A∪B=A,则a的最大值为()A.-2B.2C.3D.4答案 C解析因为A={x|(x+2)(x-3)≤0},所以A={x|-2≤x≤3}.又因为B={a},且A∪B=A,所以B⊆A,所以a的最大值为3.9.(2021·合肥模拟)已知集合A={-2,-1,0,1,2},集合B={x||x-1|≤2},则A∩B=________.答案{-1,0,1,2}解析B={x|-2≤x-1≤2}={x|-1≤x≤3},又A={-2,-1,0,1,2},∴A∩B={-1,0,1,2}.10.(2021·湖南雅礼中学检测)设集合A={x|y=x-3},B={x|1<x≤9},则(∁R A)∩B =________.答案(1,3)解析因为A={x|y=x-3},所以A={x|x≥3},所以∁R A={x|x<3}.又B={x|1<x≤9},所以(∁R A)∩B=(1,3).11.已知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0},若A⊆B,则实数c的取值范围是________.答案[1,+∞)解析由题意知,A={x|y=lg(x-x2)}={x|x-x2>0}=(0,1),B={x|x2-cx<0,c>0}=(0,c).由A⊆B,画出数轴,如图所示,得c≥1.12.已知集合A ={a ,b ,2},B ={2,b 2,2a },若A =B ,则a +b =________.答案 34或1 解析 由A =B ,得⎩⎪⎨⎪⎧a =2a ,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =2a .解⎩⎪⎨⎪⎧a =2a ,b =b 2,得⎩⎪⎨⎪⎧a =0,b =0或⎩⎪⎨⎪⎧a =0,b =1,解⎩⎪⎨⎪⎧a =b 2,b =2a ,得⎩⎪⎨⎪⎧a =0,b =0或⎩⎪⎨⎪⎧a =14,b =12,又由集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12,所以a +b =1或a +b =34.13.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为( )A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}答案 D解析 B ={x |x 2-1=0}={-1,1},阴影部分所表示的集合为∁U (A ∪B ).又A ∪B ={-2,-1,1,2},全集U ={-2,-1,0,1,2},所以∁U (A ∪B )={0}.14.(2020·浙江卷)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T满足:①对于任意的x,y∈S,若x≠y,则xy∈T;②对于任意的x,y∈T,若x<y,则yx∈S.下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素答案 A解析由题意,①令S={1,2,4},则T={2,4,8},此时,S∪T={1,2,4,8},有4个元素;②令S={2,4,8},则T={8,16,32},此时,S∪T={2,4,8,16,32},有5个元素;③令S={2,4,8,16},则T={8,16,32,64,128},此时,S∪T={2,4,8,16,32,64,128},有7个元素.综合①②,S有3个元素时,S∪T可能有4个元素,也可能有5个元素,可排除C,D;由③可知A正确.15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.答案-1 1解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M ={x |ax 2-1=0,a >0},N ={-12,12,1},若M 与N “相交”,则a=________.答案 1解析 M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1a ,1a ,由1a =12,得a =4,由1a=1,得a =1. 当a =4时,M =⎩⎨⎧⎭⎬⎫-12,12,此时M ⊆N ,不合题意; 当a =1时,M ={-1,1},满足题意.。
《1.1 集合的概念》教学导学案(统编人教A版)
【新教材】1.1 集合的概念学案(人教A版)1. 了解集合的含义;理解元素与集合的“属于”与“不属于”关系;熟记常用数集专用符号.2. 深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3. 会用集合的两种表示方法表示一些简单集合。
感受集合语言的意义和作用。
1.数学抽象:集合概念的理解,描述法表示集合的方法;2.逻辑推理:集合的互异性的辨析与应用;3.数学运算:集合相等时的参数计算,集合的描述法转化为列举法时的运算;4. 数据分析:元素在集合中对应的参数满足的条件;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
重点:集合的基本概念,集合中元素的三个特性,元素与集合的关系,集合的表示方法.难点:元素与集合的关系,选择适当的方法表示具体问题中的集合.一、预习导入阅读课本2-5页,填写。
1.元素与集合的概念(1)元素:一般地,把__________统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的________叫做集合(简称为_______).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的_______是一样的,就称这两个集合是相等的.(4)元素的特性:_________、__________ 、___________.2.元素与集合的关系3.常用的数集及其记法把集合的元素_____________,并用花括号“{ }”括起来表示集合的方法叫做列举法.5.描述法(1)定义:用集合所含元素的___________表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的__________及____________,再画一条竖线,在竖线后写出这个集合中元素所具有的___________.1.判断(正确的打“√”,错误的打“×”)(1)你班所有的姓氏能组成集合. ( ) (2)新课标数学人教A 版必修1课本上的所有难题.( )(3)一个集合中可以找到两个相同的元素. ( )(4)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( )(5)集合{(1,2)}中的元素是1和2.( )(6)集合A ={x |x -1=0}与集合B ={1}表示同一个集合.( )2.下列元素与集合的关系判断正确的是( )A .0∈NB .π∈Q C.2∈Q D .-1∉Z3.已知集合A 中含有两个元素1,x 2,且x ∈A ,则x 的值是( )A .0B .1C .-1D .0或14.方程组⎩⎪⎨⎪⎧x +y =1,x -y =-3的解集是( ) A .(-1,2)B .(1,-2)C .{(-1,2)}D .{(1,-2)}5.不等式x -3<2且x ∈N *的解集用列举法可表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}6.不等式4x -5<7的解集为________.例1 考查下列每组对象,能构成一个集合的是( )①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④例2(1)下列关系中,正确的有()①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A.1个B.2个C.3个D.4个(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.例3已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.变式1.[变条件]本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.变式2.[变条件]本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?变式3.[变条件]已知集合A含有两个元素1和a2,若“a∈A”,求实数a的值.例4用列举法表示下列集合.(1)不大于10的非负偶数组成的集合;(2)方程x3=x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点所组成的集合.例5用描述法表示下列集合:(1)被3除余1的正整数的集合;(2)坐标平面内第一象限的点的集合;(3)大于4的所有偶数.例6(1)若集合A={x∈R|ax2+2x+1=0,a∈R}中只有一个元素,则a=()A.1B.2 C.0D.0或1(2)设12∈⎩⎨⎧⎭⎬⎫x⎪⎪x2-ax-52=0,则集合⎩⎨⎧⎭⎬⎫x⎪⎪x2-192x-a=0中所有元素之积为________.例7用描述法表示抛物线y=x2+1上的点构成的集合.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?1.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C .不超过20的非负数组成一个集合D .方程(x -1)(x +1)2=0的所有解构成的集合中有3个元素2.已知集合A 由x <1的数构成,则有( )A .3∈AB .1∈AC .0∈AD .-1∉A3.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .04.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab的值组成的集合是M ,则下列判断正确的是( ) A .0∈MB .-1∈MC .3∉MD .1∈M5.集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A ,B 中x ∈R ,y ∈R).选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B6.定义P *Q ={ab |a ∈P ,b ∈Q },若P ={0,1,2},Q ={1,2,3},则P *Q 中元素的个数是( )A .6个B .7个C .8个D .9个7.下列说法中:①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________(填序号).8.已知A ={(x ,y )|x +y =6,x ∈N ,y ∈N},用列举法表示A 为________.9.已知集合A ={x |ax 2-3x -4=0,x ∈R},若A 中至多有一个元素,求实数a 的取值范围. 答案小试牛刀1.答案:(1)√ (2)× (3)× (4)× (5)× (6)√2-5.AACB 6.{x |4x -5<7}自主探究例1 B例2 (1) C (2) 0,1,2例3 a =-1.变式1. a =2,或a =2,或a =- 2.变式2. a ≠0且a ≠1.变式3. a =0.例4 (1) {0,2,4,6,8,10}.(2) {0,1,-1}. (3) {(0,1)}.例5 (1) {x |x =3n +1,n ∈N}.(2) {(x ,y )|x >0,y >0}.(3) {x |x =2n ,n ∈Z 且n ≥3}.例6 (1) D (2) 92例7 {(x ,y )|y =x 2+1}.变式1解:集合{x |y =x 2+1}的代表元素是x ,且x ∈R ,所以{x |y =x 2+1}中的元素是全体实数. 变式2解:集合{ y | y =x 2+1}的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以{ y | y =x 2+1}={ y | y ≥1},所以集合中的元素是大于等于1的全体实数.当堂检测1-6. CCBBCA 7.②④8.{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}9.解:当a =0时,A =⎩⎨⎧⎭⎬⎫-43; 当a ≠0时,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根,所以Δ=9+16a ≤0,即a ≤-916. 故所求的a 的取值范围是a ≤-916或a =0.。
第一章 集合与常用逻辑用语
目 链
接
答案: B A,D C,A C,B C,A D,B D
考点探究
考点3 集合的基本关系及空集的妙用
【例 3】设集合 A={x|x2-3x-10≤0},B={x|m+1≤x
≤2m-1},若 B A,求实数 m 的取值范围.
栏
目
思路点拨:考查集合间的包含、相等关系,关键搞清 A, 链
B 两集合谁是谁的子集.若 B A,说明 B 是 A 的子集,即 接
1≤x≤a},且(A∪B) (A∩B),则实数 a=( B )
栏
A.0 B.1 C.2 D.3
目
(2)(2013·泰安一检)设 P={y|y=-x2+1,x∈R},Q
ห้องสมุดไป่ตู้
链 接
={y|y=2x,x∈R},则( C )
A.P Q B.Q P
C.∁RP Q D.Q ∁RP
考点探究
解析:(1)由(A∪B) (A∩B)易得 A∪B=A∩B,
_A__=___B__
空集
集合.空集是任何
集合 A 的_子___集__
课前自修
三、集合的基本运算
表示 运算
文字语言
符号语言 图形语言 记法
交集
属于A_且___属于 B的元素组成的 集合
{x|x∈A_且___ x∈B}
栏
__A_∩__B_
目 链
接
并集
属于A_或___属于 B的元素组成的 集合
{x|x∈A_或___ x∈B}
答案:B
栏
目
点评:元素与集合的隶属关系以及集合之间的包含关 链
系,一般都能通过Venn图形象表达.若题设条件比较抽象,
接
也可以借助于Venn图寻找解题思路,这样做有助于直观地分
集合-2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)解析版
2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第01练集合(精练)1.了解集合的含义,体会元素与集合的属于关系,能用自然语言、图形语言、集合语言列举法或描述法描述不同的具体问题.2.理解集合间包含与相等的含义,能识别给定集合的子集.在具体情境中,了解全集与空集的含义.3.理解两个集合的并集、交集与补集的含义,会求两个简单集合的并集、交集与补集.能使用Venn 图表示集合间的基本关系及集合的基本运算.一、单选题1.(2023·全国·高考真题)设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A .{}0,2,4,6,8B .{}0,1,4,6,8C .{}1,2,4,6,8D .U2.(2023·全国·高考真题)已知集合{}2,1,0,1,2M =--,260N x x x =--≥,则M N ⋂=()A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出.方法二:将集合M 中的元素逐个代入不等式验证,即可解出.-3.(2023·全国·高考真题)设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A .2B .1C .23D .1-4.(2023·全国·高考真题)设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,()U M N ⋃=ð()A .{|3,}x x k k =∈Z B .{31,}xx k k Z =-∈∣C .{32,}xx k k Z =-∈∣D .∅【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z =,所以,(){}|3,U M N x x k k ==∈Z ð.故选:A .5.(2023·全国·高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .126.(2022·全国·高考真题)设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M ∈C .4M ∉D .5M∉【答案】A【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A7.(2022·全国·高考真题)若集合{4},{31}M x N x x ==≥∣,则M N ⋂=()8.(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【A 级基础巩固练】一、单选题1.(2024·北京丰台·一模)已知集合{}220A x x x =-≤,{}10B x x =->,则A B ⋃=()A .{}0x x ≥B .{}01x x ≤<C .{}1x x >D .{}12x x <≤2.(2024·北京顺义·二模)设集合24U x x =∈≤Z ,{}1,2A =,则U A =ð()A .[]2,0-B .{}0C .{}2,1--D .{}2,1,0--【答案】DA .(]0,2B .31,2⎛⎤ ⎥C .()0,2D .30,2⎛⎤4.(23-24高三下·四川成都·阶段练习)已知集合{}{}1,2,2,3A B ==,则集合{},,C z z x y x A y B ==+∈∈的子集个数为()A .5B .6C .7D .85.(2024·陕西安康·模拟预测)已知集合{}{}3N 0log 2,21,Z A x x B x x k k =∈<<==+∈∣∣,则A B = ()A .{}1,3,5,7B .{}5,6,7C .{}3,5D .{}3,5,7【答案】D【分析】先求出集合A ,再根据交集的定义即可得解.【详解】{}{}{}3N0log 2N192,3,4,5,6,7,8A x x x x =∈<<=∈<<=∣∣,所以{}3,5,7A B = .故选:D.6.(23-24高三下·四川雅安·阶段练习)若集合{}2,1,4,8A =-,{}2,B x y x A y A =-∈∈∣,则B 中元素的最大值为()A .4B .5C .7D .10【答案】C【分析】根据B 中元素的特征,只需满足()2max minx y-即可得解.【详解】由题意,()()222max maxmin817x y x y -=-=-=.故选:C7.(2024·四川成都·三模)设全集{}1,2,3,4,5U =,若集合M 满足{}1,4U M ⊆ð,则()A .4M ÎB .1M ∉C .2M ∈D .3M∉8.(2024·河北沧州·模拟预测)已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B =⋂,则集合P 的子集共有()A .2个B .3个C .4个D .8个9.(2024·全国·模拟预测)若集合{}()(){}28,158A x x B x x x =∈<=+->-Z ,则()A B ⋂=R ð()A .{}0,1,2B .{0x x ≤<C .{1x x ≤≤D .{}1,210.(2024·四川泸州·三模)已知集合2230A x x x =--<,{}0,B a =,若A B ⋂中有且仅有一个元素,则实数a 的取值范围为()A .()1,3-B .(][),13,-∞-+∞C .()3,1-D .(][),31,-∞-⋃+∞11.(2024·北京东城·一模)如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是()A .AB ⋂B .A B⋃C .()U A B ⋂ðD .()U A B ⋃ð【答案】D【分析】由给定的韦恩图分析出阴影部分所表示的集合中元素满足的条件,再根据集合运算的定义即可得解.【详解】由韦恩图可知阴影部分所表示的集合是()U A B ð.二、多选题12.(2024·甘肃定西·一模)设集合{}{}26,,A x x x B xy x A y A =-≤=∈∈∣∣,则()A .AB B= B .Z B ⋂的元素个数为16C .A B B⋃=D .A Z I 的子集个数为64取值可能是()A .3-B .1C .1-D .014.(2024·广西·二模)若集合M 和N 关系的Venn 图如图所示,则,M N 可能是()A .{}{}0,2,4,6,4M N ==B .{}21,{1}M xx N x x =<=>-∣∣C .{}{}lg ,e 5x M xy x N y y ====+∣∣D .(){}(){}22,,,M x y x y N x y y x ====∣∣三、填空题15.(2024高一上·全国·专题练习)已知集合{}22,4,10A a a a =-+,且3A -∈,则=a .【答案】3-【分析】根据题意,列出方程,求得a 的值,结合集合元素的互异性,即可求解.【详解】因为3A -∈,所以23a -=-或243a a +=-,解得1a =-或3a =-,当1a =-时,23a -=,243a a +=-,集合A 不满足元素的互异性,所以1a =-舍去;当3a =-时,经检验,符合题意,所以3a =-.故答案为:3-.16.(2024高三下·全国·专题练习)集合(){}22,2,,x y x y x y +<∈∈Z Z 的真子集的个数是.17.(23-24高一上·辽宁大连·期中)设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为.18.(2024·安徽合肥·一模)已知集合{}{}24,11A x x B x a x a =≤=-≤≤+∣∣,若A B ⋂=∅,则a 的取值范围是.【答案】()(),33,-∞-+∞ 【分析】利用一元二次不等式的解法及交集的定义即可求解.【详解】由24x ≤,得()()220x x -+≤,解得22x -≤≤,所以{}22A xx =-≤≤∣.因为A B ⋂=∅,所以12a +<-或12a ->,解得3a <-或3a >,所以a 的取值范围是()(),33,-∞-+∞ .故答案为:()(),33,-∞-+∞ .19.(2024高三·全国·专题练习)设集合(){}2|1A x x a =-<,且2A ∈,3A ∉,则实数a 的取值范围为.【答案】(]1,2【分析】首先解一元二次不等式求出集合A ,再根据2A ∈且3A ∉得到不等式组,解得即可.【详解】由()21x a -<,即11x a -<-<,解得11a x a -<<+,即(){}{}2|11|1A x x a x a x a =-<=-<<+,因为2A ∈且3A ∉,所以121213a a a -<⎧⎪+>⎨⎪+≤⎩,解得12a <≤,即实数a 的取值范围为(]1,2.故答案为:(]1,2四、解答题20.(23-24高一上·广东湛江·期末)已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.21.(2024高三·全国·专题练习)设M 是由直线0Ax By C ++=上所有点构成的集合,即{}(,)0M x y Ax By C =++=,在点集M 上定义运算“⊗”:对任意()11,,x y M ∈()22,,x y M ∈则()()11221212,,x y x y x x y y ⊗=+.(1)若M 是直线230x y -+=上所有点的集合,计算()()1,52,1⊗--的值.(2)对(1)中的点集M ,能否确定(3,)(,5)a b ⊗(其中,a b ∈R )的值?(3)对(1)中的点集M ,若(3,)(,)0a b c ⊗<,请你写出实数a ,b ,c 可能的值.【B 级能力提升练】一、单选题1.(2024·全国·模拟预测)已知集合{}{}2210,2log 10M x x P x x =->=-<,则M P ⋂=()A .12x x ⎧<<⎨⎩B .142x x ⎧⎫<<⎨⎬⎩⎭C .{}4x <<D .{}24x x <<2.(2024·宁夏银川·一模)设全集{0,1,2,3,4,5,6},{1,2,3,4,5},{Z 2}U A B x ===∈<,则集合{4,5}=()A .()U AB ⋂ðB .()U A B ⋂ðC .()U A B ∩ðD .()()U U A B ⋂痧所以{}{}Z |041,2,3B x x =∈<<=,所以{}0,4,5,6U B =ð,所以(){}4,5U A B Ç=ð,故ABD 错误,故C 正确;故选:C3.(23-24高三上·内蒙古赤峰·阶段练习)已知集合{}24xA x =>,集合{}B x x a =<∣,若A B ⋃=R ,则实数a 的取值范围为()A .(],2-∞B .[)2,+∞C .(),2-∞D .()2,+∞【答案】D【分析】先求出集合A ,然后根据A B ⋃=R ,即可求解.【详解】由24x >,得2x >,所以()2,A =+∞,因为(),B a =-∞,A B ⋃=R ,所以2a >,故D 正确.故选:D.4.(23-24高一上·全国·期末)已知m ∈R ,n ∈R ,若集合{}2,,1,,0n m m m n m ⎧⎫=+⎨⎬⎩⎭,则20232023m n +的值为()A .2-B .1-C .1D .25.(23-24高三下·湖南长沙·阶段练习)已知全集{}N |010U A B x x =⋃=∈≤≤,(){}1,3,5,7U A B ⋂=ð,则集合B 的元素个数为()A .6B .7C .8D .不确定【答案】B【分析】由已知求出全集,再由(){}U 1,3,5,7A B ⋂=ð可知A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,从而可求出B 中的元素.【详解】因为全集{}{}N |0100,1,2,3,4,5,6,7,8,9,10U A B x x =⋃=∈≤≤=,(){}1,3,5,7U A B ⋂=ð,所以A 中肯定有1,3,5,7,B 中肯定没有1,3,5,7,A 和B 中都有可能有0,2,4,6,8,9,10,且除了1,3,5,7,A 中有的其他数字,B 中也一定会有,A 中没有的数字,B 中也一定会有,所以{}0,2,4,6,8,9,10B =,故选:B6.(23-24高三下·甘肃·阶段练习)如果集合U 存在一组两两不交(两个集合交集为空集时,称为不交)的非空子集()*122,,,,k A A A k k ≥∈N ,且满足12k A A A U =U U L U ,那么称子集组12,,,k A A A 构成集合U 的一个k 划分.若集合I 中含有4个元素,则集合I 的所有划分的个数为()A .7个B .9个C .10个D .14个二、多选题7.(2024·江苏泰州·模拟预测)对任意,A B ⊆R ,记{},A B x x A B x A B ⊕=∈⋃∉⋂,并称A B ⊕为集合,A B的对称差.例如:若{}{}1,2,3,2,3,4A B ==,则{}1,4A B ⊕=.下列命题中,为真命题的是()A .若,AB ⊆R 且A B B ⊕=,则A =∅B .若,A B ⊆R 且A B ⊕=∅,则A B =C .若,A B ⊆R 且A B A ⊕⊆,则A B ⊆D .存在,A B ⊆R ,使得A B A B⊕≠⊕R R痧三、填空题8.(2024·浙江绍兴·二模)已知集合{}20A x x mx =+≤,1,13B m ⎧⎫=--⎨⎬⎩⎭,且A B ⋂有4个子集,则实数m 的最小值是.9.(2024·湖南·二模)对于非空集合P ,定义函数()1,,P f x x P ⎧=⎨∈⎩已知集合{01},{2}A x x B x t x t=<<=<<∣∣,若存在x ∈R ,使得()()0A B f x f x +>,则实数t 的取值范围为.【C 级拓广探索练】一、单选题1.(2023·上海普陀·一模)设1A 、2A 、3A 、L 、7A 是均含有2个元素的集合,且17A A ⋂=∅,()11,2,3,,6i i A A i +⋂=∅= ,记1237B A A A A =⋃⋃⋃⋃ ,则B 中元素个数的最小值是()A .5B .6C .7D .8【答案】A【分析】设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,分析可知4n ≥,然后对n 的取值由小到大进行分析,验证题中的条件是否满足,即可得解.【详解】解:设1x 、2x 、L 、()4n x n ≥是集合B 互不相同的元素,若3n =,则12A A ⋂≠∅,不合乎题意.①假设集合B 中含有4个元素,可设{}112,A x x =,则{}24634,A A A x x ===,{}35712,A A A x x ===,这与17A A ⋂=∅矛盾;②假设集合B 中含有5个元素,可设{}1612,A A x x ==,{}2734,A A x x ==,{}351,A x x =,{}423,A x x =,{}545,A x x =,满足题意.综上所述,集合B 中元素个数最少为5.故选:A.【点睛】关键点点睛:本题考查集合元素个数的最值的求解,解题的关键在于对集合元素的个数由小到大进行分类,对集合中的元素进行分析,验证题中条件是否成立即可.二、多选题2.(2024·浙江宁波·二模)指示函数是一个重要的数学函数,通常用来表示某个条件的成立情况.已知U 为全集且元素个数有限,对于U 的任意一个子集S ,定义集合S 的指示函数()()U 1,1,10,S S x Sx x x S∈⎧=⎨∈⎩ð若,,A B C U ⊆,则()注:()x Mf x ∈∑表示M 中所有元素x 所对应的函数值()f x 之和(其中M 是()f x 定义域的子集).A .1()1()A A x Ax Ux x ∈∈<∑∑B .1()1()1()A B A A B x x x ⋂⋃≤≤C .()1()1()1()1()1()A B A B A B x Ux Ux x x x x ⋃∈∈=+-∑∑D .()()()11()11()11()1()1()A B C U A B C x Ux Ux Ux x x x x ⋃⋃∈∈∈---=-∑∑∑【答案】BCD【分析】根据()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð,即可结合选项逐一求解.【详解】对于A ,由于A U ⊆,所以1()1()1()1(),uA A A A x U x A x A x Ax x x x ∈∈∈∈=+=∑∑∑∑ð故1()1()A A x Ax Ux x ∈∈=∑∑,故A 错误,对于B ,若x A B ∈ ,则1()1,1()1,1()1A B A A B x x x ⋂⋃===,此时满足1()1()1()A B A A B x x x ⋂⋃≤≤,若x A ∈且x B ∉时,1()0,1()1,1()1A B A A B x x x ⋂⋃===,若x B ∈且x A ∉时,1()0,1()0,1()1A B A A B x x x ⋂⋃===,若x A ∉且x B ∉时,1()0,1()0,1()0A B A A B x x x ⋂⋃===,综上可得1()1()1()A B A A B x x x ⋂⋃≤≤,故B 正确,对于C ,()()()()()1()1()1()1()1()1()1()1()1()1()1()1()U UAB A B AB A B AB A B x Ux A B x B A x x x x x x x x x x x x ∈∈⋂∈⋂+-=+-++-∑∑∑痧()()()()1()1()1()1()1()1()1()1()U ABABABABx A B x A Bx x x x x x x x ∈⋂∈⋃++-++-∑∑ð()()()()()()()1()1()1()1()1()1()1()1()1()1()1()1()0U U U ABABABABABABx A B x A B x A B x B A x x x x x x x x x x x x ∈⋂∈⋃∈⋂∈⋂=+-++-++-+∑∑∑∑ð痧()()1()1()1()1()ABABx A B x x x x ∈⋃=+-∑而()1()1()1()1()U A B A BA B A Bx Ux A Bx A Bx A Bx x x x ⋃⋃⋃⋃∈∈⋃∈⋃∈⋃=+=∑∑∑∑ð,由于()()()U 1,10,A B x A Bx x A B ⋃∈⋃⎧=⎨∈⋃⎩ð,所以1()1()1()1()1()A B A B A B x x x x x ⋃+-=故()1()1()1()1()1()A B AB A B x U x Ux x x x x ⋃∈∈=+-∑∑,C 正确,()1()1()1()U UA B C U x Ux Ux A B C x x x ⋃⋃∈∈∈⋃⋃-=∑∑∑ð,当x A B C ∈⋃⋃时,此时()()()1,1,1A B C x x x 中至少一个为1,所以()()()11()11()11()0A B C x x x ---=,当()x A B C ∉⋃⋃时,此时()()()1,1,1A B C x x x 均为0,所以()()()11()11()11()1A B C x x x ---=,故()()()()()()()()11()11()11()11()11()11()1()UU A B C A B C A B C U x U x x A B C x x x x x x x ⋃⋃∈∈∈⋃⋃---=---=∑∑∑痧,故D 正确,故选:BCD【点睛】关键点点睛:充分利用()1S x 的定义()U 1,10,S x Sx x S ∈⎧=⎨∈⎩ð以及()x M f x ∈∑的定义,由此可得()x A B C ∉⋃⋃时,此时1(),1(),I ()A B C x x x 均为0,x A B C ∈⋃⋃时,此时1(),1(),I ()A B C x x x 中至少一个为1,结合()1S x 的定义化简求解.三、填空题3.(23-24高三上·江西·期末)定义:有限集合{}++,,N ,N i A x x a i n i n ==≤∈∈,12n S a a a =+++ 则称S 为集合A 的“元素和”,记为A .若集合(){}+12,,N ,N i P x x i i n i n +==+≤∈∈,集合P 的所有非空子集分别为1P ,2P ,…,k P ,则12k P P P +++=.四、解答题4.(2024·浙江台州·二模)设A ,B 是两个非空集合,如果对于集合A 中的任意一个元素x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的元素y 和它对应,并且不同的x 对应不同的y ;同时B 中的每一个元素y ,都有一个A 中的元素x 与它对应,则称f :A B →为从集合A 到集合B 的一一对应,并称集合A 与B 等势,记作A B =.若集合A 与B 之间不存在一一对应关系,则称A 与B 不等势,记作A B ≠.例如:对于集合*N A =,{}*2N B n n =∈,存在一一对应关系()2,y x x A y B =∈∈,因此A B =.(1)已知集合(){}22,1C x y x y =+=,()22,|143x y D x y ⎧⎫=+=⎨⎬⎩⎭,试判断C D =是否成立?请说明理由;(2)证明:①()()0,1,=-∞+∞;②{}**N N x x ≠⊆.【答案】(1)成立,理由见解析(2)①证明见解析;②证明见解析5.(2024·北京延庆·一模)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.若正整数()221t h k =+,其中*N,N t k ∈∈,则当1221t k +>+时,由等差数列的性质可得:()()()()()()()22122...2221...21221...212t t t t t t t t t t t h k k k k k =+=+++=-+-+++-++++++-++,此时结论成立,当1221t k +<+时,由等差数列的性质可得:()()()()()()()()2121...2121...112...2t t h k k k k k k k k k =++++++=-+++-++++++++,此时结论成立,对于数列n a n =,此问题等价于数列1,2,3,...n 其相应集合T 中满足2024m b ≤有多少项,由前面证明可知正整数1,2,4,8,16,32,64,128,256,512,1024不是T 中的项,所以m 的最大值为2013.。
2019版高考数学(理科,课标A版)一轮复习讲义:§11 集合的概念及运算.docx
第一章 集合与常用逻辑用语命题探究§1.1集合的概念及运算考纲解读考点内容解读要求高考示例常考题型预测热度 1 •集合的含义与表示①了解集合的含义、元素与集合的属于关系;②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题了解 2017课标全国 U,2;2016四川,1题★ ★★2 •集合间的基本关系① 理解集合之间包含与相等的含义,能识别给定集合的子集;② 在具体情境中,了解全集与空集的含义2015 重庆,1; 2013江苏,4 选择题3 •集合的基本运算① 理解两个集合的并集弓交集的含义,会求两个简单集合的并集与交集;② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集;③ 能使用韦恩(Verm )图表达集合间的关系及运算as2017课标全国I ,1; 2016课标全国 I ,1; 2014 课标I ,1醪题 ★ ★★分析解读1 •理解、掌握集合的表示方法.能够判断元素与集合、集合与集合之间的关系2能够正确处理含有字母的讨论问题, 掌握集合的交、并、补运算和性质.3 .要求具备数形结合的思想意识,会借助Venn 图、数轴等工具解决集合运算问题.4.命题以集 合的运算为主,其中基本知识和基本技能是高考的热点.5.本节在高考中分值为5分左右,属于中低档题.能力要求) ------------------- 会僧绝对值不等式;理解正裟映数 的性质;理解築合间的包含关系; 理舗充分必要条件的盘义卢> 核心考点) -------------1.充分必製条件的判断 2绝对值不等式的解法 3止弦函数的图彖和性质〜命题规律〕 ------------------------ 以充分条件.必耍条件为栽休.考 賁不等式的解法.零价转化思想■ 集合之间的关系,常以选择題的形 式岀现,分值约为5分孕易错警示} 错解:B0<0<^.nRin 氐丄台-<+2jbt<0<?*2后,2 b b keZ.因为-乎+"”<氐尹2后 OeZ )->(kX 讣反之不成立•所以 为必耍不充分条件.(逻出关系与集 合关系的转化岀错〉错因分析:命題的逻辑关系与集合 何的包含关系紧密相关.一般来说 “小范国=> 大范圃” •错解中关 系考出反r申储备知识) ----------------------充分条件•必耍条件与集合的关系: 如果集合**1龙满圧条件从集合 B ・{xk 満足朵件从则仏⑴若*6,則p ・g,UPp 是q 的 充分条件;(2)若4 = 則g*・ 即P 是g 的必要条件;⑶若“乩则 勺•即刃切的充要条件;(4)若人创 1L 必人则p 址g 的既不充分也不必 要条件(2017天津.4. 5分)的A. 充分何不必要条件B. 必要而不充分条件C.充要条件m ch 八 u 、思路分析 化简两个Cl知不第 何的关系.利用为 义,即可得別结论F 式.结合集合之 [分必耍条件的定孕解答过程】 ----------------------答案:A 解析:||林-卡計辽C 说心寻 <寻台0<氐罟, p«in &< } — -^+2/TK <9< § +2A :x,址乙由(0.#烘罟*2后,舟+2耳的充分不必5?条件.解法二|e -誇|v 誇台0v6<W ^sin 6ky,当0 0时.8inO<y f 但不漏足卜誇|<誇,所以足 充分不必耍条件.选AL )•既不充分也不必耍条件没OER. M "I 亠二lv IT ■・ 址sin 火亠"12五年高考考点一集合的含义与表示1.(2017 课标全国U 25 分)设集合A二{124}后{xlx—x+nrf}.若ACB={1},则B=()A.{1,-3}答案c2.(2016四川,1,5分)设集合gxl-20W2},Z为整数集,则集合AQZ中元素的个数是()A.3B.4C.5D.6答案C3.(2013山东,2,5分)已知集合A二{0,1,2},则集合B={x-y lx^A,yWA}中元素的个数是()A.lB.3C.5D.9答案C4.(2017江苏,1,5分)已知集合A二{l,2},B={a,a*3}.若ACB={1},则实数a的值为 __________答案1考点二集合间的基本关系1.(2015重庆,1,5分)已知集合A二{123}后{2,3},则( )A.A=BB.Ai^B=nC.AOBD.BOA答案D2.(2013江苏,4,5分)集合{・1,0,1}共有_______ 个子集.答案8考点三集合的基本运算1.(2017课标全国I ,1,5分)已知集合A={xlx<l},B={xl3x<l} )A.AHB=(xlx<0}B.AUB=RC.AUB=(xlx>l}D.AnB=D答案A2.(2017 课标全Bin,1,5 分)已知集合A={(x,y)lx2+y=l}»B={(x,y)ly=x},则ACB 中元素的个数为(A.3B.2C.lD.O答案B3.(2017 天津,1,5 分)设集合A={l,2,6)»B={2,4),C={xeR|-l<x<5} JU(AUB)nc=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{xERI・lWxW5}答案B4.(2016 课标全国I ,1,5 分)设集合A={x I x2-4x+3<0},B={x 12x-3>0},则ACB=( )A. B. C. D.答案D5.(2016课标全国U ,2,5 分)已知集合A={l,2,3),B={xl(x+l)(x-2)<0,xez},MAUB=( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}答案C6.(2016 天津,1,5 分)已知集合A={l,2,3,4),B={yly=3x-2,xeA},J!!lAnB=( )A.{1}B.{4}C.{1,3}D.{1,4}答案D7.(2014课标I ,1,5 分)已知集合A={xlx2-2x-3^0},B={xl-2^x<2),则ACB=( )A.[-2,-1]B.[-l,2)C.[-l,l]D.[l,2)答案A教师用书专用(8—24)8.(2017北京,1,5分)若集合A={xl-2<x<l},B={xlx<-1 或x>3},则AAB=( )A.(xl-2<x<-l}B.(xl-2<x<3)C.{xl-1<X<1}D.{xll<x<3}答案A9.(2017浙江,1,5 分)已知集合P={xl-l<x<l} ,Q={xl0<x<2},则PUQ=( )A.(-1,2)B.(0,l)C.(-l,0)D.(l,2)答案A10.(2017山东,1,5分)设函数y二的定义域为A,函数y=ln(l -x)的定义域为B,则AAB=()A.(1,2)B.(l,2]C.(-2,l)D.[-2,l)答案D11.(2016课标全国皿,1,5分)设集^S={xl(x-2)(x-3)>0},T={xlx>0},则S(1T=()A.[2,3]B.(-°O,2]U[3,+OO)C.[3,+S)D.(0,2]U[3,+B)答案D12.(2016 北京,1,5 分)已知集合A={xllxl<2},B={-l,0,l,2,3},则AQB=( )A.(0,1)B.(0,l,2}C.{-1,0,1}D.{-1,0,1,2}答案C13.(2016 浙江,1,5 分)已知集合P二{xURIlWxW3},Q={xWRIx2p4}、则PU((R Q)=( )A.[2,3]B.(・2,3]C.[l,2)D.(・8,-2]U[1,+OO)答案B14.(2016 山东,2,5分)设集合A二{yly二2x,xER},B={xlx2-l<0},则AUB=( )A.(-1,1)B.(0,l)C.(-l,+°°)D.(0,+8)答案C15.(2015 课标n, 1,5 分)已知集合A={-2,-l,0,l,2),B={xl(x-l)(x+2)<0},则AQB=( )A.{-1,0} C.{-1,0,1} D.(0,l,2}答案A16.(2015 天津,1,5 分)已知全集U二{1,2,3,4,5,6,7,8},集合A二{2,3,5,6},集合,3,4,6,7},则集合 A 门血()A.{2,5}B.(3,6}C.(2,5,6}D.{2,3,5,6,8}答案A17.(2015福建,1,5分)若集合AMi,i2,i',r}(i是虚数单位),隹{1,・1},则人门3等于()A.{-1}B.{1}C.(l,-1}D.口答案C18.(2015 四川,1,5 分)设集合A二{xl(x+l)(x-2)<0},集合B={xll<x<3),则AUB=( )A.(xI -l<x<3}B.(xI -1<X<1}C.(xIl<x<2}D.(xl2<x<3)答案A19.(2015 广东,1,5 分)若集合M={xl(x+4)(x+l)=0},N={xl(x-4)(x-l)=0},则MCN=( )A.{1,4}B.{-l,-4}C.{0}D.口答案D20.(2014课标II ,1,5 分)设集合归{0,l,2},N={xlx2.3x+2W0},5!!lMCN=( )A.{1}B.{2}C.(0,l}D.{1,2)答案D21.(2014 辽宁,1,5 分)已知全集U二R,A二{xlxW0},B={xlxMl},则集合]u(AUB)=( )A. {x 1x^0} BjxlxWl}C.{xlOWxWl}D.(xl0<x<l}答案D22.(2014 浙江,1,5 分)设全集U二{xWNIxM2},集合A二{x^NIx 空5},则[山二( )A.口B.{2}C.{5}D.{2,5}答案B23.(2015江苏,1,5分)已知集合A二{1,2,3}后{2,4,5},则集合人餌中元素的个数为_________ .答案524.(2016 江苏,1,5 分)已知集合A={-l,2,3,6},B={xl-2<x<3},则AAB= ___________ .答案{-1,2}三年模拟A组2016—2018年模拟•基础题组考点一集合的含义与表示1.(2018 广东茂名化州二模」)设集合A二{・101},B={xlx>0,xWA}^!lB=( )A.(-LO) C.(OJ) D.{1}答案D2・(2017河北冀州第二次阶段考试J)若集合A=(xlx2-7x<0, x丘N)则集合匸中元素的个数为()A.lB.2C.3D.4答案D考点二集合间的基本关系3.(2018四川成都龙泉一中月考,2)已知集合A=,B= {xIax+1 =0},且BUA,则a的取值组成的集合为()AJ-3,2} BJ-3,O,2} C.{3,・2} D・{3,0,・2}答案D4.(2017河南南阳、信阳等六市一模,1)已知集合A={ (x, y) I y • =0},B={ (x, y) I x2+y2= 1},C=A C B,则C的子集的个数是( )A.OB.lC.2D.4答案c考点三集合的基本运算5.(2018豫南豫北第二次联考,1)已知集合A二{yIy二2*},B二{xIy=},则A门B=(A・{yly>l}答案BB.{yly>l}C.{yly>0} D・{ylyP0}6.(2018江西重点中学第一次联考,1 )已知集合归,则帥二()A.(XI - 1<X<1}B. {x I - l<x^l}C. {xlx<-l 或xMl}D.{xlxW・l 或xMl}答案C7.(2017广东惠州第三次调研,1)已知全集hR,集合A二{1,2,3,4,5},B= {x丘RIx鼻2},则图中阴影部分所表示的集合为(A.(0,l,2)B.(0,l)C.{1,2)D.{1)答案D8.(2017河南濮阳第二次检测,13)已知集合A=(-l,a},B={3a,b},gAUB={-l,0,l},则& _____________答案0B组2016—2018年模拟•提升题组(满分:35分时间:20分钟)一、选择题(每小题5分,共30分)1.(2018 广东茂名化州二模,1)若集合A二{0,1}后{yly 二2x,x^A},则(bA)QB=()AJO} B•⑵ C.{2,4} D.{0丄2}答案B2.(2018吉林榆树第一高级中学第三次模拟J)设全集U二{1,3,5,6,9},A二{3,6,9}、则图中阴影部分表示的集合是()A・{1,3,5}答案D3.(2018 四川南充一诊,2)已知集合A二{(x,y)ly=f(x)},B={(x,y)lx=l},则ACB 中的元素有()A.1个B.1个或2个C.至多1个D.可能2个以上答案C4.(2017湖南永州二模,2)已知集合P二{xl JWxWl},归心},若PQM二□,则a的取值范围是()C.[-l,l]D.(4,-1)U(1,+8)答案D5.(2017河北唐山摸底,1)已知集合AC (1,2,3,4,5},且AC{1,2,3}={1,2},则满足条件的集合A的个数为()A.2B.4C.8D.16答案B6.(2016江西南昌十所省重点中学二模,2)设集合A=,B={xly=ln(x2-3x)},5!!jAnB中元素的个数是()A.lB.2C.3D.4答案A 二、填空题(共5分)7.(2017江西九江地区七校联考,14)设A, B是非空集合淀义A®B={ x I x丘A U B且x电⑴B},已知壯{y I y=・x'+2x,0<x<2}, N二{y I y二2’ 则M®N二.答案U(l,+<XjC组2016—2018年模拟•方法题组方法1与集合元素有关问题的解题方略1.(2016湖南衡阳八中一模,1)已知集合A二{0,1} ,B={zlz二x+y,xWA,yWA},则集合B的子集个数为()A・3 B.4 C.7 D.8答案D方法2集合间的基本关系的解题方法2.(2017河北衡水中学七调,1)已知集合A二{x11 og2X<l},B={xl0<x<c},若AUB=B,则c的取值范围是()A.(0,1]B.[l,+oo)C.(0,2]D.[2,+oo)答案D3.(2018河北衡水中学模拟,13)已知含有三个实数的集合既可表示成,又可表示成{a2,a+b,0},则a20,W0,7等于________答案方法3集合的基本运算的解题方法4.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={ x I x+2诈0} ,N={xll ogi( x・1 )<1}、若集合M C ((uN)二{x I x二1或x M 3},那么a的取值为()A. a=B.aWC. a=-D.aM答案C5.(人教 A 必1,—,1・1A,7,变式)设全集U={xWNIxW8},集合4{1,3,7},B={2,3,8},则(CuA)门(应)=()A.{1,2,7,8}B.{4,5,6}C.{0,4,5,6}D.{0,3,456}答案C方法4求解集合新定义问题的技巧6.(2018陕西西安长安质检,2)若x & A,且& A侧称A是伙伴关系集合,集合归的所有非空子集中具有伙伴关系的集合的个数是A.31B.7C.3D.1答案B7.(2017湖北武昌一模,1)设A,B是两个非空集合淀义集合A・B={xlxUA,且x年B}.若A二{x£NI0WxW5> ,B={xl/・7x+l(kO},则4 B=()A.(0,1)B.{1,2)C.(0,l,2)D.(0,1,2,5}答案D。
高考数学总复习第1讲 集合的概念与运算
D.{1,2,3,4,6}
解:因为 A∪B={1,2,6}∪{2,4}={1,2,4,6}, 所以(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.
ห้องสมุดไป่ตู้
答案:B
4.(2017·北京卷)已知全集 U=R,集合 A={x|x<
-2 或 x>2},则∁UA=(
)
A.(-2,2)
B.(-∞,-2)∪(2,+∞)
点评:(1)用描述法表示集合,首先要搞清集合中代表 元素的含义,再看元素的限制条件,分清是数集、点集还 是其他类型的集合.
(2)解决含有参数的集合问题时,要注意集合中元素的 特征,并注意用互异性进行检验.
(3)分类讨论的思想方法常用于解决集合问题.
【变式探究】
1.(1)若集合 A={x∈R|ax2+ax+1=0}中只有一个元素,
则 a 等于( )
A.4
B.2
C.0
D.0 或 2
(2)已知集合 A={m+2,2m2+m},若 3∈A,则 m 的值
为
.
解:(1)当 a=0 时,方程化为 1=0,无解, 集合 A 为空集,不符合题意; 当 a≠0 时,由 Δ=a2-4a=0,解得 a=4.
解:(2)因为 3∈A,所以 m+2=3 或 2m2+m=3, 若 m+2=3,解得 m=1,此时 A={3,3}与集合中元素的 互异性矛盾,所以 m=1,不符合题意; 若 2m2+m=3,解得 m=1(舍去)或 m=-23. 检验知 m=-32满足题意. 故所求 m 的值为-32.
3.注意空集∅的特殊性,在解题时,若未能指明集合
非空时,要考虑空集的可能性,如 A⊆B,则有 A=∅或 A≠∅
两种可能,解题时常常遗漏对空集的讨论,这一点应引起 重视.
浙江省成人双证制教育培训
2015.12成人高中“双证制”教育 《数学》考试要点数学考试要求一、知识内容代 数(一)集合1. 了解集合的含义,体会元素与集合的“属于”关系.2. 理解集合之间包含与相等的含义,能写出给定集合的子集.3. 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(二)函数1. 了解函数的三要素,会求一些简单函数的定义域.2. 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3. 掌握二次函数的图像与性质,会用待定系数法求函数解析式.(三)三角函数1. 了解任意角的概念和弧度制,能进行弧度与角度的互化.2. 理解任意角三角函数(正弦、余弦、正切)的定义.3. 掌握三角函数值的符号规律,掌握特殊角的三角函数值.4. 掌握同角三角函数的基本关系式:1cos sin 22=+αα,1cot tan =⋅αα,αααcos sin tan = 会运用它们化简三角函数式. 5. 了握正弦函数最值.(四)数列1.了解数列的概念和掌握数列的通项公式.2.理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前n 项和公式.3. 能识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(五)不等式1. 了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.了解一元一次不等式(组)的概念,掌握不等式(组)的解法.3. 了解一元二次不等式的概念,掌握一元二次不等式的解法.立体几何(六)立体几何初步1. 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2. 了解棱柱、棱锥、圆柱、圆锥的概念和性质,掌握正棱柱、正棱锥、圆柱、圆锥的表面积和体积的计算公式.3. 能用有关知识解决相应的实际问题.平面解析几何(七)平面解析几何初步1. 理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2. 能根据两条直线的斜率判定这两条直线平行或垂直.3. 掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式及一般式).4. 能用解方程组的方法求两直线的交点坐标.5. 掌握两点间的距离公式、点到直线的距离公式.6. 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.7. 能根据给定直线、圆的方程,判断直线与圆的位置关系.二、评价建议1. 考试采用闭卷笔答形式,考试时间为100分钟,试卷满分100分.2.试卷的结构如下:(1)考试内容分布:代数约67%,立体几何约14%,解析几何约19%,(2)试题难度分布:难度在0.8以上的容易题占80%,难度在0.5~0.8之间的稍难题占20%.(3)试题类型分布:选择题约30分,填空题占约24分,解答题约46分.附:考核样卷注意:考试时间100分钟,请使用计算器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.了解集合的含义、元素与集合的属于关系;
2.理解集合之间包含与相等的含义,能识别给定集合的子集;
3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;
4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
5.能使用韦恩(Venn)图表达集合的关系及运算.
1.元素与集合
(1)集合中元素的三个特征:.
(2)元素与集合的关系是关系,用符号表示.
(3)集合的表示法:
2.集合间的基本关系
表示
关系
文字语言符号语言
集合间
的基本关
系
相等集合A与集合B中的所有元素都相同
子集A中任意一个元素均为B中的元素
真子集
A中任意一个元素均为B中的元素,且B中至少有
一个元素不是A中的元素
空集空集是任何集合的,是任何非空集合的
3.集合的基本运算
集合的并集集合的交集集合的补集图形
语言
符号
语言
A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A}
并集的性质:
A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔.
交集的性质:
A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔.
补集的性质:
A∪(∁U A)=;A∩(∁U A)=∁U(∁U A)=
高频考点一集合的含义
例1 (1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1B.3C.5D.9
(2)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.
【变式探究】(1)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},
则M中的元素个数为( )
A.3 B.4 C.5 D.6
(2)设a,b∈R,集合{1,a+b,a}=,则b-a=________.
高频考点二集合间的基本关系
例2、(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B 的集合C的个数为( )
A.1 B.2 C.3 D.4
(2)已知集合A={x|x2-2017x+2016<0},B={x|x<a},若A⊆B,则实数a的取值范围是
______
3.【2016高考四川】设集合{|15}
A x x
=≤≤,Z为整数集,则集合A∩Z中元素的个数是( )
(A)6 (B) 5 (C)4 (D)3
4.【2016高考浙江文数】已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,
4},则U P Q U ()ð=( ) A.{1}
B.{3,5}
C.{1,2,4,6}
D.{1,2,3,4,5}
5.【2016高考北京】已知集合={|24}A x x <<,{|3B x x =<或5}x >,则A B =I ( )
A.{|25}x x <<
B.{|4x x <或5}x >
C.{|23}x x <<
D.{|2x x <或5}x >
6.【2016高考山东】设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð=( ) (A ){2,6}
(B ){3,6}
(C ){1,3,4,5}
(D ){1,2,4,6}
真题演练
1.【2015高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为( )
(A ) 5 (B )4 (C )3 (D )2
2.【2015高考重庆,】已知集合{1,2,3},B {1,3}A ==,则A B =I ( ) (A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3}
3.【2015高考浙江】已知集合{
}
2
23x x x P =-≥,{}
Q 24x x =<<,则Q P =I ( ) A .[)3,4 B .(]2,3 C .()1,2- D .(]1,3- 4.【2015高考天津】已知全集{1,2,3,4,5,6}U =,集合{2,3,5}A =,集合{1,3,4,6}B =,则集
合A U B
I =()ð( ) (A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5}
5.【2015高考四川】设集合A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B =( ) (A ){x |-1<x <3} (B ){x |-1<x <1} (C ){x |1<x <2} (D ){x |2<x <3}
6.【2015高考山东】 已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂=( (A )1,3() (B )1,4() (C )(2,3() (D )2,4()
) 7.【2015高考陕西,文1】设集合2
{|}M x x x ==,{|lg 0}N x x =≤,则M N =U ( )
A .[0,1]
B .(0,1]
C .[0,1)
D .(,1]-∞
8.【2015高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则
()U A C B =I ( )
(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 9.【2015高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则M N =I ( ) A .{}0,1- B .{}0 C . {}1 D .{}1,1- 10.(2014·北京卷) 若集合A ={0,1,2,4},B ={1,2,3},则A∩B=( ) A .{0,1,2,3,4} B .{0,4} C .{1,2} D .{3}
11.(2014·福建卷) 若集合P ={x|2≤x<4},Q ={x|x≥3},则P∩Q 等于( ) A .{x|3≤x<4} B.{x|3<x<4} C .{x|2≤x<3} D.{x|2≤x≤3}
12.(2014·广东卷) 已知集合M ={2,3,4},N ={0,2,3,5},则M∩N=( ) A .{0,2} B .{2,3} C .{3,4} D .{3,5}
13.(2014·湖北卷) 已知全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A =( )
A .{1,3,5,6}
B .{2,3,7}
C .{2,4,7}
D .{2,5,7}
14.(2014·湖南卷) 已知集合A ={x|x >2},B ={x|1<x <3},则A∩B=( ) A .{x|x >2} B .{x|x >1} C .{x|2<x <3} D .{x|1<x <3}
15.(2014·重庆卷) 已知集合A ={3,4,5,12,13},B ={2,3,5,8,13},则A∩B=________.
16.(2014·江苏卷) 已知集合A ={-2,-1,3,4},B ={-1,2,3},则A∩B=________.
17.(2014·江西卷) 设全集为R ,集合A ={x|x 2
-9<0},B ={x|-1<x≤5},则A∩(∁RB)=( )
A .(-3,0)
B .(-3,-1)
C .(-3,-1]
D .(-3,3) 18.(2014·辽宁卷) 已知全集U =R ,A ={x|x≤0},B ={x|x≥1},则集合∁U (A ∪B)=( ) A .{x|x≥0} B.{x|x≤1} C.{x|0≤x≤1} D .{x|0<x <1}
19.(2014·全国卷) 设集合M ={1,2,4,6,8},N ={1,2,3,5,6,7},则M∩N 中元素的个数为( )
A .2
B .3
C .5
D .7
20.(2014·新课标全国卷Ⅱ)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=( )
A.∅ B.{2} C.{0} D.{-2}
21(2014·全国新课标卷Ⅰ)已知集合M={x|-1<x<3},N={-2<x<1},则M∩N=( ) A.(-2,1) B.(-1,1) C.(1,3) D.(-2,3)
22.(2014·山东卷) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=( )
A.(0,2] B.(1,2)
C. B.(0,1) C.(0,1] D.∪(0,+∞) D.(-1,+∞)。