(整理)年微积分(上册)期末考试卷含答案.
《微积分(一)》分级卷样卷解答
《微积分(一)上》期末考试试卷 (分级卷样卷)一、填空题(每小题3分,六个小题共18分);1. 极限 111)2(lim -→-x x x = e /1 .2. 设x x f 3sin ln )(+=π,则微分=)(x df xdx 3cos 3 .3. 定积分=+⎰-dx x x 222sin cos ππ)( π .4. 设函数)(x y y =由方程组⎩⎨⎧+==)1ln(arctan 2t y t x 确定,则 =22dx y d )1(22t + . 5. 不定积分⎰=xdx x arctanC x x x +-+2a r c t a n 212.6. 方程 1+='-''x y y 的通解为____ x xe C C x22221--+ _____.二、单项选择题(每小题3分,四小题共12分)(将正确选项前的字母填入题中的括号内)7. 设函数)(x f y =的导函数在),(+∞-∞上连续。
于是[ D ] A .若有常数a ,使得a x f x =+∞→)(lim ,则 0)(lim ='+∞→x f x ;B .若0)(lim ='+∞→x f x ,则有常数a ,使得 a x f x =+∞→)(lim ;C .若)(x f '是偶函数,则)(x f 是奇函数;D .若)(x f '是奇函数,则)(x f 是偶函数;8. 当0→x 时,下列变量中为无穷小量的是 [ A ] A . xx 1sinB .x xsin 1 C .x -1 D .)cos 1ln(x +9.若⎰+=C x F dx x f )()(, 则⎰=+dx x f )12([ B ]A.C x F ++)12(2B.C x F ++)12(21 C.C x F +)(21 D. C x F +)(210.若一阶线性齐次微分方程0)(=+'y x p y 的一个特解为x y 2cos =,则该方程满足初值条件2)0(=y 的特解为 [ D ]x A 2sin 2. x B sin 2. x C cos 2. x D 2cos 2. 三、(每小题6分,三个小题共18分) 11. 求极限 )1ln(tan lim2x x x x x +-→解:原式3tan lim xxx x -=→22031sec limxx x -=→xx xx x x 22coscos 1lim3cos 1lim+-=→→3132/lim222==→xx x12. 设方程1ln =+y e xy x 确定了函数)(x y y =,求=x dx dy解:于1ln =+y e xy x 两边对x 求导,得0/ln ='+++'y y e y e y y x xx ; 代入0=x ,同时代入e y =,解出 )1()0(e e y +-='13. 求定积分 ⎰+=411xdx I解:作代换x t =,⎰⎰+=+=2141121ttdt xdx I ⎰+=+-=21)32ln1(2)111(2dt t四、(每小题6分,三个小题 共18分)14. 设函数21cos)1(sin )(--=x x x x x f ,确定其间断点,并指明间断点的类型。
微积分试卷(含答案)
微积分试题一、 填空题(每题2分⨯10=20分)1、函数()f x =的定义域是2、 设()2f x x =- ,则[(2)]f f =3、 22929lim 1n n n n →∞--=- . 4、 0sin 5limsin x x x→= 5、 1lim(1)x x x →∞+= 6、 '(arcsin )x =7、 函数2y x =,则=dy 8、 函数3x y e =的导数为 . 9、 02sin lim x x x→= . 10、数学思维从思维活动的总体规律的角度来考察,可分为形象思维、 、和直觉思维。
二 选择题(每题2分⨯5=10分)1、 若),1()(+=x x x f 则=-)(x f ( ).A x(x-1)B (x-1)(x-2)C x(x+1)D (x+1)(x+2)2、1sin(1)lim 1x x x →-=-( ). A 1 B 0 C 2 D 21 3、 函数)(x f 在0x x =处有定义是)(x f 在0x x =处连续的( ).A 必要条件B 充分条件C 充要条件D 无关条件4、设)(x f y -=,则='y ( ).A )('x fB )('x f -C '()f x --D )('x f -5、 设函数(),()u x v x 在x 可导,则( )A []uv u v '''=B []uv u v '''=-C []u v u v '''⨯=+D []uv u v uv '''=+三、计算题(每小题6分,共24分)1、已知2(tan )6sec f x x =-,求)(x f 2、求极限333lim 22x x x x→∞- 3、求极限0tan sin lim x x x x→- 4、求极限10lim(14)xx x →+四、计算题(每小题8分,共24分)1、求4x y x e =的导数2、设)(x y y =由隐函数5y e xy =+确定,求y '。
2020年6月山东农业大学高等数学(微积分)期末考试试题及参考答案
第一学期《高等数学(微积分)》(专)复习题一、单选题(每题5分,共10道小题,总分值50分)1.image.png(5分)Aimage.pngB不存在C1D0纠错正确答案C2.image.png(5分)Aimage.pngB1C1/3D-1正确答案B3.image.png(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案C4.下列函数中,有界的是()。
(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案A5.image.png(5分)Aimage.pngBimage.pngCimage.pngD6正确答案B6.image.png(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案C7.下列变量在给定的变化过程中是无穷大量的有()。
(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案A8.image.png(5分)Bimage.pngCimage.pngDimage.png正确答案B9.image.png(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案C10.image.png(5分)Aimage.pngBimage.pngC0D1/2正确答案A二、简答题(每题5分,共10道小题,总分值50分)1.image.png ____(5分)正确答案1正确答案2.image.png ____(5分)正确答案R正确答案3.image.png ____(5分)正确答案image.png正确答案4.image.png ____(5分)正确答案x=1正确答案5.image.png(5分)正确答案-3正确答案6.image.png(5分)正确答案2正确答案7.image.png ____(5分)正确答案-6正确答案8.image.png ____(5分)正确答案(-5,2)正确答案9.image.png(5分)正确答案y=2x正确答案10.image.png ____(5分)正确答案-3/2正确答案第一学期《高等数学(微积分)》(专)在线作业练习题一、单选题(每题5分,共10道小题,总分值50分)1.image.png(5分)B1C1/3D-1纠错正确答案B2.image.png(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案C3.image.png(5分)Aimage.pngB不存在C1D0正确答案C4.image.png(5分)Aimage.pngBimage.pngC0D1/2正确答案A5.image.png(5分)Aimage.pngBimage.pngCimage.pngDimage.png正确答案C6.image.png(5分)Aimage.pngBimage.pngCimage.pngD6正确答案B7.下列函数中,有界的是()。
微积分期末考试试题及答案
微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。
微积分复习试题及答案10套(大学期末复习资料)
微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
《微积分》期末考试试卷附答案
《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。
(整理)经济数学-微积分期末考试试卷与答案
经济数学--微积分期末测试第一学期期末考试试题 ( B )一.选择题(每小题只有一个正确答案,请把正确答案前的字母填入括号,每题2分,共30分)1. 函数⎪⎩⎪⎨⎧<<-≤-=43939)(22x x x x x f 的定义域是(A );(A) )4,3[- (B) )4,3(- (C) ]4,3(- (D) )4,4(-2. 函数214y x =-的渐近线有(A); 3(A )条(B )2条(C )1条(D )0条3. 设函数)1,0()1(log 2≠>++=a a x x y a ,则该函数是(A )(A) 奇函数 (B) 偶函数 (C) 非奇非偶函数 (D) 既奇又偶函数4. 下列函数中,与3y x =关于直线y x =对称的函数是(A );33()()()()A y B x C y x D x y ===-=-5.若()f x =,则点2x =是函数()f x 的(B);()A 左连续点 ()B 右连续点 ()C 驻点 ()D 极值点6. 已知点(1,3)是曲线23bx ax y +=的驻点,则b a ,的值是(B )(A ) 9,3=-=b a (B ) 9,6=-=b a (C ) 3,3=-=b a (D ) 3,6=-=b a7. 当0x →时,下列函数极限不存在的是(C );1s i n11()()s i n()()t a n1x x A B x C D x x xe + 8. 极限 =-→x x x 1ln lim 0(C );()1()0()1()A B C D -不存在9.下列函数中在[-3,3]上满足罗尔定理条件的是(C );2221()()()2()(3)A xB C x D x x -+10.若函数()f x 在点0x 处可导,则极限x x x f x x f xx ∆∆--∆+→2)2()2(lim000=(C ); 00001()4()()3()()2()()()2A fx B f x C f xD f x '''' 11. 0x →时,下列函数中,与x 不是等价无穷小量的函数是(C )(A) x tan (B) )1ln(x + (c) x x sin - (D) x sin12.下列极限中,极限值为e的是(D);11001()lim (1)()lim (1)()lim(1)()lim (1)xxxxx x x x A x B x C D x x+→∞→∞→→++++13. 若ln xy x =,则dy =(D ); 222ln 11ln ln 11ln ()()()()x x x xA B C dx D dx x x xx---- 14.函数2()f x x =,在区间[0,1]内,满足拉格朗日中值定理的条件,其中ξ=(D);1121()()()()4332A B C D 15.若函数()f x 在(,)-∞+∞内连续,则2()x f x dx '⎡⎤=⎣⎦⎰(D). 2222()[2()()]()2()()()()()()A xf x x f x dxB xf x x f xC x f x dxD x f x ''++二.计算题(每小题7分,共56分) 1.xex x y -+-=1121,求y '解:)11()1(1)()1(1122112'-+'-+-='+'-='--xex x x ex x y xx2112211222)1(1)1(1221x e x x e x x x xx--+-=--+--+-=-- 2分 7分2. 求极限 xx x 12)1(lim +∞>- 解:1lim )1(lim 012lim)1ln(lim)1ln(12222=====++++∞→∞→∞→∞→e ee ex x xx x xx x xx x x 3. 求曲线1204=+-y x x y 在1=x 对应的点处的切线方程.解:0x =时,代入方程得 1y =;方程两边对x 求导得 020*******3='++-'y y x yx y ,将01x y ==与代入,得011x y y =='=, 故所求的切线方程为1y x -=,即1y x =+4. 设函数221()1ax x f x x bx -≥⎧=⎨-<⎩ 在1x =处可导,求常数a 和b 解:由已知()f x 在1x =连续,且21111lim ()lim()1lim ()lim(2)2x x x x f x x b b f x ax a --++→→→→=-=-=-=- 可得3b a =- ①又因()f x 在1x =处可导,且221111232(1)lim lim lim 1211(2)2()lim 1x x x x x b a x a a f x x x ax a f x a x -+++-→→→+→--+-+-+'===+=----+'==-又得2a = 代入① 得1b =故21a b ==5. 求函数2ln(14)y x =+的上凸区间、下凸区间与拐点.解:222288(14)1,,0,14(14)2xx y y y x x x -'''''====±++令得2分5分7分3分6分 7分2分2分5分7分6. 求⎰dx xx tan解:⎰⎰⎰+-=-==c x x d x x d xx dx xx cos ln 2cos cos 12cos sin 2tan 7. 求 ⎰xdx e xsin解:⎰⎰⎰⎰-=-==x x x x x x xde x e xdx e x e xde xdx e cos sin cos sin sin sin⎰--=xdx e x e x e x x x sin cos sin 移项可得c e x x xdx e x x +-=⎰)cos (sin 21sin 8. 已知2xxe 是(2)f x 的一个原函数,求()2x x f e dx -⎰22222222222222(2)()2(12)()(1)()(1)22()(1)(1)2(1)22222[(1)()]2[(1)]2222(2)(4)2x xx x xux x xx xx x x xx xf x xe exee x x xf u e u f e x x x x f e dx e e dx e dx de x x xe e d e e c x e c x e c ----------'==+=+∴=+∴=+∴=+=+=-+=-++-=-+++=-++=-++⎰⎰⎰⎰⎰解:三.证明题(本题6分)设函数()f x 在区间[0,]c 上连续,其导数()f x '在(0,)c 内存在且单调减少,又(0)0f =,证明不等式:()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)2分7分6分6分7分2分4分7分5分7分2分证明:0a =时,(0)0f = ()()()f a b f b fa f b∴+==+时,在区间[0,]a 和[,]b a b +上,()f x 满足拉格朗日定理条件,1122()(0)()()((0,)()()()()()((,)f a f f a f a a af b a f b f b a f b f b a b b a b aξξξξ-'∴==∈+-+-'==∈++-有有又()f x 在[0,]c 上单调减少,而12ξξ<21()()f f ξξ''∴<即()()()f b a f b f a a a+-<故有 ()()(f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)四.应用题(本题8分)设生产t 个产品的边际成本为t t C 2100)(+=',其固定成本(即0=t 时的成本)为100元,产品单价规定为500=P 元,假定生产出的产品都能完全销售,求生产量为多少时利润最大?最大利润是多少?解:由已知,边际成本c t t dt t dt t C t C ++=+='=⎰⎰100)2100()()(2由固定成本为100,可得100100)(02=--==t t t t C c于是有:成本函数:100100)(2++=t t t C 收入函数:t t R 500)(=利润函数:100400)100100(500)()()(22-+-=++-=-=t t t t t t C t R t L 由04002)(=+-='t t L ,得唯一驻点2000=t ,又由02)(<-=''t L ,可知,驻点0t 是极大值点,同时也是最大值点。
微积分期末试卷附详细标准答案2
一、填空题(每小题3分,共15分)1、已知 f(x)=e x , f N(x)] =1—x ,且中(x)之0,则9(x) = v'ln(1—x)…2c解 f(u)=e =1-x ,u =ln(1-x) ,u = .J 〕n(1 - x).2、已知 a 为常数,lim (--2— ax +1) =1,则 a =1.i : x一-ax 1) = lim (1 4 - a —) = 1 - a .x'二 x x3、已知 f ⑴=2,则 limf(1 3x)-f(1 x)=4.x )Dx解:lim[f(1 3x)-f(1)]-[f(1 x)-f(1)]=4x—0x4、函数 f(x)=(x —1)(x —2)(x —3)(x —4)地拐点数为 2.解:f (x)有 3 个零点 £,焦二:1 <彳 <2<^<3<^3<4, f "(x)有 2 个零点 %尸2:1<。
<2 <之2 <”2 <4,f "(x) =12(x —1)(x —”2),显然 f*(x)符号是:+「,+,故有 2 个拐点. dx-5、 -2 ------ - = tan x -cot x C .sin xcos x,2. 2 , ,dx cos x sin x , dx dx 斛: -- —2 --------------- 2- = 2 2-dx = ------- 2- ------------- -2- = tan x - cot x C .sin xcos x sin xcos x cos x sin x二、选择题(每小题3分,共15分)1、设f(x)为偶函数,甲(x)为奇函数,且f /(x)]有意义,则f [邛(x)]是A(A)偶函数; (B)奇函数;(C)非奇非偶函数;(D)可能奇函数也可能偶函数.1 - cosx C2—, x : 0,,,2、x=0 是函数 f (x) = { x 地 D0, x = 0.2「 1 1 x 1 斛:0 = lim — = lim ( ----(A)跳跃间断点; (B)连续点;(C)振荡间断点;(D)可去间断点.3、若函数f(x)在X0处不可导,则下列说法正确地是 B(A)f(x)在%处一定不连续;(B) f (x)在X o处一定不可微;(C)f(x)在X o处地左极限与右极限必有一个不存在;(D) f (x)在x0处地左导数与右导数必有一个不存在^4、仅考虑收益与成本地情况下,获得最大利润地必'要条件是: D(A) R"(Q)>C"(Q) ; (B) R"(Q) <C"(Q);(C) R"(Q) =C“(Q) ;(D) R'(Q) =C'(Q).5、若函数f '(x)存在原函数,下列错误地等式是: Bd(A) 一ff(x)dx=f (x) ;(B)』f (x)dx=f(x);dx(C) d f f (x)dx =f (x)dx;(D) f df (x) =f (x) +C .三、计算题(每小题6分,共60分)1、设f (x —2) =2x2"x— x,求f(x +2).答案:f(x + 2) =2x244x—x—4解:令t =x - 2,则f ⑴=2(t均24t物_(t+2) =2「*七54 T+2=2t2/_t_2,(3 分)于是f(x+2) =2(x阳2u — (x+2) -2 =2x2 七、七“ 一x —4 = 2x2 七x— x —4. (6 分)2、计算1吧m05( J n十1 一J n).答案:1n mc 0sin有-«户n m8s舄十二(3 分)解:1=lim cos —^n— n1二 11-1 nsin 11nx解:y' = (e x )'(2 分)6、求曲线xln y + y —2x=1在点(1,1)处地法线方程.答案:x+y —2 = 0解:方程两边对x 求导得:ln y + xy + y '- 2 = 0 , y_ Cos 「0 一 -1 .(6分) cos,1 0 - 13、求极限lim ( 2 n——n 2n +… 2 n 2).答案: 解:由于— nn n 21n n 22 +…2n八-7, (3分)而 lim 一=lim—=1 1 lim 一=limn —i彳二1,2 n所以lim(+…+)=1. (6 分)4、求极限lim 2ln(1 x )x —0 secx - cos x,〃2、解:lim1n(1 x)x—0secx - cosx x 02ln(1 x ) 二 lim cosxlim ——2-- x 0sin x=lim 2x1+ x 2(4 分)x 0 2sinxcosx =limx —02、 (1 x )cosx.. x lim --- x 「° sin x =1. (6 分) sin 15、求函数y = x x 地导数.答案:.1 sin —x y = xcos'nx 1sin 1)x.1 , sin - ln x 11 1 1 =e x [cos-( --2) ln x sin ] .1 , , , ,sin — 1 1 1 1 =x x ( 2cos — ln x sin ) .(6 分)1将(x, y) = (1,1)代入得法线斜率k = 一—― = _1, (3分) y⑴从而法线方程为:y_1=_1,(x—1),即:* + 丫—2 = 0.(6分),一八 1 4 3 r 一、7、求曲线y= x —x +1地凹凸区间和拐点.24答案:曲线在区间(―吗0]和[1,+“)是凹地,在区间[Q1]是凸地拐点为(0,1), (1;).31 x _ 1 x _ 1 x _ 1x_ 1x_ e cos2x e d sin 2x e cos2x e sin 2x - e sin 2xdx ,2 4 2 4 4 x 一 . 4 x.1 .一 一 、一 … , J e cos2xdx =^e (asin 2x-cos2x)+C .(6 分)10、设某商品地需求函数为 Q =100 -5P 淇中P,Q 分别表示需求量和价格,试求当总收益达到最大时,此时地需求弹性,并解释其经济意义.b5E2RGbCAP解:⑴ f (x) C(-::, ::),(2)3 2 _ .. 2f (x) =2x -3x , f (x) =6x -6x =6x(x -1),4f "(x)=0,得 x 1 =0, x 2 =1. f(0) = 1, f (1) =43 (3分)(4).... ... 4 曲线地拐点为(0,1)、(1,-).(6) 曲线在区间(―g,0]和[1,+比)是凹地,在区间[0,1]是凸地. (6分)8、计算dx.答案:66G - 6 arctan 6x + Cdx dx解 (1 3 x) x -(6x)3[1 (6x)2]56t 5dt八----- 了(3分)2A (1 t )-1 6 2dtdt =6 ! dt - = 6 । 1 t=6t -6arctant +C =66/x -6arctan6/x +C .(6分)9、计算 [exsin 2xdx 答案• —e x(-sin 2x -cos2x) +C1021 V斛: e sin 2xdx e d cos2x =一 21e xcos2x 1 2 2fe xcos2xdx (3 分)列表如答案:。
微积分(上)习题200题及答案
填空题:(30题)1.()___________2则20102sin 设函数2=⎪⎪⎭⎫ ⎝⎛⎩⎨⎧<≤+<<-=πf x xx xx f代入函数可得答案,220≤≤π答案:412π+2._________的定义域是24函数2--=x x y即可得到答案且由02-04-2≠≥x x答案:](()∞+⋃-∞-,22, 3.()[]()的定义域求,1,0的定义域是设2x f x fy =[]的范围,进而得到的范围是者函数由原函数定义域知道后x x 1,02 答案:[]1,1-4.()()()[]______则1,ln 1已知=+=+=x g f x x g x x f()()[][]()1ln 11,1++=+=+=x x fx g f x x g5.()()()x f d c b a dcx b ax x f1求反函数为常数,,,设-++=()可知反函数,--,--,0--,acy dyb x dy b x a cy b ax dy cxy d cx b ax y ===+++=答案:acx dxb -- 6._________1sinlim 3310=→x xx答案:07.______sin lim=+∞→xxx x答案:是有界的由于x x xx x sin 1sin lim =+∞→ 8.()0______1lim 0>=-→a x a x x答案:a aa x a x x x x ln 1ln lim 1lim00==-→→ 9.()_____1lim 1=-→xx x答案:1-e10._____则,22sin sin lim 若0==→m xmxx答案:411.()()_____则在其定义域内连续若函数011sin 00sin 1设=⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=<=k x f x x x x k x xx x f 解:因为()在其定义域内连续函数x f ,所以1sin limk 0==→xxx12.()()_____的间断点是412函数+++=x x x y 答案:1-=x 13._____的连续区间是321函数2--=x x y答案:()()()∞+⋃-⋃-∞-,33,11,14.__________,则,14lim设21===+++-→b a b x ax x x 解:()34lim 145lim,5,04lim 12121=+=+++===++-→-→-→x x x x b a ax x x x x 。
完整版)大一期末考试微积分试题带答案
完整版)大一期末考试微积分试题带答案第一学期期末考试试卷一、填空题(将正确答案写在答题纸的相应位置。
答错或未答,该题不得分。
每小题3分,共15分。
)1.XXX→0sinx/x = ___1___.2.设f(x) = lim(n-1)x(n→∞) / (nx+1),则f(x)的间断点是___x=0___.3.已知f(1)=2,f'(1)=-1/4,则df-1(x)/dx4x=2.4.(xx)' = ___1___。
5.函数f(x)=4x3-x4的极大值点为___x=0___。
二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写在答题纸的相应位置。
答案选错或未选者,该题不得分。
每小题3分,共15分。
)1.设f(x)的定义域为(1,2),则f(lgx)的定义域为___[ln1,ln2]___。
2.设对任意的x,总有φ(x)≤f(x)≤g(x),使lim[g(x)-φ(x)] = a,则limf(x) x→∞ = ___存在但不一定等于零___。
3.极限limex/(1-2x) x→∞ = ___e___。
4.曲线y=(2x)/(1+x2)的渐近线的条数为___2___。
5.曲线y=(2x)/(1+x2)的渐近线的条数为___2___。
三、(请写出主要计算步骤及结果,8分。
)4.设f(x)=(ex-sinx-1)/(sinx2),f'(x)=(ex-cosx)/sinx2,lim(x→sinx/2)f(x) = lim(x→sinx/2)(ex-sinx-1)/(sinx2) =___1/2___。
四、(请写出主要计算步骤及结果,8分。
)1.lim(x→0)(cosx1/x)x = ___1___。
五、(请写出主要计算步骤及结果,8分。
)确定常数a,b,使函数f(x)={x(secx)-2x。
x≤a。
ax+b。
x>a}处处可导。
因为f(x)处处可导,所以f(x)在x=a处连续,即a(sec(a))-2a=lim(x→a)(ax+b),得到a=1/2.根据f(x)在x=a处可导,得到a(sec(a))-2=lim(x→a)(ax+b)/(x-a),得到b=-1/2.六、(请写出主要计算步骤及结果,8分。
微积分考试题库(附答案)
微积分考试题库(附答案)85考试试卷(⼀)⼀、填空1.设c b a,,为单位向量,且满⾜0=++c b a ,则a c c b b a ?+?+?= 2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ?dt t x 2sin 0,则)(x f '=5.?>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b⼆、选择1.曲线==-0122z y x 绕x 轴旋转⼀周所得曲⾯⽅程为()。
(A )12222=+-z y x ;(B )122222=--z y x ;(C )12222=--z y x ;(D )122222=+-z y x2.2)11(lim xx x x -∞→-+=()。
(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'?dx x f x f x )]()([()(A )c x xf +)(;(B )c x f x +')(;(C )c x f x +'+)(;(D )c x f x ++)( 4.设)(x f 在],[b a 上连续,则在],[b a 上⾄少有⼀点ξ,使得()(A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=?)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ()(A )0 (B )1 (C )2 (D )3 三、计算题1.求与两条直线??+=+==211t z t y x 及112211-=+=+z y x 都平⾏且过点(3,-2,1)的平⾯⽅程。
《微积分》期末考试试卷(含ABC三套)
四、计算题 1、求极限 lim
x 。 (6 分) x 0 2 4 x
B、 lim f (0 x) f (0)
x 0
f (x) f (0) x
)
D、 lim
x 0
f ( x x) f ( x) x
4、 (ln x)dx =( A、 ln x
2
B、 ln x C )
C、
2
1 x
1 D、 C x
5、定积分为零的是( A、 ( x 3 x 5 )dx
四、计算题 1、求极限 lim
1 cos x 。 (6 分) x 0 x2
2、 y ln( x x 2 a 2 ), 求y 。 (8 分)
3、 y cos x , 求dy 。 (8 分)
4、求 arctan xdx 。 (10 分)
2 sin 3 xdx 。 5、求 (10 分) 2
sin x A、 lim 1 x x
2
sin
B、 lim
x 0
1 x
1 x 1
C、 lim
x
2
tan x 1 x
D、 lim x sin
x
1 1 x
)
3、若函数 y f ( x) 在点 x=0 处可导,则 f (0) =( A、 f (0) C、 lim
x 0
2 2
B、 ( x 3 x 5 1)dx
2 2
C、 x sin xdx
2
D、 x 2 cos xdx
2
二、填空题(每空 3 分,共 18 分) 1、若函数 y f ( x) 在点 x。连续,则 lim f ( x) f ( x0 ) =
微积分考试题库(附答案)
85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。
(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。
(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。
微积分(上)期末考试试题A卷(附答案)
一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.10lim 2xx -→=_________。
(A ) -∞ (B ) +∞ (C ) 0 (D ) 不存在 2.当0x →时,()x xf x x+=的极限为 _________。
(A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。
0()()()lim ()x f a x f a A f a x-∆→+∆-'=∆0()(0)()lim(0)x f tx f B tf x→-'=0000()()()lim2()t f x t f x t C f x t→+--'=0()()()lim()x f x f a D f a a x→-'=-4. 设f (x )有二阶连续导数,且()0()(0)0,lim1,0()_______x f x f f f x x→'''==则是的。
(A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。
()()()0A f x x φ-=()()()B f x x C φ-=()()()C d f x d x φ=⎰⎰()()()d dD f x dx x dx dx dx φ=⎰⎰二、 填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim1sin x f x f x x f x→===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。
2.函数()f x =[0,3]上满足罗尔定理,则定理中的ξ=。
3.设1(),()ln f x f x dx x'=⎰的一个原函数是那么 。
4.设(),xf x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。
大一微积分期末试卷及答案.doc
微积分期末试卷1TTL设/⑴=2*"(]) = (土)血在区间(0,#)内()。
2 2A/'(x)是增函数,g⑴是减函数B/Cx)是减函数,g(i)是增函数C二者都是增函数D二者都是减函数2> x — Otl'j,疽* _cosx与sinMfl比是()A高阶无穷小B低阶无穷小C等价无穷小D同阶但不等价无价小£3、x = 0 是函数y = ( 1 -sinx)v的()A连续点B可去间断点C跳跃间断点D无穷型间断点4、下列数列有极限并且极限为1的选项为()AX=(-l)n-- BX=sin —11〃n 2CX n= —(a>l)D X n =cos-a n5、都”⑴在X。
处取得最大值,贝IJ必有()Af,(X°) = o Bf‘(X())voCf,(X o) = O_ar( X°)vO Df”(x°)不存在或f'(Xo)= O(±)6^ 曲线y = xe x2()A仅有水平渐近线B仅有铅直渐近线C既有铅直又有水平渐近线D既有铅直渐近线1 〜6DDBDBD填空题=2,则以的值分别为:5解: 1、 d ( ) =—^—dxx+12、 求过点(2,0)的一条直线,使它与曲线y =-相切。
这条直线方程为:X2X_ 3、 函数y =——的反函数及其定义域与值域分别是:2X4- 1 4、 y =Vxf|<J 拐点为:2止,. x + ax+ b gm —- n x +2x~31 Inx + l| ;2 y = x 3-2x 2;3 y = log,工,(0,1), R ; 4(0,0)■(x-l)(x +77?) x^m 1 + m c b hm ---- --------- = hm =-------------------- = 2 原式=ATI (X-l)(% + 3) XTl x + 3 4/• m = 7 :.b — —7, a = 6 二、判断题 1、无穷多个无穷小的和是无穷小()2、 lim —在区间(-8,+ 8)是连续函数() K ) X3、r (x 0)二o 一定为f (x )的拐点()4、 若f (X )在X 。
《微积分I》期末模拟考题(参考答案,小字)
模拟卷一:一、选择题(每小题4分,共20分)1、设()(1)(2)(3)f x x x x x =+++,则()f x '与()f x ''的零点个数分别为( B )A 、4个;3个B 、3个;2个;C 、2个;1个;D 、1个;0个 2、设1()1xf x dx C x+=+-⎰,则()f x =( B ) A 、22(1)x -- B 、22(1)x - C 、22(1)x x -- D、22(1)xx - 3、下列等式错误的是( D ) A 、()()()f x dx f x '=⎰ B 、()()f x dx f x C '=+⎰C 、()(2)(2)f x dx f x '=⎰ D 、(2)(2)f x dx f x C '=+⎰4、曲线 ln xy x=( D ) A、没有渐近线 B、只有一条水平渐近线C、只有一条垂直渐近线 D、即有水平渐近线又有垂直渐近线5*、设()f x dx C =⎰,则2()xf x dx =⎰( A )A 、1sin 2x C + B 、12C C 、21sin 2C D 、21sin 2x C +二、填空题(每小题4分,共20分)1、函数()arctan f x x =在[]0,1上满足拉格朗日中值定理的点ξ=2211(1)(0)(),()arctan1,11104f f f x f x πξξξ-''======++-解:2、设()f x 的一个原函数为xe -,则()f x dx =⎰xe -+C ,()f x dx '=⎰-xe -+C . 3、2211d()d()1d ln ||.()()x a x a x x a C x a x a x a x a x a ⎛⎫+++=+=--+ ⎪+++++⎝⎭⎰⎰⎰.5、99(23)x dx +=⎰1001(23)200x C ++. 三、求极限(每小题5分,共15分)1、20sin 1lim sin x x e x x →--=2000sin 1cos sin 1lim lim lim .222x x x x x x e x e x e x x x →→→---+===2、0000cos ln sin sin sin lim lim lim lim 1.cos ln sin sin sin x x x x a ax a aax ax ax ax b ax bb bx bx bx bx+→→→→==== (a 、b >0)3、求 10lim 2xxxx a b →⎛⎫+ ⎪⎝⎭,其中0,0,a b a b >>≠。
微积分期末试题及答案
微积分期末试题及答案(正文开始)第一部分:选择题(共20题,每题5分,共100分)1. 设函数 f(x) = x^3 - 2x + 1,求 f'(x)。
2. 求函数 f(x) = e^x 的不定积分。
3. 将函数 f(x) = sin(x) 在区间[0, π] 上进行定积分,求结果。
4. 设函数 f(x) = ln(x),求 f'(x)。
5. 求函数 f(x) = 2x^2 + 3x + 1 的定积分,其中积分区间为 [-1, 2]。
6. 设函数f(x) = √(x^2 + 1),求 f'(x)。
7. 求函数 f(x) = 3x^2 - 6 的不定积分。
8. 计算定积分∫(0 to π/2) cos(x) dx 的值。
9. 设函数 f(x) = e^(2x),求 f'(x)。
10. 求函数 f(x) = x^3 - 4x^2 + 5x - 2 的不定积分。
11. 计算定积分∫(0 to 1) x^2 dx 的值。
12. 设函数 f(x) = (sinx + cosx)^2,求 f'(x)。
13. 求函数 f(x) = 2e^x 的不定积分。
14. 计算定积分∫(1 to e) ln(x) dx 的值。
15. 设函数 f(x) = x^2e^x,求 f'(x)。
16. 求函数 f(x) = ln(2x + 1) 的不定积分。
17. 求函数 f(x) = sin^2(x) 在区间[0, π/2] 上的定积分。
18. 设函数 f(x) = e^(3x),求 f'(x)。
19. 求函数f(x) = ∫(1 to x) t^2 dt 的不定积分。
20. 计算定积分∫(0 to π) sin^2(x) dx 的值。
第二部分:计算题(共4题,每题25分,共100分)1. 计算函数f(x) = ∫(0 to x^2) (2t + 1) dt 在区间 [-1, 1] 上的定积分。
(完整word版)微积分考试试题
《微积分》试题一、选择题(3×5=15)1、.函数f (x)=1+x3+x5,则f (x3+x5)为( d )(A)1+x3+x5(B)1+2(x3+x5)(C)1+x6+x10(D)1+(x3+x5)3+(x3+x5)52、.函数f(x)在区间[a,b] 上连续,则以下结论正确的是( b )(A)f (x)可能存在,也可能不存在,x∈[a,b]。
(B)f (x)在[a,b] 上必有最大值。
(C)f (x)在[a,b] 上必有最小值,但没有最大值。
(D)f (x)在(a,b) 上必有最小值。
3、函数的弹性是函数对自变量的( C )A、导数B、变化率C、相对变化率D、微分4、下列论断正确的是( a )A、可导极值点必为驻点B、极值点必为驻点C、驻点必为可导极值点D、驻点必为极值点5、∫e-x dx=( b )(A)e-x+c (B)-e-x+c (C)-e-x(D)-e x +c二、填空题(3×5=15)1.设,则 。
[答案: ]2.函数y=x+ex 上点 (0,1) 处的切线方程是_____________。
[答案:2x-y+1=0]3、物体运动方程为S=11+t (米)。
则在t=1秒时,物体速度为V=____,加速度为a=____。
[答案:41-,41]4.设,则 。
[答案:34]5.若⎰+=c e 2dx)x (f 2x ,则f(x)=_________。
[答案:2x e ]三、计算题 1、设x sin ey x1tan = ,求dy 。
(10分)解:dy=d x sin ex1tan =dx x sin x 1sec x 1x cos e22x1tan⎪⎭⎫ ⎝⎛-2.计算⎰+2x )e 1(dx。
(15分)解:原式=⎰+-+dx )e 1(e e 12x x x =⎰⎰++-+2x x x )e 1()e 1(d e 1dx =⎰+++-+x x x x e 11dx e 1e e 1 =x-ln(1+e x )+xe11+ +c3.求(15分)解:4.设一质量为m的物体从高空自由落下,空气阻力正比于速度( 比例常数为k)0 )求速度与时间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
精品文档
---○---○---
---○---○---
………… 评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理…………评卷密封
线………… 中南大学考试试卷
2009 ~2010学年 一 学期 微积分A 课程
(时间:10年1月21日,星期四,15:20—15:00,共计:100分钟)
一、填空题(本大题共5小题,每小题3分,总计15分)
1.])2(sin 11sin
[lim x x x
x x x x x +++∞
→= . 2. 函数32
y ax bx cx d =+++满足条件 时, 这函数没有极值.
3. 广义积分
=-+∞⎰
dx e x 20
.
4.幂级数
n
n n x n 30
212∑∞
=-的收敛半径=R ,收敛区间为 . 5.曲线⎪⎩
⎪⎨⎧==++11
222z z y x 的参数方程为 .
精品文档
二、选择题(在每个小题四个备选答案中选出一个正确答案,填在括号中,本大题共5小题,每小题3分,总计15分)
1.当0→x 时,下列变量是无穷小量的是( ).
(A )x
1sin ; (B )x e 1
; (C ))1ln(2x +; (D )x
e .
2.设x
e
x f -=)(,则
='⎰
dx x
x f )
(ln ( )
. (A )C x +-
1; (B )C x x
+ln 1; (C )
C x +1; (
D )C e x
x +1. 3. 若)(x f 是奇函数且)0(f '存在,则0=x 点是函数x
x f x F )
()(=
的( ). (A )无穷间断点; (B )可去间断点; (C )连续点; (D )振荡间断点.
4.如果b a ,是方程0)(=x f 的两个根,)(x f 在],[b a 上连续,在),(b a 内可导,那么方程
0)(='x f 在),(b a 内( )
. (A)只有一个根; (B)至少有一个根; (C)没有根; (D)以上结论都不对.
5.无穷级数
∑
∞
=--1
1)1(n p
n n ,(0>p )敛散性是( ).
(A)一定绝对收敛; (B)一定条件收敛; (C)一定收敛; (D)以上结论都不对.
精品文档
三、(14分,每小题7分)按要求求下列函数的导数
1.设0tan ln arcsin 2=+-y e y x x ,求
4
0π
=
=y x dx
dy .
2.设⎩⎨⎧==-t
t e
y te x ,求dx dy ,22dx y d . 四、(10分)已知由曲线2x y = 与)0(3>=c cx y 所围成平面图形D 的
面积为3
2。
(1)求参数c ;(2)计算该平面图形D 绕x 轴旋转一周所得立体的体积.
五、(14分,每小题7分) 按要求求解下列各题
1.已知1sin d lim
2
=-+⎰
→x
bx t
t
a t x
x ,试求b a ,。
2.讨论广义积分
⎰
∞+2
)(ln 1dx x x p
(p 为任意实数)的敛散性.
六、(8分)设)(x f 是周期为4的周期函数,它在)2,2[-上的表达
式为
⎩
⎨⎧<≤<≤-=20,02,0)(x k x x f
精品文档
将)(x f 展开成Fourier 级数。
七、(7分)一平面过两点)1,1,1(1M 和)1,1,0(2-M 且垂直于平面0=++z y x ,求它的方程。
八、(7分)对物体长度进行了n 次测量,得到n 个数n x x x ,,,21 。
现在
要确定一个量x ,使之与测得的数值之差的平方和最小.x 应该是多少?
九、(10 分)设]4,0[),(∈=x x f y 的图像如下图所示,其中A(0,1),
B(2,1-),C(4,1),(1)求出⎰=x
x x f x F 0
d )( )(的表达式;(2)由
]4,0[),(∈=x x f y 的图形特征画出⎰
=
x
x x f x F 0
d )( )(的图形。
2009级第一学期微积分A 期终考试试卷参考答案
一、填空题(共15分,每小题3分)
1. 21e +;2. 2
30b ac -<;3. 1/2 ; 4.)2,2(,
2333-; 5.1,sin ,cos ===z t y t x
二、选择题(共15分,每小题3分)
1.( C ).2.( C ).3.( B ).4.( B ).5.( C ). 三、(共14分,每小题7分)按要求求下列函数的导数
1.
4
ln 211cos 1
arcsin 1ln 24
022
24
0π
π
π
-=+--
=
=
==
=y x x y x y
y x x y
e dx
dy .
2. t e te e e x y dx dy t t t t t t -=-=''=--12 ,3
322222)
1()23()1(1)1()1(2t e t e t t e t e x d y d t t t t --=-⋅-+-=-. 四、(10分)解:(1)由⎪⎩⎪⎨⎧==3
2cx
y x y 得交点)1
,1(),0,0(2c
c ,依题意有
3
2
||c 10
32=
-⎰
dx cx x ,得:21=c 。
(2)35
64)41
(2
64π
π=
-=
⎰
dx x x V x 。
五、(14分,每小题7分) 按要求求解下列各题 1.已知1sin d lim 0
2
0=-+⎰
→x
bx t t
a t x
x ,试求b a ,。
2. (答案:见教材上册P246例6.33) 解:当1≠p 时,
⎪⎩
⎪⎨⎧>-<∞+=
-=∞+-∞+⎰
1
,111,1)(ln )(ln 1
212
p p p p x dx x x p p
当1=p 时,
⎪⎩
⎪⎨⎧>-<∞+=
=∞+∞+⎰
1
,111,)
(ln 1
22
p p p dx x x
六、(8分) (答案:见教材上册P326例7.42)
解:k dx x f a ==
⎰
-2
2
0)(2
1
,,,2,1,02
cos
2
1
2cos )(2
1
2
2
2
===
=
⎰
⎰
-n dx x
n k dx x n x f a n ππ ⎪⎩⎪⎨⎧==
=
⎰
⎰
-为偶数
为奇数
n n n k dx x n k dx x n x f b n ,0,22sin 2
1
2sin )(2
12
2
2
πππ
从而得)(x f 的Fourier 展开式为
)2
5sin 5123sin 312(sin 22)( ++++=
x x x k k x f ππππ 七、(7分) (答案:下册P21例1.22)
解:设所求平面的一个法线向量为 ),,(C B A n =。
因)2,0,1(21--=M M 在所求平面上,它必与n 垂直,所以有 02=--C A (1) 又因所求的平面垂直于已知平面0=++z y x ,所以又有 0=++C B A (2) 由(1),(2)可得 C B C A =-=,2
由平面的点法式方程可得 0)1()1()1(=-+-+-z C y B x A 可得平面方程 02=--z y x 。
八、(7分)解:令()()()()2
2
22
1n x x x x x x x f -++-+-= ()()[]n x x x nx x f ++-='212
则令()为驻点n
x x x x f n
++=
⇒=' 100
()020>=''n x f ()的极小值点点为x f x 0∴。
n
x x x n
++∴ 1应为
九、(10 分)解:由图可得 ⎩
⎨
⎧∈-∈-=]4,2[,3)
2,0[,1)(x x x x x f ,从而有
⎪⎩⎪⎨⎧∈-+-∈-==⎰⎰⎰⎰]4,2[)3()1()2,0[,)1(d )( )( 2 2 0 0
0 x dx x dx x x dx x x x f x F x x x
⎪⎪⎩⎪⎪⎨⎧∈+-∈-=⎪⎪⎩
⎪⎪⎨⎧∈-+-∈-=]
4,2[,432
)
2,0[,
2
]4,2[,|)32(|)2()2,0[,|)2(2
2
22
20202x x x x x x x x x x x x x x x
x
列表讨论如下: 图略。