3 选址模型及应用
选址模型及应用
略进行处理,避免模型过拟合少数类别。
模型参数的灵敏度分析
参数范围确定
确定每个参数的取值范围,避免超出有效范围的设置对模型性能 的影响。
参数相关性分析
分析参数之间的相关性,找出参数之间的相互影响关系,避免多 重共线性的存在。
网格搜索与交叉验证
通过网格搜索和交叉验证的方法,寻找最优参数组合,提高模型 性能。
误差分析
对模型预测结果进行误差分析,找出误差来源,为优化模型提供依据 。
数据质量对模型的影响
数据清洗
01
对数据进行预处理,去除异常值、缺失值和重复值,提高数据
质量。
数据特征选择
02
根据实际需求,选择与目标变量相关性强、具有代表性的特征
,避免冗余和无关特征对模型的影响。
数据分布与不平衡性
03
关注数据分布是否平衡,对于不平衡的数据集,采取合适的策
06
总结与展望
选址模型的发展趋势与挑战
精细化选址
随着大数据和人工智能技术的发展,选址模型正朝着更精细化的方向发展。例如,通过分 析用户行为数据,可以更准确地预测消费者的购买意向和需求,从而指导选址决策。
多目标决策
传统的选址模型往往只考虑单一目标,如最大化利润或最小化成本。而随着商业环境的复 杂性和不确定性增加,多目标决策变得越来越重要。例如,在选址过程中,可能需要同时 考虑销售量、成本、库存等多个方面。
早期选址模型
早期的选址模型主要基于 经验和主观判断,如商圈 分析、人口统计等。
现代选址模型
随着计算机技术的发展, 现代选址模型开始引入数 学和运筹学方法,如线性 规划、整数规划等。
未来选址模型
未来选址模型将更加注重 数据分析和机器学习技术 的应用,以实现更加精准 的预测和决策。
消防站选址
消防队选址模型的建立与分析李志坚郑钢锤孟宪宇本文就给定的城市交通图,对城市消防站三类选址问题进行了探讨,并分别建立了相应模型,较好的解决了消防队选址问题。
对解决目前各个城市消防站增建选址问题有一定指导意义。
模型Ⅰ:提出了一个完整的消防队选址评估模型。
通过对不同影响因素的分析,利用加权方式平衡了防火单位差别和道路差别。
根据选址问题的特点和要求,在时间最短的基础上,构造了火灾损失最小的数学模型。
把Floy-Warshall算法引入到该模型的求解中,顺利解决了求防火单位最短距离问题。
通过计算机编程,求得了模型的最优解,验证了模型的正确性。
实例求解表明,该模型可以有效、快速地求得消防队选址问题的全局最优解。
模型Ⅱ:在对模型Ⅰ求得的结果充分分析的基础上,将模型进行了合理的简化。
顺利解决了消防队的数目扩大到两个时变量过多模型求解困难的问题。
模型Ⅲ:综合模型Ⅰ与模型Ⅱ,通过分阶段选址,提出了改进的模型,顺利解决了新增消防站选址问题。
关键词:消防站选址最短路Floy-Warshall算法(一)问题重述1.1 基本情况专职消防队是指在城市新区、经济开发区、工业集中区及经济较为发达的中心乡镇,根据《中华人民共和国消防法》,按照质量建队的要求,建立的承担区域性火灾扑救任务的市办、县办专职的消防队。
消防队的任务是在发生火灾时及时赶到火灾现场,扑救火灾,抢救人的生命和重要物资。
因此消防站的选址一定要科学合理,在火灾发生时及时尽快赶到火灾现场,减小损失。
1.2 问题的由来总体来说全国大部分城市,消防站布点少,保护面积过大,如规划前广州市消防站所服务的最小责任区达11.8平方公里,最大责任区面积达700平方公里。
从2001年的统计资料看,全国266个地级以上城市应有公安消防站2655个,实有1548个,欠账41.7%。
不少城市已建的消防站责任区保护面积过大,难以满足消防车5min到达责任区边缘的要求,有些地区,甚至连一个消防站都没有。
第二章选址模型及应用ppt课件
6 7
5
Y,
4
千 米
3
2
1
X,千米
X轴方向的中值计算
需求点
7 5 4 6 1 3 2
2 3 6 1 4 5 7
沿x轴的位置 从左到右 1 1 2 3
5 5+6=11 5+6+3=14
3
4
5 从右到左
5
7
4
7+3=10
3
7+3+2=12
3
7+3+2+1=13
2
7+3+2+1+3 =16
1
1
y轴方向的中值计算
第二章 选址模型及应用
一、选址问题中的距离计算 二、连续点选址模型 三、离散点选址模型
一、选址问题中的距离计算
a.选址模型中的距离问题 折线距离 直线距离
b.直线上商店选址简单模型示例
二、连续点选址模型
交叉中值模型
目标函数为
n
n
T w jd j w j x d xjy d yj
集合覆盖模型 集合覆盖模型的目标是用尽可能少的设施去覆 盖所有的需求点。
三、离散点选址模型
案例3:假定某地有八个小区,每个小区L公里内至少有 一个幼儿园。记第i个小区的适龄入园儿童为di,幼儿 园的选址为任一小区(即每一个小区都可以建幼儿园), 建立的第j个幼儿园能容纳的儿童数量为cj,规定目标 为满足所有小区入园儿童的需要,且建立的幼儿园数量 最少。
需求点
6 7 5 4 3 2 1
1 2 3 4 5 7 6
沿y轴的位置 从上到下 7 6 5 4
3
2 2+5=7 2+5+6=13 2+5+6+3
5_2_选址模型及应用.pptx
总成本 外向运输成本
原料 产地
内向运输成本
市场
搬运成本
搬运成本
选址模型的分类
在建立一个选址模型之前,需要清楚以下几 个问题:
➢ 选址的对象是什么; ➢ 选址的目标区域是怎样的; ➢ 选址目标和成本函数是什么; ➢ 有什么样的一些约束。
被定位设施的维数及数量
根据被定性设施的维数可以分为体选址、面 选址以及线选址、点选址。如果问题的约束 条件或者参数随着时间改变,那么这个选址 问题就成为带有“时间维”的四维选址问题;
选址模型及应用
选址在整个物流系统中占有非常重要的地位, 主要属于物流管理战略层的研究问题。选址 决策就是确定所要分配的设施的数量、位置 以及分配方案;
这些设施主要指物流系统中的节点,如制造 商、供应商、仓库、配送中心、零售商网点 等;
就单个企业而言,它决定了整个物流系统及 其他层次的结构。
设施数量与库存、运输成本之间的关系
选址问题的早期研究
地租出价曲线
杜能认为,任何经济开发活动能够支付给土地 的最高地租或利润是产品在市场内的价格与产 品运输到市场的成本之差。
价格-运输成本=利润=地租
奶类
蔬菜
谷物
韦伯的工业分类
生产类型
失重
生产过 程之前
生产过 程之后
原料 产地
选址 市场
增重 不增不失
胡佛的递减运输费率
运输费率随着距离的增加,增幅下降。如果运输成本 是选址的主要决定因素,要使内向运输成本与外向运 输的总成本最小,位于原料产地和市场之间的设施必 然可以在这两点之中找到运输成本最小的。
根据选址设施的数量,可以将选址问题分为 单一设施选址问题和多设施选址问题。
➢ 单一设施选址无需考虑竞争力、设施之间需求的 分配、设施成本与数量之间的关系,主要考虑运 输成本,因此,单一设施选址问题相比多设施选 址问题而言,是比较简单的一类问题。
物流系统规划与设计3-选址模型
2012年6月28日星期四
5
4、选址问题中的距离计算
选址问题模型中,最基本的一个参数是各个节
点之间的距离。 一般采用两种方法来计算节点之间的距离:一 种是直线距离,也叫欧几里得距离(Euclidean Metric);另一种是折线距离(Rectilinear Metric),也叫城市距离(Metropolitan Metric)。
min Z
n i 1
wi xi x s yi y s
2
2 1/ 2
这是一个双变量系统,分别对xs和ys进行求偏微分,并且 令其为零,这样就可以得到两个微分等式。应用这两个等 式分别对xs和ys进行求解,即可以求出下面的一对隐含有 最优解的等式:
2012年6月28日星期四
2012年6月28日星期四
11
其相应的目标函数为:
Z
w x
i i 1
n
i
xs yi ys
式中:
——与第i个点对应的权重(例如需求); wi x i ,y i ——第i个需求点的坐标; x s ,y s ——服务设施点的坐标;
n
——需求点的总数目。
在这个问题里面,最优位置也就是由如下坐标组成的点: x s 是在x方向的对所有的权重的中值点; y s 是在y方向的对所有的权重的中值点。 考虑到 x s ,y s 两者可能同时是惟一值或某一范围,最优的 位置也相应的可能是一个点,或者是线,或者是一个区域。
2012年6月28日星期四 12
例子:报刊亭选址 一个报刊连锁公司想在一个地区开设一个新的报刊零售点, 主要的服务对象是附近的5个住宿小区的居民,他们是新 开设报刊零售点的主要顾客源。下图笛卡儿坐标系中确切 地表达了这些需求点的位置,下表是各个需求点对应的权 重。这里,权重代表每个月潜在的顾客需求总量,基本可 以用每个小区中的总的居民数量来近似。经理希望通过这 些信息来确定一个合适的报刊零售点的位置,要求每个月 顾客到报刊零售点所行走的距离总和为最小。 解: 由于考虑的问题是在一个城市中的选址问题,评价是,使 用城市距离是合适的,交叉中值选址方法将会用来解决这 个问题。
物流配送中心网络设计和节点选址
(1)求初始坐标(x0, y0)
54
Xx00
ji15i1a1aj4WVjWVijRxji Rji Xi
i36222552
52.16311 23
2.5 10 2.5 1
1
4
5 i1
4ViRiYi
Y 0 y0
i
ii15114VViVRi Rii RiYi i32632752.525.1238
Wj*aj aj*Wj*xj aj*Wj*yj
0.05
100.0 300.0 800.0
0.075
150.0 1200.0 300.0
0.075
187.5 375.0 937.5
0.075
75.0 450.0 300.0
合计 112.5 900.0 900.0
625.0 3225.0 3237.5
一个例子
… 5.057677 5.057677
总运费 (元) 21471.003 21431.216 21427.11 21426.141 21425.687
… 21425.136 21425.136
18
一个例子
X坐标 Y坐 资源量或 至网点的
j
X 标 Y 需求量Wj 运费率 aj
A1
3
8
2000
0.05
A2
8
2
3000
0.05
B3
2
5
2500
0.075
B4
6
4
1000
0.075
B5
8
8
1500
0.075
一个例子
# 9 8 7
6 d3(2,5)
5
物流设施选址问题模型
为止。
鲍摩二、 鲍摩-瓦尔夫选址模型 1、问题背景
从m个工厂经过n个配送中心向k个用户输送货物。问题是,各个工厂向哪 些配送中心运输多少商品?各个配送中心向哪些用户发送多少商品?考虑 工厂 到配送中心、配送中心到用户的运费、运量,配送中心的固定费用, 配送中心的单位运量的变动费用,变动成本与运量之间不符合线性关系, 所以引进指数p,满足条件o<p<1
成本为711500元。
2.隐枚举法 隐枚举法
• 方法之一是设置目标函数的过滤值; • 方法之二是对原问题的目标函数及约束条 件进行适当的调整处理,找出目标函数值 增大的规律,以大大减少求解工作量。
一、 重心法模型
Y
设Cj为物流设施至各需求点的运费, 则总运费表示为:
H =
●
● (x3 ,y3)
∑C =
• 设工厂i 向配送中心j 运送的货物量为Xij,设配送中心j 向分销店k 的 配送量为Yjk。 • 设0-1变量Tm,St分别为工厂和配送中心的使用情况,定义如下:
1,使用工厂m Tm = 0,不使用工厂m
1,使用配送中心 St = 0,不使用配送中心
t t
2 3 显然,当Tm=0时必有 x mj = 0 ( j = 1,, )
由以上条件可以列出目标函数如下: 由以上条件可以列出目标函数如下: • Zmin=T1*(800*X11*S1+1000*X12*S2+1200*X1 3*S3)+T2*(700*X21*S1+500*X22*S2+700*X23* S3)+T3*(800*X31*S1+600*X32*S2+500*X33*S3 )+T4*(500*X41*S1+600*X42*S2+700*X43*S3)+ T5*(700*X51*S1+600*X52*S2+500*X53*S3)+ • S1*(40*Y11+80*Y12+90*Y13+50*Y14)+S2*(70* Y21+40*Y22+60*Y23+80*Y24)+S3*(80*Y31+30* Y32+50*Y33+60*Y34)+ • 35000*T1+45000*T2+40000*T3+42000*T4+400 00*T5+ • 40000*S1+20000*S2+60000*S3
第三章选址模型及应用
3.1 选址的意义 3.2 选址决策的影响因素 3.3 选址模型的分类 3.4 选址中的距离计算 3.5 选址模型 3.6 实例分析
FP&D
3.1 选址的意义
➢ 选址在整个物流系统中占有非常重要的地位,主要属于物 流管理战略层的研究问题。 ➢ 选址决策就是要确定所要分配的设施的数量、位置以及分 配方案。这些设施主要指物流系统中的节点,如制造商、供应 商、仓库、配送中心、零售商网点等。
距离
权重
2
1
3
7
1
3
2
3
4
6
总和 2 21 3 6 24 56
需求点 1 2 3 4 5
位置B(4,3)
距离
权重
3
1
2
7
0
3
3
3
5
6
总和 3 14 0 9 30 56
交叉中值模型
FP&D
3.5 选址模型
连续点选址问题指的是在一条路径或者一个区域里面的任何位置都可以 作为选址的问题。 III. 精确重心法(Exact Gravity)
需求点 1 2 3 4 5
x坐标 3 5 4 2 1
y坐标 1 2 3 4 5
权重 1 7 3 3 6
交叉中值模型
FP&D
3.5 选址模型
首先,确定中值,
W
1 2
n
wi
i 1
1 (1 7 3 3 6) 10 2
需求点 沿x轴的位置
∑w
从左到右
5
1
6
4
2
6+3=9
1
3
6+3+1=10
选址模型在物流仓储规划中的应用分析
选址模型在物流仓储规划中的应用分析物流仓储规划是现代物流运作中不可或缺的一环,对于企业来说,选择合适的仓储地点可以大大提高物流运作的效率和成本控制。
而选址模型的应用则可以帮助企业做出理性的决策,在众多候选地点中,找到最优的仓储选址方案。
本文将对选址模型在物流仓储规划中的应用进行分析。
一、什么是选址模型选址模型是一种数学模型,利用多种因素和数据来评估候选地点,并根据预设的目标和约束条件,确定最佳的仓储选址方案。
选址模型一般包括候选地点评估、目标设定、约束条件、决策准则等要素。
二、选址模型在物流仓储规划中的应用1. 评估候选地点选址模型首先需要对候选地点进行评估。
评估候选地点时,需要考虑的因素包括交通便捷度、人力资源、土地成本、市场需求等多个方面。
通过比较这些因素的优劣,可以为后续的决策提供参考。
2. 目标设定在物流仓储规划中,目标设定非常重要。
一般来说,企业的目标是在保证物流效率和降低成本的前提下,选择最佳的仓储选址方案。
因此,在选址模型中,需要设定目标,如最小化仓储运营成本、最大化服务覆盖范围等。
设定明确的目标可以指导后续的模型应用。
3. 约束条件在物流仓储规划中,还需要考虑各种约束条件。
约束条件可以限制候选地点的范围,并对最终选址方案产生影响。
具体的约束条件可能包括政策规定、环境保护要求、交通限制等。
通过合理设置约束条件,可以排除不符合要求的地点,缩小候选范围。
4. 决策准则选址模型的核心是决策准则的建立。
决策准则是根据目标和约束条件,通过对不同因素的权衡,制定出选择最优仓储选址方案的规则。
决策准则的制定可以采用定性分析和定量分析相结合的方法,综合考虑各种因素的重要性和关联性。
三、选址模型的应用案例1. A公司的物流仓储规划A公司是一家快消品制造商,需要在全国各地建立仓储中心,以满足市场需求。
通过选址模型的应用,A公司首先评估了候选地点的交通便捷度、土地成本和人力资源等因素,然后设定了目标,即最小化仓储运营成本。
物流节点选址模型与方法及应用
• 除了这三种基本的单目标决策外,对于有些物 流项目,单独考虑成本、服务和物流量尚不能 满足投资决策者的需要,这时可能要综合考虑 多方面的目标来进行物流设施选址,这时较多 采用多目标决策的方法。
2020/3/1
物流选址模型-Kevin
物流设施选址问题是物流规划中的战略问 题,物流设施一旦建成很难搬迁,如果选址 不当,将付出长期代价。选址问题是物流系 统规划中重要的一步。
2020/3/1
物流选址模型-Kevin
3
一、物流设施选址问题三个阶段:
确定选址目标 地区选择阶段 地点选择阶段
2020/3/1
物流选址模型-Kevin
4
二、物流设施选址问题的类型
B
6
D
2 A
7
8 4
1
6
F 1
3
C
3
E
图4-1 各村之间道路连接状况和距离
2020/3/1
物流选址模型-Kevin
9
问题分析
• 这个问题寻求最优化的原则是保持所有各村运 输总量(吨公里)最小。
• 最直观的求解方法就是分别计算出在6个备选 地点建粮库所对应的总运量,然后选择总运量 最小的备选地点建粮库。
D
350 200 60 0 70 360 1040
E
400 240 120 20 0 270 1050
F
550 360 300 80 210 0 1500
产量
50 40 60 20 70 90
2020/3/1
物流选址模型-Kevin
12
上例中,如果备选地点增加,或者要选择的设 施最优节点增加,那么问题的规模会变得很大, 其计算的复杂性会大大增加。
选址模型资料
选址模型第一部分:选址模型概述选址模型是商业领域中的重要工具,用于评估潜在位置的优劣并确定最佳的经营地点。
它结合了多种因素,包括人口密度、竞争对手、交通便利性和消费者行为等,以帮助企业找到最具潜力的选址方案。
第二部分:选址模型的组成要素1. 人口密度分析人口密度是一个关键指标,可以帮助企业确定潜在客户数量。
一般来说,人口密度越高,销售潜力也越大。
2. 竞争对手分析了解周边竞争对手的数量以及他们的业务规模和定位对选址决策至关重要。
竞争激烈的地区可能需要更具吸引力的优势才能脱颖而出。
3. 交通便利性评估交通便利性对于商业地点的选择至关重要。
一般来说,靠近主要道路、公共交通站点或停车设施的地点更具吸引力。
4. 消费者行为分析了解潜在客户的消费习惯、购物偏好和行为特征可以帮助企业更好地定位自己的目标市场。
第三部分:选址模型的应用案例案例一:零售连锁店选址一家零售连锁店希望在一座新城市扩张业务,通过选址模型分析,确定了一个繁华商圈的空地作为新店的位置。
该地区人口密度高,周围竞争对手较少,同时紧邻公共交通站点,是一个理想的选址方案。
案例二:餐饮连锁店选址一家餐饮连锁店计划在一个旅游景点附近开设新店,经过选址模型的分析,确定了一个靠近景点入口处的位置。
这个地点的交通便利性高,吸引了大量游客,是一个潜力巨大的选址方案。
第四部分:选址模型的发展趋势随着数据科学和人工智能技术的不断发展,选址模型将更加智能化和精细化。
未来,预计会出现更多基于大数据和机器学习的选址模型,为企业提供更准确、更智能的选址决策支持。
结语选址模型作为商业决策的重要工具,能够帮助企业找到最佳的经营地点,提升经营效益。
通过综合考虑人口密度、竞争对手、交通便利性和消费者行为等因素,选址模型为企业提供了科学的选址方案,帮助他们实现商业成功。
选址分析实训报告
一、实训背景随着我国经济的快速发展,企业选址问题日益受到重视。
合理的选址不仅关系到企业的经济效益,还涉及到企业的生存和发展。
本实训旨在通过分析企业选址的多个因素,为企业提供科学的选址建议。
二、实训目的1. 掌握企业选址的基本原则和影响因素。
2. 学会运用选址模型和方法进行实证分析。
3. 培养学生解决实际问题的能力。
三、实训内容1. 企业概况本实训以某家电生产企业为例,该企业主要从事家电产品的研发、生产和销售。
企业规模较大,年销售额约10亿元,员工人数1000余人。
2. 选址因素分析(1)市场因素:市场是企业生存和发展的基础,选址应充分考虑市场需求和潜在市场规模。
(2)成本因素:成本是企业运营的关键,包括土地、劳动力、能源、运输等成本。
(3)政策因素:政策对企业选址具有较大影响,包括税收、补贴、环保等政策。
(4)交通因素:交通便利性直接影响企业的物流成本和效率。
(5)基础设施:基础设施完善程度影响企业的生产和生活。
(6)环境因素:环境质量对企业形象和员工健康有重要影响。
3. 选址模型和方法(1)重心法:以市场需求为中心,计算各选址点的重心,选择重心最近的点作为选址点。
(2)重心法改进:考虑成本因素,计算加权重心,选择加权重心最近的点作为选址点。
(3)线性规划法:在满足一定约束条件下,求选址成本最小化。
(4)网络分析法:分析各选址点之间的物流成本,选择成本最低的选址点。
4. 实证分析根据上述模型和方法,我们对该家电生产企业进行选址分析。
(1)市场因素分析:通过调查和预测,确定目标市场的分布和规模。
(2)成本因素分析:收集土地、劳动力、能源、运输等成本数据,进行成本分析。
(3)政策因素分析:了解国家及地方政府的相关政策,评估政策对企业选址的影响。
(4)交通因素分析:分析各选址点之间的交通距离和运输成本。
(5)基础设施分析:考察各选址点的基础设施完善程度。
(6)环境因素分析:评估各选址点的环境质量。
通过以上分析,我们得出以下结论:(1)市场因素:目标市场主要集中在沿海地区,市场规模较大。
选址模型及应用
目 录
• 选址模型概述 • 选址模型的建立 • 选址模型的优化方法 • 选址模型的实际应用案例 • 选址模型的未来发展方向
01 选址模型概述
定义与分类
定义
选址模型是一种数学模型,用于 确定最优的地理位置或布局方案 ,以实现特定的目标或满足特定 的条件。
分类
根据不同的应用领域和目标,选 址模型可以分为多种类型,如运 输选址模型、设施选址模型、分 配选址模型等。
蚁群优化算法
蚁群优化算法是一种模拟蚂蚁觅食行为的 优化算法,通过模拟蚂蚁的信息素传递过 程来寻找最优解。在选址模型中,蚁群优 化算法可以用于求解组合优化问题。
蚁群优化算法的主要步骤包括初始信息 素分布、蚂蚁路径选择和信息素更新等 。通过蚂蚁之间的相互协作和信息素传 递,蚁群优化算法能够找到最优解。
粒子群优化算法
粒子群优化算法是一种基于群体行为的优化算法,通过模拟鸟群、鱼群等生物群 体的行为规律来寻找最优解。在选址模型中,粒子群优化算法可以用于求解连续 或离散的多目标优化问题。
粒子群优化算法的主要步骤包括粒子初始化、速度和位置更新、个体和全局最优 解的更新等。通过粒子之间的相互协作和竞争,粒子群优化算法能够快速收敛到 最优解。
03 选址模型的优化方法
遗传算法
遗传算法是一种基于生物进化原理的优化算法,通过模拟生 物进化过程中的遗传和变异机制,寻找最优解。在选址模型 中,遗传算法可以用于求解多目标、多约束条件下的最优解 。
遗传算法的主要步骤包括编码、初始种群生成、适应度函数 设计、选择操作、交叉操作和变异操作等。通过不断迭代, 遗传算法能够逐渐逼近最优解。
选址模型的重要性
01
02
03
提高效率
通过合理的选址,可以减 少运输成本、提高物流效 率,从而降低整个供应链 的成本。
第3章选址模型及应用.pptx
费 用
TCA=CF+CV·X
A
TCB=CF&+CV·X
M
N
数量
• (1) 在M点A、B两方案仓储成本相同,该点仓储量为QM,则:
QM
CFB CVA
CFA CVB
(1200000 600000)元 (48 25)元 / 件
=2.61
万件
(2) 在N点B、C两方案仓储成本相同,该点仓储量为QN, 则:
QN
CFC CFB
C VB
CVC
(2400000 1200000)元 (25 12)元 / 件
=9.23
万件
(3) 如按物流成本最低为标准,当仓储量低于2.61万件 时选A址,仓储量在2.6l万件和9.23万件之间时选B方案, 仓储量大于9.23万件时选C址。
2)线性规划法
• 对于多个供应多个需求点和供应点(仓库、工厂、配送中心和销售点)的问题,通常用线性 规划法求解更为方便。可以同时确定多个设施的位置,其目的也是使所有设施的生产运输 费用最小。在相应约束条件下令所求目标函数为最小,即
• 约束条件
•
m
•
wij bj ,
i 1
• 并且全部wij≥0
n
wij ai
j 1
(3-11)
• 目标函数
• • 式中 m ——工厂数量;
mn
Min
Gij wij
i1 j1
(3-12)
•
n ——销售点数;
•
ai ——工厂 i 的生产能力;
•
bj ——销售点j 的需求;
•
Gij——工厂i 生产一单位产品并运到销售点j 的生产加运输总费用;
• 2.3.2 选址问题目标区域的特征
第2章选址模型及应用
22
例2.1 报刊亭选址
• 一个报刊连锁公司想在一个地区开设一个 新的报刊零售点,主要的服务对象是附近 的5个小区的居民。图2-6笛卡尔坐标系表 示了这些小区的坐标。表2-1显示各点的坐 标值和权重(根据各小区的人数确定)。 要求确定报刊亭的位置,使得每个月顾客 到报刊亭所行走的距离总和最小。
23
1 /2
d is(i 1 ) (x i x s(i 1 ))2 (y i y s(i 1 ))2
31
n
w xi i
d i 1 is( i1)
x si
n
wi
d i 1 is( i1)
n
w yi i
d i 1 is( i1)
y si
n
wi
d i 1 is( i1)
(2-11)
(2-12)
8.5 10.63
• 使用式2-13,2-14,带入初值(3,3)得到 (3.26, 3.20)。使用matlab编程,可以求 得最优点是(3.9273,2.9793)。
34
2.5.2 离散点选址模型
• 离散点选址模型是指在有限的候选位置里 面,选取最为合适的一个或者一组位置为 最优方案的模型。
• 分类:
• 基础设施及环境
– 基础设施包括交通设施、通信设施等 – 环境包括自然环境、社会环境(劳动力成本、
素质)
• 竞争对手
– 远离还是靠近?
6
2.2.2 内部因素分析
• 选址决策要与企业的发展战略相适应
– 制造业
• 高技术→高素质 • 劳动力密集→低人力成本
– 商业及服务业
• 便利店:人口密集、面积小 • 超市、批发市场:不需要人口密集、面积大
选址模型及应用(参考资料)讲述
n i xi
n i yi
xs
i 1 n
dis
i
, ys
i 1 n
dis
i
d i1 is
d i 1 is
其中dis
xi
xs 2
yi
ys
2 1/ 2
等式两边都出现了xs和ys,所以通过迭代方法求解 吨—英里—中心
迭代公式
n i xi
n i yi
diRj xi xj yi y j 折线距离、城市距离
选址模型
为设施(工厂、仓库、零售点等)找到一个最 优的位置;
是物流系统设计中的一个重要部分。
在一条线段上的选址问题
s
n
min Z i (s xi ) i (xi s)
i0
is
or
s
L
minZ=0 (x)(s x)dx s (x)(x s)dx
交叉中值模型使用的是城市距离,只适合十 解决一些小范围的城市内的选址问题。
精确重心法,在评价的过程中使用的是欧儿 米德距离,即直线距离,它使选址问题变得 复杂,但是有着更为广阔的应用范围。
n
1/ 2
min Z
i
xi
xs
2
yi
ys
2
i 1
分别对xs和ys进行求偏微分,并且令其为零,得
Minisum目标函数寻求整个设施选址的总和为 最小,目标是优化全部或者平均性能。这种目 标通常在企业问题中应用,所以被叫做“经济 效率性” (Economic Efficiency)。这种 问题也被称作网络上的中值问题。