6-轴心受力构件

合集下载

(轴心)受压构件正截面承载力计算

(轴心)受压构件正截面承载力计算

(2)破坏特征 1)螺旋筋或焊接环筋在约束 核心混凝土的横向变形时产生 拉应力,当它达到抗拉屈服强 度时,就不再能有效地约束混 凝土的横向变形,构件破坏。 2)螺旋筋或焊接环筋外的混 凝土保护层在螺旋筋或焊接环 筋受到较大拉应力时就开裂, 故在计算时不考虑此部分混凝 土。
螺旋箍筋柱破坏情况
2.适用条件和强度提高原理 12(短柱) ; (1)适用条件:①l0 / d ②尺寸受到限制。 注意:螺旋箍筋柱不如普遍箍筋柱经济,一般不宜采用。 根据图7-8 所示螺旋箍筋柱截面 受力图式,由平衡条件可得到
150mm或15倍箍筋直径(取较大者)范围,则应设置复合箍 筋。
a)、b)S内设3根纵向受力钢筋
c)S内设2根纵向 受力钢筋
复合箍筋的布置
7.2 螺旋箍筋轴心受压构件
1.受力分析及破坏特征 (1)受力分析 螺旋箍筋或焊接圆环箍筋能约束混凝土在轴向压力作用 下所产生的侧向变形,对混凝土产生间接的被动侧向压力,
d cor As 01
S
As 01
As 0 S d cor
将式(2)代入式(1),则可得到
2
2 f s As 01 2 f s As 0 S 2 f s As 0 f s As 0 f s As 0 2 2 d cor S d cor S d cor 2 Acor d cor d cor 2 4
态、承载力计算;
2.配有纵向钢筋和螺旋箍筋的轴心受压构件的破坏形 态、承载力计算; 3.稳定系数的概念及其影响因素; 4.核心混凝土强度分析及强度计算;
5.普通箍筋柱、螺旋箍筋柱的配筋特点和构造要求。
7.1 普通箍筋轴心受压构件
1.钢筋混凝土轴心受压柱的分类
普通箍筋柱:配有纵筋 和箍筋的柱 (图7-1a)。 螺旋箍筋柱:配有纵筋 和螺旋筋或焊接环筋的 柱,(图7-1b)。 其中:纵筋帮助受压、承 担弯矩、防止脆性破坏。 螺旋筋提高构件的强 度和延性。

轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算
公路规范公式:
0 Nd Nu 0.9( fcd Acor kfsd As0 As fsd )
k —— 间接钢筋的影响系数,混凝土强度C50
及以下时,k=2.0;C50-C80取k=2.0-1.7,中 间直线插入取值。
混凝土 强度
k
≤C50 2.0
C55 C60 C65 C70 C75 C80 1.95 1.90 1.85 1.80 1.75 1.70
例题2:圆形截面轴心受压构件,直径为450mm, 计算长度2.25m, 轴向压力设计组合值Nd=2580kN, 纵筋用HRB335级,箍筋用R235级,混凝土强度等 级为C25。I类环境条件,安全等级二级,试进行构 件的配筋设计。
2.25512 1%
0.45
As1%4 4520 15m 902m
A co r45 420 30 119 m3 2m 99
f s d —— 间接钢筋的强度;
Acor —— 构件的核心截面面积;
A s 0 —— 间接钢筋的换算面积,As0
dcor As01
S

A s 0 1 —— 单根间接钢筋的截面面积;
S —— 间接钢筋的间距;
轴心受压构件正截面承载力计算
6.2 配有纵向钢筋和螺旋箍筋的轴心受压构件 四、 螺旋箍筋轴压构件正截面承载力计算
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件 五、正截面承载力计算 2.截面设计之二(尺寸未知):
如果尺寸未知,则 先假设一个ρ′,令稳定系数φ=1; 求出截面面积A,取整; 重新计算φ,求As′.
例题略。
轴心受压构件正截面承载力计算
6.1 配有纵向钢筋和普通箍筋的轴心受压构件
主要和构件的长细比有关,长细比越大,稳定 系数 越小。

轴心受力构件

轴心受力构件
失稳现象发生在构成构件旳板件
18
第6章 轴心受力构件 第三节 轴心受压构件旳受力性能
2 承载力极限状态旳计算内容 (1)截面强度破坏
(2)构件整体失稳(屈曲)
(3)板件局部失稳(屈曲) 限制受压板件旳宽厚比
19
第6章 轴心受力构件 第三节 轴心受压构件旳受力性能
3 稳定问题旳某些概念 (1)应力刚化效应 拉力提升构件旳弯曲刚度 压力降低 (2)只要构件旳截面中存在受压区域,就可能存在稳定问题 (3)强度问题是应力问题,针正确是构件最单薄旳截面,加大截面 积即可提升构件旳强度,计算以净截面为准 (4)稳定问题是刚度(变形)问题,针正确是构件整体,减小变形 (提升刚度)旳措施都能够提升构件旳稳定性,计算以毛截面为准
➢ 根据截面残余应力旳峰值大小和分布,弯曲屈曲旳方向,将截面 分为a、b、c三类,相应地得到a、b、c三条柱子曲线
44
第6章 轴心受力构件 第七节 规范中实腹式轴压构件弯曲屈曲时整体稳定计算
➢ a类截面临界应力最高,残余应力对临界应力起有利作用或影响 很小,只涉及两种截面: ✓ 绕强(x)轴屈曲时旳热轧工字钢和热轧中翼缘、窄翼缘H型钢 ✓ 热轧无缝钢管
(1)发生弯扭屈曲旳条件 ✓ 截面形式:单轴对称截面 ✓ 失稳方向:绕对称轴失稳。绕非对称轴失稳必然是弯曲失稳 ✓ 原因:形心和剪心不重叠,弯曲时截面绕剪心转动
51
第6章 轴心受力构件 第八节 实腹式轴压构件弯扭屈曲时整体稳定计算
(2)单角钢截面、双角钢组合截面弯扭屈曲旳规范计算措施 ➢ 用换算长细比 (考虑扭转效应)替代弯曲屈曲时旳长细比 查得稳定系数 ,再按下列公式验算杆件旳稳定
42
第6章 轴心受力构件 第七节 规范中实腹式轴压构件弯曲屈曲时整体稳定计算

6钢筋混凝土轴心受拉构件

6钢筋混凝土轴心受拉构件

E c
2Eftk
2
弹性状态时:
N A A
SS
CC
N ( A A )
ES
C
C
塑性状态时:
随着荷载的增加,混凝土受拉塑性变形开始出现。
N (A A )
Es
C
C
——钢筋弹性模量与混凝土变形模量(割线模 E 量)之比。
3
即将开裂时:
混凝土应力等于其开裂强度,并且进入了塑性 发展阶段,其变形模量降低 E'c=0.5Ec
箍 筋:
固定纵筋位置
8
§4.3 轴心受拉构件的裂缝宽度验算
裂缝宽度的计算公 式 平均裂缝间距lcr
Lcr=1.1(2.7c+0.1d/ρte)v
式中 c—最外层纵向受拉钢筋外边缘至受拉区底边的距离 (mm),当c<20时,取c=20;
d—钢筋直径( mm)
ρte—按有效受拉混凝土截面面积计算的纵向受拉钢筋
Nu= As fy
5
§4.2 轴心受拉构件的承载力计算 一、计算公式
N Nu= As fy N ––– 轴向拉力的设计值 N u ––– 轴向受拉构件的极限承载力 As ––– 纵向受拉钢筋截面面积
6
fy ––– 钢筋抗拉设计强度值
注: 对于轴心受拉和小偏心受拉构件而言,当 fy>
300N/mm2时,仍按300N/mm2取用; 目的:为了控制受拉构件在使用荷载下的变形和 裂缝开展;
配筋率 v—纵向受拉钢筋表面特征系数
9
最大裂缝宽度ωmax
2.7
ss
(2.7c
0.1
d
)v
max
E
s
te
式中 ψ—裂缝间纵向受拉钢筋应变不均匀系数

轴心受力构件

轴心受力构件

轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。

一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。

采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。

采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。

二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。

②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。

③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。

2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。

1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。

由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。

第六章轴向受力构件-受拉构件承载力计算3

第六章轴向受力构件-受拉构件承载力计算3
在工程中,有不少构件同时承受轴向拉力、弯矩和 剪力的作用。轴向力N不仅对正截面承载力有影响,也 对斜截面受剪承载力有影响。在偏心受拉构件的受剪承 载力计算中,必须考虑轴向力的作用。
6.5.3 偏心受拉构件斜截面承载力计算
轴向拉力使斜裂缝裂得更宽,加大了斜裂缝剪承载力降低。
6.5.1 轴心受拉构件
6.5.1.3 算例
[ 例 1] 已 知 某 钢 筋 混 凝 土 屋 架 下 弦 , 截 面 尺 寸
b×h=200mm×150mm , 承 受 的 轴 心 拉 力 设 计 值
N=234kN,混凝土强度等级 C30,钢筋为 HRB335。
求截面配筋。
[解]查表可知: f y 300 N mm 2 ,代入轴心受拉计算公式 得
时,仍应按 300
N mm 2
取用”的要求,取
f
' y

fy
300
N
mm 2
h
400
e 2 e0 as 2 114 40 46mm ;
e'

h 2

e0
as'

400 2
114 40

274mm
6.5.4 算例
代入计算公式得:
As'

Ne f y (h0 as' )
6.5.2 偏心受拉构件正截面承载力计算
6.5.2.3 矩形截面偏心受拉构件正截面承载力计算公式 对小偏拉,应验算: As minbh , As minbh 应注意,对钢筋混凝土小偏心受拉构件,当 fy 大于 300N/mm2 时,取 300N/mm2。
6.5.2 偏心受拉构件正截面承载力计算

钢筋混凝土结构原理6 受压构件

钢筋混凝土结构原理6 受压构件

第6章 钢筋混凝土轴心受力构件正截面承载力计算
当混凝土压应力达到峰值应 外荷载不再增加, 变 , 外荷载不再增加 , 压缩 变形继续增加, 变形继续增加 , 出现的纵向 裂缝继续发展, 裂缝继续发展 , 箍筋间的纵 筋发生压屈向外凸出, 筋发生压屈向外凸出 , 混凝 土被压碎而整个构件破坏。 土被压碎而整个构件破坏。 应力峰值时的压应变一般在0.0025~0.0035之间。 《 规范》 偏于 ~ 之间。 规范》 应力峰值时的压应变一般在 之间 安 全 地 取 最 大 压 应 变 为 0.002 。 受 压 纵 筋 屈 服 强 度 约
(a)轴心受压
(b)单向偏心受压
(c)双向偏心受压
第6章 钢筋混凝土偏心受力构件承载力计算
偏心受压构件的构造要求
1. 混凝土强度等级、计算长度及截面尺寸 混凝土强度等级、 截面形状和尺寸: ⑴截面形状和尺寸:P124 采用矩形截面,单层工业厂房的预制柱常采用工字形截面。 ◆ 采用矩形截面,单层工业厂房的预制柱常采用工字形截面。 圆形截面主要用于桥墩、桩和公共建筑中的柱。 ◆ 圆形截面主要用于桥墩、桩和公共建筑中的柱。 柱的截面尺寸不宜过小,一般应控制在l ◆ 柱的截面尺寸不宜过小,一般应控制在 0/b≤30及l0/h≤25。 及 。 ◆当柱截面的边长在800mm以下时,一般以50mm为模数,边长 当柱截面的边长在 以下时,一般以 为模数, 以下时 为模数 以上时, 为模数。 在800mm以上时,以100mm为模数。 以上时 为模数 ( 2)混凝土强度等级 : 受压构件的承载力主要取决于混凝土强 ) 混凝土强度等级: 一般应采用强度等级较高的混凝土。 度,一般应采用强度等级较高的混凝土。目前我国一般结构中柱 的混凝土强度等级常用C30~C40,在高层建筑中,C50~C60级混 的混凝土强度等级常用 ,在高层建筑中, 级混 凝土也经常使用。 凝土也经常使用。

钢结构轴心受力构件

钢结构轴心受力构件

2. 残余应力影响下短柱的- 曲线
以热扎H型钢短柱为例:
0.3fy
(A)
fy σ=0.7fy
0.3fy 0.3fy
(B)
fy 0.7fy<σ<fy
σ=N/A
fy C
B
fp
A
σr
fy-σr
σr=0.3fy
(C)
fy σ=fy
0.3fy
0
ε
当N/A<0.7fy时,截面上的应力处于弹性阶段。
当N/A=0.7fy时,翼缘端部应力达到屈服点,该点称为有效比例极限fp=fy-r
y
当>fp=fy-r时,截面出现塑性区,应力分布如图。 临界应力为:
t
h
cr
Ncr A
2EI
l2A
Ie I
2E 2
Ie I
(6.3.8)
x
x
t
柱屈曲可能的弯曲形式有两种:沿强轴(x轴)和
沿弱轴(y轴)因此:
b
对x x轴屈曲时:
b
Etx
EIex Ix
2t(b)h2 4
E 2tbh2 4
E
对y y轴屈曲时:
轴心压力N较小
干扰力除去后,恢复到 原直线平衡状态
N增大
干扰力除去后,不能恢复到原直 线平衡状态,保持微弯状态
N继续增大
干扰力除去后,弯曲变形仍然迅 速增大,迅速丧失承载力
第6章轴心受力构件 理想的轴心受压构件(杆件挺直、荷载无偏心、无初始 应力、无初弯曲、无初偏心、截面均匀等)的失稳形式分为:
弯曲失稳 扭转失稳 弯扭失稳
y
N
力学模型 N
v
v1 y z
y
第6章轴心受力构件

第四章轴心受力构件公式整理

第四章轴心受力构件公式整理

第四章轴心受力构件公式整理1.应变公式:轴心受力构件的应变公式描述了受力构件在轴向受力作用下的变形情况。

应变公式主要有以下两种形式:(1)需要计算伸长形变的情况下:在受力过程中,轴心受力构件发生的伸长形变与受力大小和材料的弹性模量有关。

应变公式可表示为:ε=ΔL/L其中,ε表示轴向应变;ΔL表示受力构件发生的伸长形变;L表示受力构件的初始长度。

(2)不需要考虑伸长形变的情况下:在一些情况下,受力构件的长度相对较短,可以忽略伸长形变的影响。

此时,应变公式可以表示为:ε=δ/h其中,ε表示轴向应变;δ表示构件上其中一截面上的位移;h表示受力构件的高度。

2.应力公式:轴心受力构件的应力公式描述了受力构件在轴向受力作用下的应力分布情况。

应力公式主要有以下两种形式:(1)线性弹性应力公式:在弹性阶段,应力与应变成正比,最常用的应力公式是线性弹性应力公式:σ=E*ε其中,σ表示轴向应力;E表示受力构件材料的弹性模量;ε表示轴向应变。

(2)线性弹塑性应力公式:在考虑弹塑性情况下,应力与应变的关系不再是线性的。

此时,应力公式可以表示为:σ=σe+σp其中,σ表示轴向应力;σe表示弹性应力;σp表示塑性应力。

3.弯矩公式:轴心受力构件在受到弯矩作用时,会引起构件的弯曲变形。

弯矩公式描述了轴心受力构件在弯矩作用下的变形情况。

弯矩公式主要有以下几种形式:(1)切线法公式:根据切线法,弯曲截面上的任意一点都受到一个弯矩的作用。

弯矩公式可以表示为:M=σ*S其中,M表示弯矩;σ表示轴向应力;S表示截面的静矩。

(2)一阶弹性理论公式:在一阶弹性理论中,构件的截面仍然平面,但允许在截面平面上有变形。

弯矩公式可以表示为:M=σ*I/y其中,M表示弯矩;σ表示轴向应力;I表示截面的惯性矩;y表示截面上任一点到中性轴的距离。

(3)符合木尔斯定理的公式:木尔斯定理适用于构件截面受平面弯矩时产生的应力。

弯矩公式可以表示为:M=W*y/I其中,M表示弯矩;W表示截面上的轴向力;y表示截面上任一点到中性轴的距离;I表示截面的惯性矩。

同济大学课件-钢结构设计原理

同济大学课件-钢结构设计原理

钢结构基本原理及设计
6.3.3 力学缺陷对弯曲屈曲的影响
1.残余应力的产生与分布规律
(1)残余应力产生 热轧H型钢 (2)
火焰切割边钢板焊
接H型钢 (3)量测残余应力 分割法、钻孔法
钢结构基本原理及设计
热轧的宽翼缘工字钢(H型 钢),翼缘宽度较大,热轧后冷 却过程中,翼缘两端由于其暴露 于空气中的面积较翼缘与腹板交 接部分为多而冷却较快, 腹板中间部位则因厚度较薄 而冷却较快,翼缘与腹板交接部 位冷却收缩变形受到先冷却部分 的约束而出现残余拉应力,先冷 却部分则出现残余压应力。
钢结构基本原理及设计
欧拉公式
N cr E I cr 2 A l A 2 2 2 E E E 2 2 2 i 2 l l i2
其中,
2 EI 2 EI 2 EA N cr 2 2 2 (l ) l0 2
考虑剪切影响?
i
分岔屈曲后,结构只能在比临界荷载低的荷载下才能维 持平衡位形。承受轴向荷载的圆柱壳,承受均匀外压的球壳都 呈不定分岔屈曲形式。长细比不大的圆管压杆与圆柱壳很相似, 薄壁方管压杆亦有指表现为不稳定分岔屈曲。 P
v
钢结构基本原理及设计
(3)跃越屈曲
结构以大幅度的变形从一个平衡位形跳到另一个平衡 位形。 铰接坦拱和油罐的扁球壳顶盖都属于这种失稳情形。 在发生跃越后,荷载一般还可以显著增加,但是其变形大 大超出了正常使用极限状态,显然不宜以此为承载能力的 极限状态。
钢结构基本原理及设计
第6章 轴心受力构件
§6-1 §6-2 §6-3 §6-4 §6-5 §6-6 §6-7 §6-8 构件的应用和截面形式 构件的强度和刚度 轴心受压构件的整体稳定 实际轴心受压构件整体稳定的计算 轴心受压构件的局部稳定 实腹式轴心受压构件的截面设计 格构式轴心受压构件 柱头、柱脚

轴心受力构件的概念及其类型

轴心受力构件的概念及其类型

轴心受力构件的概念及其类型轴心受力构件是工程结构中常见的一种构件形式,它由多个轴心受力元件组成,能够承受内力、外力和变形。

轴心受力构件广泛应用于建筑、桥梁、机械等各种领域,具有结构简单、强度高、稳定可靠等特点。

本文将详细介绍轴心受力构件的概念、分类、设计原则和应用领域。

一、概念介绍轴心受力构件是指由一根或多根轴向受力的线材、板条、形状复杂的截面、系统部件等构成的构件。

轴心受力构件通常具有良好的轴向力传递能力,能够在内力作用下产生轴向应变和轴向应力。

在设计中,轴心受力构件通常通过选取适当的截面形状和尺寸来满足强度、刚度和稳定性的要求。

二、类型分类根据构件的材料和截面特点,轴心受力构件可以分为以下几种类型:1.线材构件:线材构件通常由圆钢、角钢、工字钢等线材形成。

这种构件截面形状简单,常用于承受拉力和压力。

2.板条构件:板条构件通常由薄板和矩形截面钢材构成,如钢板、钢带等。

板条构件适用于承受弯曲力、剪切力和压力。

3.有孔构件:有孔构件通常应用于承受剪切力和扭矩,如圆孔、槽孔等形状的构件。

4.混凝土构件:混凝土构件通常由钢筋和混凝土组成。

这种构件在承受压力和弯曲力时具有良好的性能。

5.复合构件:复合构件由不同材料组成,可以充分发挥各种材料的特点以及各自的优势。

三、设计原则在轴心受力构件的设计过程中,需要遵循以下原则:1.合理选材:根据结构的要求,选择合适的材料,考虑强度、刚度、稳定性等因素。

2.合理选截面:根据内力的特点和作用方式,选择合适的截面形状和尺寸。

3.合理分布内力:在设计中,应尽量合理分配内力,避免集中在某一截面或某一部位,提高构件的整体性能。

4.考虑边界条件:结构系统的边界条件对构件的应力分布和变形有重要影响,应在设计中充分考虑。

5.考虑构件的连接方式:在设计中需考虑构件之间的连接方式和连接强度,保证构件的力学性能。

四、应用领域轴心受力构件广泛应用于各个工程领域,包括建筑、桥梁、航空航天、交通运输、能源等。

建筑结构——轴心受力构件计算

建筑结构——轴心受力构件计算

求出初选截面面积及回转 ixT和iyT 。
A N
f
ixT
l0 x
(21.9) (21.10)
ixT
l0 x
(21.11)
b.根据 A,ixT和iyT 在型钢表中选一适当的型钢截面。
(2) 组合截面 如果在型钢表中不能够找到比较适当的规格时,可采用组合截面。
a. 初定截面轮廓尺寸 h ixT
1
b iyT
表21.1
表21.2
(4)屈曲分析 a. 如(图21.7)所示两 端 铰支的理想细长压杆,当N力较小时,杆件只有
轴心压缩变形,杆轴保持平直。这时如有外力F干扰,使它微弯,当F力撤去 后,杆件又恢复原来的直线状态,这时杆件处于稳定的平衡状态。
b. 随着N力逐渐加大到某一数值时,如有外力F干扰,杆件微弯,撤除 F力后,杆件仍保持微弯状态,不再恢复到原来的直线状态。这种平衡状态 叫随遇平衡。
l0
2EI l
l0 l , 称为计算长度系数。其值见表21.3
(21.5)
表21.3
1.实际轴心受压构件的实用计算方法
(1)柱子曲线
轴心受压杆件失稳时临界应力与cr 长细比
之间的关系曲线称为
柱子曲线,《钢结构设计规范》将柱子曲线归纳为a,b,c,d四组。 详见表21.4
(本表只列出常用的a、b、c三种类型)。
2C1.3 轴心受力构件
1.轴心受力构件的强度 (1)概述
承载能力是以截面的平均应力达到钢材的屈服强度为极限状态。当构 件截面有削弱时,截面的应力分布不再是均匀的,如图(21.4a)
图21.4 有孔洞拉杆的截面应力分布
构件孔洞附近有应力集中现象。但最后截面上各点的应力均可达到屈服强度,如

轴心受压构件的计算

轴心受压构件的计算

轴心受压构件的计算
2)材料强度等级
混凝土强度等级对受压构件的承载力影响较 大,为了减小构件的截面尺寸,节省钢材,宜采 用强度等级较高的混凝土,如C25、C30、C35、 C40等。对于高层建筑,必要时可采用更高强度等 级的混凝土。
轴心受压构件的计算
3)纵向钢筋
柱中纵向受力钢筋能够协助混凝土承受压力,减小构件的截 面尺寸;承担偶然偏心等产生的抗应力;改善混凝土的变形能力, 防止构件发生突然的脆性破坏和增强构件的延性;减小混凝土的收 缩和徐变变形。柱中纵向受力钢筋的配置应符合下列规定:
轴心受压构件的计算
图4-4 螺旋箍筋柱的计算简图
轴心受压构件的计算
如图4-4(c)所示,根据水平力平衡可得
2
2 fyv Assl sdcor
(4-4)
式中,fyv 为间接钢筋的抗拉强度设计值;Assl 为螺旋式或焊
件截面面积,当纵向钢筋配筋率大于3%时,A应用(A-A′s)代 替;A′s为全部纵向受压钢筋的截面面积。
轴心受压构件的计算
图4-1 箍筋和拉筋的形式
轴心受压构件的计算
图4-2 配置普通箍筋的筋轴心受压构件
轴心受压构件的计算
(1)截面设计。已知轴心压力设计值N,材料强 度设计值 fc、f′y,构件的计算长度 l0,求构件截面面 积 A 或 bh及纵向受压钢筋面积A′s。
轴心受压构件的计算
图4-3 螺旋箍筋柱截面的核心混凝土
轴心受压构件的计算
(2)正截面受压承载力计算。根据螺旋箍筋柱破坏
时的特征,其正截面受压承载力的计算简图如图4-4(a)
所示,根据图4-4(a)竖向力的平衡条件,并考虑与偏
心受压构件承载力计算具有相近的可靠度后,可得到式

06+钢筋混凝土轴向受力构件承载力计算

06+钢筋混凝土轴向受力构件承载力计算

① 纵向钢筋
纵筋直径与根数:
通常采用 12~32mm, 直径宜粗不宜细,根数宜少不宜多,保证对称配置。
方形和矩形截面柱中纵向受力钢筋不少于4根, 圆柱中不宜少于8根且不应少于6根。 净距≥50mm, 中距≤300mm
配筋率:0.8%~2%
A 100% s bh
② 箍筋 箍筋的作用是为了防止纵筋压屈和保证纵筋的正确位 置。在受压构件截面周边,箍筋应做成封闭式,但不可采 用有内折角的形式。 末端做成135°弯钩, 平直段长度≥10d
例6.2 已知轴心受压构件, 截面尺寸b×h=300mm×300mm, 已配置4φ 18的HRB335级钢筋, 混凝土为C20, 柱的计算长度 l0=3.9m, 计算该柱能承受的轴向压力设计值N。
解: 查附表1、附表3、附表6得 ⑴ 验算纵筋配筋率
fc 9.6 N mm2 , f y 300 N mm2 , A 1017mm2 s
满足要求!
2 dcor 4402 152053mm2 A 6872.6mm2 Acor 4 s 4
由轴心受力平衡条件, 其正截面 受压承载力:
⑵ 承载力计算 考虑到构件可靠度的调整系数0.9 及高强混凝土的特性, 《混凝土结构 设计规范》规定采用下列公式计算配 有螺旋式(或焊接环式)间接钢筋柱 正截面受压承载力:
s N ≤ 0.9 fc Acor f y A 2 f y Ass0 dcor Ass1 间接钢筋的换算截面面积: Ass0 s 2 dcor 构件的核心截面面积: Acor 4
混凝土C25<C50, α=1.0
由公式(6.2)得:
例6.3 某展示厅内一根钢筋混凝土柱, 按建筑设计要求截 面为圆形, 直径不大于500mm。该柱承受的轴心压力设计值 N=4500kN, 柱的计算长度l0=5.4m, 采用C25混凝土, 纵筋采用 HRB335, 箍筋采用HPB235。试按螺旋箍筋设计该柱。

第三章(二)混凝土轴心受力构件承载力

第三章(二)混凝土轴心受力构件承载力
5.1.2 混凝土
混凝土强度等级对受压构件的抗压承载力影响很 大,特别对于轴心受压构件。为了充分利用混凝土承 压,节约钢材,减小构件截面尺寸,受压构件宜采用 较高强度等级的混凝土,一般情况下受压构件采用 C20及C20以上等级的混凝土。
第6章 钢筋混凝土受压构件承载力计算
5.1.4 箍筋
1. 作用:固定纵向钢筋,给纵向钢筋提供侧向支点,防
f
' sd
'
1
2
3. 影响因素:长细比、柱的初始挠度、竖向力的偏心有关,混 凝土强度等级、钢筋强度等级及配筋率对其影响较小。
短柱:=1.0
长柱: … l0/i (或l0/b) 查表
I i=
A
l0 ––– 构件的计算长度,与构件端部的支承条件有关。
两端铰
1.0l
一端固定,一端铰支 0.7l 实际结构按
2、构件核心截面积应不小于构件整个截面面积的2/3。 3、螺旋箍筋的直径不应小于纵向钢筋直径的1/4,且不小
于8mm,一般采用(8~12)mm。为了保证螺旋箍筋的作
用,螺旋箍筋的间距S应满足:
●●SS应应不不大大于于核80心m直m径,且的不dc1or应/5小,于即4S0≤mm;,15 以dco便r 施工。
两端固定
规范规定取值 0.5l
一端固定,一端自由 2.0l
❖ 稳定系数
§4.2 配有纵向钢筋和普通箍筋的轴心受压构件
四、 正截面承载力计算 《混凝土规范》规定配有纵向受力钢筋和普通箍 筋的轴心受压构件正截面承载力计算式为
N 0.9
fc A
f
' y
As'
φ—轴心受压构件稳定系数,附表4-28 稳定系数φ 与柱的长细比 l0/b有关。 普通箍筋柱的正截面承载力计算分截面设计和强 度复核两种情况。

第6章-受压构件的截面承载力-自学笔记

第6章-受压构件的截面承载力-自学笔记

第6章受压构件的截面承载力概述钢筋混凝土柱是典型的受压构件,不论是排架柱,还是框架柱(图6-1)在荷载作用下其截面上一般作用有轴力、弯矩和剪力。

图6-1 钢筋混凝土结构框架柱内力受压构件可分为两种:轴心受压构件与偏心受压构件,如图6-2所示。

(a) 轴心受压(b) 单向偏心受压(c) 双向偏心受压图6-2 轴心受压与偏心受压图实际工程中有没有真正的轴心受压构件?实际工程中真正的轴心受压构件是不存在的,因为在施工中很难保证轴向压力正好作用在柱截面的形心上,构件本身还可能存在尺寸偏差。

即使压力作用在截面的几何重心上,由于混凝土材料的不均匀性和钢筋位置的偏差也很难保证几何中心和物理中心相重合。

尽管如此,我国现行《混凝土规范》仍保留了轴心受压构件正截面承载力计算公式,对于框架的中柱、桁架的压杆,当其承受的弯矩很小时,可以略去不计,近似简化为轴心受压构件来计算。

偏心受压构件的三种情况:当弯矩和轴力共同作用于构件上,可看成具有偏心距e0 = M / N的轴向压力的作用,或当轴向力作用线与构件截面重心轴不重合时,称为偏心受压构件。

当轴向力作用线与截面的重心轴平行且沿某一主轴偏离重心时,称为单向偏心受压构件。

就是图6-2b这种情况。

当轴向力作用线与截面的重心轴平行且偏离两个主轴时,称为双向偏心受压构件。

就是图6-2c 这种情况。

§6.1受压构件的一般构造要求6.1.1截面形式及尺寸6.1.2材料强度要求6.1.3纵筋的构造要求6.1.4箍筋的构造要求本节内容较容易,主要是混凝土结构设计规范的一些相关规定,请同学自学掌握。

§6.2轴心受压构件的正截面承载力计算为了减小构件截面尺寸,防止柱子突然断裂破坏,增强柱截面的延性和减小混凝土的变形,柱截面配有纵筋和箍筋,当纵筋和箍筋形成骨架后,还可以防止纵筋受压失稳外凸,当采用密排箍筋时还可以约束核心混凝土,提高混凝土的延性、强度和抗压变形能力。

轴心受压构件根据配筋方式的不同,可分为两种基本形式:①配有纵向钢筋和普通箍筋的柱,简称普通箍筋柱,如图6-5(a)所示;②配有纵向钢筋和间接钢筋的柱,简称螺旋式箍筋柱,如图6-5(b)所示(或焊接环式箍筋柱),如图6-5(c)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 轴心受力构件
2)弹塑性屈曲临界力 p
E C
N
x
N
NE
A
B
i)双模量理论
l

w
y
O
y
加载区-遵循切线模量Et的变化规律 卸载区-遵循弹性模量E的变化规律
N cr
2 ( Et I1 EI 2 )
l
2 0
I1 , I 2-加载,卸载区截面
实验表明,理论值>实验值
对形心惯性矩
第六章 轴心受力构件
轴心受力构件-只受通过构件截面形心的轴向力作用的构件
{
轴心受拉构件 轴心受压构件
载荷:轴向,形心 变形:拉,压 弯曲(失稳)
用于铰接杆系结构中
第六章 轴心受力构件
1.种类与截面型式
{
型钢截面
组合截面
{冷弯薄壁型钢 {
格构式
肢件 缀材 缀板
热轧型钢-工字钢,槽钢,角钢
实腹式-工字型,箱型
h
x
iv)强度刚度稳定性验算,不符合要求,调整尺寸
(连接焊缝受力小,可不验算,焊高4~8mm)
第六章 轴心受力构件
N 600kN
3.8 例题 工字型截面,Q235材料 [ ] 176MPa 试设计截面尺寸并验算 解: 1)假定长细比 ,确定稳定系数 和回转半径 r
y 90, x y / 1.6 56
h0 180
t 10
稳定性系数(查表) x 0.908, y 0.743
6
x
整体稳定性
局部稳定性
600 103 159 MPa [ ] 176 MPa min A 0.743 5080 N
be 240 (10 0.1max ) 10 18 t s
1.00
1.00
xl
0 .2
2
Ix I max
x n ( ) n2 xl
3
4
1.27
1.28
1.08
1.08
1.01
1.01
m
l1 l
n3 n4
0 .6
1
1.07
1.07
1.02 1.02
1.00
1.00
2
3
4
1.08
1.08
1.02
1.02
1.00
1.00
第六章 轴心受力构件
N
Ix
I max
h0 180
6
x
截面积 A h0 2bt 180 6 2 200 10 5080mm2
回转半径 rx I x 88mm, ry I y 51mm
A A
长细比 x l 45, y l 78
rx ry
y
b 200
第六章 轴心受力构件
l 4m
b
y
t
h

x
据 y , x查表5-2得 y 0.669, x 0.861
4 103 ry 44mm y 90 l
4 103 rx 2)初定截面尺寸 截面面积 截面高宽 (表5-4)
A N 600 10 5096mm2 min [ ] 0.669 176
bl h0 b s 40mm, l l 30 15 240
2)加置纵劲肋,横劲肋
l
a (2.5 ~ 3)h0
h0
bl
第六章 轴心受力构件
3.7 截面选型与计算步骤 1)截面选型原则 i)在保证局部稳定性前提下,尽量采用壁薄而宽的截面, 提高整体稳定性和刚度
ii)尽量做到两主轴方向的整体稳定性相等 y x
第六章 轴心受力构件

h 180mm

A 2 A翼 5096 2 2000 6mm h 2t 180 2 10
3)截面验算
y
t 10
b 200
惯性矩 I x 1 h03 2bt ( h0 t )2 3.9 107 mm4
12 2 1 I y (h0 3 2b3t ) 1.3 107 mm4 12
be 240 (10 0.1 ) t s h0
be
t


(10 0.1 )
240
h0
s
30, 30 100, 100
4)圆管截面
D
D
240

100
s

第六章 轴心受力构件
3.6 保证局部稳定性的措施 1) t,
be h0 , t
be
t
30, 30 100, 100

h0
腹板
h0

(25 0.5 )
240
2)箱型截面
翼缘 腹板
be 240 15 t s
s
be
b0
t
b0 240 40 t s
h 0
h0

40
240
s
第六章 轴心受力构件
3)T型截面 翼缘 腹板
h0

(25 0.5max )
240
s
30 64
刚度
max 78 [ ] 150
第六章 轴心受力构件
ii)切线模量理论√

w
N

s
p
s
p c
B
C
w

p c

遵循切线模量Et的变化规律
N cr
2 Et I
l
2 0
2 Et cr 2
Et
( s ) E ( s p ) p
理论值接近实验值
第六章 轴心受力构件
N cr N E
N
x
N
NE
2 EI
2 l0
A
B
l
y
O
欧拉临界应力
y
l0 N E 2 EI 2 E cr E 2 ( , r 2 r A Al0
z
z
I ) r A

E
截面 y
y
支承方式不同, r 不同, Ey Ez
N E , E 与强度无关,只与截面性质,支承方式,几何长度有关
iii)构造简单,制造安装连接方便
第六章 轴心受力构件
2)截面设计 i)根据载荷大小,假定 (60 100)
ii)根据 查表5-2,5-3得
A N [ ]
r l0
b
y
t
h


ry rx b 0.43 0.24
iii)初定截面高宽与板厚(局部稳定性)
工字型截面(表5-4)
双肢式
四肢式
缀条
第六章 轴心受力构件
2.轴心受拉构件的设计 2.1 强度计算 2.2 刚度计算
-长细比
l0 -计算长度
N

N [ ] A l 0 [ ] rmin
许用长细比
构件名称 主要承载构件 桁架弦杆 整个结构
l0
受拉构件 受压构件
150 180
200
rmin-截面最小回转半径
x
NE
杆件平衡状态 不平衡状态
N
A
B
直线稳定,曲线稳定
l
y
O
y
第六章 轴心受力构件
弯曲屈曲
扭转屈曲
弯扭屈曲
2)第二类失稳问题
偏心压杆
载荷初偏心,杆件 初弯曲,残余应力等 弯曲稳定
N
e x
N
NK NA
K
A
y
O
y
第六章 轴心受力构件
3.2 理想轴心压杆弯曲屈曲的临界力 1)弹性屈曲临界力 p

N [ ] A
n -强度安全系数(载荷材料性能因素)
nt -特殊安全系数(压杆因素:残余应力,初弯曲,初偏心) -稳定系数 cr (查表5-2,5-3) nt s
第六章 轴心受力构件
3.5 局部稳定性 1)工字型截面 翼缘
be 240 (10 0.1 ) t s
rmin I min A
120 150
150
次要承载构件
(主桁架其它杆,辅助桁架的弦杆等)
[ ]-许用长细比
其他构件
350
250
第六章 轴心受力构件
3.实腹板式轴心受压构件的整体稳定 强度,刚度,稳定性
N
N
3.1 两类稳定问题
压杆失稳-轴心压力作用的杆件 1)第一类失稳问题 轴心压杆
x
压力达到临界值
第六章 轴心受力构件
4)两主轴长度计算举例
N
N
l
l
变幅平面-两端简支
回转平面-悬臂
l0 12 3l 2l
l0 12 3l 22 3l
第六章 轴心受力构件
3.4 稳定性计算 影响因素-残余应力,初弯曲,初偏心等
N cr cr s cr [ ] [ ] A nnt nt s n nt s
3.3 计算长度 l0
N cr
EI
2 2 l0
EI ( 12 3l )2
2
N
x
l -构件的几何长度
1 -与支承方式有关的长度系数
两端简支 1 1
l
2 -变截面长度系数
3 -由拉臂钢丝绳和起升钢丝绳影响的长度系数
y
第六章 轴心受力构件
1)与支承方式有关的长度系数 1 约束情况不同 N 挠曲线方程不同 N N
相关文档
最新文档