人教版数学七年级培优和竞赛教程(10)二元一次方程组解的讨论
初一数学二元一次方程组的解法与应用
初一数学二元一次方程组的解法与应用二元一次方程组是初中数学中的重要内容,它涉及到两个未知数的方程组。
在本文中,我们将介绍二元一次方程组的解法以及它在实际生活中的应用。
一、解法1. 消元法消元法是求解二元一次方程组最常用的方法之一。
对于形如:a₁x + b₁y = c₁a₂x + b₂y = c₂的方程组,首先选择其中一个方程,通过系数的适当倍乘,使得其中一个未知数的系数相等。
然后将两个方程相减,消去该未知数,得到一个只含有另一个未知数的一元一次方程。
求解该方程后,代入到原方程得出另一未知数的值。
2. 代入法代入法是另一种常用的解二元一次方程组的方法。
首先选择其中一个方程,解出其中一个未知数,然后将该值代入到另一个方程中,求解得到另一个未知数的值。
二、应用1. 几何问题二元一次方程组可以应用于几何问题中。
例如,已知两条直线的方程,求解它们的交点坐标。
将两条直线的方程组成二元一次方程组,通过解方程组可以求得它们的交点坐标。
2. 商业问题二元一次方程组在商业问题中也有广泛的应用。
例如,某公司生产两种产品,已知这两种产品的生产成本和售价,求解生产和销售这两种产品的数量,以最大化利润。
通过建立二元一次方程组,并求解方程组可以得到最优解。
3. 等比数列问题等比数列问题中常常需要解二元一次方程组。
例如,已知等比数列的第一项和公比,求解前n项的和。
通过建立关于等比数列的二元一次方程组,并求解可以得到所需的结果。
总结:二元一次方程组的解法有消元法和代入法,根据问题的要求可以选择不同的方法进行求解。
而二元一次方程组在几何、商业和数列等领域都有广泛的应用,通过解方程组可以求解实际问题,提高解决问题的能力。
以上是关于初一数学二元一次方程组的解法与应用的内容论述。
通过消元法和代入法,我们可以解决二元一次方程组,并且这些方法在几何、商业和数列等领域都有广泛的应用。
希望本文对您理解和掌握二元一次方程组有所帮助。
2020-2021学年数学初一培优和竞赛讲练-10-二元一次方程组解的讨论
2020-2021学年人教版数学初一讲练(培优和竞赛二合一)(10)二元一次方程组解的讨论【知识精读】二元一次方程组 222111c y b x a c y b x a 的解的情况有以下三种:1.当212121c c b b a a 时,方程组有无数多解。
(∵两个方程等效)①当212121c c b b a a 时,方程组无解。
(∵两个方程是矛盾的)②当2121b b a a (即a 1b 2-a 2b 1"`0)时,方程组有唯一的解:③ 1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元2.一次方程整数解的求法进行。
求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待3.定系数的不等式或加以讨论。
(见例2、3)【分类解析】例1. 选择一组a,c 值使方程组c y ax y x 275有无数多解, ②无解, ③有唯一的解①解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解解比例得a=10, c=14。
当 5∶a =1∶2"`7∶c 时,方程组无解。
②解得a=10, c"`14。
③当 5∶a"`1∶2时,方程组有唯一的解,即当a"`10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组3135y x a y x 的解是正数?解:把a 作为已知数,解这个方程组得23152331a y a x ∵ 00y x ∴ 023*******a a 解不等式组得 531331a a 解集是6311051 a 答:当a 的取值为6311051 a 时,原方程组的解是正数。
例3. m 取何整数值时,方程组1442y x my x 的解x 和y 都是整数?解:把m 作为已知数,解方程组得82881m y m x ∵x 是整数,∴m -8取8的约数±1,±2,±4,±8。
初一数学重要知识总结二元一次方程组的解法整理
初一数学重要知识总结二元一次方程组的解法整理初一数学重要知识总结:二元一次方程组的解法整理在初中数学中,学习解方程是一个重要的内容,其中二元一次方程组是解方程的一个重要部分。
本文将对二元一次方程组的解法进行整理,帮助初一学生更好地掌握这一知识点。
1. 概念介绍二元一次方程组是由两个未知数的一次方程组成的方程组,通常形式为:a₁x + b₁y = c₁a₂x + b₂y = c₂其中,a₁、b₁、c₁、a₂、b₂、c₂为已知常数。
2. 消元法消元法是解二元一次方程组常用的方法。
通过将方程组中的某一个方程乘以适当的倍数,使得两个方程中含有相同的未知数系数(常数项可以不同),然后将两个方程进行相加或相减,最终消去一个未知数,从而求解另一个未知数。
举例说明:方程组:4x - 2y = 10首先,将第一个方程乘以2,得到2(2x + 3y) = 2 * 7,即4x + 6y = 14。
然后,将第二个方程和乘积形式的第一个方程相减,得到(4x - 2y) - (4x + 6y) = 10 - 14,即-8y = -4。
进一步化简可得y = 0.5。
将求得的y值代入任意一个方程,例如第一个方程2x + 3y = 7,得到2x + 3 * 0.5 = 7,即2x + 1.5 = 7。
再进一步求解可得x = 2.75。
所以,该二元一次方程组的解为x = 2.75,y = 0.5。
3. 代入法代入法是另一种解二元一次方程组的方法。
首先,选择其中一个方程,将其中一个未知数表示为另一个未知数的表达式,然后将其代入另一个方程中,从而得到只含有一个未知数的方程,然后求解出该未知数,最终代回原来的方程求解另一个未知数。
举例说明:方程组:3x + 2y = 10首先,选择第一个方程,将其表示为x的表达式:x = (10 - 2y) / 3。
将此表达式代入第二个方程,得到5((10 - 2y) / 3) - 4y = 8。
进一步化简可得y = 2。
人教版数学七年级培优竞赛讲练教程(10)二元一次方程组解的讨论
2021年人教版数学七年级培优和竞赛二合一讲练教程(10)二元一次方程组解的讨论【知识精读】二元一次方程组 222111c y b x a c y b x a 的解的情况有以下三种:1.当212121c c b b a a 时,方程组有无数多解。
(∵两个方程等效)①当212121c c b b a a 时,方程组无解。
(∵两个方程是矛盾的)②当2121b b a a (即a 1b 2-a 2b 1"`0)时,方程组有唯一的解:③ 1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可2.按二元一次方程整数解的求法进行。
求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再3.解含待定系数的不等式或加以讨论。
(见例2、3)【分类解析】例1. 选择一组a,c 值使方程组c y ax y x 275有无数多解, ②无解, ③有唯一的解①解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解解比例得a=10, c=14。
当 5∶a =1∶2"`7∶c 时,方程组无解。
②解得a=10, c"`14。
③当 5∶a"`1∶2时,方程组有唯一的解,即当a"`10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组3135y x a y x 的解是正数?解:把a 作为已知数,解这个方程组得23152331a y a x ∵ 00y x ∴ 023*******a a 解不等式组得 531331a a 解集是6311051 a 答:当a 的取值为6311051 a 时,原方程组的解是正数。
例3. m 取何整数值时,方程组1442y x my x 的解x 和y 都是整数?解:把m 作为已知数,解方程组得82881m y m x ∵x 是整数,∴m -8取8的约数±1,±2,±4,±8。
二元一次方程(组)补习、培优、竞赛经典归类讲解、练习及答案
二元一次方程(组)补习、培优、竞赛归类讲解及练习答案知识点:1、二元一次方程:(1)方程的两边都是整式,(2)含有两个未知数,(3)未知数的最高次数是一次。
2、二元一次方程的一个解:使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的一个解。
3、二元一次方程组:含有两个未知数的两个二元一次方程所组成的方程组。
4、二元一次方程组的解:二元一次方程组中各个方程的公共解。
(使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值)无论是二元一次方程还是二元一次方程组的解都应该写成⎩⎨⎧==y x 的形式。
5、二元一次方程组的解法:基本思路是消元。
(1)代入消元法:将一个方程变形,用一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程。
主要步骤:变形——用一个未知数的代数式表示另一个未知数。
代入——消去一个元。
求解——分别求出两个未知数的值。
写解——写出方程组的解。
(2)加减消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。
变形——同一个未知数的系数相同或互为相反数。
加减——消去一个元。
求解——分别求出两个未知数的值。
写解——写出方程组的解。
(3)列方程解应用题的一般步骤是:关键是找出题目中的两个相等关系,列出方程组。
列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:① 审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数。
② 找:找出能够表示题意两个相等关系。
③ 列:根据这两个相等关系列出必需的代数式,从而列出方程组。
④ 解:解这个方程组,求出两个未知数的值。
⑤ 答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
6、二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
初一数学培优--二元一次方程组应用题
初一数学培优二元一次方程组应用题一.数字问题1.小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和是242;而小亮在另一个加数后面多写了一个0,得到的和是341,正确的结果是多少?2.小宏与小英是同班同学,小英家的住宅小区有1号楼至22号楼共22栋楼房,小宏问了小英下面两句话,就猜出了小英住几号楼几号房间.小宏问:“你家的楼号加房间号是多少?”小英答:“220.”小宏问:“楼号的10倍加房间号是多少?”小英答:“364.”你知道为什么吗?3.炎热的夏天,游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.如果每个男孩看到蓝色与红色的游泳帽一样多,而每个女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?4.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数所列的方程组正确的是()二.配套问题1.(08山东省日照市)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?2.(2008年山东省威海市)汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.我市某企业向灾区捐助价值94万元的A,B两种帐篷共600顶.已知A种帐篷每顶1700元,B种帐篷每顶1300元,问A,B两种帐篷各多少顶?某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?三.行程问题1.甲、乙两人练习跑步,如果让乙先跑10米,甲5秒追上乙;如果让乙先跑2秒,那么甲4秒追上乙.甲、乙每秒分别跑x、y米,由题意得方程组____________.2.小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明即返回原地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度.3.一船顺水航行43.5公里需要3小时,逆水行47.5公里需5小时,求此船在静水中的速度和水流的速度.四.工程问题1.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成.按这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样,不仅比规定的期限少用1天,而且比订货量多生产25套.那么客户订做的工作服是多少套,要求完成的期限是多少天?2.(2006年日照市)在我市南沿海公路改建工程中,某段工程拟在30天内(含30天)完成.现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成.请问:(1)甲、乙两个工程队单独完成该工程各需多少天?(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用五.含量浓度问题1.(2008山东烟台)据研究,当洗衣机中洗衣粉的含量在0.2%~0.5%的衣服放入最大容量为15的洗衣机中,欲使洗衣机中洗衣粉的含量达到,假设洗衣机以最大容量洗涤)2.要配制浓度为15%的硫酸500公斤,已有60%的硫酸100公斤,问还需要加水和加浓度为80 %的硫酸各多少公斤?六.图形问题1.如图4,周长为68的长方形ABCD被分成7个大小完全一样的长方形,则长方形ABCD 的面积是多少?2.用一些长短相同的小木棍按图5所示,连续摆正方形和六边形.要求每两个相邻的图形只有一条公共边.已知摆放的正方形比正六边形多4个,并且一共用了110根小木棍,问连续摆放的正方形和正六边形各有多少个?3.(2006年烟台市)2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则a3+b4的值为()A.35 B.43C.89 D.97七.整数解问题1.把面值为1元的纸币换为1角或5角的硬币,则换法共有_____种.练习:1.古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问多少房间多少客?”(题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就分有7人没地方住;若每间房住9人,则空出一间房.问有多少房间多少客人.)答:_______________.2.某公司去年的总收入比总支出多50万元,今年比去年的总收入增加10%,总支出节约20%,今年的总收入比总支出多100万元.如果设去年的总收入是x万元,总支出是y元,那么可列方程组是_________________.—、填空题(每题2分,共20分)1。
初一数学培优,二元一次方程组解的讨论
二元一次方程组解的讨论内容提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
(见例2、3)例题例1. 选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 275 ① 有无数多解, ②无解, ③有唯一的解解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解解比例得a=10, c=14。
② 当 5∶a =1∶2≠7∶c 时,方程组无解。
解得a=10, c ≠14。
③当 5∶a ≠1∶2时,方程组有唯一的解,即当a ≠10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数? 解:把a 作为已知数,解这个方程组 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331a y a x ∵⎩⎨⎧>>00y x ∴⎪⎪⎩⎪⎪⎨⎧>->-0231502331a a解不等式组得⎪⎪⎩⎪⎪⎨⎧><531331a a 解集是6311051<<a 答:当a 的取值为6311051<<a 时,原方程组的解是正数。
人教版七年级下册数学《二元一次方程组》培优说课教学复习课件
课件 课件
课件 课件
课件 课件
课件
课件
二元一次方程组的解必须同时满足方程组中的两个方程。 即:既是方程①的解又是方程②的解.
x 23, y 12
能使方程组
x y 35 2x 4 y 94
中的每一个方程成立,所以
我们把
x
y
23 12
做二元一次方程组
x y 35 2x 4 y 94
x+y=10 2x+y=16
小组讨论:
仔细观察, 1.左边两个方程有什么共同特点? 2.它与你学过的一元一次方程比 较有什么区别? 3.你能按照给一元一次方程起名 字的方法给它起个名字吗?
讲授新课
二元一次方程
定义:含有两个未知数(二元),并且未知项的次数都是1(一次)的 整式方程 注意:
(1)二元一次方程的条件: ①整式方程; ②只含两个未知数; ③未知项的次数都是1; ④未知项的系数都不为0
的解。
(注意:二元一次方程组的解是成对出现的,要用大括号连
接起来,表示“且”。) 二元一次方程组的两个方程的公共解叫做二元一次方程组的解.
知识回顾 问题探究 课堂小结 随堂检测
探究二:二元一次方程的解及二元一次方程组的解定义
活动3 例题探究
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
知识回顾 问题探究 课堂小结 随堂检测
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
七年级数学尖子生培优竞赛专题辅导专题10 二元一次方程及第三方应用
专题10二元一次方程及第三方应用专题解读】不定方程(组)是数论中的一个古老分支,其内容非常丰富.我国对不定方程的研究已延续了数千年,“百鸡问题”等一直流传至今,“物不知其数”的解法被称为中国剩余定理.无论在中高考还是在每年世界各地的数学竞赛中,不定方程都占有一席之地.近年来,不定方程的研究又有新的进展.学习不定方程,不仅可以拓宽数学知识面,而且可以培养思维能力,提高数学解题的技能.思维索引例1.已知二元一次方程mx+ny=10的两组解12xy=-⎧⎨=⎩和31xy=⎧⎨=-⎩,(1)求3m+7n的值;(2)求m+3n的值.例2.已知关于x,y的方程组260250 x yx y mx+-=⎧⎨-++=⎩(1)请直接写出方程x+2y-6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,请直接写出这个解?(4)若方程组的解中x恰为整数,m也为整数,求m的值.例3.阅读理解解方程组(1)2(2)6 2(1)(2)6 a ba b-++=⎧⎨-++=⎩解:设a-1=x,b+2=y,原方程组可变为26 26 x yx y+=⎧⎨+=⎩解方程组得:22xy=⎧⎨=⎩即1212ab-=⎧⎨+=⎩所以30 ab=⎧⎨=⎩此种解方程组的方法叫换元法.(1)如果关于x、y的二元一次方程组316215x ayx by-=⎧⎨+=⎩的解是71xy=⎧⎨=⎩,求关于x、y的方程组的解:①3()()162()()15x y a x y x y b x y +--=⎧⎨++-=⎩②3(2)1623(2)153x y ay b x y y -⎧-=⎪⎪⎨⎪-+=⎪⎩(2)若关于x ,y 的方程组ax by c mx ny p +=⎧⎨-=⎩的解是23x y =⎧⎨=⎩,求关于x ,y 的方程组22ax by cmx ny p -=⎧⎨+=⎩的解.(3)已知关于x ,y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,求关于m 、n 的方程组1112225(3)3(2)5(3)3(2)a m b n c a m b n c ++-=⎧⎨++-=⎩的解.素养提升1.方程22(1)(2)1x y ++-=的整数解有( )A .1组B .2组C .4组D .无数组 2.若二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解21x y =⎧⎨=⎩,则a +b 的值为( )A .3B .-3C .6D .93.若二元一次方程组323212x y x ay +=⎧⎨+=⎩中的x 与y 互为相反数,那么a 的值是( )A .4B .-3C .-2D .74.若11xy=⎧⎨=⎩是二元一次方程组1328mx nymx ny+=⎧⎨+=⎩的解,则5m+6n的值为()A.60B.0C.-40D.115.关于x与y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=32的解,则k的值是()A.4B.8C.12D.146.方程组42112x ykx y-=⎧⎪⎨+=⎪⎩的解中x与y相等,则k= .7.关于x、y的方程组343232x ymx y+=⎧⎨+=⎩的解中x与y的和等于1,则m的值是 .8.用一元钱买面值4分、8分、1角的3种邮票共18张,每种邮票至少买一张,共有种不同的买法.9.希望中学收到王老师捐赠的足球、篮球、排球共20个,其总价值为330元,这三种球的价格为分别是足球每个60元,篮球每个30元,排球每个10元,那么其中排球有个.10.购买5种数学用品A1、A2、A3、A4、A5的件数和用钱总数列成下表:种数学用品各买一件共需元11.(1)求方程15x+52y=6的所有整数解.(2)求不定方程5x+7y=978的正整数解的组数.12.(1)若二元一次方程组3324x y x y +=⎧⎨-=⎩的解为x ay b =⎧⎨=⎩,求a -b 的值.(2)若二元一次方程组25264x y ax by +=-⎧⎨-=-⎩和35368x y bx ay -=⎧⎨+=-⎩有相同的解,求2020(2)a b +的值.13.P n 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n 与n 的关系式是:(1)24n n n P -=·2()n an b -+(其中a ,b 是常数,n ≥4) (1)通过画图,可得:四边形时,P 4= ;五边形时,P 5= ; (2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值.14.已知关于x 、y 的方程组111ax by c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩(1)把x 换成m ,y 换成n ,得到方程组111am bn c a m b n c +=⎧⎨+=⎩,则这个方程组的解是( )( )m n =⎧⎨=⎩;(2)把x 换成2x ,y 换成4y ,得到方程组1112424ax by c a x b y c +=⎧⎨+=⎩,则2( )4( )x y =⎧⎨=⎩,所以这个方程组的解是( )( )x y =⎧⎨=⎩;(3)参照以上方法解方程组111243243ax by ca xb yc +=⎧⎨+=⎩15.在车站开始检票时,有a(a>0)名旅客在候车室排队等候检票进站.检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以便后来到站的旅客能随到随检,至少要同时开放几个检票口?专题10二元一次方程及第三方应用思维索引】例1.(1)74;(2)30;例2.(1)22xy=⎧⎨=⎩,41xy=⎧⎨=⎩;(2)136m=-;(3)2.5xy=⎧⎨=⎩;(4)m=-1或一3.例3.(1) ①71x yx y+=⎧⎨-=⎩,解得43xy=⎧⎨=⎩;②272113x yy-⎧=⎪⎪⎨⎪=⎪⎩,解得203xy=⎧⎨=⎩;(2)13xy=⎧⎨=-⎩;(3)设5(3)3(2)m xn y+=⎧⎨-=⎩,可得5(3)53(2)3mn+=⎧⎨-=⎩,解得:23mn=-⎧⎨=⎩.素养提升】1.C;2.A;3.C;4.B;5.A;6.0;7.1;8.2;9.15;10.1000;11.(1)42521215x ty t=-⎧⎨=-+⎩(t为整数);(2)871345x ty t=-⎧⎨=+⎩(1345t>-);12.(1)1;(2)1;13.(1)画出图形如下.当n=4时,P4=1;当n=5时,P5=5.(2)56ab=⎧⎨=⎩.14.(1)34mn=⎧⎨=⎩;(2)321xy⎧=⎪⎨⎪=⎩;(3)923xy⎧=⎪⎨⎪=⎩.15.4;。
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论一、二元一次方程组的定义二元一次方程组是由两个方程组成的方程集合,其中每个方程都是二元一次方程。
二元一次方程的一般形式为:ax + by = cdx + ey = f其中a、b、c、d、e、f是已知的实数,而x和y是未知数。
二、二元一次方程组的求解方法1.消元法:通过消去其中一个未知数的系数,将方程组化简为只包含一个未知数的方程。
然后可以通过代入的方法求解另一个未知数的值,从而得到方程组的解。
2. Cramer法则:利用行列式的性质求解二元一次方程组。
具体步骤如下:a)计算系数行列式:D=,abdb)x的系数行列式:Dx=,cbfc)y的系数行列式:Dy=,acdd)计算方程组的解:x=Dx/D,y=Dy/D3.代入法:将一个方程的解代入另一个方程中,从而得到只包含一个未知数的方程。
然后可以通过消元法或其他方法求解。
三、解的情况讨论1.唯一解:当二元一次方程组存在一个有序数对(x,y)使得方程组的两个方程同时成立时,方程组有唯一解。
2.无解:当二元一次方程组不存在有序数对(x,y)使得方程组的两个方程同时成立时,方程组无解。
3.无穷多解:当二元一次方程组存在无穷多个有序数对(x,y)使得方程组的两个方程同时成立时,方程组有无穷多解。
这种情况下,方程组的两个方程是两个平行直线。
四、实例演示考虑以下二元一次方程组:2x+3y=74x-y=2通过消元法可得:2x+3y=78x-2y=4将第二个方程化为y的表达式:y=4x-2将y的表达式代入第一个方程:2x+3(4x-2)=7化简得到:2x+12x-6=7合并同类项:14x-6=7解方程得到:14x=13,x=13/14将x的值代入y的表达式:y=4(13/14)-2,化简得到:y=3/7所以,方程组的解为(x,y)=(13/14,3/7)。
总结:二元一次方程组的解的讨论涉及到三种情况:唯一解、无解和无穷多解。
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论二元一次方程组是初中数学中的一个重要内容,也是数学竞赛中经常出现的题型。
解二元一次方程组的方法主要有代入法、消元法和等式法。
下面是对这三种方法进行详细讨论的精品标准教程。
一、代入法代入法是解二元一次方程组最常见的方法之一、它的基本思想是通过一个方程的解来代入另一个方程,从而得到另一个未知数的解。
例题1:解方程组2x+y=6x-y=2解析:由于第二个方程的形式比较简单,所以可以先解x,然后带入第一个方程来解y。
解方程x-y=2得到x=2+y将x=2+y代入第一个方程2x+y=6得到2(2+y)+y=6化简得4+2y+y=6化简得3y=2解得y=2/3带入第一个方程2x+y=6得到2x+2/3=6化简得2x=6-2/3化简得2x=16/3解得x=8/3所以,解得x=8/3,y=2/3二、消元法消元法是解二元一次方程组的另一种常见方法。
它的基本思想是通过消去一个未知数,得到只含有一个未知数的一次方程,从而求出这个未知数的值,然后代入原方程组来求出另一个未知数的值。
例题2:解方程组2x+y=6x-y=2解析:首先观察发现,两个方程都有x-y,所以可以消去y。
将第二个方程两边同时乘以2得到2x-2y=4将这个方程与第一个方程相加,得到(2x+y)+(2x-2y)=6+4化简得4x=10解得x=10/4=5/2将x=5/2带入第一个方程2(5/2)+y=6化简得5+y=6解得y=1所以,解得x=5/2,y=1三、等式法等式法是解二元一次方程组的另一种常见方法。
它的基本思想是将其中一个方程的左右两边都化成同样的形式,然后将两个方程相减或相加,从而消去一个未知数。
例题3:解方程组3x-2y=72x+3y=1解析:为了消去x或y,我们可以将第一个方程乘以3,将第二个方程乘以2,从而使得两个方程的x系数一样。
将第一个方程乘以3得到9x-6y=21将第二个方程乘以2得到4x+6y=2将两个方程相加,得到(9x-6y)+(4x+6y)=21+2化简得13x=23解得x=23/13将x=23/13带入第一个方程3(23/13)-2y=7化简得69/13-2y=7解得y=(69/13-7)/(-2)化简得y=5/13所以,解得x=23/13,y=5/13通过以上的讨论,我们可以看出代入法、消元法和等式法都是解二元一次方程组的有效方法。
第10讲---二元一次方程组的解法精选全文完整版
可编辑修改精选全文完整版第八讲 二元一次方程组的解法一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。
(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
(二)二元一次方程组的解法: 1.代入法 2.加减法二、典例剖析专题一:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例3、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x⎪⎩⎪⎨⎧=+=+15251102y x y x ⎩⎨⎧=+=-1023724y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=专题二:有关二元一次方程组的解:例4、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.(2)二元一次方程3a +b =9在正整数范围内的解的个数是_________.(3)已知(3x -2y +1)2与|4x -3y -3|互为相反数,则x =__________,y =________(4)若方程组⎩⎨⎧-=-+=+122323m y x m y x 的解互为相反数,求m 的值。
二元一次方程组解的讨论
二元一次方程组解的讨论1、先阅读,再做题:①.一元一次方程ax b =的解由a b 、的值决定:⑴若0a ≠,则方程ax b =有唯一解b x a=; ⑵若0a b ==,方程变形为00x ⋅=,则方程ax b =有无数多个解;⑶若0,0a b =≠,方程变为0x b ⋅=,则方程无解.②.关于x y 、的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解的讨论可以按以下规律进行: ⑴若1122a b a b ≠,则方程组有唯一解; ⑵若111222a b c a b c ==,则方程组有无数多个解; ⑶若111222a b c a b c ≠=,则方程组无解. 请解答:已知关于x y 、的方程组()312y kx b y k x =+⎧⎪⎨=-+⎪⎩分别求出k,b 为何值时, 方程组的解为: ⑴有唯一解; ⑵有无数多个解; ⑶无解?2、请选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 275满足以下条件: ① 有无数多解 ②无解 ③有唯一的解3、已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,求原方程组的解.a 515 42x y x by +=⎧⎨-=-⎩① ②4、求二元一次方程3220x y +=的:⑴所有正整数解;⑵一组分数解;⑶一组负数解.5、已知关于x y 、的方程组2647x ay x y -=⎧⎨+=⎩有整数解,a 是正整数,求a 的值.6、要使方程组⎩⎨⎧=-=+12y x k ky x 的解都是整数, 求k 的值。
7、已知方程组的解x ,y 满足方程5x-y=3,求k 的值.8、小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和是242;而小亮在另一个加数后面多写了一个0,得到的和是341,正确的结果是多少?9、炎热的夏天,游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.如果每个男孩看到蓝色与红色的游泳帽一样多,而每个女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?10、甲、乙两人练习跑步,如果让乙先跑10米,甲5秒追上乙;如果让乙先跑2秒,那么甲4秒追上乙.求甲、乙速度。
初中数学培优:二元一次方程组解的讨论
初中数学培优:二元一次方程组解的讨论【知识精读】1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
(见例2、3)【分类解析】例1. 选择一组a,c 值使方程组⎩⎨⎧=+=+cy ax y x 275 ① 有无数多解, ②无解, ③有唯一的解解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解解比例得a=10, c=14。
② 当 5∶a =1∶2≠7∶c 时,方程组无解。
解得a=10, c ≠14。
③当 5∶a ≠1∶2时,方程组有唯一的解,即当a ≠10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数? 解:把a 作为已知数,解这个方程组 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331a y a x ∵⎩⎨⎧>>00y x ∴⎪⎪⎩⎪⎪⎨⎧>->-0231502331a a 解不等式组得⎪⎪⎩⎪⎪⎨⎧><531331a a 解集是6311051<<a 答:当a 的取值为6311051<<a 时,原方程组的解是正数。
初中七年级数学教案 二元一次方程组的解的讨论-国赛一等奖
二元一次方程组的解的讨论在本章中,我们学习了二元一次方程组的解法,所遇到的方程组都有且只有唯一的解.那么,是不是所有的二元一次方程组都有解并且解都是唯一的呢请看下面的例子.例1 解方程组:○1 ○2 解:②- ①×3,得,0 .x + 0 .y = 0,即0=0.这种情况是我们在本章解方程组时从未遇见过的.为什么会产生这样的结果呢观察原方程可以发现,若将方程○1的两边同乘3,则方程○1就变形为方程○2;同样,若将方程○2的两边同除以3,则方程○2就变形为方程○1。
这说明,方程○1的每一个解都是方程○2的解,方程○2的每一个解也是方程○1的解,即方程○1和方程○2是同解方程.这时,方程○1或者方程○2的解就是原方程组的解.所以,原方程组有无数多个解.想一想,例1的方程组中两个方程各项系数及常数项之间有何关系你能从中猜测出什么结论 通过观察可以发现,方程组中X 的系数、Y 的系数、常数项的比为43712921==. 实际上,当两个二元一次方程组中X 的系数、Y 的系数、常数项之比相等时,两个方程是同解方程,这时方程组有无数多个解.例2 解方程组:○1 ○2 解:①×2 - ②,得0 . x + 0 . y= 3,即 0=3.这种情况也是我们在解方程组时所没有遇见过的。
观察原方程组可以发现,方程○1的两边同乘2。
左边与方程○2的左边都是8X+6Y ,而他们的右边分别是14和11.这说明,适合原方程组的每一对数值X ,Y 必须同时满足437,8611.x y x y +=⎧⎨+=⎩437,12921.x y x y +=⎧⎨+=⎩8 x + 6y= 14,8 x + 6y= 11,这显然是不可能的,所以原方程组无解.想一想,例2方程组中两个方程各项系数及常数项之间有何关系你能从中猜测出什么结论通过观察可以发现,方程组中X 的系数、Y 的系数、常数项的比为4378611≠= 实际上,当两个二元一次方程组中X 的系数之比相等Y 的系数之比但不等于常数项之比时,两个方程没有公共解,这时方程组无解.我们再观察一下在本章中解过的所有二元一次方程组,不难发现,两个方程中X 的系数与Y 的系数不成比例.实际上,当二元一次方程组中X 的系数与Y 的系数不成比例时,方程组有唯一的解。
初中数学第十章二元一次方程组 小结与思考
复
习
旁注与纠错
3x 4 y 2 1.下列各组 x,y 的值是不是二元一次方程组 的解? 2 x y 5 x 2 (1) y 1 x 2 (2) y 2 x 3 (3) y 1
2 x y a x 3 2.已知二元一次方程组 的解 x 2 y b y 5
四.巩固提高: 1. 已知 x y x y 32 0 ,求 x,y 的值. ax+y=2 x=1 2. 甲、乙两人都解方程组 ,甲看错 a 得解 2x-by=1 y=1 x=1 乙看错 b 得解 ,求 a、b 的值. ,
y=2
3.已知代数式 x 2 px q . (1)当 x l 时,代数式的值为 2;当 x 2 时,代数式的值为 11,求 p、 q 的值; (2)当 x 时,求代数式的值. 五.归纳总结: 解二元一次方程组的基本思路: 1.代入消元法 2. 加减消元法
y 4, y 10 , 6、 在 y kx b 中, 当 x 1 时, 当 x 2 时, 则k
b
,
. .
7、在 3x 4 y 9 中,如果 2 y 6 ,那么 x 8 、 已 知
ax by 5 x 4 是 方 程 组 的 解 , 则 bx ay 12 y 3
三.
解答题:
12、 5( y 1) 3( x 5)
11、
u v 10 3u 2v 5
3( x 1) y 5
13、
x y 4 2 5 x y 3 7 15
3( x y ) 4( x y ) 4 14、 x y x y 1 6 2
初一数学二元一次方程组解题技巧
初一数学二元一次方程组解题技巧初一数学中主要涉及的关于二元一次方程组的解题技巧有以下几点:1.代入法:将一个方程的解代入另一个方程中,从而得到另一个未知数的值。
例如,对于方程组-3x+2y=45x-3y=7可以先解第一个方程得到x=(2y-4)/3,然后将这个x的值代入第二个方程,从而得到y的值。
2.加减消元法:通过两个方程相加或相减,消除一个未知数,从而得到剩下的未知数的值。
例如,对于方程组2x+3y=83x-2y=11可以将两个方程相加,得到5x+y=19,然后解这个方程得到x=3,再将这个x的值代入一个方程,从而得到y的值。
3.系数比较法:通过观察两个方程的系数之间的关系,进行比较,从而得到未知数的值。
例如,对于方程组3x+4y=102x+3y=7可以观察到第一个方程的系数3和第二个方程的系数2之间存在关系,即3=2x+1、根据这个关系可以算出x的值,然后将x的值代入一个方程,从而得到y的值。
4.交叉消元法:通过两个方程相乘或相除,消除一个未知数,从而得到剩下的未知数的值。
例如,对于方程组3x+2y=82x-3y=7可以将两个方程相乘,得到6x^2-18y^2=56,然后解这个方程得到x^2=10,再将这个x的值代入一个方程,从而得到y的值。
5.图解法:将两个方程转化为直线的形式,在坐标系中画出两条直线,通过观察直线的交点来确定方程组的解。
例如,对于方程组x+y=52x-y=1可以将两个方程转化为直线的形式,即y=5-x和y=2x-1,然后在坐标系中画出这两条直线,通过观察交点(2,3)来确定方程组的解。
以上是初一数学中关于二元一次方程组解题的一些常见技巧。
在解题过程中,也可以根据具体情况灵活运用这些技巧,多加练习,提高解题的能力。
数学七年级下册二元一次方程组的解法
数学七年级下册-二元一次方程组的解法在数学七年级下册的学习中,我们将学习到二元一次方程组的解法。
二元一次方程组是由两个未知数的一次方程组成的,通常以x和y表示。
解二元一次方程组就是要找出同时满足这两个方程的x和y的值。
在本文中,我将深入探讨二元一次方程组的解法,为了更好地理解这个概念,我会从简单到复杂、由浅入深地介绍这个主题。
一、基本概念让我们回顾一下一元一次方程的解法。
一元一次方程通常写成ax+b=0的形式,我们可以通过一些简单的运算规则找到未知数的值。
同样地,二元一次方程组也有自己的解法。
二元一次方程组通常写成如下形式:a1x + b1y = c1a2x + b2y = c2其中,a1、b1、c1、a2、b2、c2都是已知的常数,而x和y则是我们需要求解的未知数。
二、解法方法在解二元一次方程组时,我们通常使用替换法、消元法或Cramer法。
其中,替换法是把一个方程的一元变量用另一个方程的一元变量表示,然后代入另一个方程中,从而得出一个一元一次方程。
消元法则是通过加减消元或乘除消元来消去一个方程中的一个变量,得到一个一元一次方程。
Cramer法则是通过矩阵求逆的方法来解方程组,需要一定的线性代数知识。
三、举例说明为了更好地理解以上方法,我将通过具体的例子来说明。
假设我们有以下二元一次方程组:2x + 3y = 84x - 2y = 10我们可以使用替换法,将第一个方程改写为:y = (8 - 2x) / 3然后代入第二个方程中,得到:4x - 2 * ((8 - 2x) / 3) = 10通过整理化简,我们可以得到x的值,再代入第一个方程中求解y的值,从而得出方程组的解。
同样地,我们也可以使用消元法或Cramer 法来解这个方程组。
四、个人观点在学习二元一次方程组的解法时,我觉得这是一个对逻辑思维和数学运算能力有一定要求的知识点。
通过不断练习和探索,可以加深对数学的理解,培养解决问题的能力。
对于涉及到更多未知数的方程组,如三元或多元一次方程组,这些解法也是基础和奠定了学习高阶数学的基础,因此在学习中要注重理论联系实际,灵活运用所学知识。
人教版七年级下册数学《二元一次方程组》培优课件教学说课
使二元一次方程两边的值相等的两个未知数的值叫做二元一次方程的解.
一般有无数多个.
什么叫二元一次方程的解?
②
③
④
⑤
0
16
2
1
3
6
4
5
7
9
8
12
10
13
15
14
15
16
11
0
2
1
3
6
4
5
7
9
12
10
13
14
11
8
1.方程①x+ y = 16中 ,符合实际意义的 x , y 的值有哪些? 把它们填入表格中.
根据实际问题列二元一次方程组
分析:第一道工序的人数+ _______________ =总人数;第一道工序的件数=________________.设安排第一道工序x人,第二道工序y人,用方程把这些等量关系表示出来: ___________.
x+y=7
不同:
相同:
含未知数个数不同
都是一次方程
观察思考
(3)
是
不是
不是
不是不是不是判下列方程是否为二元一次方程:(7) 4x+ π =0
(8) 2x=1-3y
不是
是
二元一次方程的判断
判断一个方程是否为二元一次方程的方法: 一看原方程是否是整式方程且只含有两个未知数;二看整理化简后的方程是否具备两个未知数的系数都不为0,且含未知数的项的次数都是1.
0
根据二元一次方程的定义求字母的值
方法小结:由方程是二元一次方程可知: (1)未知数的系数不为0;(2)含有未知数的项的次数都是1.
人教版初一数学元一次方程的讨论
试一试解方程: 8y+7y-12y=3
解方程 8x 6601.05 x 400
解:8x 6601.05 x 400
8x 663 x 400
8x 3786x 400 2x 378 400 2x 378378 400378
2.小明所在学校合唱团参加艺术节演出,
原有女生与男生人数之比为4:3,后来12名 男生因故未能上场,此时上场女生人数恰 好是男生的2倍.上场男、女生人数各是多 少?
3.周末小明和另外3名同学一起去科技馆 参观,他们坐出租车共花车费28元.出租 车的计费标准如下:行程不超过4千米,收 起步价10元,超出4千米部分每千米加收 1.2元.他们坐出租车的路程有多远?
2x 400 378
x 11
你知道了吗?
移项的依据是什么? 移项的作用是什么? 移项时应注意什么?
巩固提高
1.期中考试后班里准备开表彰会奖受班主任的委托买奖品,他买了5元一本的笔 记本和6元一只的签字笔两种物品,共用去 120元.两种奖品各有多少件?
求助: 小熊的妈妈给了小熊19只苹果,要小熊把苹果
分成4堆.第一堆留给自己吃,另外三堆送给他们的 邻居.要求:分后如果再把第一堆增加一倍,第二堆 增加一倍,第三堆减少两个,第四堆减少一半后,这 四堆苹果的个数要相同.该如何分这些苹果,小熊自 己能留下几个苹果?
请结合你的学习和生活,设计一道 应用题,使列出的方程如下:
51-x=45+x.
; 仪器校准 ;
险些喷了出来.那口感跟梅林客栈の没法比,活脱脱の一杯开水加红糖,即便是冰镇の也难以入口.吸取教训,她现在去梅林客栈の茶棚要了一碗梅花冰粉,它色泽鲜润,品质滑嫩又晶莹
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(10)二元一次方程组解的讨论
【知识精读】
1. 二元一次方程组⎩⎨⎧=+=+222
111c y b x a c y b x a 的解的情况有以下三种: ① 当2
12121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当2
12121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当
2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩
⎪⎪⎨⎧--=--=12212
11212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)
2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按
二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解
含待定系数的不等式或加以讨论。
(见例2、3)
【分类解析】
例1. 选择一组a,c 值使方程组⎩
⎨⎧=+=+c y ax y x 275 ① 有无数多解, ②无解, ③有唯一的解
解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解
解比例得a=10, c=14。
② 当 5∶a =1∶2≠7∶c 时,方程组无解。
解得a=10, c ≠14。
③当 5∶a ≠1∶2时,方程组有唯一的解,
即当a ≠10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组⎩⎨⎧=+=+31
35y x a y x 的解是正数? 解:把a 作为已知数,解这个方程组 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331a y a x ∵⎩⎨⎧>>00y x ∴⎪⎪⎩⎪⎪⎨⎧>->-02
31502331a a
解不等式组得⎪⎪⎩
⎪⎪⎨⎧><531331a a 解集是6311051<<a 答:当a 的取值为63
11051<<a 时,原方程组的解是正数。
例3. m 取何整数值时,方程组⎩⎨⎧=+=+1
442y x my x 的解x 和y 都是整数?
解:把m 作为已知数,解方程组得⎪⎪⎩
⎪⎪⎨⎧-=--=82881m y m x ∵x 是整数,∴m -8取8的约数±1,±2,±4,±8。
∵y 是整数,∴m -8取2的约数±1,±2。
取它们的公共部分,m -8=±1,±2。
解得 m=9,7,10,6。
经检验m=9,7,10,6时,方程组的解都是整数。
例4(古代问题)用100枚铜板买桃,李,榄橄共100粒,己知桃,李每粒分别是3,4枚铜板,而榄橄7粒1枚铜板。
问桃,李,榄橄各买几粒?
解:设桃,李,榄橄分别买x, y, z 粒,依题意得
⎪⎩
⎪⎨⎧=++=++)2(1007143)1(100z y x z y x 由(1)得x= 100-y -z (3)
把(3)代入(2),整理得
y=-200+3z -
7z 设k z =7
(k 为整数) 得z=7k, y=-200+20k, x=300-27k ∵x,y,z 都是正整数∴⎪⎩⎪⎨⎧>>+->-07020200027300k k k 解得⎪⎪⎩
⎪⎪⎨⎧>><0.10.9100k k k (k 是整数)
∴10<k<9
111, ∵k 是整数, ∴k=11 即x=3(桃), y=20(李), z=77(榄橄) (答略)
【实战模拟】
1. 不解方程组,判定下列方程组解的情况:
① ⎩⎨⎧=-=-96332y x y x ②⎩⎨⎧=-=-3
2432y x y x ③⎩⎨⎧=-=+153153y x y x 2. a 取什么值时方程组⎪⎩⎪⎨⎧+-=--+=+229691322a a y x a a y x 的解是正数?
3. a 取哪些正整数值,方程组⎩⎨⎧=--=+a
y x a y x 24352的解x 和y 都是正整数?
4. 要使方程组⎩
⎨⎧=-=+12y x k ky x 的解都是整数, k 应取哪些整数值? 5. (古代问题)今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,
鸡翁,鸡母,鸡雏都买,可各买多少?
练习10
1. ①无数多个解 ②无解 ③唯一的解
2. a>1
3. a=1
4. –5,-3,-1,1
5. ⎪⎩⎪⎨⎧78154鸡雏=鸡母=
鸡翁=⎪⎩⎪⎨⎧81118鸡雏=鸡母=鸡翁=⎪⎩
⎪⎨⎧84412鸡雏=鸡母=鸡翁=。