无砟轨道施工技术简介
高铁无砟轨道施工技术研究
高铁无砟轨道施工技术研究随着中国高铁建设的不断发展,高铁无砟轨道施工技术成为高铁建设中不可或缺的一部分。
无砟轨道是指在地基上采用直接安装或嵌入式轨道的一种新型轨道结构,不需要传统的石块基础支撑,因此具有施工周期短、投资少、运营成本低、运营安全性高等优势。
本文将从高铁无砟轨道的定义、特点、施工技术以及发展趋势等方面对该技术进行深入研究。
一、高铁无砟轨道的定义与特点高铁无砟轨道是指在地基上不需要铺设传统的石块基础支撑,直接安装或嵌入式轨道的一种新型轨道结构。
这种轨道结构因其特殊的设计和施工方式,具有以下显著特点:1. 施工周期短:相比传统的石块基础支撑,无砟轨道采用直接安装或嵌入式轨道,施工过程简化,施工周期短,能够大大缩短工程周期,提高施工效率。
2. 投资少:由于无砟轨道不需要大量的石块基础支撑和相关工程设施,所以节约了大量的建设成本,使得投资减少,经济效益明显。
3. 运营成本低:无砟轨道采用特殊材料和设计,轨道结构稳定,基本不需要进行维护,运营成本大大降低。
4. 运营安全性高:无砟轨道的耐久性和稳定性较高,能够满足高速列车的需求,保障了高铁运营的安全性。
二、高铁无砟轨道的施工技术1. 路基处理无砟轨道的施工首先需要对路基进行处理,确保路基的平整度和稳定性。
在路基处理过程中,需要根据设计要求对路基进行挖填、夯实和边坡修整等工程,保证路基的质量符合无砟轨道的施工要求。
2. 轨道定位在路基处理完成后,需要对轨道进行定位,确定轨道的位置和参数。
特别是在高速列车运行的情况下,轨道的定位至关重要,需要严格按照设计要求进行定位,确保轨道的平直度和竖曲度满足高铁线路的要求。
3. 铺轨铺轨是无砟轨道施工的关键环节,需要通过专业的设备和技术对轨道进行铺设。
铺轨过程中需要控制轨道的弯曲度、纵向和横向坡度等参数,确保轨道的平整度和曲线半径符合设计要求。
4. 螺栓固定轨道铺设完成后,需要对轨道进行螺栓固定,确保轨道的连接紧密和稳固。
无砟轨道精调施工
未来,无砟轨道精调施工技术将继 续向智能化、自动化方向发展,提 高施工效率和精度。
02
无砟轨道精调施工技术
测量技术
测量设备
使用高精度的测量设备,如全站仪、测距仪等, 确保测量数据的准确性和可靠性。
测量方法
采用无砟轨道精调施工的专用测量方法,如CPⅢ 自由设站测量法等,提高测量精度和效率。
施工特点
施工组织
城市轨道交通无砟轨道精调施工需考虑城 市环境的特殊性和施工条件的限制,如空 间狭小、交通繁忙等。
合理安排施工时间和人员,确保施工安全 和效率,同时采取措施减小对周边环境和 交通的影响。
调整策略
质量监控
根据轨道几何尺寸偏差情况,制定针对性 的调整策略,优先解决关键问题,确保轨 道平顺性和安全性。
采用高精度测量仪器,提高施工效率 和精度。
技术交流与合作
与其他施工单位或高校进行技术交流, 分享经验,共同提高。
管理挑战及解决方案
管理挑战
无砟轨道精调施工涉及多个部门和多方利益 相关者,管理协调难度大。
明确职责分工
清晰界定各部门职责,避免工作重叠或遗漏。
加强沟通与协作
定期召开协调会议,确保信息畅通,问题及 时解决。
质量检测与验收
质量检测
在调整作业完成后,采用高精度测量仪器对轨道几何参数进行检测,确保达到 设计要求。
验收程序
按照相关规定和标准,组织专家进行验收,确保无砟轨道精调施工质量符合标 准要求。
04
无砟轨道精调施工案例 分析
案例一:高速铁路无砟轨道精调施工
精调施工流程
高速铁路无砟轨道精调施工 涉及测量、数据分析和调整 等多个环节,需确保各环节 的精确性和高效性。
无砟轨道介绍
无砟轨道介绍一、国内外无砟轨道综述1.无砟轨道的概念无砟轨道又作无碴轨道,无砟轨道采用谐振式轨道电路传输特性技术,首次成区段建成无砟轨道铁路。
在铁路上,“砟”的意思是小块的石头。
常规铁路都在小块石头的基础上,再铺设枕木或水泥钢轨,但这种铁路不适于列车高速行驶。
世界高速铁路的发展证实,高速铁路基础工程如果使用常规的轨道系统,道砟粉化严重,线路维修频繁,安全性、舒适性、经济性相对较差。
无砟轨道是高速铁路工程技术的发展方向。
砟(zhǎ),岩石、煤等的碎片。
在铁路上,指作路基用的小块石头。
传统的铁路轨道通常由两条平行的钢轨组成,钢轨固定放在枕木上,之下为小碎石铺成的路砟。
路砟和枕木均起加大受力面、分散火车压力、帮助铁轨承重的作用,防止铁轨因压力太大而下陷到泥土里。
此外,路砟(小碎石)还有几个作用:减少噪音、吸热、减震、增加透水性等。
这就是有砟轨道。
传统有碴轨道具有铺设简便、综合造价低廉的特点,但容易变形,维修频繁,维修费用较大。
同时,列车速度受到限制。
无砟轨道的轨枕本身是混凝土浇灌而成,而路基也不用碎石,铁轨、轨枕直接铺在混凝土路上。
无砟轨道是当今世界先进的轨道技术,可以减少维护、降低粉尘、美化环境,而且列车时速可以达到 200 公里以上。
二、无碴轨道的整体性能为综合评估上述 3 种结构型式无碴轨道的整体性能,考察其结构强度与动力特性,在试验室内分别铺设 10m 长的无碴轨道实尺模型,利用多点液压伺服加载系统及落轴试验设备,对无碴轨道进行了静载、疲劳与落轴试验。
2.1 静截与疲劳试验静载试验单点最大荷载值为结构的设计荷载,疲劳试验单点最大荷载值根据静轮重,并考虑动力附加系数,确定为 150 kN,加载频率范围 5-25 Hz。
2.1.1 试验测试内容道床板的表面应变;钢轨支点压力的分配;钢轨的绝对位移。
2.1.2 试验结果(1)在静载过程中,3 种结构无碴轨道道床板的表面应变随荷载增加成线性增长,其受力状态在弹性范围内,结构具有足够的强度储备。
CRTSII型板式无砟轨道施工技术
施工效率、更低的施工成本和更好的稳定性,具有较大的竞争优势。
03
推广价值
CRTSII型板式无砟轨道施工技术对于提高我国高速铁路和城市轨道交通
的建设水平、推动相关产业的发展具有重要意义,值得在更广泛范围内
推广应用。
对未来研究的建议与展望
1 2
技术创新
进一步研究CRTSII型板式无砟轨道施工技术的优 化方案,提高施工效率和质量稳定性。
保证混凝土的性能和耐久性。
技术创新与优势分析
总结词
创新性、优势明显
详细描述
CRTSII型板式无砟轨道施工技术不仅继承了传统无砟 轨道施工技术的优点,如高平顺性、高稳定性、低维护 成本等,还在轨道板预制、精调、混凝土浇筑与养护等 方面进行了技术创新。这些创新使得CRTSII型板式无 砟轨道施工技术具有更高的施工效率、更低的施工成本 、更好的结构性能和更高的耐久性等优势。与其他类型 的无砟轨道施工技术相比,CRTSII型板式无砟轨道施 工技术在适用范围、施工效果、经济效益等方面表现出 了明显的优势。
社会效益
项目建成后将极大改善区域交 通条件,促进经济发展和人员
流动
06
结论与展望
技术总结
施工工艺
CRTSII型板式无砟轨道施工工艺包括底座板施工、轨道板 预制、轨道板调整、水泥乳化沥青砂浆充填等步骤,确保 轨道板的平顺性和稳定性。
技术特点
CRTSII型板式无砟轨道施工技术具有高精度、高稳定性、 低维护成本等特点,能够提高列车运行的安全性和舒适性。
混凝土浇筑
在模板内浇筑混凝土,确 保混凝土的密实度、平整 度和外观质量。
轨道板预制
模具制作
根据轨道板的设计尺寸, 制作预制轨道板的模具。
高速铁路轨道施工技术—板式无砟轨道施工技术
施工控制测量
两布一膜及泡 沫板施工
底座板施工
轨道板施工
沥青水泥砂浆 灌注
剪切连接
钢轨铺设
侧向挡块施工
30
1.1 概述
路基段施工与桥梁段施工基本相同,主要区别有以下几点: (1)支承层无两布一膜滑动层、高强挤塑板以及钢筋。 (2)支承层直接浇注在路基基床表层上。 (3)路基上支承层施工无需设置临时端刺区、后浇注带等施工结构和工序。 (4)支承层需每隔2.5~5m 进行切缝处理,切缝深度至少10cm。
B|≤5mm。
轨道板与凸形挡台位置关系
(图片来源于道板精调 (1)将测量装置(自定心螺孔适配器、T型测量标架、螺栓孔速测标架
选择一种设备)放置于轨道板的固定位置上; (2) 用已设程序控制的全站仪测量放置在适配器或标架上的4个棱镜,
获取4个工位的调整量; (3) 按照4个显示器上的调整量用轨道板调整机具作相应调整; (4)重复精调作业步骤2和3,直至满足轨道板铺设允许偏差的要求。
目录
01 【 C R T S I 型 板 式 无 砟 轨 道 施 工 】
➢ 【混凝土底座施工】 ➢ 【凸型挡台施工】 ➢ 【轨道板铺设】 ➢ 【水泥乳化沥青砂浆及挡台树脂灌注】
1.1 概述
CRTSI型板式无砟轨道施工为自下而上施工。 施工技术主要包括四个部分: 1.混凝土底座施工 2.凸型挡台施工 3.轨道板铺设 4.水泥乳化沥青砂浆及挡台树脂灌注
凸型挡台树脂 (图片来源于网络)
(5)一个凸型挡台周围填充树脂必须一次性灌注完成;
(6)灌注后,凸型挡台填充树脂宜低于轨道板顶面5~10mm。
27
目录
01 【 C R T S I I 型 板 式 无 砟 轨 道 施 工 】
crtsi型双块式无砟轨道施工技术
06
安全保障措施
施工现场安全措施
01
02
03
施工区域隔离
设置安全围栏和警示标志, 确保施工区域与运营线路 隔离,防止非工作人员进 入。
施工监控
安装视频监控设备,实时 监控施工现场安全状况, 及时发现并处理安全隐患。
临时设施安全
对施工现场临时设施进行 定期检查和维护,确保其 结构稳定和安全可靠。
施工人员安全保障措施
对未来研究的建议和展望
建议Байду номын сангаас
为了更好地推广和应用CRTSI型双块式无砟轨道施工技 术,建议加强技术标准制定、完善施工工艺、加强质量 控制等方面的研究和实践。同时,需要加强与其他国家 和地区的交流与合作,共同推动该技术的进步和发展。
展望
随着科技的不断进步和铁路建设的快速发展,CRTSI型 双块式无砟轨道施工技术有望在未来取得更大的突破和 创新。通过不断的技术研发和实践经验的积累,该技术 将为铁路建设和运营带来更多的惊喜和贡献。
在材料进场前应进行质量检查,避免不合格材料进入施工现场,同时做好材料的 储存和保管工作,防止材料损坏或变质。
施工现场准备
施工现场的准备工作包括场地清理、施工便道建设、临时 设施搭建等,以确保施工顺利进行。
施工现场应设置安全警示标志和安全防护设施,确保施工 安全。同时,应合理规划材料堆放和设备布置,提高施工 效率。
安全教育培训
定期组织安全教育培训, 提高施工人员的安全意识 和技能水平。
演练与模拟演练
定期进行安全演练和模拟 演练,提高施工人员在紧 急情况下的应对能力。
安全考核与奖惩
对施工人员进行安全考核, 对表现优秀的给予奖励, 对违反安全规定的进行惩 罚。
高铁无砟轨道施工技术研究
高铁无砟轨道施工技术研究随着中国高铁的迅猛发展,高铁无砟轨道施工技术也得到了越来越多的关注和研究。
无砟轨道是指高速铁路轨道上的道床不采用传统的石子碎石垫层,而是直接将轨道直接铺设在特定的基础上。
这种施工技术不仅能够提高铁路的稳定性和安全性,同时也能够降低施工成本和维护成本。
本文将对高铁无砟轨道施工技术进行深入探讨,为相关研究和实践提供参考。
一、高铁无砟轨道施工技术的发展历程无砟轨道的概念最早可以追溯到20世纪60年代,当时的法国TGV高速列车就采用了无砟轨道技术。
随着高铁技术的不断发展,无砟轨道在国际上得到了越来越多的应用和推广。
中国作为世界上高铁建设最为迅猛的国家之一,也开始加大对无砟轨道施工技术的研究和推广。
在中国高铁无砟轨道施工技术的发展过程中,先后涌现出了一系列关键技术和创新成果。
最具代表性的成果之一就是高铁无砟轨道的动态压实技术。
该技术采用了先进的动态压实设备和压实方法,能够在短时间内完成对轨道基础的良好压实,从而大大提高了轨道的稳定性和承载能力。
无砟轨道还应用了先进的轨道板接触网技术、长期应力监测技术等,为高铁的安全运行提供了更为可靠的保障。
采用无砟轨道施工技术具有多种优势,这也是其得到广泛应用和推广的重要原因之一。
无砟轨道能够大大降低铺轨用碎石数量,减少了施工成本,并且极大程度上减少了列车行驶时的噪音和振动,提升了乘车的舒适性。
无砟轨道厚度较薄,能够减小路基填挖量,降低了对环境的影响,有助于生态环保。
无砟轨道能够提高路基稳定性和承载能力,减少了路基变形和维护频次,降低了对维护人力物力的需求。
在新一代高铁建设和运营中,高铁无砟轨道施工技术也表现出了更为显著的优势。
在技术创新方面,无砟轨道结构设计更加精细,采用了更为先进的建材和施工工艺,能够更好地适应高速列车的运行需求。
在运维管理方面,无砟轨道更容易进行巡检和维护,能够更快速地发现问题并进行处理,提高了铁路的安全性和稳定性。
高铁无砟轨道施工技术的应用不仅有利于提高高铁的运行效率和安全性,还有利于减少对环境的影响,为高铁的可持续发展提供了更为坚实的基础。
双块式无砟轨道施工技术简介
3. 安装工具轨和精调螺杆底座
施工轨通过装有随车吊卡车上的吊装设备,配合专 用吊具放置到轨枕承轨槽内。前后施工轨间的最小间距为 15 mm,最大间距为300 mm。同时保证两根钢轨的端 部接缝必须方正。(效率为每轮班600米) 施工轨完成联结后,按给定的间距在轨底安装精调 螺杆底座,其中精调螺杆在粗调完成后安装。
工具轨法 主要施工设备介绍
散枕装置的结构由动力系统(动力由挖掘机输出)、轨枕三维 定位系统、及旋转系统构成。 主要技术参数: a、分枕数量 b、散枕间距 c、散枕间距误差 d、自重 e、循环作业时间 5根/次 600~650mm ±5mm 1000kg 2 min
2. 施工轨卡车
主要技术参数 起 重量 载 重量 行驶速度 自 重 5000kg 32000kg 80km/h 12000kg
④道床养生与清理
道床拆模后应及时补修残损部位和进行养生工作。 养生强度达到要求后全面清理道床表面,铲除多余灰渣, 各部清扫干净。轨枕表面不得有任何残留物。
6.组合式轨道排架倒用技术要点
道床经24小时养生后可拆除轨道排架。 拆除顺序为: 轨排间联结夹板 → 中间扣件 → 轨向锁定器 → 铺装 机组吊起排架重新组装循环使用 → 模板拆除与转移
上下高度的调整
左右的调整
超高的调整
4. 螺杆调节器 根据施工轨的位置,并每隔三个轨枕装配一个。螺纹 端保持在钢轨外侧。 主要技术参数 a、自重: 28kg(550mm的类型)
b、调整高度:
d、最大承载力:
550~850mm
900kg
c、水平移动距离: ±25mm
5. 自行推进式模板安装机
纵向模板设计为9.375m一节,集成纵向模板和横向模板的安装 于一体。通过链传动提供动力,走行在已铺设的纵向模板上。设备上 安装了四台电动链葫芦,外侧两台用于纵向模板的安装,内侧的用于 横向模板的安装。模板安装机可以容纳32块纵向模板,24块横向模板, 能够一次性铺设150m的道床模板。 整个设备在作业过程中,采用悬臂作业方式进行模板的安装。设 备走行在已安装的模板上。 主要技术参数 工作电压: 最大宽度: 发电机功率: 运行速度 :
CRTSⅠ型双块式无砟轨道施工技术
在施工完成后进行全面的质量验收,包括轨道几何尺寸、道床密实度、 钢筋保护层厚度等方面的检测,确保施工质量符合验收标准。
安全保障措施
安全教育培训
对施工人员进行安全教育培训, 提高安全意识,掌握安全操作规
程和应急处理措施。
安全设施配置
在施工现场设置完善的安全设施, 包括安全网、防护栏、警示标志等, 确保施工安全。
CRTSⅠ型双块式无砟轨道施工技术是我国自主研发的一种无砟 轨道施工技术,具有自主知识产权,其结构形式和施工方法与 国外的CRTSⅠ型无砟轨道类似,但又有其独特的特点和优势。
技术概述
CRTSⅠ型双块式无砟轨道施工技术是一种将双块式轨枕预制和现场安装相结合的无 砟轨道施工技术。
该技术通过在现场安装双块式轨枕,并采用自密实混凝土作为道床混凝土,实现了 无砟轨道的高平顺性和高稳定性。
CRTSⅠ型双块式无砟轨道施工技 术
目录
• 引言 • CRTSⅠ型双块式无砟轨道结构 • 施工方法与流程 • 质量控制与安全保障 • 工程实例与效益分析 • 结论与展望
01 引言
背景介绍
随着我国高速铁路的快速发展,对轨道的平顺性和稳定性要 求越来越高,无砟轨道作为一种新型轨道结构形式,具有高 平顺性、高稳定性和少维修的特点,逐渐成为高速铁路轨道 的主要发展方向。
扣件类型
根据轨道板的尺寸和线路条件,选择合适的扣件类型,如弹条Ⅴ 型扣件、WJ-8B型扣件等。
扣件安装
按照设计要求,准确安装扣件,确保轨道板的稳定性和平顺性。
扣件维护
定期检查和维护扣件,确保其正常使用和安全性能。
03 施工方法与流程
施工准备
现场勘查
对施工场地进行实地勘察,了解 现场地形、地质、水文等条件,
无碴轨道工具轨法施工技术
跨江、跨海大桥
在桥梁上铺设无碴轨道,工具轨法能 够提供高强度和耐久性的轨道结构, 满足大桥的特殊要求。
既有线改造
对于既有铁路线的改造和升级,无碴 轨道工具轨法能够快速、高效地完成 轨道更换和升级。
无碴轨道工具轨法的成功案例
京沪高铁
作为中国高速铁路的代表性工程, 京沪高铁采用了无碴轨道工具轨 法施工,实现了高平顺性和稳定 性的轨道结构,为列车的高速运
无碴轨道工具轨法施工技术
• 引言 • 无碴轨道工具轨法施工流程 • 无碴轨道工具轨法的特点与优势
• 无碴轨道工具轨法的应用场景与案 例
• 无碴轨道工具轨法施工中的问题与 解决方案
• 未来展望
01
引言
目的和背景
01
随着我国高速铁路建设的快速发 展,无碴轨道作为高速铁路轨道 的主要形式,其施工技术得到了 广泛的应用和推广。
高铁建设
高铁建设是国家交通建设的重要部分,无碴轨道工具轨法施工技术 有望在高铁建设中得到广泛应用。
磁悬浮交通
磁悬浮交通作为一种新型交通方式,具有高速、稳定、舒适等优点, 无碴轨道工具轨法施工技术有望在磁悬浮交通建设中得到应用。
THANKS
感谢观看
高施工效率和质量。
绿色环保
环保意识日益增强,未来的无碴轨 道工具轨法施工技术将更加注重绿 色环保,减少施工过程中的环境污 染。
高效快速
为了满足快速交通的需求,无碴轨 道工具轨法施工技术将不断优化, 提高施工速度和缩短建设周期。
应用前景
城市轨道交通
随着城市化进程的加速,城市轨道交通建设需求不断增加,无碴轨 道工具轨法施工技术将在城市轨道交通建设中发挥重要作用。
常见问题
轨排稳定问题
无砟轨道
无砟轨道无砟轨道,也称作无砟道床或无砟铁路,是指在铁路建设中使用的较新型的铁路道床结构。
相对于传统的砟石轨道而言,无砟轨道采用了更先进的道床材料和施工技术,具有较多的优势和特点。
本文将探讨无砟轨道的定义、特点、优势以及在铁路建设中的应用情况。
无砟轨道是指在铁路建设中使用的一种新型的道床结构,与传统的砟石轨道相比,其道床材料更为先进。
无砟轨道的道床材料通常采用混凝土或聚合物材料,这些材料具有较好的耐腐蚀性和抗老化性能,能够长期维持道床的稳定性。
而传统的砟石轨道使用的是石头、沙土等材料,容易出现破碎、腐蚀等问题。
无砟轨道的主要特点是道床结构简单、施工速度快、维护成本低等。
道床结构简单意味着无砟轨道的施工过程相对容易,可以极大地提高施工效率。
由于无砟轨道采用的是先进的道床材料,其维护成本较低,减少了后期维护和修复的频率和费用。
此外,无砟轨道还具有很多其他的优势。
其首要优势在于提供了更好的乘车舒适性和行车安全性。
相对于传统的砟石轨道,无砟轨道减少了车辆震动和噪音,提高了乘车体验;它也能够减少列车与轨道之间的相对滑移,提高行车安全性能。
无砟轨道在铁路建设中的应用也越来越广泛。
随着技术的发展和应用的推广,越来越多的铁路线路正在采用无砟轨道进行建设。
在中国,无砟轨道已经广泛应用于高铁、城际铁路等重要干线铁路线路上。
与传统的砟石轨道相比,无砟轨道提供了更好的行车性能和安全性能,能够有效提高铁路的运行速度和运行效率。
在铁路建设中,采用无砟轨道还能够减少对自然环境的影响。
由于无砟轨道的道床材料更为环保,无砟轨道的施工和运营过程对自然环境的破坏和污染也相对较少。
此外,无砟轨道还能够提高铁路路基的使用寿命,降低后期维护和修复的费用。
传统的砟石轨道容易因破碎、腐蚀等问题导致道床不稳定,需要定期进行维护和修复。
而无砟轨道由于采用了先进的道床材料,不容易受到外界环境的影响,具有更长的使用寿命,减少了后期维护和修复的频率和费用。
无砟轨道施工技术
无砟轨道施工技术在铁路和城市轨道交通系统中,轨道施工是至关重要的一个环节。
传统的轨道施工常使用砟石作为铺轨的基础材料,但随着科技的进步和工程技术的发展,无砟轨道施工技术逐渐崭露头角。
本文将介绍无砟轨道施工技术的基本概念、优势和应用场景。
无砟轨道施工技术,顾名思义,即不使用砟石作为轨道基础的施工方法。
相比传统的有砟轨道,无砟轨道施工技术采用特殊的材料和工艺来支撑铁轨,在一定程度上提高了铁路线路的强度和稳定性。
这种施工方法通常适用于高速列车、城市轨道交通以及在地质条件较为复杂的区域。
无砟轨道施工技术的主要优势之一是减少了砟石的使用。
由于无砟轨道不需要使用大量的砟石作为铺轨的基础材料,可以降低施工成本。
此外,无砟轨道的施工速度也较快,可以缩短施工周期,提高工作效率。
无砟轨道的抗震性能也较好,能够增加铁轨的耐久性和使用寿命。
无砟轨道施工技术还具有较高的适应性和可塑性。
通过调整支撑材料的种类和厚度,可以根据地质条件的不同来灵活地设计铁路线路。
同时,无砟轨道技术也更具环保性,减少了对自然资源的损耗,有利于可持续发展。
无砟轨道施工技术的应用场景主要包括以下几个方面。
首先是高速列车。
在高速铁路上,列车的运行速度相对较快,需要一个稳定的轨道基础来保障运营安全。
无砟轨道能够提供较好的强度和稳定性,适用于高速列车的运行需求。
其次是城市轨道交通系统。
城市轨道交通通常需要在繁忙的城市区域内进行线路扩建或改造,无砟轨道的施工速度快、适应性强,能够更好地满足城市轨道交通的需求。
此外,在地质条件复杂的区域,如山区、沼泽地等,无砟轨道也能够发挥其独特的优势。
尽管无砟轨道施工技术在一些特定场景下具有明显的优势,但也面临一些挑战和限制。
首先是技术的成熟度和可靠性。
无砟轨道施工技术相对较新,需要进一步的实践和研究来完善和验证其可行性。
其次是成本问题。
与传统的有砟轨道相比,无砟轨道的施工成本较高,需要综合考虑经济效益和可行性。
另外,无砟轨道施工技术的推广和推动也需要政府的政策支持和资金投入。
CRTS Ⅲ型板式无砟轨道施工技术
1 概述高速铁路CRTS Ⅲ型板式无砟轨道是具有我国自主知识产权的新型无砟轨道结构形式,采用该结构形式的高速铁路不仅具有高平顺性、高可靠性、高稳定性,而且具有良好的耐久性和较低的维护成本。
近年来,随着高速铁路的快速发展,CRTS Ⅲ型板无砟轨道施工技术逐步推广运用并日益完善,形成了一套较为成熟的施工工艺[1-11]。
CRTS Ⅲ型板式无砟轨道施工技术主要包括布板、底座施工、轨道板铺设及精调、自密实混凝土灌注等工序。
依托盘营、郑徐、京沈等铁路客运专线工程,阐述CRTS Ⅲ型板式无砟轨道施工技术。
2 布板技术2.1 设计布板考虑平面曲线和超高、纵断面竖曲线及坡度等诸多要素的轨道线路是一条复杂的三维曲线。
为确保轨道铺设位置正确,研发了设计布板软件,可对CRTS Ⅲ型板式无砟轨道进行空间布板,实现不同结构物、不同平纵断面上轨道板配板设计,以及轨道板模具调整数据计算,生成轨道板空间定位坐标。
2.1.1 配板设计在获取全线线路参数后,通过定义不同的桥跨类型、路基段落等里程位置信息,形成轨道布置基础数据库,保证轨道板与线下结构物结构分界处对齐,同时将桥墩里程及相邻两桥墩间的桥梁类型纳入布板软件,进行梁缝检算,最终计算确定轨道板在线路中的位置,并生成轨道板布置表供轨道板铺设和精调施工使用。
CRTS Ⅲ型板式无砟轨道施工技术樊齐旻,孙学奎,邢志胜(京沈铁路客运专线辽宁有限责任公司,辽宁 沈阳 110006)摘 要:高速铁路CRTS Ⅲ型板式无砟轨道是具有我国自主知识产权的新型轨道结构形式。
论述CRTS Ⅲ型板式无砟轨道施工布板、底座施工、轨道板铺设与自密实混凝土灌注主要施工技术。
阐述无砟道床施工工艺流程,从底座浇筑、轨道板铺设及精调、自密实混凝土灌注等方面分析施工关键工序,提出施工中应保证底座钢筋保护层厚度、控制轨道板精调精度、控制自密实混凝土的实料拌制性能稳定和加强混凝土养护措施等注意事项,可为CRTS Ⅲ型板式无砟轨道施工技术优化和完善提供借鉴。
无碴轨道工具轨法施工技术-王新民讲解材料 (2)
质量保障
通过科学的施工管理和严格的质量控 制,工具轨法能够确保无碴轨道施工 的质量稳定性。
推广价值
研究成果表明,工具轨法具有较高的 推广价值,可以为类似工程的实施提 供有益的参考和借鉴。
对未来研究的建议
深入研究工具轨法的理论体系
进一步探究工具轨法的原理和理论基础,完善该 方法的施工工艺和技术标准。
无碴轨道工具轨法施工技 术-王新民讲解材料
• 引言 • 无碴轨道工具轨法的施工流程 • 无碴轨道工具轨法的关键技术 • 无碴轨道工具轨法的优缺点分析 • 无碴轨道工具轨法的应用和发展前景 • 结论
01
引言
目的和背景
随着我国高速铁路建设的快速发展,无碴轨道作为高速铁路轨道的主要形式,其施 工技术得到了广泛的应用和推广。
设备与材料准备
根据施工需要,准备相应 的工具轨、混凝土、模板 等材料和施工设备。
人员组织与培训
组建施工队伍,进行技术 培训和安全教育,确保施 工质量和安全。
工具轨的铺设
确定轨道线路
根据设计图纸,确定轨道 线路的位置和方向。
铺设临时轨道
在正式铺设工具轨之前, 先铺设临时轨道,以便运 输和调整工具轨的位置。
成本较高
无碴轨道工具轨法的预制轨道板成本较高,相对于传统的有碴轨道施工方法,其造价更高,需要在施工过程中进行有 效的成本控制。
维护难度大
无碴轨道工具轨法的维护和保养相对于有碴轨道来说更为困难,需要专业的技术和设备支持,同时也需 要定期进行检查和维护。
05
无碴轨道工具轨法的应用和发展前景
应用案例介绍
通过使用工具轨作为临时轨道,可以 减少对既有线路的影响,提高施工效 率,降低施工成本,并且能够实现快 速、高效的无碴轨道施工。
板式无砟轨道施工简介
钢筋切断
钢筋弯曲加工
三.轨道板预制工艺——图解
钢筋组装
钢筋车间全景
涂脱模剂Biblioteka 模板清理模板全景模板检查工具
三.轨道板预制工艺——图解
钢筋笼吊放
安装预埋螺栓
支压板安装
安装预埋件
三.轨道板预制工艺——图解
抹面
刷毛
养生温度记录
蒸气养生
三.轨道板预制工艺——图解
混凝土浇筑
混凝土试验
模板振动机
混凝土运输
生产总量 以供应50km范围为例,估算总生产量可按下式进行:50×2(双线)×208=20800块,准确数量应根据下部结构形式配置。 日生产能力 按预制周期为24小时、预制工期12个月、每月工作25天考虑,则平均每天需要生产轨道板20800块÷(12月×25天/月)=69.3块,考虑不同板型轨道板的生产需要,配备各类模板共72套,即可满足施工需要,准确数量应根据不同板型轨道板数量结合预制工期配置。
主要内容
一.轨道结构形式 二.预制厂规划设计 三.轨道板预制工艺 四.轨道板运输安装 五.水泥沥青砂浆灌注
一.轨道结构形式
板式无砟轨道主要结构包括混凝土底座和凸形挡台、水泥沥青砂浆、轨道板、充填式灌注袋、扣件和钢轨。
60kg钢轨
凸形挡台
底座混凝土
扣件
轨枕板
CA砂浆
二.预制厂规划设计——规模分析
7
平整度
平整度
1
中央翘曲量
3
8
预埋件
位置
±1
垂直度
1
三.轨道板预制工艺——标准
四.轨道板运输安装——线下运输
场内运输
轨道板出厂
固定措施
四.轨道板运输安装——提升
无砟轨道施工技术
轨枕散布
2.4铺设工具轨、 2.4铺设工具轨、组装轨排及安装螺杆调节器托盘 铺设工具轨
1)铺设工具轨。利用起重运输车或龙门吊。 1)铺设工具轨。利用起重运输车或龙门吊。通过专用吊架将工具轨吊放 铺设工具轨 到轨枕上。在钢轨放到轨枕上之前,轨枕支撑表面要干净; 到轨枕上。在钢轨放到轨枕上之前,轨枕支撑表面要干净;两根钢轨的 端部接缝必须在同一位置;两工具轨之间轨缝应控制在15mm 300mm。 15mm~ 端部接缝必须在同一位置;两工具轨之间轨缝应控制在15mm~300mm。 2)组装轨排。铺设完工具轨后,使用方尺检查轨枕与工具轨的垂直度, 2)组装轨排。铺设完工具轨后,使用方尺检查轨枕与工具轨的垂直度, 组装轨排 需要时进行凋整;检查工具轨的轨距,不合格时进行调整。 需要时进行凋整;检查工具轨的轨距,不合格时进行调整。使用扭矩扳 手将扣件定位,轨枕的扣件孔需要进行注油润滑, 手将扣件定位,轨枕的扣件孔需要进行注油润滑,螺栓拧紧扭矩不要大 N· 检查标准为弹条与轨距挡板的间距不大于0.5mm 0.5mm, 于220 N m。检查标准为弹条与轨距挡板的间距不大于0.5mm,使用塞尺 进行检查。 进行检查。 3)安装螺杆调节器托盘。螺杆调节器钢轨托盘应装到轨底, 3)安装螺杆调节器托盘。螺杆调节器钢轨托盘应装到轨底,在每个轨排 安装螺杆调节器托盘 端的第一、 四根轨枕前(或后)需要配一对螺杆调节器. 端的第一、二、四根轨枕前(或后)需要配一对螺杆调节器.之后直线和 超高小于50mm地段每隔3 50mm地段每隔 使用奥通粗调机时每隔2 超高大于50mm 超高小于50mm地段每隔3根(使用奥通粗调机时每隔2根)、超高大于50mm 但小于120mm地段每隔2 120mm地段每隔 超高大于120mm每隔1 120mm每隔 但小于120mm地段每隔2根、超高大于120mm每隔1根轨枕安装一对螺杆调 节器;螺杆调节器中的平移板应安装在中间位置,以保证可向两侧移动。 节器;螺杆调节器中的平移板应安装在中间位置,以保证可向两侧移动。 最大乎移范围约50mm 每一边的中心偏移量为25mm 50mm, 25mm。 最大乎移范围约50mm,每一边的中心偏移量为25mm。
高铁无砟轨道施工技术研究
高铁无砟轨道施工技术研究1. 引言1.1 背景介绍高铁无砟轨道施工技术是指在高铁线路建设中,采用无砟轨道技术进行铺设的施工方法。
传统的铁路施工中,常常需要在轨道下面铺设一层砟石,以保证轨道的稳定性和承载能力。
而无砟轨道施工技术则是通过直接在路基上铺设轨道,省去了砟石铺设的步骤,大大提高了施工效率和节约了施工成本。
随着高铁建设的不断发展,尤其是高速铁路网的不断完善,对施工技术和工艺的要求也越来越高。
高铁无砟轨道施工技术的研究和应用,对于提高铁路建设工程的质量、效率和环境友好性具有重要意义。
深入研究高铁无砟轨道施工技术,总结经验,提出改进建议,具有重要的意义和价值。
本文将从高铁无砟轨道施工技术的概述、施工工艺及方法、施工设备及材料、施工质量控制、技术创新及发展趋势等方面进行探讨,旨在全面了解和总结高铁无砟轨道施工技术的相关知识,为今后的高铁建设提供技术支持和参考依据。
1.2 研究意义高铁无砟轨道施工技术的研究意义主要体现在以下几个方面:高铁无砟轨道施工技术的研究可以提高高铁线路的建设效率和质量。
无砟轨道相比传统的石子轨道具有施工周期短、维护成本低等优势,通过研究不断完善施工工艺和方法,可以提高施工效率,减少施工成本,同时也提升高铁线路的稳定性和安全性。
高铁无砟轨道施工技术的研究对于提高铁路运输的效率和舒适度具有重要意义。
无砟轨道具有减震降噪、减小动车运行阻力的特点,能够提高列车的运行速度和舒适度,减少对环境的影响,促进铁路运输的可持续发展。
高铁无砟轨道施工技术的研究还可以促进我国铁路工程领域的技术创新和发展。
随着高铁建设的不断推进,铁路施工技术也需要不断创新,通过研究无砟轨道施工技术,可以为我国铁路工程领域的发展提供新的思路和方法,推动铁路工程技术水平的不断提高。
1.3 研究目的高铁无砟轨道施工技术的研究目的主要包括以下几个方面:1. 提高施工效率:通过研究高铁无砟轨道施工技术,可以探讨如何提高施工效率和减少施工周期,从而更快地建成高铁项目,满足社会对高铁交通的需求。
无砟轨道施工技术
无砟轨道施工技术无砟轨道施工技术是一种现代化的铁路轨道施工方法,主要应用于高速铁路及城市轨道交通建设中。
相比传统的有砟轨道,无砟轨道更具优势,能够提供更高的运行速度、更强的车辆稳定性和更低的噪音污染。
本文将介绍无砟轨道施工技术的原理、优点以及施工流程。
一、无砟轨道施工技术原理无砟轨道施工技术是在轨道基床上直接铺设轨道板,而无需使用传统的木质或混凝土轨枕。
这种施工方法主要依靠轨道板的几何形状和轨道板与基床之间的填料层来承载车辆荷载和分散压力。
无砟轨道施工技术的原理包括以下几个方面:1. 轨道板:无砟轨道施工中使用的轨道板通常由钢材制成,其截面形状可以是I型、箱型或其他形式。
轨道板的主要功能是承载轨道和分担车辆荷载。
2. 填料层:填料层是无砟轨道中起到关键作用的一层材料,可以是特殊的高强度、弹性较大的材料。
填料层能够均匀地分散压力,减少噪音和振动,保证轨道的稳定性和舒适度。
3. 基床:基床是无砟轨道的基础,通常是一层经过加固处理的土质或石料层。
基床的作用是提供良好的支撑和排水条件,防止轨道板下沉或移动。
二、无砟轨道施工技术的优点相比传统的有砟轨道,无砟轨道施工技术具有以下优点:1. 减少噪音污染:无砟轨道施工技术采用弹性填料层,能够有效减少车辆经过时产生的噪音和振动,提高居民的居住环境。
2. 提高运行速度:无砟轨道施工技术的轨道板具有更好的几何形状和更高的强度,能够提高列车运行的稳定性和安全性,从而实现更高的运行速度。
3. 降低维护成本:无砟轨道施工技术中没有传统轨枕的使用,减少了维护和更换轨枕的费用,在长期运营中能够显著降低运营成本。
4. 延长使用寿命:无砟轨道施工技术中使用的钢质轨道板具有较长的使用寿命,能够更好地抵抗疲劳和变形,提高轨道的耐久性。
三、无砟轨道施工的流程无砟轨道施工的主要步骤包括:1. 基床处理:根据设计要求,对基床进行平整和加固处理,确保轨道施工的稳定性和可靠性。
2. 铺设填料层:在基床上铺设一层特殊的填料材料,如高分子弹性材料或聚氨酯喷涂材料,填料层的厚度根据设计要求进行控制。