信号检测电路

合集下载

现代测控电子技术-微弱信号检测电路

现代测控电子技术-微弱信号检测电路

(a) 噪声电路 (b)等效电路
图中Et1和Et2分别表示R1和R2热噪声电压有效 值,图中的Et串为出现在串联电阻输出端的等效热 噪声电压有效值。
R1产生的热噪声电压et1和R2产生的热噪声电 压et2叠加后的功率为
因为et1和et2互不相关,上式的最后一项为零,得
例5.1.2 试证明温度相同的两个电阻R1和R2相 并联所产生的等效热噪声电压有效值为
爆裂噪声通常由一系列宽度不同,而幅度基本 相同的随机电流脉冲组成,脉冲的宽度也可在几微 秒 到 0.1s量 级 之 间 变 化 , 脉 冲 的 幅 度 约 为 0.01µA~0.001µA量级。因为脉冲的幅度只是PN结 杂质特性的函数,对于某个特定的半导体器件样品, 爆裂噪声的幅度是固定的,所以通常的爆裂噪声电 流只在两种电流值之间切换。
若总电流为i,则有
实际的检测电路都具有一定的频带宽度,工作 于电路系统中的PN结的散弹噪声电流的功率Psh为
式中,ish为随机的散弹噪声电流值;B为系统的等 效噪声带宽,单位为Hz。
散弹噪声电流的有效值(均方根值)为
上式除以 得单位带宽方根的散弹噪声有效值,也 就是平方根谱密度值
上式表明,散弹噪声的平方根谱密度值只是流过 PN结的平均直流电流IDC的函数,只要测出IDC,就 能确定散弹噪声电流的大小。
因为热噪声是由电阻中大量电子的随机热运 动引起的,这种由大量的随机事件导致的现象必 然具有高斯分布的概率密度函数。
包含电阻的任何电子电路都存在热噪声。例 如,当温度为17℃时,在带宽为100kHz的放大电 路中,10kΩ的电阻两端所呈现的开路热噪声电压 有效值约为4µV。可见,对于检测微伏级甚至纳 伏级微弱信号的系统来说,电阻热噪声的不利影 响是不容忽视的。

第4章光电信号检测电路1

第4章光电信号检测电路1

o
U b1
Ub2
Ub3 Uo 大的偏置电压会引起光电
二极管的反向击穿。
利用图解法确定输入电路的负载电阻和反向偏 置电压大小时,应根据输入光通量的变化范围和输 出信号的幅度要求使负载线稍高于转折点M,以便 得到不失真的最大电压输出,同时保证反向偏压不 大于器件的最大工作电压Umax。
2、解析计算法:对光电器件的非线性伏安特性进 行分段折线化,称为折线化伏安特性。
在线段MN有关系:
arctan G0
G0U0 GU0 Smax
O
U0
由此可得:
U0

S max G0 G

arctan G
N
Ub U0
arctan GL
0 Ub U
G0

G
S max U0
2、计算负载电阻和偏置电压:
i
为保证最大线性输出 条件,负载线和对应的伏
M I max
图解法的应用:
1、负载电阻的影响分析:
图中给出了Ub不变时, RL的大小对输出信号的影响:
io
RL1 RL2 RL3
RL 2
RL1
RL3 M Q
输入光通量不变时,负
0 载电阻的减小会增大输出信

0 0


号电流,而减小输出电压。
同时负载电阻的减小会受到
最大工作电流和功耗的限制。
5 10
U /V
15
光电倍增管
光电二极管
光电三极管
1、图解计算法:利用包含非线性元件的串联电路 的图解法对恒流源器件的输入电路进行计算。

U
I Ub
Ub
io
RL
I

逻辑电平信号检测电路

逻辑电平信号检测电路

逻辑电平信号检测电路实验报告
技术指标:
测量范围:低电平V L<0.8V,高电平V H>3.5V
用1kHZ的音响表示被测信号为高电平;
用800kHZ的音响表示被测信号为低电平;
当被测信号在0.8~3.5V之间时,不发出音响;输入电阻大于20KΩ。

实验目的:
逻辑电平测试器综合了数字电路和低频电路两门课的知识要求学生自己设计,并在Multisim 电子工作平台上进行仿真。

培养学生的综合能力,培养学生利用先进工具进行工程设计的能力。

1、理解逻辑电平测试器的工作原理及应用
2、掌握用集成运放和555定时器构建逻辑电平测试的方法。

3、掌握逻辑电平测试器的调整和主要性能指标的测试方法。

实验原理:
电路可以由五部分组成:输入电路、逻辑状态判断电路、音响电路、发音电路和电源。

原理框图如图所示
以上工作原理框图可使用与不同标准的电平的测试,现在以3.5V的电平为例作介绍,高电平为大于3.5V,低电平为小于0.8V。

实验仪器:
Multisim虚拟仪器中的数字运算放大器、555计时器、电阻、电容、示波器、频率计等。

实验内容:
图1输入和逻辑状态判断电路原理图
图2音调产生电路原理图
将图1和图2的U A、U B对应连接在一起即组成完整实验原理图。

实验总结:
输入不同检测信号U1时仿真结果分别如下图3、4、5、6。

(1)U1=0.5V(<0.8V)时仿真结果如下图3
(2)U1=4V(>3.5V)时仿真结果如下图4
(3)U1=2V(0.8V~3.5V之间)时仿真结果如下图5
(4)无检测信号输入时仿真结果如下图6。

信号检测电路设计原理

信号检测电路设计原理

信号检测电路设计原理信号检测电路如图3 (a) ,波形如图3 (b) 所示:图3 (a) 中LM393 等组成两个施密特电压比较器,用于分别检测两路交流信号的零点。

将两种近似正弦波的电压信号变成方波信号,如图3 (b) 中波形A、B、C、D、所示。

由D1 、D2 触发器(一片74HC74) 组成的电路,在单片机P1. 0 、P1. 1 的控制下完成对周期信号的检测。

当P1. 0 = 0 时, Q1 = Q2 = 0 ;当P1. 0 由0 转为1 ,且B 点信号由0 变为1 时,D1 翻转, Q1 = 1 ,此时Q2 仍为0 ,当B 点信号第二次由0 变为1 时,D1 再次翻转, Q1 = 0 ,同时D2 也翻转, Q2= 1 。

80C31 查询到P1. 1 = 1 时, 让P1. 0 = 0 ,完成一次检测。

其波形如图3 (b) 中B、P1. 0 、T、Q2 。

这种电路进检测上升沿,提高了检测精度。

由D3 、D4触发器(一片74HC74) 组成的电路,在单片机P1. 0 控制下完成时间差信号检测。

当P1. 0 = 0 时,电路不工作, Q3 = Q4 = 0 ;当B 点信号由0 变为1 时, Q3 = 1,Q4 仍为0 ;当D 点信号由0 变为1 时, Q4 = 1 ,同时Q3 被清零,从而检测出两信号的时间差。

波形如图3 (b) 中B、D、P1. 0 、&Delta;t 。

根据相位差的定义和传感器的错半齿安装,两路信号的相位差&Delta; 与周期T 及时间差&Delta;t的关系为:&Delta; = (360&deg;/ T) &Delta;t - 180&deg;。

利用80C31 内部的T0、T1 定时器可以较准确的求出T、&Delta;t 。

具体为:将T0 、T1 设成内部计数器形式( C/ T = 0) ,工作在方式2 状态,GA T E = 1 , TR = 1 ,这样当TN T0、TN T1 = 1 时T0 、T1 计数,采用12MHz 晶振,每计一次数时间为1&mu;s。

(射频功率放大器)第12章射频信号功率检测控制电路

(射频功率放大器)第12章射频信号功率检测控制电路
、可靠,适用于低成本和小型化的应用场景。
基于RFID技术的功率检测系统设计
总结词
RFID技术利用射频信号进行非接触式通信 ,适用于远距离和快速读取标签信息。
详细描述
基于RFID技术的功率检测系统通过读取标 签的响应信号,利用RFID阅读器测量射频 信号的功率。该设计适用于需要快速、远距 离检测射频信号功率的场景,如物流、仓储 管理等。
基于智能天线的自动增益控制设计
总结词
智能天线能够自动调整信号的接收方向和增 益,提高通信质量和抗干扰能力。
详细描述
基于智能天线的自动增益控制设计通过智能 天线对射频信号进行定向接收和自动增益调 整,实现射频信号功率的自动检测和控制。 该设计能够提高通信系统的性能和稳定性,
适用于移动通信、卫星通信等领域。
基于FPGA的数字功率控制电路设计
总结词
FPGA具有高度的可编程性和并行处理能力,适用于实现 复杂数字控制逻辑。
详细描述
基于FPGA的数字功率控制电路通过接收数字控制信号, 利用FPGA实现数字控制逻辑,驱动功率放大器调整射频 信号的输出功率。该设计具有高精度和快速响应的特点 ,适用于需要精确控制射频信号功率的应用场景。
历史与发展趋势
历史
射频信号功率检测控制电路的发展经历了从模拟电路到数字电路、从单一功能到多功能集成的发展过 程。
发展趋势
随着电子技术和计算机技术的不断发展,射频信号功率检测控制电路正朝着高精度、高稳定性、智能 化和集成化的方向发展。未来,随着5G、6G等新一代无线通信技术的普及,其应用前景将更加广阔 。
射频信号功率检测控制电路设计实例
基于运算放大器的功率检测电路设计
总结词
运算放大器具有高放大倍数和低输入阻抗的特点,适用于对微弱信号进行放大和检测。

(完整版)第四章光电信号检测电路

(完整版)第四章光电信号检测电路

4.2 光电信号输入电路的静态计算
静态计算法是对缓慢变化的光信号采用直流电路 检测时使用的设计方法,由于光电检测器件的非线 性伏安特性,所采用的方法包括非线性电路的图解 法和分段线性化的解析法。
按照伏安特性的基本性质可分为三种类型:恒流 源型、光伏型和可变电阻。
4.2.1 恒流源型器件光电信号输入电路
0 Q
UQ
图解法 分析:
U
O
U
光伏型器件负载电阻和光通量的影响分析:
伏安特性 非线性
光通量较小时 近似线性关系 光通量较大时 逐渐饱和状态
电阻越大越明显
RL 0
RM
RL↑
负载电阻的选取影响输出信号
UM
短路电流或线性电流放大(区域I) 空载电压输出(区域IV) 线性电压输出(区域 II)
短路电流或线性电流放大区域 I
1、负载电阻很小,接近于0,电 路工作状态接近于短路工作状态, 可实现电流变换。后续电流放大 级可从光电池中吸取最大的输出 电流。此时输出电流为:
I
I I p Is eIRL UT 1 RL 0
I p Isc S
和 I S
RL 0
i
R1 I
II
RM
Isc2 2 I sc1 1
O
所以 R
S Gp Gd 2
R2S
即有:I
R 2U b S
R RL 2

U L
RLI L
R 2U b S
R RL 2
RL
练习思考
R IL
10K
UL
Ub
已知负载10k,偏置电压100V,光电导灵敏度为 S=0.5×10-6S/lm,暗电导为0,假设静态工作点光通量 为100lm时,光敏电阻阻值为20k,试求光通量在50lm 到150lm的范围内变化时电路负载上输出电流和输出电

常用的检测电路

常用的检测电路

量放大器, AD521集成测量放大器管脚说明和
基本应用电路如图3所示。
图3 AD521管脚及应用电路
该测量放大器的放大倍数按下面公式计算:
U0 RS G Ui Rg (10.6)
在使用AD521时,要特别注意为偏置电流提供回路。 图4给出了传感器与检测电路几种不同的耦合方式下 的接地方法:
图4 AD521输入信号耦合方式
图2 三运算放大器构成的测量放大器
根据运算放大器的基本分析方法,图2中的输出 电压:
2R1 U 0 (U 01 U 02 ) (1 )(U i1 U i 2 ) ( 10.4) R R R2
Uid Ui1 Ui2 设 ,则输出为: Rf 2R1 U0 (1 )U id R R2
本节内容不作具体转换电路的分析,只介绍有转换电路类型及功能。
1、模/数转换器 A/D转换可分为直接法和间接法。 直接法是把电压直接转换为数字量,如逐次比 较型的A/D转换器。 间接法是把电压先转换成某一中间量,再把中 间量转换成数字量。 (1) 逐次比较型模/数转换器 逐次比较型A/D转换就是将输入模拟信号与不 同的参考电压做多次比较,使转换所得的数字量在 数值上逐次逼近输入模拟量的对应值。
1、一阶低通有源滤波器
一阶有源低通滤波器由RC网络和运算放大器 构成,如图12(a)所示。
图12 一阶低通滤波器及其幅频特性
由图12(a)可得
U 1 1 jC Ui Ui (9) 1 1 jRC R jC
又由虚短,则
U 0 (1
Rf
Ui ) (10) R1 1 jRC
Uo Rf R Ui (10.8)
图11 ISO100的基本接法
2 信号处理电路

微弱信号检测的前置放大电路

微弱信号检测的前置放大电路
引言
针对精准农业中对微弱信号检测的技术需 求,本ppt设计了以电流电压转换器,仪表 放大器和低通滤波器为主要结构的微弱信 号检测前置放大电路。结合微弱信号的特 点讨论了电路中噪声的抑制和隔离,提出 了电路元件的选择方法与电路设计中降低 噪声干扰的注意事项。本文利用集成程控 增益仪表放大器PGA202 设计了微弱信号 检测前置放大电路,并利用微弱低频信号 进行了测试,得到了理想的效果。
4、电路的设计与实现
综合考虑微弱信号检测的需要和市场上芯片的供应情况, 本文选用PGA202 搭建仪表放大器,对微弱信号检测前 置放大电路进行了整体设计。
4.1 PGA202 简介 这里所选用的PGA202 是由BURR-BROWN 公司生产的,
PGA202 是一种程控仪表放大器,它内部集成了程控的 增益改变逻辑电路。由于省去了增益控制部分,利用 PGA202 搭建仪表放大器可以使电路结构得到很大的简 化,并且它的放大倍数稳定精确,为后续的数据处理提供 了方便。PGA202 的内部结构如图3。
电路中的仪表放大级通常设计为程控放大倍数的结构,通过程控开关 调整反馈电阻的大小,从而改变放大倍数。为了对数字电路和模拟电 路进行隔离,程控开关选用光偶开关。为了提高仪表放大器的性能, 可以选用集成仪表放大器。很多公司提供了不同类型的集成仪表放大 器,如INA127,它内部集成了仪表放大器的主要结构,有很好的对 称性,可通过改变外接电阻的大小改变放大倍数。PGA202 是一款可 程控放大倍数的仪用放大器,应用它可以简化电路结构,但PGA202 需要搭建差分输入级,这样就降低了共模抑制能力。2007 年末ADI 公司推出的AD8253 芯片集以上两种芯片的优点于一身,不但集成 了完整的仪表放大电路,还集成了程控放大倍数的逻辑电路,是微弱 信号检测前置放大电路的理想选择。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 信号检测电路
由于在实际检测过程中,被测信号通常不符合系统的处理范围,所以在对被测电信号检测之前进行了一系列调整,主要包括降压、电压幅值转换等。

我们需要的待测电信号是强电信号,系统选择的采样芯片ADS8365,它允许输入的范围是0~5V,所以不能直接用采样芯片进行采样,需要对其进行一定的调理后方能被采样芯片接收。

用霍尔电压、电流传感器,把强电信号变换成-10V~+10V 的交流电压;转换电路的目的是把电压变换成A/D转换芯片要求的0~+5V电压。

LBout是从传感器出来的交流电压信号,其幅值为-10V~+10V。

在进行电平转换时首先需要进行分压,经过电阻R5和R7的分压后,进入R6的电压U1变为-5V~+5V。

经过第一个运放电路后其电压U2=-(10/20)(U1+5)=-(U1+5)/2,幅值转换为-5V~0V。

经过第二个运放电路后U3=-(20/20)U2=-U2=(U1+5)/2,其幅值转变为0~+5V。

得到的电压满足了采样芯片的要求,能够直接被采样。

最后加了一个限幅电路,相对来说比较简单,主要是防止电压幅值过大,导致烧坏采样芯片,起到一个保护作用,其仿真电路如下图所示。

其中A波形为从滤波器出来的10V交流电压信号,B波形为经过电平转换后0~5V交流电压信号,满足了设计要求。

相关文档
最新文档