计量经济学——时间序列

合集下载

《计量经济学》3.3时间序列分析

《计量经济学》3.3时间序列分析

3.3时间序列分析3.3.1时间序列概述1.基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。

它是系统中某一变量受其它各种因素影响的总结果。

(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。

它不研究事物之间相互依存的因果关系。

(3)假设基础:惯性原则。

即在一定条件下,被预测事物的过去变化趋势会延续到未来。

暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。

近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。

(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。

时间序列的预测和评估技术相对完善,其预测情景相对明确。

尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。

2.变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。

(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

(3)随机性:个别为随机变动,整体呈统计规律。

(4)综合性:实际变化情况一般是几种变动的叠加或组合。

预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。

3.特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。

(1)随机性:均匀分布、无规则分布,可能符合某统计分布。

(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。

)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。

样本序列的自相关函数只是时间间隔的函数,与时间起点无关。

其具有对称性,能反映平稳序列的周期性变化。

特征识别利用自相关函数ACF:ρk =γk/γ其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。

计量经济学:时间序列模型习题与解析

计量经济学:时间序列模型习题与解析

计量经济学:时间序列模型习题与解析第九章时间序列计量经济学模型的理论与⽅法练习题1、请描述平稳时间序列的条件。

2、单整变量的单位根检验为什么从DF检验发展到ADF检验?23、设X t cost si n t,0 t 1,其中,是相互独⽴的正态分布N(0, )随机变量,是实数。

试证:{x t,0 t 1}为平稳过程。

LB5、利⽤4中数据,⽤ADF法对居民消费总额时间序列进⾏平稳性检验。

6、利⽤4中数据,对居民消费总额时间序列进⾏单整性分析。

7、根据6中的结论,对居民消费总额的差分平稳时间序列进⾏模型识别。

8、⽤Yule Walker法和最⼩⼆乘法对7中的居民消费总额的差分平稳时间序列进⾏时间序列模型估计,并⽐较估计结果。

9、有如下AR(2)随机过程:X t 0.1X t1 0.06X t 2 t该过程是否是平稳过程?10、求MA(3)模型y t 1 u t 0.8u t 1 0.5u t 2 0.3u t 3的⾃协⽅差和⾃相关函数。

11、设动态数据x10.8,x20.7, x3 0.9, x4 0.74, x5 0.82,x6 0.92, x7 0.78,X8 0.86, X9 0.72, X10 0.84,求样本均值x,样本⽅差?。

,样本⾃协⽅差?、?2和样本⾃相关函数?1、?2。

12、判断如下ARMA过程是否是平稳过程:x t 0.7x t 1 0.1x t 2 t 0.14 t 113、以Q t表⽰粮⾷产量,A t表⽰播种⾯积,C t表⽰化肥施⽤量,经检验,他们取对数后都是I (1)变量且相互之间存在CI( 1,1)关系。

同时经过检验并剔除了不显著的变量(包括滞后变量),得到如下粮⾷⽣产模型:In Q o In Q [ 21n A t 31n C t 4In C t 1 t推导误差修正模型的表达式,并指出误差修正模型中每个待估参数的经济意义。

14、固定资产存量模型K t 0 1K t 1 2I t 3I t 1 t中,经检验,K t ~ I (2), 11 ~ I (1),试写出由该ADL模型导出的误差修正模型的表达式。

初计量经济学之时间序列分析

初计量经济学之时间序列分析

初计量经济学之时间序列分析1. 引言时间序列分析是计量经济学中的一个重要领域,研究的是时间序列数据的性质、模式和预测方法。

时间序列数据是按照时间顺序排列的一系列观测值,包括经济指标、股票价格、气象数据等。

时间序列分析可以帮助我们理解和预测经济现象的发展趋势,为政府和企业决策提供科学依据。

本文将介绍时间序列分析的基本概念、方法和应用。

首先,我们将介绍时间序列分析的基本步骤和基本假设。

然后,我们将介绍时间序列模型的常用类型,包括自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)。

最后,我们将介绍时间序列的应用领域,包括经济预测、金融风险管理和气象预测。

2. 时间序列分析的基本步骤时间序列分析的基本步骤包括数据的收集和准备、数据的探索性分析、模型的选择和估计、模型的诊断和预测。

下面将对每个步骤进行详细介绍。

2.1 数据的收集和准备数据的收集和准备是时间序列分析的第一步。

我们需要收集时间序列数据,并进行数据清洗和预处理。

数据清洗包括删除缺失值、处理异常值和去除趋势。

数据预处理包括对数据进行平滑处理、差分和变换。

2.2 数据的探索性分析数据的探索性分析是时间序列分析的第二步。

我们需要对时间序列数据进行可视化和统计分析,以了解数据的基本性质和模式。

可视化方法包括绘制时间序列图、自相关图和偏自相关图。

统计分析方法包括计算统计指标、分析趋势、季节性和周期性。

2.3 模型的选择和估计模型的选择和估计是时间序列分析的第三步。

我们需要选择合适的时间序列模型,并进行参数估计。

常用的时间序列模型包括自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)和季节性模型。

2.4 模型的诊断和预测模型的诊断和预测是时间序列分析的最后一步。

我们需要对模型进行诊断,检验模型的拟合程度和残差的平稳性、独立性和正态性。

然后,我们可以使用模型进行未来值的预测。

3. 时间序列模型时间序列模型是描述和预测时间序列数据的数学模型。

计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型时间序列是指按照时间顺序排列的一组数据。

在计量经济学中,时间序列分析是一种重要的研究方法,它可以帮助我们理解和预测经济现象的发展趋势。

本文将介绍时间序列模型以及其中的一种常用模型——自回归滑动平均移动平均自回归(ARIMA)模型。

一、时间序列模型的基本概念时间序列模型是根据时间序列数据的特点建立的数学模型。

它假设时间序列的变动是由多个因素引起的,这些因素可以是趋势、季节性、周期性等。

时间序列模型可以帮助我们从数据中分离出这些因素,以便更好地理解和预测未来的变动。

二、自回归滑动平均移动平均自回归(ARIMA)模型ARIMA模型是一种广泛应用于时间序列分析的模型,它结合了自回归(AR)模型、滑动平均(MA)模型和差分运算的方法。

ARIMA模型可以描述时间序列的自相关性、滞后差分的影响以及移动平均误差的影响。

ARIMA模型可以从以下三个方面描述一个时间序列:1. 自回归(AR)部分:用于描述过去时间点的观测值对当前值的影响,通过延迟观测值来预测当前值。

2. 差分(I)部分:通过对时间序列进行差分运算,可以消除其非平稳性,提高模型的拟合度和预测准确性。

3. 滑动平均(MA)部分:用于描述序列中随机波动的影响,通过滞后误差预测当前值。

ARIMA模型的表示方式为ARIMA(p, d, q),其中p表示自回归阶数,d表示差分阶数,q表示滑动平均阶数。

通过对历史数据的拟合,我们可以得到模型的参数估计,从而进行未来值的预测。

三、ARIMA模型的应用ARIMA模型在经济领域有广泛的应用,其中包括销售预测、股票价格预测、宏观经济指标预测等。

它通过分析历史数据中的规律性和趋势性,将其应用于未来的预测中。

ARIMA模型的建立和应用过程可以分为以下几个步骤:1. 数据收集和准备:收集相关的时间序列数据,并对其进行清洗和格式化,以便于后续的分析和建模。

2. 模型选择和拟合:通过计算模型选择准则(AIC、BIC等)来确定模型的阶数,并使用最小二乘法或极大似然法对模型进行参数估计。

中级计量经济学-时间序列

中级计量经济学-时间序列
谈何容易?但至少需要了解分布的一些特征
考虑T期的N种资产 rit :i 1,, N;t 1,,T 1、联合分布函数 F r11,, rN1;;r1T ,, rNT ;Y;
Y为state vector Theta为分布函数的变量 给定数据rt,可以估计theta,哪怕是一部分在
既定假设模型下的theta 特例:CAPM模型,单变量时间序列分析
又叫log return
优势:多期收益率为单期收益率之和,一些统 计学的特征更容易驾驭
资产组合收益率
简单净收益率 对数收益率
考虑股息的支付
N
RP,t wi Rit i 1
N
rP,t wirit i 1
ERxt c ePtPsts1Dt
1
return
rt ln Pt Dt ln Pt1
其他非正态的stable distribution没有有限的 方差,与大部分的金融理论冲突
有些stable distribution比正态分布更能 capture厚尾现象,如Cauchy分布
Cauchy分布举例 X ~ Cauchy ,
f
x
1
2
X
2
,
X
特例:f
x
1
1 1 X
2
,
2、条件分布函数
F ri1, , riT ; F ri1 F ri2 ri1 F ri3 ri2 , ri1 F riT ri,T 1, ri,T 2 ,, ri,1
T
F ri1 F rit ri,t1, ri,T 2 ,, ri,1 t2
Temporal dependency
3、Marginal distribution
不可忽略,更容易估计,且当数据的序列相关 性较弱时,marginal与conditional很接近

计量经济学中的时间序列分析

计量经济学中的时间序列分析

计量经济学中的时间序列分析时间序列分析是计量经济学中的重要内容之一,它主要研究特定变量随时间变化的规律性和趋势。

通过时间序列分析,我们可以更好地理解经济现象,预测未来变化趋势,制定合适的政策和策略。

本文将从时间序列的概念入手,介绍时间序列分析的基本原理、方法和应用。

一、时间序列的概念时间序列是按照时间顺序排列的一系列数据观测值的集合。

在计量经济学中,时间序列通常用来观察和研究某一经济变量在不同时间点上的变化情况。

时间序列数据可以是连续的,也可以是间断的,常见的时间单位包括年、季、月、周等。

通过对时间序列数据的分析,我们可以揭示出其中的规律性和特征。

二、时间序列分析的基本原理时间序列分析的基本原理是利用过去的数据来预测未来的发展趋势。

在时间序列分析中,常用的方法包括趋势分析、周期性分析、季节性分析和不规则波动分析。

趋势分析主要用来观察时间序列数据的长期变化趋势,周期性分析则是研究数据是否存在固定长度的周期性波动,季节性分析则是研究数据是否呈现出固定的季节性变化规律,而不规则波动分析则是研究一些随机因素对数据的影响。

三、时间序列分析的方法时间序列分析的方法有很多种,其中常用的包括移动平均法、指数平滑法、回归分析法、ARIMA模型等。

移动平均法通过计算连续几个期间的平均值来平滑数据,达到去除数据波动的目的;指数平滑法则是通过计算加权平均来对数据进行平滑处理,使得预测值更加准确;回归分析法则是通过建立经济模型来研究时间序列数据之间的关系,进行预测和分析;ARIMA模型则是一种时间序列的自回归与移动平均模型,可以对时间序列数据进行拟合和预测。

四、时间序列分析的应用时间序列分析在经济学、金融学、管理学等领域有着广泛的应用。

在经济学中,时间序列分析可以用来研究经济增长、通货膨胀、失业等经济现象的发展趋势;在金融学中,时间序列分析可以用来预测股票价格、汇率、利率等金融变量的变化情况;在管理学中,时间序列分析可以用来制定企业的生产计划和销售策略,提高企业的运营效率。

时间序列计量经济学模型概述

时间序列计量经济学模型概述

时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。

该模型基于时间序列数据,即经济变量在一段时间内的观测值。

时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。

其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。

自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。

该模型以过去的观测值和随机项为输入,预测当前观测值。

ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。

自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。

该模型通过引入一个条件异方差项,模拟经济变量中的波动性。

ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。

季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。

这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。

在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。

识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。

模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。

时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。

它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。

时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。

它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。

本文将进一步探讨时间序列计量经济学模型的相关概念和应用。

在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。

时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。

计量经济学中的时间序列分析

计量经济学中的时间序列分析

计量经济学中的时间序列分析计量经济学是应用经济学中比较基础的分支,主要研究经济学中的定量分析和增长趋势。

其中,时间序列分析作为计量经济学重要的一部分,被广泛运用于宏观经济学中的经济周期、经济增长率、通货膨胀以及个人收入等诸多领域。

时间序列分析是计量经济学中一种基本的研究方法,主要使用统计学技术处理时间序列数据,得出未来预测、检验理论假设和描述历史趋势等信息。

时间序列数据的重要性在于,它们反映了一个经济变量随着时间推移的变化规律。

这些数据可以被用来研究经济变量展现的时间趋势和季节性变化等。

因此,时间序列分析在宏观经济的长期趋势研究、短期波动分析、周期特征查验和经济结构变革判断等方面有重要的应用。

在时间序列分析中,经济变量随着时间的推移体现的规律通常被归纳为趋势、季节性、循环、随机波动四个方面。

趋势是一个时间序列中最为基本的成分,反映一项宏观经济变量的长期变化趋势,其普遍存在的原因可能是技术进步、人口变动、自然要素影响等等因素。

而季节性则是一项经济变量随着时间的相对固定的短期变化,反映的是因为季节性因素的影响而生的波动现象。

循环则是周期波动的一种体现,代表着长达数年的经济波动和周期性变化。

随机波动是时间序列中不可预测的无法被规律分析的随机性波动成分。

这种波动通常受到一些令人难以预测的特殊事件的影响,比如自然灾害、政府重大决策等。

时间序列分析方法有很多种,其中包括经典的时间序列分析方法,如白噪声检验、趋势分析、季节性分析、循环分析等。

同时也包括新兴的技术,如自回归移动平均模型(ARMA)、广义自回归条件异方差模型(GARCH)、立方样条获取非线性趋势和神经网络等。

这些方法涉及的内容比较复杂,因此初学者在学习中需要认真掌握这些方法和工具,并理解它们在数据处理和预测中的应用和限制。

总结而言,计量经济学中的时间序列分析是经济变量随时间推移表现出来的一种基本变化规律的统计学分析方法。

在宏观经济分析、政策研究、市场营销等方面有着广泛的应用。

计量经济学数据

计量经济学数据

计量经济学数据引言:计量经济学是经济学中的一个分支,它运用数理统计学和经济学的原理,通过采集和分析经济数据来研究经济现象和经济政策的影响。

在计量经济学中,数据的质量和准确性对于研究结果的可靠性至关重要。

本文将介绍计量经济学中常用的数据类型、数据来源、数据处理和数据分析方法。

一、数据类型在计量经济学中,数据可以分为两种类型:横截面数据和时间序列数据。

1. 横截面数据:横截面数据是在某个特定时间点上对不同个体进行观察和测量的数据。

例如,我们可以通过调查采集到某一年份不同家庭的收入、教育水平、家庭规模等信息。

2. 时间序列数据:时间序列数据是在一段时间内对同一事物进行观察和测量的数据。

例如,我们可以通过统计机构的报告获得过去几年某个国家的GDP增长率、失业率等信息。

二、数据来源计量经济学的数据可以从多个来源获取,常见的数据来源包括:1. 统计机构:各国的统计机构通常会发布各种经济指标和统计数据,如国内生产总值(GDP)、劳动力市场数据、物价指数等。

这些数据通常经过严格的调查和统计,具有较高的可靠性。

2. 调查数据:研究人员可以通过设计并实施调查来采集经济数据。

例如,通过问卷调查采集企业的生产成本、消费者的购买意愿等数据。

调查数据的质量和准确性取决于样本的选择和问卷设计等因素。

3. 学术研究:研究人员在进行学术研究时,通常会使用已有的学术文献和研究成果中的数据。

这些数据通常经过严格的检验和验证,具有较高的可信度。

三、数据处理在计量经济学中,数据处理是非常重要的一步,它包括数据清洗、数据转换和数据标准化等过程。

1. 数据清洗:数据清洗是指对采集到的原始数据进行筛选和清理,去除异常值、缺失值和错误值等。

这样可以提高数据的质量和准确性,确保后续分析的可靠性。

2. 数据转换:数据转换是指对原始数据进行变换,使其符合模型假设和分析的要求。

常见的数据转换包括对数转换、差分运算等。

3. 数据标准化:数据标准化是指将不同尺度和单位的数据转化为统一的尺度和单位,以便进行比较和分析。

计量经济学-第21章 时间序列计量经济学基础Ⅰ--平稳性、单位跟与协整

计量经济学-第21章  时间序列计量经济学基础Ⅰ--平稳性、单位跟与协整
如果 Yt 满足 Yt Yt1 a ut
其中a是常数,ut 是平稳的,比如 E(ut ) 0,var(ut ) 2 ,
则这样的 Yt 过程叫做DSP
可见一个平稳时间序列可以用一个TS过程作为它的 模型,而一个非平稳时间序列则代表一个DS过程
对于存在随机趋势的时间序列的关系的分析需要做 协整以及非平稳性检验
在做PCE对PDI的回归时可以加进趋势变量t,消去PCE和PDI的时间趋 势。
当时我们曾经强调,只有当趋势变量是确定性的(deterministic),而不 是随机(stochastic)时,才可以这样做。
如果一个时间序列有一个单位根,则不能使用加进趋势变量t的方法来去 除趋势。
趋势平稳过程(trend-stationary process,简记为TSP),在下面的回归 中:
考虑一下模型
(21.3.4)
其中 ut 是均值为零,恒定方差且序列不相关的随 机误差项,即 ut 是white noise。
这是一个一阶自回归模型,Yt-1的系数为1,{Yt} 序列存在一个单位根。也就是说,{Yt}是一个非 平稳序列。
有一个单位根的时间序列叫做随机游走(时间序 列)。随机游走(random walk)是非平稳时间 序列的一个例子。
其中,n—样本容量,m—滞后长度 Q近似地(即在大样本中)服从m个自由度的
分布。
则拒绝全部 同时为零的虚拟 假设。也就是说,至少有一个(或一些) 是非零的。
设。
则不拒绝全部 为零的虚拟假
杨—博克斯(Ljung Box)构造的统计量是对博克 斯—皮尔斯(Box-Pierce)Q统计量的一种改进。
LB统计量比Q统计量具有更好的小样本性质。 图21.8中的例子,基于25期滞后的Q统计量为793, LB统计量为891,两者都是高度显著的,得到 值的P值几乎为零。

时间序列计量经济学建模简介

时间序列计量经济学建模简介

第八章 时间序列计量经济学建模简介第一节 时间序列计量经济学模型的基本概念 一、时间序列计量经济学的发展趋势1、上个世纪70年代中期世界复杂的经济格局对计量经济学方法的挑战。

计量经济学模型的主要应用之一就是经济预测,而且早年计量经济学就是通过利用模型的短期预测发展起来的。

在上个世纪50——60年代西方国家经济预测中不乏成功的实例。

但是,进入20世纪70年代以后,人们对计量经济学模型提出了质疑,表现在1973年和1979年,各种计量经济学模型都无法预测到“石油危机”对经济会造成什么影响(尽管当时能够对石油危机提出预报)。

2、传统计量经济学方法存在的主要问题。

传统计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律的主要技术手段。

而对于非稳定发展的经济过程和缺乏规范行为理论的经济活动,传统计量经济学模型就显得无能为力。

同时,现实经济活动愈来愈复杂多变,对于社会经济的发展、体制的变迁、技术的创新,要用具有一定的计量经济学或动态多元非线性方程组对其加以描述并非易事。

因此,人们认为传统计量经济学的弱点是过分依赖先验理论,这种弱点一方面表现为缺乏动态的信息反馈;另一方面是所获得的理论与样本数据间满意的吻合结果往往要凭借建模者的艺术。

3、80年代初提出了与传统计量经济学完全不同的建模方法。

最初由萨甘(Sargan ,1964)提出,后经亨德里-安德森(Hendry-Anderson ,1977)和戴维森(Davidson ,1977)进一步完善的误差修正模型,以及由格兰杰(C.W.J.Granger ,1981)提出的协整理论,最终产生了Hendry 的“由一般到特殊”的建模方法。

时间序列的类型: (1)按时间是否连续分为一是离散型的随机过程或时间序列;二是连续型的随机过程或时间序列。

本章主要研究离散时间序列,并用t Y 或t X 表示。

对于连续时间序列,可通过等间隔采样使之转化为离散时间序列后加以研究。

计量经济学第十章 时间序列计量经济模型

计量经济学第十章 时间序列计量经济模型

H0
第三步:对一阶差分序列作单位根检验得到序列的单整阶数 为了得到人均可支配收入(SR)序列的单整阶数,在单位根检 验(Unit Root Test)对话框(图10.3)中,指定对一阶差分序 列作单位根检验,选择带截距项(intercept),滞后差分项 (Lagged differences)选2阶,点击OK,得到估计结果,见表 10.5。
t(t T )
举例:
1、连续性随机过程:心电图,用 Y t 表示。
2、离散型随机过程:GDP,DPI等,用 Y1 , Y2 ,...,Yt 表示。记住,这 些Y中的每一个都是一个随机变量,而这些随机变量按时间编排形 成的集合就是一个随机过程。
讨论:如何理解GNP是一个随机过程呢?

理论上讲,某一年的GNP数字可能是任何一个数字,取决 于当时的政治与经济环境。某个数字只是所有这些可能性 中的一个特定的实现,也可以看成是某年GNP所有可能值 得均值。因此,我们可以说,GNP是一个随机过程,而我 们在某个时期期间所观测到的实际值只是这个过程的一个 特定实现(即样本)。与我们利用截面数据中的样本数据 对总体进行推断一样,在时间序列中,我们利用这些实现 对其背后的随机过程加以推断。
-0.7791体现了对偏离的修正,上一期偏离越远,本 期修正的量就越大,即系统存在误差修正机制。

第十章 时间序列计量经济模型
本章主要讨论:
时间序列的基本概念
时间序列平稳性的单位根检验 协整
第一节 时间序列基本概念
本节基本内容:
●伪回归问题 ●随机过程的概念 ●时间序列的平稳性
一、伪回归问题
传统计量经济学模型的假定条件:序列的平稳性、正态性。
所谓“伪回归”,是指变量间本来不存在相依关系,但回归 结果却得出存在相依关系的错误结论。即表现在:两个本来没 有任何因果关系的变量,却有很高的相关性(有较高的R2)。 例如:用美国人口数和中国GDP回归,也可能会得到很高的 可决系数。 20世纪70年代,Grange、Newbold 研究发现,造成“伪回归” 的根本原因在于时序序列变量的.,Ytn

计量经济学--时间序列部分

计量经济学--时间序列部分

1. 已知MA(2)模型:120.70.4t t t t X εεε--=-+,2.(1)计算自相关系数(1)k k ρ≥;(2)计算偏相关系数(1,2,3)kk k ϕ=;解:(1)1212[0.70.4)(0.70.4)]t t k t t t t k t k t k EX X E εεεεεε--------=-+-+(所以:2220120,(1)k εγθθσ==++,211121,(),k εγθθθσ==-+2122,k εγθσ==-,3,0k k γ≥=,所以:112122120.591θθθρθθ-+==-++2222120.241θρθθ-==++0,3k k ρ=≥(2)1110ρϕρ=即111ϕρ=,所以110.59ϕ≈-当2k =时,产生偏相关系数的相关序列为2122{,}ϕϕ,相应Yule-Wolker 方程为:0121110222ρρϕρρρϕρ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 所以220.166ϕ≈-当3k =时,产生偏相关系数的相关序列为313233{,,}ϕϕϕ,相应Yule-Wolker 方程为:123111132221333111ρρϕρρρϕρρρϕρ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦所以330.047ϕ≈2.题:考虑MA (2)模型yt=εt –θ1εt-1 –θ2εt-2(1) 求出yt 序列的均值与方差(2) 推导出以下理论自相关函数 ρ1=(1+θ12++θ22)−1(θ1θ2-θ1)ρ2=-θ2(1+θ12++θ22)−1ρj = 0 , j > 2(3) 在什么条件下该模型为平稳时间序列模型?该模型可逆的条件是什么?答案:(1)μ=E (yt )=E (εt –θ1εt-1 –θ2εt-2)= 0 σy 2= E (yt−μ)2= E(εt –θ1εt-1 –θ2εt-2)(εt –θ1εt-1 –θ2εt-2) =(1+θ12+θ22) E (εt 2) =(1+θ12+θ22)σε2(2)γ0=E(ytyt )= E(εt –θ1εt-1 –θ2εt-2)(εt –θ1εt-1 –θ2εt-2) =(1+θ12+θ22)σε2γ1=E(ytyt −1) = E(εt –θ1εt-1 –θ2εt-2)(εt-1–θ1εt-2 –θ2εt-3) =(θ1θ2-θ1)σε2γ2=E(ytyt −2) = E(εt –θ1εt-1 –θ2εt-2)(εt-1–θ1εt-23–θ2εt-4) =-θ2σε2所以,ρ1=γ1/γ0=(1+θ12++θ22)−1(θ1θ2-θ1) ρ2=γ2/γ0=-θ2(1+θ12++θ22)−1(3)该模型在任何情况下都是平稳的,因为其右边是一系列的白噪音过程的叠加。

计量经济学实例时间序列

计量经济学实例时间序列
预测结果展示
将预测结果与实际股票价格进行对比 分析,评估模型的预测效果。
06
总结与展望
研究成果总结
通过对时间序列数据的深入分析和建模,本研究成功揭示了经济变量之间的动态关系和长期趋势,为 政策制定和市场预测提供了有力支持。
在模型选择和参数估计方面,本研究采用了先进的计量经济学方法和技术,有效提高了模型的拟合优度 和预测精度。
预测误差评估指标
均方误差(MSE)
衡量预测值与实际值之间误差的平方的平均值,值越小表示预测 精度越高。
均方根误差(RMSE)
MSE的平方根,能更直观地反映预测误差的大小。
平均绝对误差(MAE)
预测值与实际值之间绝对误差的平均值,能反映预测误差的实际情 况。
实例分析:股票价格预测
数据收集
收集历史股票价格数据,包括开盘价、 收盘价、最高价、最低价等。
02
ARMA模型结合了自回归(AR)和移动平均(MA)两种模型的特点,能够更全 面地刻画时间序列的动态特征。
03
ARMA模型的表达式为:Xt=c+∑i=1pφiXt−i+εt+∑j=1qθjεt−j,其中φi和θj分别 为自回归系数和移动平均系数,p和q分别为自回归阶数和移动平均阶数。
模型定阶与参数估计方法
具有平稳性。
03
对数变换与幂变换
对数变换和幂变换是两种常用的非线性变换方法,可以消除时间序列中
的异方差性和非线性趋势,使得变换后的序列具有平稳性。这些方法在
处理金融和经济数据时尤为有效。
04
模型建立与参数估计
ARMA模型介绍
01
自回归移动平均模型(ARMA模型)是时间序列分析中的一种重要模型,用于 描述平稳时间序列的随机过程。

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

计量经济学-第6章⑴时间序列的平稳性及其检验精品文档

0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
-0.031 0.157 0.264 -0.191 -0.616 -0.229 -0.385 -0.181 -0.521 -0.364 -0.136 -0.451 -0.828 -0.884 -0.406 -0.162 -0.377 -0.236 0.000
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
• 注意:
确定样本自相关函数rk某一数值是否足够接近 于0是非常有用的,因为它可检验对应的自相关 函数k的真值是否为0的假设。
Bartlett曾证明:如果时间序列由白噪声过程生成, 则对所有的k>0,样本自相关系数近似地服从以0 为均值,1/n 为方差的正态分布,其中n为样本数。
也可检验对所有k>0,自相关系数都为0的联合 假设,这可通过如下QLB统计量进行:
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。

计量经济学数据

计量经济学数据

计量经济学数据计量经济学是经济学的一个重要分支,主要研究经济现象的量化分析和经济模型的构建。

在计量经济学研究中,数据是至关重要的,它提供了对经济现象进行分析和验证的基础。

本文将介绍计量经济学数据的标准格式和一些常用的数据类型。

一、计量经济学数据的标准格式计量经济学数据通常以表格的形式呈现,其中包括以下几个主要部分:1. 变量名称:表格的第一行通常是变量名称,用于标识每一列数据所代表的经济变量。

例如,可以包括GDP(国内生产总值)、CPI(消费者物价指数)、投资等。

2. 时间序列:表格的第一列通常是时间序列,用于标识每一行数据所对应的时间点。

时间序列可以按照不同的频率进行分类,如年度数据、季度数据、月度数据等。

3. 数据值:表格的其他单元格中填写了相应的数据值,代表了每个变量在不同时间点上的观测值。

数据可以是实数,也可以是离散的分类变量。

4. 单位:表格的第一列下方通常注明了数据的单位,用于说明数据所代表的具体含义,如货币单位、百分比等。

5. 数据来源:表格的最底部通常注明了数据的来源,包括调查机构、统计局等。

这有助于保证数据的可信度和可重复性。

二、常用的计量经济学数据类型在计量经济学研究中,常用的数据类型包括以下几种:1. 时间序列数据:时间序列数据是按照时间顺序排列的一系列观测值,用于分析经济变量随时间的变化趋势和周期性。

例如,GDP的年度数据就是一种时间序列数据。

2. 截面数据:截面数据是在某一特定时间点上对不同个体进行观测得到的数据,用于分析不同个体之间的差异和关系。

例如,不同地区的失业率数据就是一种截面数据。

3. 面板数据:面板数据是时间序列数据和截面数据的结合,既包括对不同个体的多次观测,也包括对同一时间点的多个个体观测。

面板数据可以用于分析个体特征和时间效应对经济变量的影响。

4. 横截面时间序列数据:横截面时间序列数据是对多个个体在多个时间点上的观测数据,既包括截面数据的横截面特征,也包括时间序列数据的时间特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程论文
题目:第三产业产值的影响因素分析
学院财会学院_
专业会计专硕
班级会计专硕1501 课程名称计量经济学(课程设计)
学号
学生姓名 60
指导教师赵卫亚
成绩
二○一五年十二月
第三产业产值的影响因素分析
摘要:本文利用计量经济分析方法和1990—2010年的时间序列统计资料,建立了我国第三产业产值影响因素模型。

建模过程中,处理了模型中的协整检验、自相关性等问题。

本文认为我国第三产业产值主要受GDP和我国城乡居民存款储蓄的影响,因此需要引起足够的重视,正确开展工作,促进第三产业的发展。

关键词:第三产业产值;时间序列分析;GDP;城乡居民存款储蓄
一、引言
第三产业是指除第一二产业以外的其他行业。

自从我国进入改革开放以来,我国不仅在积极发展第一产业和第二产业的同时,也在积极扶植第三产业的发展。

我国属于发展中国家,仅靠出口农产品或初级工业品很难在国际社会中立有一足之地。

进入21世纪,第三产业的发展迫切需要成为促进经济发展的主要动力。

这主要是因为第三产业基本以服务业为主,这就使其具有了行业多,范围广等特点,从而能够提供更多的就业机会,相对于其他产业服务业的就业门滥相对来说也较低,能吸纳农村等剩余劳动力,并且第三产业的发展,也能有效地促进第一产业和第二产业的发展,加速推进我国的工业化和现代化进程,提高我国的综合国力。

我国的第三产业较其他发达国家仍有很大的差距,所以加快本国第三产业发展迫在眉睫。

第三产业不仅在占国民生产总值比重方面不断提高,其内部的产业结构也在不断地发生着变化。

最初我国第三产业的发展主要集中以餐饮等为主的传统服务业上,而随着新型服务业的产生,我国开始侧重向金融保险业、房地产业等方面的发展,其数量和质量的提高使得第三产业在我国经济发展的过程中产生的作用也越来越显著。

因此,研究第三产业产值的影响因素分析具有实际意义。

二、文献综述
江小涓、李辉(2004)建立了一个多元回归模型来分析收入水平、消费结构、城市化以及其他因素对第三产业未来发展的影响,提出第三产业比例随着人均GDP水平增长而增加[1]。

郭彩霞(2009)对1978到2008年相关数据进行实证分析,得到要想加快农村现代化就必须要促进第三产业的发展结论[2]。

王小宁(2009)认为第三产业固定资产的投资对第三产业产值具有重大的影响[3]。

徐群、于德淼、赵春阁在对第三产业发展研究时主要是利用线性回归模型来对我国第三产业的影响因素进行分析,对我国第三产业发展现状的研究和趋势预测就是利用的主成分分析和逐步回归分析方法[4]。

三、理论模型与数据
(一)变量选择和数据收集
根据以上分析,本文选取1990年到2010年间国内生产总值(X1t)和城乡居民存款储蓄(X2t)这两个指标作为计量模型的解释变量,被解释变量则为第三产业产值(Y t)。

数据来源于《中国统计年鉴》和国泰安数据库。

选取1990—2010年作为研究样本,数据见表1。

(二)图形分析
通过对样本数据做散点图(图1、图2)发现,Y t与X1t、X2t呈近似直线关系,根据图3的趋势图,三者同趋势变化,考虑时间序列模型,初步判断其不平稳,存在二阶可能性。

于是得到该模型的理论方程为:
Y t=β0+β1X1t+β2X2t+μt (1)
式中,μt为随机误差项,描述变量外的因素对模型的干扰;β0为样本回归函数的截距系数;β1、β2为样本回归函数的斜率系数;下标t为年份,t=1990,1991,⋯,2010。

图1 Y与X1散点图图2 Y与X2散点图
图3 趋势图
(三)单位根检验
经过差分后,Y t与X1t、X2t 均平稳,但是Y t为二阶单整,X1t、X2t三阶单整,可能存在线性后降阶,因此可以尝试建立回归模型。

(四)建立回归模型
1.LS Y C X1 X2
得到方程:Y = -3725.7829016 + 0.350915608536*X1 + 0.116993116659*X2 t:(-4.260)(8.438)(2.180)
R2 = 0.998,DW = 0.678,F = 6857.838
图4 第一次模型
2.自相关性检验
(1)残差图分析:
图5 残差图
α=0.05,k=2,查表得到d L =1.125,因为DW=0.678小于d L,因此存在一阶自相关性。

图6 DW 检验
(3)偏相关系数检验:
图7 偏相关洗漱检验
由图可见,当绝对值PAC大于0.5时,即超出PC图中虚线部分时,存在一阶自相关性。

图8 BG检验
nR2=8.3277,临界概率0.0155小于0.05,因此拒绝假设H0,存在自相关性。

又因为e t-1回归系数显著不为0,因此模型存在一阶自相关性。

3.自相关性处理
得到调整后的方程:
Y = -5417.76973503 + 0.390265879342*X1 + 0.0736268142467*X2 + [AR(1)=0.668162678879]
简化后:
Y = -5417.77 + 0.39*X1 + 0.07*X2 + [AR(1)=0.67]
t= (11.594) (1.755) (3.759)
R2 = 0.999,DW = 1.953,F = 7829.251
图9 调整后方程
4.调整后自相关性检验
(1)调整后偏相关系数检验:
图10 调整后偏相关系数检验
经调整,PC图中不存在超出虚线部分,说明自相关性已消除。

(2)调整后BG检验:
图11调整后BG检验
因为nR2的临界概率0.9928已经非常大,大于0.05,因此接受假设H0,不存在自相关性。

5.异方差检验:
图12 WHITE检验
因为显著性水平α=0.05,nR2的概率0.0813大于0.05,落入接受域,原假设成立,不存在异方差性。

6.协整检验
生成残差序列后,检验e t平稳性,结果如下表:
因此模型是协整回归的。

四、结论
Y = -5417.77 + 0.39*X1 + 0.07*X2 + [AR(1)=0.67]
t= (11.594) (1.755) (3.759)
R2 = 0.999,DW = 1.953,F = 7829.251
根据协整检验可知,尽管我国的第三产业产值、国内生产总值和城乡居民存款储蓄水平都是非平稳的,但是二阶差分后他们都平稳,且方程通过协整检验,因此它们之间具有长期稳定的协整关系。

且就长期而言,通过模型的回归分析,可以看出我国第三产业产值增长与GDP的增长以及城乡居民存款储蓄的增长成正比关系。

从系数大小来看,GDP每增长1亿元,第三产业产值便会增长0.39亿元;城乡居民存款储蓄每增长1亿元,第三产业产值将会增长0.07亿元。

国内生产总值的增长和城乡居民存款储蓄的增加对第三产业的发展促进具有重要的作用,同时第三产业的发展也会促进我国国内生产总值的增长。

第三产业的发展有利于吸收剩余劳动力,从而增加就业增加居民的储蓄,提高居民的生活水平。

以下建议:
1.从国家的角度,加速城镇化进程,改革幵放以来,城镇化水平处于平稳快速发展当中,城镇化水平的提高,不仅仅在于城镇人口数量的增多,更在于城镇化的加速,使我国旳人口数量进一步集中到了一起。

人口的集中,消费需求也因而集中起来,这更便于向需求者提供服务。

城镇人口数量的增加,就带动了邮电、餐饮等服务业的发展,因而会刺激第三产业的发展,随着城镇化的加速,人民生活水平不断地提高与改善,传统服务业也已满足不了人民的需求,因此会逐渐地向更高层次的服务业寻求满足。

在保证优势行业快速发展的前提下,
提高新兴行业的发展步伐,不断找到经济的新增长点。

2.从社会角度以引进优质教育医疗资源等作为突破口,提高就业人员的素质,改善社区的配套设施建设,提高入住率,从而促进新城区第三产业的繁荣和发展。

固定资产投资的结构需要不断优化,第三产业的发展离不开投资。

在我国社会主义发展的初级阶段,主要依靠投资的增加来刺激经济的增长,随着社会的发展,固定资产投资占社会总投资的比重也在不断地增加,因而我们也应该更加重视固定资产投资的质量与总量。

以前年度我国将更多的固定资产投资倾向于加强对交通运输业、邮电通信业、餐饮业等服务业的基础设施的建设,其次就是对教育文化事业、公共服务业的投资,而对于新兴服务业的投资方面有待进一步的增加。

参考文献
[1] 江小涓,李辉.服务业与中国经济:相关性和加快增长的潜力[J].经济研究, 2004,
(1);64-65.
[2] 郭彩霞.我国第三产业发展与城镇化建设的实证研究[J].特区经济,2009,(第12期).
[3] 王小宁.第三产业固定资产投资与第三产业增长之间的实证分析[J].北方经济,2009,(第22期).
[4] 徐群,于德淼,赵春阁.我国第三产业发展现状研究及趋势预测:基于主成分分析和逐步回归分析[J].巢湖学院学报,2014,(第2期).。

相关文档
最新文档