第12章滑动轴承
《机械基础》第十二章轴承教案
《机械基础》教案课题第十二章轴承课型理论课课时2授课班级授课时间授课教师教材分析本节课的内容是关于《机械基础》中的第十二章。
要求学生理解机械基础的功用、结构,课标要求是掌握机械基础的作用。
选用的教材是由中国劳动社会保障出版社出版的《机械基础》(第七版),学习内容是机械基础的内容和各项方法。
学情分析知识储备:对机械有着初步的了解。
能力水平:熟悉机械基础的发展史。
学习特点:学习、接受新知识能力较弱,尤其是理论性强的知识,不能充分利用课余时间学习。
学习目标知识目标:理解滚动轴承的基本知识。
能力目标:能够掌握滑动轴承的基本内容。
素质目标:1.认识到机械的重要性。
2.积极参与课堂,能够表达自己的观点和想法。
学习重难点教学重点:1. 滚动轴承的基本知识。
2.滑动轴承的基本内容。
教学方法讲授法、讨论法、演示法、实物教学法课前准备教师准备:教学课件学生准备:课前预习教学媒体多媒体教室、多媒体课件教学过程教学环节教师活动设计学生活动设计设计意图活动一:创设情境生成问题1.情境导入让学生阅读教材导入情景,引导学生思考:轴承基本知识。
2.展示学习目标认识到轴承的重要性。
掌握轴承基本知识的具体内容。
1.阅读导入情景,思考教师提问,结合生活中的实际,认真回答。
2.查看并记住本节任务的学习目标。
1.通过情景问话,引出本课主题。
同时激发学习兴趣。
2.通过课件展示本节任务,让学生明确课堂任务。
活动二:调动思维探究新知一.导入新课:组织教学、吸引学生注意力,使学生进入上课状态。
二.1.新课讲解:借助PPT讲授机械基础基本知识内容,利用课件进行讲授,对比课件中的构造简图,对轴承基本知识有一个初步的了解。
轴承支承转动的轴及轴上零件,以保证轴的旋转精度,减少轴与轴座之间的摩擦和磨损滚动轴承滑动轴承12—1 滚动轴承一、滚动轴承的结构和类型1.滚动轴承的结构学习机械基础基本知识的总体认知(1)听课、思考、结合生活实际,认真回答教师提出的问题。
濮良贵《机械设计》(第9版)章节题库-第12章 滑动轴承【圣才出品】
第12章 滑动轴承一、选择题1.某部分式向心滑动轴承,在混合摩擦状态下工作,设轴颈d =100mm ,轴转速n =10r/min ,轴瓦材料的[p]=150MPa ,[v]=4m/s ,[pv]=12MPa·m/s ,B/d =1.2,则此轴承能承受的最大径向载荷为( )。
A .1800kNB .2880kNC .3000kND .3880kN【答案】A【解析】根据滑动轴承的设计准则,v≤[v],p =F/(dB )≤[p],pv≤[pv],可知v =πdn/60=π×100×10-3×10/60m/s =0.052m/s <[v]=4m/s ,满足要求。
F≤dB[p]=100×1.2×100×150N =1800N36[] 1.2100101210N 2750kN 10ππ60B pv F n -⨯⨯⨯⨯≤==⨯所以,F≤1800kN。
2.设计动压式液体摩擦滑动轴承时,如其他条件不变,当相对间隙φ=Δ/d 减小时,承载能力将( )。
A .变大B .变小C.不变D.不确定【答案】A【解析】根据公式F=ηωdBC p/φ2可知,轴承的承载能力与φ2成反比。
因此,φ减小时,F将增大。
3.在非液体摩擦滑动轴承设计中,限制pv值的主要目的是( )。
A.防止轴承过度磨损B.防止轴承因发热而产生塑性变形C.防止轴承因过度发热而产生胶合D.防止轴承因过度发热而产生裂纹【答案】C【解析】轴承的发热量与其单位面积上的摩擦功耗fpv成正比(f是摩擦系数),限制pv值就是限制轴承的温升。
防止轴承过热产生胶合失效。
4.在加工精度不变时,增大( )不是提高动压润滑滑动轴承承载能力的正确设计方法?A.轴径B.偏心率C.轴承宽度D.润滑油粘度【答案】A【解析】影响动压润滑滑动轴承承载能力的主要参数有宽径比B/d、相对间隙Ψ以及润滑油粘度的影响,同时在其他条件不变的情况下,h min愈小则偏心率ε愈大,轴承的承载能力就愈大。
第十二章 滑动轴承
C. 增大相对间隙中 C 。
(34) 在干摩擦状态下,动摩擦与极限静摩擦力的关系是 A 相等 B 动摩擦力大于极限静摩擦力 B 。
C 动摩擦力小于极限静摩擦力
(35) 液体的粘度标志着
A 液体与固体之间摩擦阻力的大小
B 液体与液体之间摩擦阻力的大小
(36) 根据牛顿粘性液体的摩擦定律, 在如图12-3所示两板之间分别用两种液体, 若它们 在任意点处的剪应力相等,并且 d v / d y 相等,这两种流体的粘度 A 相等 B 不相等 A 。
A. 起动力矩小 C. 供油系统复杂
(8) 设计液体动压径向滑动轴承时,若通过热平衡计算发现轴承温升过高,下列改进措 施中,有效的是 C 。 B. 减小供油量 D. 换用粘度较高的油 B 。 B. 双层及多层金属轴瓦 D. 非金属轴瓦 D 制成的。 C 铜合金 D. 多孔质金属
A. 增大轴承宽径比 C. 增大相对间隙 (9) 巴氏合金用于制造 A. 单层金属轴瓦 C. 含油轴承轴瓦 (10) 含油轴承是采用 A. 塑料 (11) 下述材料中, A. 20CrMnTi C
6
(47) 液体摩擦动压向心滑动轴承中,承载量系数 C p 是 A 偏心率 x 与相对间隙 B 相对间隙 与宽径比 l / d C 宽径比 l / d 与偏心率 D 润滑油粘度 、轴颈公称直径 d 与偏心率
C
的函数。
(48) 液体动压向心滑动轴承,若向心外载荷不变,减小相对间隙 ,则承载能力 A ,而发热 A. 增大 A 。 B. 减小 C. 不变
(16) 动压液体摩擦径向滑动轴承设计中,为了减小温升,应在保证承载能力的前提下 适当 A 。 B. 减小 ,减小 B d D. 减小 ,增大 B d 。
A. 增大相对间隙 ,增大宽径比 B d C. 增大 ,减小 B d
第12章滑动轴承分解
A
y dy
v
o
du
h y
B
----- 牛顿粘性定律
η----流体的动力粘度,简称粘度 -----流体沿垂直于运动方向的速度梯度, 式中的—负号,表示 u 随 y 的增大而减小。
-----流体单位面积上的剪切阻力,即切应力。
§12-4
滑动轴承中的润滑剂
在摩擦学中,把凡是服从这个粘性定律的流体 都叫做“牛顿液体”。
B----- 轴瓦宽度, [p]----轴瓦材料的许用压力,见表12-2。
2.验算轴承的 pv 值 轴承的发热量与其单位面积上的摩擦功耗 fpv 成正
比。 pv 值愈大,摩擦产生的热量越大,轴承的温度越
高,也就越容易引起边界油膜的破裂。 目的:限制 pv值就是限制轴承的温升,防止胶合, 保护边界膜。 πd n F ≤[pv] pv = · Bd 60× 1000 (12---2)
v
在这种状态下,摩擦完全发生在液体内部的分子 之间,所以摩擦系数极小, f ≈ 0.001 ~ 0.01,因而可 以完全避免磨损
这是最理想的润滑状态。
4. 混合摩擦
混合摩擦是指摩擦表面间处于边界 摩擦和液体摩擦的混合状态。
混合摩擦能有效降低摩擦阻力,其摩擦 系数比边界摩擦时要小得多。
v
工程实际中,多数滑动摩擦副都是处于边界摩擦与 混合摩擦的状态中。 边界摩擦和混合摩擦在工程实际中很难区分,常统 称为不完全液体摩擦。
滑 动 轴 承
按受载方向分
径向轴承 止推轴承 液体润滑滑动轴承 不完全液体润滑滑动轴承
按润滑状态分
按液体润滑承载机理分 液体动力润滑轴承(液体动压轴承)
液体静压润滑轴承(液体静压轴承)
§12-2
滑动轴承教材教案
第12章滑动轴承轴承是机器仪器和器械中的重要支承零件,其主要作用是支承转动(或摆动)的运动部件(转轴,心轴等),保证轴和轴上传动件的回转精度,减少摩擦和磨损,并承受载荷。
轴承分为滚动轴承和滑动轴承两大类。
仅在滑动摩擦下运转的轴承称为滑动轴承。
滚动轴承的摩擦阻力较小,机械效率较高,润滑和维护方便,并且已经标准化,在机械中应用广泛,但它的径向尺寸、振动和噪声较大。
滑动轴承除了在简单和成本要求低的场合使用外,主要用于滚动轴承难以满足支承要求的场合——高速度、高精度、大冲击、长寿命,例如发电机组、内燃机组、陀螺仪、高速高精度机床和航空航天设备等。
如图12-1所示。
图12-1 广东玉柴发动机组本章知识要点(1)了解滑动轴承的润滑与摩擦状态。
(2)熟悉滑动轴承的主要结构型式、轴瓦及轴承材料。
(3)了解润滑剂和润滑装置。
兴趣实践拆装整体式、剖分式滑动轴承,掌握其结构上的异同和特殊性,注意滑动轴承的运动及润滑情况。
探索思考针对不同的工作情况,怎样选择合适类型的滑动轴承?预习准备请预先复习以前学过的滚动轴承的相关知识,了解滚动轴承与滑动轴承在结构和使用场合的异同点。
12.1认识滑动轴承在工业生产中,虽然滚动轴承被广泛采用,但在许多的情况下必须采用滑动轴承。
这是因为滑动轴承具有滚动轴承所不能代替的特点。
其具体优点有:滑动轴承具有工作平稳、可靠,结构简单、尺寸小、精度高,振动小、噪声比滚动轴承低,可以承受重载等优点,在保证液体润滑而非干摩擦的条件下,可以长期在设计转速下运行,所以滑动轴承在工程机械上得到了广泛的应用。
12.1.1 滑动轴承的分类滑动轴承的分类方法很多,但依据其载荷和结构形式分类的方式较为多用。
按所承受载荷的方向可以分为:承受径向载荷的径向滑动轴承(图12-2),承受轴向载荷的止推轴承(图12-3)和承受径向、轴向联合载荷的径向止推滑动轴承。
图12-2 径向滑动轴承图12-3 止推轴承按滑动轴承是否可以剖分又可以分为整体式(图12-4(a))和剖分式(图12-4(b))。
第12章 滑动轴承
1.工作转速很高,如汽轮发电机。 2.要求对轴的支承位置特别精确,如精密磨床。
3.承受巨大的冲击与振动载荷,如轧钢机。
4.特重型的载荷,如水轮发电机。 5.根据装配要求必须制成剖分式的轴承,如曲轴轴承。 6.在特殊条件下工作的轴承,如军舰推进器的轴承。 7.径向尺寸受限制时,如多辊轧钢机。
根据轴承中摩擦的性质,可分为滑动轴承和滚动轴承。
一、滑动轴承的类型
根据能承受载荷的方向,分为径向滑动轴承、止推滑动 轴承、径向止推滑动轴承
根据润滑状态,滑动轴承可分为: 干磨擦滑动轴承 不完全流体膜滑动轴承。 完全流体膜滑动轴承
根据流体膜中流体形成原理: 流体动压轴承、流体静压轴承。
二、滑动轴承的特点及应用
B/2
F B/2 pydZ
6r
2
B/2 2 B / 2 1
1 f1d f2d f3dZ
Cp
3 B
B/2 B/2
2 1
1 f1d f2d f3dZ
实心式
空心式
单环式
多环式
实心式
空心式
单环式
多环式
◆ 实心式:中心与边缘的磨损不均匀,造成中心压强极高, 应用不多
◆ 空心式:轴颈接触面上压力分布较均匀,润滑条件较实心 式的改善。
◆ 单环式:利用轴颈的环形端面止推,结构简单,润滑方 便,广泛用于低速、轻载的场合。
实心式
空心式
单环式
多环式
◆ 多环式:不仅能承受较大的轴向载荷,有时还可承受双向 轴向载荷。由于各环间载荷分布不均,其单位面 积的承载能力比单环式低50%。
此外还应有足够的强度和抗腐蚀能力、良好的导热性、工 艺性和经济性。
第12章 (滑动轴承)
二、轴瓦材料 轴瓦材料的要求: 耐磨性、减磨性、 抗粘着性、 适应性、 磨合性、嵌荐性、 抗疲劳性、 强度、 导热性、 防腐性、附油性、工艺性、经济性。
轴承合金 铸造锡锑轴承合金——高速重载 轴 铸造铅锑轴承合金——中速中载 衬 铸造锡磷青铜————中速重载
铜合金 铸造锡铅锌青铜———中速中载 铸造铝铁青铜————低速重载
(正滑动轴承座,JB/T2560-1991) 轴套 润滑装置
特点: 简单、刚性好
无法调整因磨损而产生的间隙(可用电镀修理) 装拆不方便
应用:低速、轻载、间歇工作的场合
2.对开式(剖分式)径向滑动轴承 结构:轴承体—轴承座、轴承盖、螺纹联 接、台阶形榫口 轴瓦(剖分) 润滑装置 特点:装拆方便 可调垫片,调隙 结构复杂
一、设计计算准则: 力求在磨擦面间保持形成边界油膜。 压力限制p≤[p] 发热限制pυ≤[pυ] 散热限制υ≤[υ]
二、径向滑动轴承的条件性设计计算
1.确定轴承结构,选择轴瓦材料 2.选定宽径比B/d=0.3∽1.5
塑性大、轴刚度大、载荷小,取大值
3.验算工作能力 1)压强校核
p=Fr/Bd≤[p] 2)速度校核
为了贴附牢固,轴瓦基体内表面粗糙度值要 小,且制出沟槽。
厚轴瓦在使用时可以修刮。
(2)薄壁轴瓦 δ/D=0.025∽0.06mm 双金属轧制,质量稳定,刚度小,轴承体
要精加工,轴瓦内表面不修刮。
2.固定: ——轴套:过盈配合加螺钉 ——厚壁轴瓦:销钉或紧定螺钉,轴承盖、 座压紧
——薄壁轴瓦:凸耳
3.油孔和油槽 油孔——供油,开于非承载区 油槽——配油
当无侧漏时,润滑油在单位时间内流经任意 截面上单位宽度面积的流量为
第十二章滑动轴承
二、摩擦状态 1.干摩擦 固体表面直接接触,因而 →功耗↑ 磨损↑ 不许出现干摩擦! 2.边界摩擦 运动副表面有一层厚度<1 μ m 的薄油膜, 不足以将两金属表面分开,其表面微观高峰 部分仍将相互搓削。
vv
温度↑ →烧毁轴瓦
v
比干摩擦的磨损轻, f ≈ 0.1~0.3 3.液体摩擦 有一层压力油膜将两金属表面隔开,彼此不 直接接触。 摩擦和磨损极轻, f ≈ 0.001~0.01
v
在一般机器中,处于以上情况的混合状态。 边界摩擦
f
混合摩擦 液体摩擦
o
摩擦特性曲线
η n/p
称无量纲参数η n/p 为轴承特性数η -动力粘度, p-压强, n-每秒转数。
三、磨损 典型的磨损过程 1、磨合磨损过程 在一定载荷作用下形成一 个稳定的表面粗糙度,且在以 后过程中,此粗糙度不会继续 改变,所占时间比率较小。
二、轴瓦的结构
厚壁轴瓦 卷制轴套 薄壁轴瓦 轴瓦非承载区内表面开有进油口和油沟,以利于润滑油均匀分布 在整个轴径上。 进油孔 油沟 F
整体轴套
油沟形式
d
宽径比 B/d----轴瓦宽度与轴径直径之比, 是重要参数。 液体润滑摩擦的滑动轴承: 非液体润滑摩擦的滑动轴承: B/d=0.5~1 B/d=0.8~1.5
常采用自动调心式轴承,一般 B/d=0.5~1.5。
2、止推(推力)滑动轴承 作用:用来承受轴向载荷 结构特点:由轴承座和止推轴颈组成
a)实心式
b)空心式
c)单环式
d)多环式
§12-2
滑动轴承的失效形式、轴(轴承衬)瓦材料、结构 和轴承润滑
一、失效形式: 1、磨粒磨损 2、刮伤 3、胶合 4、疲劳剥落 5、腐蚀
第12章滑动轴承PPT课件
邓 召
错动。
义
轴承盖上部开有螺纹孔,用以安装油杯。
轴瓦也是剖分式的,通常由下轴瓦承受载荷。
为了节省贵重金属或其它需要,常在轴瓦内 表面上浇注一层轴承衬。
在轴瓦内壁非承载区开设油槽,润滑油通过 油孔和油槽流进轴承间隙。
轴承剖分面最好与载荷方向近似垂直,多数 * 轴承的剖分面是第12水章滑平动轴承的(也有做成6倾斜的)。
用的结构形式有空心式,单环式和多环式, 下
其结构及尺寸见下图。通常不用实心式轴径,
邓 召
因其端面上的压力分布极不均匀,靠近中心 义
处的压力很高,对润滑极为不利。
空心式轴径接触面上压力分布较均匀,润滑条 件较实心式有所改善。
单环式是利用轴颈的环形端面止推,而且可以 利用纵向油槽输入润滑油,结构简单,润滑方 便,广泛用于低速,轻载的场合。
学习目标
滑动轴承的特点和应用场合;对滑动轴承的典型结 构、轴瓦材料及其选用原则有一较全面的认识;掌 握不完全液体润滑滑动轴承和液体动力润滑径向滑 动轴承的设计原理及设计方法 。
*
第12章滑动轴承
1
§12-1 概述
机
根据轴承中摩擦性质的不同,可把轴承分为滑动轴承和滚动轴
械 设
承两大类。
计
滚动轴承由于摩擦系数低,起动阻力小,且已标准化,对设计、下
另外,只能从轴颈端部装拆,对于重型机器的 轴或具有中间轴颈的轴,装拆很不方便,甚至 无法实现
所以这种轴承多用在低速、轻载或间歇性工作的 机器中。
*
第12章滑动轴承
5
(二)对开式径向滑动轴承
机 械
设
对开式滑动轴承由轴承座、轴承盖、剖分式 计
轴瓦和双头螺柱等组成。
下
第十二章_滑动轴承
与轴的中心线垂直。 (2)推力滑动轴承:只能承受轴向载荷,轴承上的反作用力
与轴中心线方向一致。 (3)径向止推滑动轴承,又称复合滑动轴承,同时动压润滑轴承、静压润滑轴承、动静压润滑轴承、非流体润 滑轴承、自润滑轴承、磁悬浮润滑轴承和电磁悬浮润滑轴承 等。 3.按轴承所使用的润滑剂分 液体润滑轴承、气体润滑轴承、脂润滑轴承和固体润滑轴承 等。
(4)固体润滑剂: 固体润滑剂主要有石墨、二硫化钼、动物蜡u、聚四氟乙烯、 聚氯氟乙烯、尼龙和某些软金属(如铅、锡、铟等)。固体润 滑剂常用于自润滑轴承。
3、润滑剂的性能指标 (1)润滑油的性能指标:粘度、内油性、闪点、凝点、酸值、 残碳量等。
四、润滑方式及润滑装置 滑动轴承润滑的供油方式分为间歇式相连续式。 1、手工润滑 间歇式是利用油壶或油枪通过轴承座上的油孔由人工定时
(1)整体式结构 轴承座通常采用铸铁铸造而成, 轴承套采用减摩性好的材料制成。 优点:构造简单,价格较低,常 用于低速、载荷不大的间歇工作 的机器上。 缺点:
1)当滑动表面磨损而间隙过大时,无法调整轴承间隙; 2)轴颈只能从端部装入,对于粗重的轴或具有中轴颈的轴安 装不便。
(2)剖分式结构轴承
剖分式轴承由轴承座、轴承盖、剖 分轴瓦、轴承盖螺柱等组成
3、油环润滑 如图14—19所示,将一油环套在轴颈上,油环下部浸在
油中,当轴颈旋转时,靠摩擦力带动油环旋转,从而把油 带入轴承进行润滑。
4、压力循环润滑
这是利用油泵将润滑油经输油管送入轴承的高效润滑方式, 供油充分、散热性好,压力及供油量均可调节。但结构复杂、 费用高。因而多用于高速、重载轴承的润滑。
二、滑动轴承材料滑动轴承的失效形式:轴承的摩擦表面的磨 损、胶合与疲劳破坏,以及用双层金属或三层金属制作的轴瓦 的轴承衬的脱落。
机械设计第十二章滑动轴承
摩擦:滚动摩擦滚动摩擦轴承滚动轴承滑动摩擦滑动摩擦轴承滑动轴承第十二章滑动轴承第一节概述1、滑动轴承应用场合:1)工作转速特高轴承,如汽轮发电机;2)要求对轴的支撑位置特别精确的轴承,如精密磨床;3)特重型的轴承,如水轮发电机;4)承受巨大的冲击和振动,如轧钢机;5)根据工作要求必须做成剖分式的轴承,如曲轴轴承;6)在特殊的工作条件下(如在水中或腐蚀性介质中)工作的轴承,如军舰推进器的轴承;7)在安装轴承处的径向空间尺寸受到限制时,也常采用滑动轴承,如多辊轧钢机。
2、分类①按载荷方向:径向(向心)轴承、止推轴承、向心止推②按接触表面之间润滑情况:液体滑动轴承、非液体滑动轴承液体滑动轴承:完全是液体非液体滑动轴承:不完全液体润滑轴承、无润滑轴承不完全液体润滑轴承(表面间处于边界润滑或混合润滑状态)无润滑轴承(工作前和工作时不加润滑剂)③液体润滑承载机理:液体动力润滑轴承(即动压轴承)液体静压润滑轴承(即液体静压轴承)3、如何设计滑动轴承(设计内容)1)轴承的型式和结构2)轴瓦的结构和材料选择3)轴承的结构参数4)润滑剂的选择和供应5)轴承的工作能力及热平衡计算4.特点:承载能力大,工作平稳可靠,噪声小,耐冲击,吸振,可剖分等特点。
第二节滑动轴承的典型结构一、整体式径向滑动轴承:特点:结构简单,易于制造,端部装入,装拆不便,轴承磨损后无法调整。
应用:低速、轻载或间歇性工作的机器中。
二、对开式径向滑动轴承:装拆方便,间隙可调,应用广泛。
特点:结构复杂、可以调整磨损而造成的间隙、安装方便。
应用场合:低速、轻载或间歇性工作的机器中。
三、止推式滑动轴承:多环式结构,可承受双向轴向载荷。
第三节滑动轴承的失效形式及常用材料一、失效形式1、磨粒磨损:硬颗粒对轴颈和轴承表面起研磨作用。
2、刮伤:硬颗粒划出伤痕。
3、胶合:轴承温度过高,载荷过大,油膜破裂或供油不足时,轴颈和轴承相对运动表面材料发生粘附和迁移,从而造成轴承损坏。
滑动轴承
两工件之间的间隙必须有楔形间隙;
A
两工件表面必须有相对滑动速度。 其运动方向必须保证润滑油从大截面 流进,从小截面出来;
τ Bp
两工件表面之间必须连续充满润滑
油或其它液体。
.
y
x p+dp
τ+dτ
二、径向滑动轴承形成流体动力润滑的过程
1、动压油膜的形成过程
∑ Fy =F
静止 →爬升 →将轴起抬
∑ Fx = 0 F
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
制造方法:铸造 内表面:可附有轴承衬 轴承衬材料:轴承合金 瓦背材料:铸.铁、钢或青铜
一、轴瓦的形式和构造
整体式
整体轴套 单层材料 双层材料
结构形式
多层材料
对开式
厚壁轴瓦 薄壁轴瓦
制造方法:双金属板连续轧制批量生产
§12-4 轴瓦结构
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
静压轴承
.
§12-2 滑动轴承的主要结构形式
.
一、整体式径向滑动轴承
1、作用:主要承受径向载荷。
2、组成: 轴承座
减摩材料制成
整体轴套
3、优点:
结构简单
第十二章滑动轴承问答题
B、充分供应润滑油
10、与滚动轴承相比较,下述各点中,__不能作为滑动轴承的优点。
A、径向尺寸小
B、间隙小,旋转精度高
C、运转平稳,噪声低
D、可用于高速情况下
答案:
A、B、
B、D、
B、A、
B、C、
D、B
填空题
1.滑动轴承的半径间隙与轴承的半径之比称为间隙,轴承的偏心距与半径间隙的比值称为。
C、计算轴承内部的摩擦阻力
D、控制轴承的压强p
2、xx用来制造__。
A、单层金属轴瓦
B、双层或多层金属轴瓦
C、含油轴承轴瓦
D、非金属轴瓦
3、在滑动轴承材料中,__通常只用作双金属轴瓦的表层材料。
A、铸铁
B、xx
C、铸造锡磷青铜
D、铸造xx
4、液体摩擦动压径向轴承的偏心距e随__而减小。
A、轴颈转速n的增加或载荷F的增大
17.问:
验算滑动轴承的压力p、速度v和压力与速度的乘积pv,是不完全液体润滑轴承设计中的内容,对液体动力润滑轴承
答:
需要。该三项限制条件是选择轴瓦材料的依据,且起动、停车过程处于不完全液体润滑状态。
选择题
1、验算滑动轴承最小油膜厚度hmin的目的是__。
A、确定轴承是否能获得液体摩擦
B、控制轴承的发热量
B、轴颈转速n的增加或载荷F的减少
C、轴颈转速n的减少或载荷F的减少
D、轴颈转速n的减少或载荷F的增加
5、非液体摩擦滑动轴承,验算pv<[pv]是为了防止轴承__。
A、过度磨损
B、过热产生胶合
C、产生塑性变形
D、发生疲劳点蚀
6、设计液体动压径向滑动轴承时,若发现最小油膜厚度hmin不够大,在下列改进设计的措施中,最有效的是__。
第十二章 滑动轴承
二、对开式结构
• 组成
• 特点:装拆方便;磨损后可用垫片调间隙,也可靠修刮轴瓦 • 应用:广泛 • 标准: JB/T2561——1991(双螺孔) JB/T2562——1991(四螺孔)
12.3 失效形式及常用材料
一、失效形式
1. 磨粒磨损:改变轴承形状,降低精度、性能及寿命; 2. 刮伤:划出线状伤痕; 3. 咬粘(胶合):高温重载油膜破裂产生,可使运动中止;
2. 轴瓦材料:铸铝青铜(表12-2)其中:[p]=15MPa, [pv]=12MPa*m/s ,[v]=4m/s 3. 润滑方式:脂润滑,2号钙基脂(表12-3)
4. 验算p :p=F/dB=2*105 / (200*300)=3.33MPa<[p]
5. 验算pv, v: v=πdn/(60*1000)=3.14m/s<[v] pv=3.33*3.14=10.47<[pv] 6. 选择配合:H7/d9 均合格
[pv]: 许用值,见表12-6
注意:若为多环则[p]及[pv] 值均比单环降低50%
例题:
设计一起重机卷筒上的滑动轴承,已知轴承上的径向 载荷F=2*105 N ,轴颈直径 d=200mm ,轴的转速 n=300r/min
解: 1. 确定轴承结构:因低速重载,则按非液体润滑轴承设 计,采用对开结构;轴承宽度取 B/D=1.5,则: B=1.5*200=300mm;
4. 疲劳剥落:变载产生疲劳裂纹,裂纹扩展导致剥落;
5. 腐蚀:润滑的氧化生成的物质,水分,氧,硫等; 6. 其它:气蚀,流体侵蚀,电侵蚀,微动磨损等
滑动轴承故障原因平均比例 故障原 因 比率/% 不干 润滑油 净 不足 38.3 11.1 安装误 差 15.9 对中不 良 8.1 超载 腐蚀 制造精 气 度低 蚀 6.0 5.6 5.5 2.8 其 它 6.7
机械基础 第十二章 轴承
《机械基础》第十二章
轴承
轴承 轴承是机器中用来支承 转动的轴和轴上零件的重要 零部件,它能保持轴的正常 工作位置和旋转精度,减小 转动时轴与支承间的摩擦和 磨损,轴承性能的好坏直接 影响机器的使用性能。因此, 轴承是机器的重要组成部分。
滚动轴承
滚动轴承具有摩擦力矩小,易起动, 载荷,转速及工作温度的适用范围较广, 轴向尺寸小,润滑维修方便等优点,滚动 轴承已标准化,在机械中应用非常广泛。
滚动轴承的结构特点
(4)极限转速 滚动轴承在一定的载荷及润滑条件下,轴承许可的最高转速称为极限转速。转速过高会产生高温,
润滑失效产生破坏。
提高轴承极限转速的措施有:提高轴承精度,选用较大的游隙,改用特殊材料及结构的保持架,采 用循环润滑、油雾润滑或喷射润滑,设置冷却系统等。
滚动轴承的 轴向固定
《机械基础》第十二章
图12-6 滚动轴承的角偏位
滚动轴承的结构及特点
滚动轴承的结构特点
(3)游隙 轴承内、外滚道与滚动体之间的间隙量称为游隙,即为当一个 座圈固定时,另一座圈沿径向或轴向的最大移动量。如图12-7所示 。游隙可影响轴承的运动精度、寿命、噪声、承载能力等。
图12-7 滚动轴承的游隙
滚动轴承的结构及特点
滚动体是滚动轴承形成滚动摩擦不可 缺少的核心元件。保持架的作用是将滚动 体均匀隔开,以减少滚动体之间的相互摩 擦和磨损,常见的保持架结构形式如图 12-4所示。
图12-3 滚动体
图12-4 滚动体保持架
滚动轴承的结构及特点
滚动轴承的结构特点
(1)公称接触角α 滚动轴承的公称接触角 α指轴承的径向平面(垂直 于轴线)与滚动体和滚道接 触点的公法线之间的夹角, 如图12-5所示。
第12章 滑动轴承解读
嵌入性:材料容纳硬质颗粒嵌入,从而减轻轴承滑动的刮伤和磨粒磨损 的性能。 磨合性:轴瓦与轴颈表面应易于磨合,从而改善摩擦面的接触状况。 3)具有足够的强度和抗腐蚀性; 4)有良好的导热性、加工工艺性及经济性; 2. 常用材料: (见表12-2)
◆
滑动轴承的材料
一、轴瓦的形式和构造
按构造 分 类 按材料 分 类
紧定螺钉
轴承座
轴瓦结构
为把润滑油导入轴承的工作面,在轴瓦上开设: 油孔: 油槽: 油室:
◆
滑动轴承的轴瓦结构4
还起储油和稳定供油的作用,用于大型轴承。
原则: 1)油槽沿轴向不能开通,以防止润滑油从端部大量流失。 2)对液体动压润滑轴承,油槽应开在非承载区 3)对混合润滑轴承,油槽应尽量延伸到最大压力区附近。
第十二章
滑动轴承
§12-1 滑动轴承的特点与类型
一、滑动轴承的特点
1.承载能力大,耐冲击;
2.工作平稳,噪音低; 3.结构简单,径向尺寸小。
滑动轴承概述2
二、滑动轴承的应用场合
1.高速、高精度、重载的场合;如汽轮发电机、水轮发电机、机床等。
2.极大型的、极微型的、极简单的场合;如自动化办公设备等。 3.结构上要求剖分的场合;如曲轴轴承 4.受冲击与振动载荷的场合;如轧钢机。
式中: υ -止推环平均直径 ( d m
d2 d0 )处的圆周速度。 2
Z=1时,查表12-5; [p υ ]- Z>1时,表中值降低50%。 注意:设计时液体动压润滑轴承,常按上述条件性计算进行初步计算。
(动压润滑轴承在起动和停车阶段,往往也处于混合润滑状态)
形成流体动压润滑的条件
◆ 对于边界膜的强度,目前尚无完善的计算方法,常进行条件性计算。 ◆
机械设计4[1].12#滑动轴承
§4-4 流体润滑原理简介
(一)流体动力润滑:两相对运动的摩擦表面借助 流体动力润滑: 于相对速度而产生的粘性流体膜来平衡外载荷; 于相对速度而产生的粘性流体膜来平衡外载荷; (二)弹性流体动力润滑:高副接触中,接触应力 弹性流体动力润滑: 使表面产生局部弹性变形,在接触区形成弹性流 体动力润滑状态; (三)流体静力润滑:将加压后的流体送入摩擦表 流体静力润滑: 面之间,利用流体静压力来平衡外载荷;
du 即 : τ = η ( 4 6) dy
剪切 应力 动力 粘度 速度 梯度
Uh h u
x
y
u=0
13
b)运动粘度与动力粘度的换算关系: η 2 ν= m / s 粘—温曲线见 图4-9 密度 ρ
动力粘度η:主要用于流体动力计算.Pas 动力粘度 运动粘度ν:使用中便于测量.m2/s 运动粘度 2.油性(润滑性):润滑油在摩擦表面形成各种吸附膜 油性
23
径向轴承, 滑动轴承 :径向轴承,止推轴承
24
§12-2 径向滑动轴承的结构
整体式径向滑动轴承
对开式径向滑动轴承 对开式径向滑动轴承 径向
图15-18 斜剖 分式径向 径向滑动 分式径向滑动 轴承
25
26
27
28
29
§12-2 径向滑动轴承的结构
调心滑动轴承
可调间隙的滑动轴承
30
滑动轴承
MPa m / s
v=
πn ( d1 + d 2 )
60 × 1000 × 2
≤ [v ]
m/s
44
(上式中各参数见表12-6) 上式中各参数见表 )
中南大学考研试题
设计计算非液体滑动轴承时要验算: 设计计算非液体滑动轴承时要验算 1) ; 其目的是 p ≤ [ p] 2) 3)
第12章滑动轴承45086-PPT精品文档
轴瓦磨损
华中农业大学专用
表面划伤
疲劳点蚀潘存云教授研制 Nhomakorabea 汽车用滑动轴承故障原因的平均比率
故障原因 比率/% 故障原因 比率/%
不干净 38.3 腐蚀 5.6
润滑油不足 11.1
制造精度低 5.5
安装误差 15.9 气蚀 2.8
对中不良 8.1
其它 6.7
华中农业大学专用
滚动轴承 优点多,应用广
滑动轴承
用于高速、高精度、重载、 结构上要求剖分等场合。
向心(径向)轴承
推力(止推)轴承
向心推力(径向止推)轴承
不完全液体润滑滑动轴承 不完全液体润滑滑动轴承
潘存云教授研制
三、滑动轴承的应用领域
1.工作转速特高的轴承,汽轮发电机;
2.要求对轴的支承位置特别精确的轴承,如精密磨床;
3.特重型的轴承,如水轮发电机;
4.承受巨大冲击和振动载荷的轴承,如破碎机;
5.根据装配要求必须做成剖分式的轴承,如曲轴轴承;
6.在特殊条件下(如水中、或腐蚀介质)工作的轴承,
如舰艇螺旋桨推进器的轴承;
7.轴承处径向尺寸受到限制时,可采用滑动轴承。 如多辊轧钢机。
四、滑动轴承的设计内容
轴承的型式和结构选择;轴瓦的结构和材料选择;
一、轴瓦的形式和结构
按构造 整体式 分 类 对开式
强度足够的材料可 以直接作成轴瓦,
轴 按尺寸 薄壁
瓦 分 类 厚壁 的 类 按材料 单材料 型 分 类 多材料
如黄铜,灰铸铁。
单一材料
轴瓦衬强度不足, 故采用多材料制作
按加工 分类
华中农业大学专用
轴瓦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.铜合金
铜合金具有较高的强度,较好的减摩性和 耐磨性。
由于青铜的减摩性和耐磨性比黄铜好,故 青铜是最常用的材料。
青铜有锡青铜、铅青铜和铝青铜等几种
锡青铜的减摩性和耐磨性最好,应用较广。 但锡青铜比轴承合金硬度高,磨合性及嵌 人性差,适用于重载及中速场合。
3.灰铸铁及耐磨铸铁
这类材料中的片状或球状石墨在材料表 面上覆盖后,可以形成一层起润滑作用 的石墨层,故具有一定的减摩性和耐磨 性。
1.良好的减摩性、耐磨性和抗咬粘性 2.良好的摩擦顺应性、嵌人性和磨合性 3.足够的强度和抗腐蚀能力。 4.良好的导热性、工艺性、经济性等。
常用的轴承材料:(P275 表12-2) 1)金属材料:轴承合金(巴氏合金或白合金)
铜合金 铝基轴承合金 灰铸铁、耐磨铸铁等 2)多孔质金属材料;
3)非金属材料:工程塑料、碳—石墨等。
2)有利于向轴承均匀供油。
有轴向油槽和周向油槽两种形式可供选择。 轴向油槽分为单轴向油槽及双轴向油槽
单轴向 油槽
双轴向 油槽
周向油槽
§12-5 滑动轴承润滑剂的选用
一、润滑脂及其选择
选择润滑脂品种的一般原则为: 1)当压力高和滑动速度低时,选择针入度小一
些的品种;反之,选择针入度大一些的品种。
2)所用润滑脂的滴点,一般应较轴承的工作温 度高约20-30℃,以免工作时润滑脂过多流失
第四篇 轴系零、部件
第十二章 滑动轴承
§12-1 概述
1.轴承的功用:
支承轴及轴上零件
减少转轴与支承间的摩擦和磨损
滑动轴承
轴承分类
滚动轴承
2.分类
滑动轴承 分类: 按受载方向分: 径向轴承
止推轴承
按润滑状态分:液体润滑轴承 不完全液体润滑轴承 自润滑轴承
按液体润滑承载原理分:液体动力润滑轴承 液体静压润滑轴承
1.轴承合金(通称巴氏合金或白合金)
1) 轴承合金的弹性模量和弹性极限都很低, 在所有轴承材料中,它的嵌入性及摩擦顺 应性最好,很容易和轴颈磨合,也不易与 轴颈发生咬粘。
2) 轴承合金的强度很低,不能单独作轴瓦, 只能贴附在青铜、钢或铸铁轴瓦上作轴承 衬。
3) 轴承合金适用于重载、高速场合,价格较 贵。
二、对开式径向滑动轴承 三、止推滑动轴承(见表12-1)
§12-3 滑动轴承的失效形式及常用材料
一、滑动轴承的失效形式 1.磨粒磨损 2.刮伤 3.咬粘(胶合) 4.疲劳剥落 5.腐蚀 由于工作条件不同,滑动轴承还可能出现
气蚀、流体侵蚀、电侵蚀和微动磨损等 损伤。
二、轴承材料
轴瓦和轴承衬的材料统称为轴承材料。针对 上述失效形式,轴承材料性能应着重满足 以下主要要求。
• 正确设计滑动轴承需解决的问题:
• (1)轴承的形式和结构设计; • (2)轴瓦的结构和材料选择; • (3)轴承结构参数确定; • (4)润滑剂选择和供应;
(5)轴承的工作能力及热平衡计算
Байду номын сангаас
3.滑动轴承主要应用于:(在某些不能、不便或 使用滚动轴承没有优势的场合)
1) 工作转速高的轴承(此时用滚动轴承寿命)
三、固体润滑剂
固体润滑剂可以在摩擦表面上形成固体 膜以减小摩擦阻力,通常只用于一些有特殊要 求的场合。
§12-6 不完全液体润滑滑动轴承设计计算
一、工作能力准则的确定 1.失效形式: 磨损、胶合、擦伤
2.设计准则: 防止摩擦表面边界膜破裂,维持粗
糙表面微腔内有液体润滑存在。
二、径向滑动轴承的设计计算
3) 完全液体摩擦状态—通过一定的办法,使润滑油 层完全隔开两工作表面,摩擦发生在液体分子之 间,f
4) 当不能完全形成液体摩擦,局部地方仍有边界摩 擦(同时还存在局部干摩擦)——半液体摩擦状 态
除完全液体摩擦外,其余摩擦状态统称(非)不完全 液体摩擦状态
§12-2径向滑动轴承的主要结构形式
一、整体式径向滑动轴承(轴套)
石墨能吸附碳氢化合物,有助于提高边 界润滑性能,故采用灰铸铁作轴承材料 时,应加润滑油。
铸铁性脆、磨合性差,故只适用于轻载 低速和不受冲击载荷的场合。
4.多孔质金属材料 这种材料制成的轴承叫含油轴承。它
具有自润滑性。
5.非金属材料 ❖聚合物 ❖碳-石墨 ❖橡胶 ❖木材
§12-4 轴瓦结构
一、设计原则
2) 要求对轴支承精度特别高的轴承(因为滑动 轴承零件数少)
3) 特重型轴承 4) 承受巨大冲击和振动载荷的轴承
5) 结构上及使用场合的限制(如:水中、腐蚀 性介质中、曲轴等)
6) 要求不严格的地方
4.滑动轴承的滑动表面间的摩擦状态
1) 干摩擦—不添任何润滑剂,两摩擦表面直接接触, f0.2
2) 边界摩擦—加入润滑油,依靠油的化学和物理的 吸附作用形成一层薄薄的吸附油膜,遮盖金属表 面
采用简化的条件性计算。适用于一般对 工作可靠性要求不高的低速、重载或间歇 工作的轴承。
已知:
轴承所 受 径向 载 荷 F(N)、轴 颈转速 n(r/ min)及轴颈直径d(mm)。 1.选择结构型式,轴瓦材料、轴承宽度B 2.验算 1)验算轴承的平均压力p(MPa)
p F p
d.B
2)验算轴承的 pv (单位为MPa·m/s) 值 轴承的发热量与其单位面积上的摩擦
功耗 fpv 成正比(f是摩擦系数),限制pv值 就是限制轴承的温升。[pv]值见表11-2
p vF• dn Fnpv
d B6 01001 01 90 B0
3)验算滑动速度v(单位为m/s), [v]见表11-2 v[v]
3.选择轴承的配合,一般可选
1) 便于装拆、调整和修复(选用合适的配合 公差)
2) 轴瓦可做成剖分或整体式 3) 可以是单一材料,双金属、三金属轴瓦
轴承衬和衬背贴合牢固 4) 油孔、油沟要在非承载区
二、轴瓦的结构型式
整体式:
整体轴套
卷制轴套
对开式
对开式厚壁轴瓦 对开式薄壁轴瓦
三、轴瓦的定位
凸缘定位
四、油孔及油槽 原则:1)不影响轴承的承载能力;
3)在有水淋或潮湿的环境下,应选择防水性强 的钙基或铝基润滑脂。在温度较高处应选用 钠基或复合钙基润滑脂。
见表12-3
二、润滑油及其选择
当转速高、压力小时,应选粘度较低的 油;反之,当转速低、压力大时,应选粘度较 高的油。
润滑油粘度随温度的升高而降低。故在 较高温度下工作的轴承(例如t>60℃,所用油 的粘度应比通常的高一些。(见表12-4)