综合性 信号的幅度调制和解调

合集下载

幅度调制与解调

幅度调制与解调

幅度调制与解调实验一、实现目的1、通过本次实验,起到理论联系实际的作用,将理论课中学到的调幅、检波电路的分析方法用到实验电路的分析和实验结果的分析中,使理论真正地用在实际电路中,落到实处。

要求学生必须从时域、频域对调制和解调过程中信号的变换分析清楚。

2、本次采用的实验电路既能实现普通调幅,又能实现双边带调幅,通过实验更进一步理解普通调幅(AM)和双边常调幅(DSB)在理论上、电路中的联系和区别。

3、实验中所测量的各种数据、曲线、波形是代表电路性能的主要参数,要求理解参数的意义和测量方法,能从一组数据中得出不同的参数并衡量电路的性能。

二、实验仪器1、数字示波器 TDS210 0~60MHz 1台2、频谱分析仪 GSP-827 0~2.7GHz 1台3、直流稳压电源 SS3323 0~30V 1台4、实验电路板自制 1块三、实验电路及原理1、实验电路介绍实验所采用的电路为开关调幅电路,如图所示。

既能实现AM调制,又能实现DSB调制,是一种稳定可靠,性能优良的实验电路,其基本工作原理是:调制信号经耦合电容C1输入与电位器输出的直流电压叠加,分别送到同相跟随器U1A 和反相跟随器U1B,这样在两个跟随器的输出端就得到两个幅度相等,但相位相反的调制信号(U+和U-)。

再分别送到高速模拟开关的两个输入端S1和S2,由开关在两个信号之间高频交替切换输出(由载波控制),在输出端就得到调幅波,通过调整电位器可以改变直流电压达到改变调制度m,当电位器调到中心位置时就得到了双边带的调幅信号。

放大器为高精度运放AD8552,开关为二选一高速CMOS模拟开关ADG779。

另外,为防止实验过程中由于调制信号幅度过大而损坏电路,特加了保护二极管D1、D2;由于运算放大器和模拟开关是单电源轨至轨型,只能单5V供电,在使用时所有信号是叠加在2.5V直流电平上的,电路中R7、R8就是提供该直流偏置电平的,R12、R13、T1是用来抵销直流电平的,以免对检波电路产生影响;R8、C5、C7、L1和R9、C6、C8、L2起到导通直流和低频信号、阻止高频信号的作用,防止开关泄露的高频载波信号对运算放大器产生影响;高频载波信号(1MHz,方波)由有源晶体振荡器X1产生。

信号调制解调

信号调制解调
上式中,对于全部t,A选择得足够大,有,其频谱为
由上式可见,除了由于载波分量而在处形成两个冲激函数之外,这个频谱与抑制载波的AM的频谱相同。
2。幅度调制在中、短波广播和通信中使用甚多。幅度调制的不足是抗干扰能力差,因为各种工业干扰和天电干扰都会以调幅的形式叠加在载波上,成为干扰和杂波
四.解调的原理
解调是从携带消息的已调信号中恢复消息的过程。在各种信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号。接收端必须恢复所传送的消息才能加以利用,这就是解调。解调是调制的逆过程。调制方式不同,解调方法也不一样。与调制的分类相对应,解调可分为正弦波解调(有时也称为连续波解调)和脉冲波解调。正弦波解调还可再分为幅度解调、频率解调和相位解调,此外还有一些变种如单边带信号解调、残留边带信号解调等。同样,脉冲波解调也可分为脉冲幅度解调、脉冲相位解调、脉冲宽度解调和脉冲编码解调等。对于多重调制需要配以多重解调。
过程:
输入信号经过乘法器与cos0t相乘,得到已调信号fS(t)=m(t)cos0t,其频谱为FS(j)=½{F[j(-0)]+F[j(+0)]}
而h(t)为一带阻滤波器,仅保留有效的频带。
输出得到频谱为 的信号
由此可见,原始信号的频谱被搬移到了频率较高的载频附近,达到了调制的目的。
已调信号的频谱表明原信号的频谱中心位于上,且关于对称。它是一个带通信号。
解调过程除了用于通信、广播、雷达等系统外还广泛用于各种测量和控制设备。例如,在锁相环和自动频率控制电路中采用鉴相器或鉴频器来检测相位或频率的变化,产生控制电压,然后利用负反馈电路实现相位或频率的自动控制。
五.调制解调的应用
调制在无线电发信机中应用最广。图1为发信机的原理框图。高频振荡器负责产生载波信号,把要传送的信号与高频振荡信号一起送入调制器后,高频振荡被调制,经放大后由天线以电磁波的形式辐射出去。其中调制器有两个输入端和一个输出端。这两个输入分别为被调制信号和调制信号。一个输出就是合成的已调制的载波信号。例如,最简单的调制就是把两个输入信号分别加到晶体管的基极和发射极,集电极输出的便是已调信号。

信号调制与解调

信号调制与解调

一、调制与解调【设计要求】(1) 运用所学知识实现对简单信号的调整和解调。

(2) 在对信号的幅度,频率等的调制中,掌握方法,观察调制波形。

(3) 了解MATLAB有关信号调用的子函数。

【设计工具】MATLAB【设计原理】1、将某一个载有信息的信号嵌入另一个信号的过程一般称之为调制;而将这个载有信息的信号提取出来的过程称为解调。

将会看到,调制技术不仅仅是能将信息嵌入到能有效传输的信号中去,而且还能够把频谱重叠的多个信号通过一种复用的概念在同一信道上同时传输。

2、由相关的理论可知,信号若要从发射端传输到接收端,就必须进行频率搬移。

调制的作用就是进行各种信号的频谱搬移,使其托附在不同频率的载波上,与其他信号互不重叠,占据不同的频率范围,在同一信道内进行互不干扰的传输,实现多路通信。

信号的调制分为幅度调制,频率调制,相位调制。

3、信号的幅度调制与解调信号的幅度调制实际上就是将原时域基带信号与载波信号进行相乘运算,解调则是用已解调信号与载波信号进行相乘运算,然后用低通滤波器将原来信号分解出来。

现在以知一个基带信号为错误!未找到引用源。

在发射端被调制成频带信号错误!未找到引用源。

在接收端信号被调解为错误!未找到引用源。

通过低通滤波器思考怎样恢复出基带信号错误!未找到引用源。

,并描绘出上述各信号的时域波形和频域波形,其中,采样点数N取1000.4、用modulate进行信号幅度,频率,相位的调制(1)信号的幅度调制现在已知一个频率为1Hz的基带信号,用频率为10Hz的载频信号进行幅度调制。

(处理采样信号时采样点数N取100)思考处理信号时采样点如何取比较合适?(2)信号的频率调制现在已知一个频率为1Hz的基带信号,用频率为10Hz的载频信号进行幅度调制。

(处理采样信号时采样点数N取100)用matlab实现调制的仿真结果。

(3)现在已知一个频率为1Hz的基带信号,用频率为10Hz的载频信号进行幅度调制。

(处理采样信号时采样点数N取100)源程序t=linspace(0,100,100);%线性等分向量ft=3*sin(6*t);%原始信号fs=100;%采样点数f=[-500:499]/1000*fs;%采样频率yk=fft(ft,1000);%求频谱yw=2*pi/1000*abs(fftshift(yk));%傅里叶变换Sm=ft.*cos(60*t);%调制信号yk1=fft(Sm,1000);%求频谱yw1=2*pi/1000*abs(fftshift(yk1));%傅里叶变换%%%%%====================%%%%%figure(1)subplot(2,1,1);plot(t,ft);title('原始时域信号');text(58,2,'g(t)=3sin(6t)')grid;subplot(2,1,2);plot(f,yw);title('原始频域信号');grid;figure(2)subplot(2,1,1);plot(t,Sm);title('调制时域信号');text(60,2,'f(t)=3sin(6t)cos(60t)')grid;subplot(2,1,2);plot(f,yw1);title('调制频域信号')%%%%%====================%%%%%Fs=1000;%采样点数t=linspace(0,100,100);%线性等分向量ft=3*sin(6*t);%原始信号sm=ft.*cos(60*t);%调制信号m0=sm.*cos(60*t);%解调信号N=Fs;%采样点数Yk=fft(m0,2048);%离散频谱变换的点数Yw=2*pi/N*abs(fftshift(Yk));%傅里叶变换Fw=[-1024:1023]/2048*100;b=ones(1,10)/10;ft1=2*filtfilt(b,1,m0);%低通滤波器Yk1=fft(ft1,2048);Yw1=2*pi/N*abs(fftshift(Yk1));%频谱figure(3)subplot(2,1,1);plot(m0);title('解调时域信号');text(60,2,'g0(t)=3sin(6t)cos(60t)cos(60t)') grid;subplot(2,1,2);plot(Fw,Yw);title('解调频域信号');grid;figure(4)subplot(2,1,1);plot(ft1);title('滤波时域信号');grid;subplot(2,1,2);plot(Fw,Yw1);title('滤波频域信号')fs=100;t=linspace(-0.5,1.5,100);fc=10;ft=sin(2*pi*t);%调幅信号y1=modulate(ft,fc,fs,'amdsb-sc');%调频信号y2=modulate(ft,fc,fs,'fm');%调频信号y3=modulate(ft,fc,fs,'pm');%调相信号figure(5)subplot(4,1,1);plot(ft)title('原始信号');grid onsubplot(4,1,2);plot(y1)title('调幅信号');grid onsubplot(4,1,3);plot(y2)title('调频信号');grid onsubplot(4,1,4); plot(y3)title('调相信号'); grid on。

幅度调制与解调实验报告

幅度调制与解调实验报告

信号幅度调制与解调实验一. 实验目的1. 通过本实验熟悉信号的幅值调制与解调原理。

2. 了解信号调制与解调过程中波形和频谱的变化,加深对调制与解调的理解。

二. 实验原理在测试技术中,信号调制与解调是工程测试信号在传输过程中常用的一种调理方法,主要是为了解决微弱缓变信号的放大以及信号的传输问题。

设测量信号为)(t x ,高频载波信号为)2cos()(φπ+=ft t z 。

信号调制过程就是将两者相乘,调幅波信号为:(1)信号解调就是将调幅波信号再与高频载波信号相乘,有:)4cos()()(2cos )()(212t f t x t x t f t x t y z z m ππ+== (2) 信号由x(t)和2倍载波频率的高频信号两部分组成,用低通滤波器滤除信号中的高频部分就可以得到测量信号x(t),这种方法称为同步解调。

图1 信号的幅度调制与同步解调过程实际中调制与解调在不同的设备上实现,载波频率可以严格一致,但相位很难同步,式(2)变为:)2cos()2cos()()(φππ+=t f t f t x t y z z m (3) 解调过程与同步解调类似,但必须保证x(t)为正信号;对双极性的测量信号x(t),则用一个偏置电平将信号抬高为单极性的正信号,然后再进行调制与解调处理,故称为偏置调制。

图2 测量信号的偏置处理三. 实验内容1.信号的同步调制与解调观察。

2.信号的偏置调制和过调失真现象观察。

3.信号调制中的重迭失真现象观察。

四. 实验仪器和设备1. 计算机1台2. DRVI快速可重组虚拟仪器平台1套3. 打印机1台五. 实验步骤1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI采集仪主卡检测”或“网络在线注册”进行软件注册。

2.在DRVI地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择“信号的同步调制与解调实验”,建立实验环境,观察信号与调制与解调过程中的信号波形变化。

信号的幅度调制与解调

信号的幅度调制与解调

载波信号的频谱
解调后的频谱 还原后的信号
内容(1)调制器的设计思路
∗ 把原信号模拟为一具体函数,如:x(t)=10*cos(t),t在(-10*pi,10*pi) 之间,然后再通过调制器g(t)=cos((100)*t)把这信号调制为另一个 频率的信号y=x(t).*g(t) 中去。
内容(2)解调器的设计思路
把已调制出的信号y(t)在解调器中加信号m(t)=cos(100*t), 把信号频率还原,然后通过门函数h(t)=sin(100*t)./(pi*t)滤波 并调整幅度,使信号还原为原信号。
原理(总)
放射器: 放射器:y(t)=x(t).*g(t) 接收器:1.z(t) 接收器:1.z(t)=y(t).*m(t) 2.h为滤波器 2.h为滤波器 zz(t)=z*h zz(t)=z*h
原理(发射器)
原信号频谱图 输入信号 载波信号的频谱图 输出信号 调制后的信号
原理(接收器)
调制后的信号的频谱 调制后的信号的频谱
实际应用背景(2)详例
∗ 在大气层中,音频范围(10Hz—20KHz)的信号传输将急 剧衰减,而较高频率的信号将传播到很远的距离。 ∗ 因此,要想在依靠通过大气层来进行传播的通信信道上 传输像语言或音乐这样的音频信号,就必须首先在发射 机中通过适当处理把这些信号嵌入到另一个较高频率的 信号中去。然后在接收端把信号提取出来。 ∗ 这也就是日常生活中,收音机的AM调幅按钮。
mt2h为滤波器zztzh原理发射器输入信号输入信号输出信号输出信号原信号频谱图载波信号的频谱图调制后的信号原理接收器还原后的信号还原后的信号调制后的信号的频谱载波信号的频谱解调后的频谱
信号的幅度调制与解调
∗ 通信xx班
∗ 课程老师: ∗ 小组成员:

简述幅度调制的调制与解调的过程

简述幅度调制的调制与解调的过程

简述幅度调制的调制与解调的过程幅度调制(Amplitude Modulation,AM)是一种古老的且广泛使用的通信方式。

它通过改变载波信号的幅度来携带信息。

本文将详细介绍幅度调制的调制与解调的过程。

首先,我们需要了解什么是幅度调制。

幅度调制是指在载波信号上加入低频的信息信号,使得载波信号的幅度随着信息信号的变化而变化。

这样,我们就可以通过接收和检测这种幅度变化来恢复原始的信息信号。

这种方式简单易行,因此被广泛应用在广播、电视等领域。

接下来,我们来看看幅度调制的具体过程。

首先,我们需要一个载波信号,通常是高频正弦波。

然后,我们将要传输的信息信号乘以这个载波信号,得到的结果就是幅度调制后的信号。

在这个过程中,信息信号的频率远低于载波信号的频率,这就是所谓的“低频”信息信号。

最后,我们将这个幅度调制后的信号通过天线发送出去。

接收到幅度调制信号后,我们需要进行解调才能恢复出原始的信息信号。

解调的过程其实就是在幅度调制的逆过程。

首先,我们使用一个与发射端相同的载波信号,然后将接收到的幅度调制信号与这个载波信号相乘。

由于这两个信号都是正弦波,所以他们的乘积会是一个包含两个频率分量的信号:一个是两者的和,另一个是两者的差。

其中,两者的差就是我们要恢复的信息信号。

然而,在实际应用中,我们通常无法准确地知道发射端的载波信号是什么样的。

因此,我们需要采用一种叫做相干解调的方法。

这种方法需要先从接收到的幅度调制信号中提取出一个与载波信号同频同相的参考信号,然后再用这个参考信号进行解调。

这个提取参考信号的过程就叫做同步或锁定。

总的来说,幅度调制是一种非常实用的通信方式。

它的优点是实现简单,设备成本低,可以同时传输多个信息信号。

但是,它的缺点是抗干扰能力较差,而且对于信息信号的带宽要求较高。

尽管如此,幅度调制仍然在很多场合得到了广泛的应用。

以上就是关于幅度调制的调制与解调的过程的介绍。

希望对你有所帮助。

频率调制与解调

频率调制与解调
放大器等
混频器的作用: 将接收到的调 频信号与本地 振荡信号混合 产生新的频率
信号
滤波器的作用: 滤除不需要的 频率成分提取 出有用的信息
放大器的作用: 放大解调后的 信号以便于后 续处理或传输
解调后的信号处理
滤波:去除噪声和干扰提高信号质量 放大:提高信号强度便于后续处理 解码:将信号转换为数字信号便于处理和分析 处理:进行信号处理如滤波、放大、解码等以获得所需的信息
调制与解调的作用
提高传输效率:通过调制和解调可以将信号转换为适合传输的形式提高传输效率。
增强信号抗干扰能力:通过调制和解调可以增强信号的抗干扰能力提高信号传输的可靠性。
实现信号的多路复用:通过调制和解调可以实现信号的多路复用提高传输带宽的利用率。 实现信号的加密和解密:通过调制和解调可以实现信号的加密和解密提高信号传输的安全 性。
调频信号的解调方法
直接解调法:通过滤波器直接提取信号中的频率信息 相干解调法:通过相干检测器提取信号中的频率信息 非相干解调法:通过非相干检测器提取信号中的频率信息 数字解调法:通过数字信号处理技术提取信号中的频率信息
频率调制的应用
调频广播
调频广播的优点:音质好抗 干扰能力强传输距离远
调频广播是一种使用频率调 制技术进行广播的通信方式
相干解调:通过相干解调器将调频信号中的载波频率滤出然后进行解调
非相干解调:通过非相干解调器将调频信号中的载波频率滤出然后进行解 调 数字解调:通过数字信号处理技术将调频信号中的载波频率滤出然后进行 解调
调频信号的解调电路
调频信号的解 调原理:通过 检测信号的频 率变化来获取
信息
解调电路的组 成:包括混频 器、滤波器、
量子通信技术的发展:量子通信技术的发展将推动频率调制与解调技术的革命性变革

信号幅度调制与解调实验心得

信号幅度调制与解调实验心得

信号幅度调制与解调实验心得
信号幅度调制(Amplitude Modulation,AM)和解调(Demodulation)是通信中常用的一种调制方式。

通过调制信号的幅度,将信息传递到载波上,再通过解调将信息从载波上还原出来。

在本次实验中,我们学习了信号幅度调制与解调的基本原理,并通过实验进一步加深了对其的理解。

在实验中,我们首先使用信号发生器产生了一个低频信号,该信号经过调制器进行幅度调制后,与高频载波混合,形成一个调制信号。

我们通过示波器观察到了调制信号的幅度随时间变化的波形,并对其进行了分析。

通过调整调制信号的幅度和频率,我们发现可以改变调制信号的谐波分量,从而影响到解调后得到的信息信号的质量。

在解调实验中,我们使用了整流器对调制信号进行解调。

整流器可以将调制信号的负半周波形变为正半周波形,利用滤波器将高频信号滤除后,就可以得到原来的低频信号。

我们通过改变整流器的电路参数,观察了解调后得到的信息信号的波形变化。

我们发现,当整流器的电路参数选择不当时,就会出现失真、杂音等问题,影响信息信号的还原质量。

通过实验,我们更深入地了解了信号幅度调制与解调的原理和实现方式,并掌握了一些调制器和解调器的基本电路参数的选择方法。

同时,
我们也意识到实验中硬件电路参数的选取和实验环境的稳定性等因素对实验结果的影响,这也为我们今后在实际工作中进行调制和解调操作提供了一定的参考。

幅度调制和解调汇总

幅度调制和解调汇总

数字信号与处理幅度调制和解调学生姓名学号实验三一、实验目的了解几种基本的调制解调原理,掌握用数字信号处理的方法实现模拟电路中信号的调制与解调的方法。

通过理论推导得出相应结论,再利用Matlab作为编程工具进行计算机验证实现,从而加深理解,建立概念。

二、基本要求1.了解调制解调的原理2. 会用Matlab实现各种不同的幅值调制3. 会用Matlab实现包络检波和同步检波4. 学会通过公式推导以及实验结果分析,验证调制解调前后信号的频谱变化三、实验内容1.利用Matlab实现信号的调制,过调制,欠调制等状态2.用高频正弦信号分别实现对(1)低频周期方波信号,(2)低频正弦信号(3)低频周期三角波信号的调制,观察调制后频率分布状态,实现抑制载波的幅度调制。

3.设计实验,实现含有载波的幅度调制。

观察调制和解调的结果,与抑制载波的幅度调制有何不同。

4.设计实验,观察待调制波信号幅度变化对调幅系数的影响。

5.模拟峰值检测(包络检波)电路中的二极管的功能。

6.了解峰值检波(包络检波)的原理,并编程实现。

7.了解同步检波的原理,并编程实现。

四、实验原理1.幅度调制用一个信号(称为调制信号)去控制另一个信号(称为载波信号),让后者的某一特征参数如幅值、频率、相位,按前者变化的过程,就叫调制。

调制的作用是把消息置入消息载体,便于传输或处理。

调制是各种通信系统的重要基础,也广泛用于广播、电视、雷达、测量仪等电子设备。

在通信系统中为了适应不同的信道情况(如数字信道或模拟信道、单路信道或多路信道等),常常要在发信端对原始信号进行调制,得到便于信道传输的信号,然后在收信端完成调制的逆过程──解调,还原出原始信号。

用来传送消息的信号叫作载波信号,代表所欲传送消息的信号叫作调制信号,调制后的信号叫作已调信号。

用调制信号控制载波的参数,使之随调制信号而变化,就可实现调制。

受调信号可以是正弦波或脉冲波,所欲传送的消息可以是话音、图像或其他物理量,也可以是数据、电报和编码等信号。

第4章幅度调制与解调电路

第4章幅度调制与解调电路
上一页 下一页 返回
4. 3幅度解调电路
4.负峰切割失真 为把检波器的输出电压藕合到下一级电路.需要有一个容量较大
的电容C与下级电路相连。下级电路的输入电阻作为检波器的负载.电 路如图4-23(a)所示。负峰切割失真指藕合电容公通过电阻R放电.对二 极管引入一个附加偏置电压.导致二极管截止而引入的失真。失真波 形如图4-23(b)、图4-23(c)所示。
可得实现普通调幅的电路模型如图4-4所示.关键在于用模拟乘法 器实现调制信号与载波的相乘。
上一页 下一页 返回
4.1概述
2.双边带调幅(DSB) 1)双边带调幅信号数学表达式
上一页 下一页 返回
4.1概述
2)双边带调幅信号波形与频谱 图4-5所示为双边带调幅信号的波形与频谱图。双边带信号的包
络仍然是随调制信号变化的.但它的包络已不能完全准确地反映低频 调制信号的变化规律。双边带信号在调制信号的负半周.已调波高频 与原载频反相;调制信号的正半周.已调波高频与原载频同相。也就是 双边带信号的高频相位在调制电压零交点处要突变180°
混频后.产生近似中频的组合频率.进入中放通带内形成干扰。 减小互调干扰的方法与抑制交叉调制干扰的措施相同。
上一页 返回
4. 5幅度调制和解调电路的制作、 调试及检测
4. 5. 1低电平振幅调制器(利用乘法器)
幅度调制就是载波的振幅受调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同.即振幅变化与调制信号的振幅成正 比。通常称高频信号为载波信号.低频信号为调制信号.调幅器即为产 生调幅信号的装置。
上一页 下一页 返回
4.1概述
3)调幅信号的功率分配 由式(4-3)知.普通调幅信号uAM(t)<C)在负载电阻RL上产生的功率

幅度调制与相位调制

幅度调制与相位调制

幅度/相位调制过去几十年随着数字信号处理技术与硬件水平的发展,数字收发器性价比已远远高于模拟收发器,如成本更低,速度更快,效率更高。

更重要的是数字调制比模拟调制有更多优点,如高频谱效率,强纠错能力,抗信道失真以及更好的保密性。

正是因为这些原因,目前使用的无线通信系统都是数字系统。

数字调制和解调的目的就是将信息以比特形式(0/1)通过信道从发送机传输到接收机。

数字调制方式主要分为两类:1)幅度/相位调制和2)频率调制。

两类调制方式分别又成为线性调制和非线性调制,在优劣势上也各有不同,因此,调制方式的选择最终还需要取决于多方面的最佳权衡。

本文就对幅度/相位调制加以讨论,全文整体思路如下:1 信号空间分析在路径损耗与阴影衰落中已提出发送信号与接收信号的模型以复信号的实部来表示,而在本文中为了便于分析各调制解调技术,我们必须引入信号的几何表示。

数字调制将信号比特映射为几种可能的发送信号之一,因此,接收机需要对各个可能的发送信号做比较,从而找出最接近的作为检测结果。

为此我们需要一个度量来反映信号间的距离,即将信号投影到一组基函数上,将信号波形与向量一一对应,这样就可以利用向量空间中的距离概念来比较信号间的距离。

1.1 信号的几何表示向量空间中各向量可由其基向量表示,而在无线通信中,我们也可把信号用其相应的基函数来表示。

本文我们讨论的幅度/相位调制的基函数就是由正弦和余弦函数组成的:21()()cos (2)c t g t f t φπ= (1)22()()sin (2)c t g t f t φπ= (2)其中g (t )是为了保证正交性,即保证220()cos (2)1T c g t f t dt π=⎰(3)20()cos(2)sin(2)0T c c g t f t f t dt ππ=⎰(4)则信号可表示为 12()()cos(2)()sin(2)i i c i c s t s g t f t s g t f t ππ=+ (5)则向量s i =[s i1,s i2]T 便构成了信号s i (t )的信号星座点,所有的星座点构成信号星座图,我们把信号s i (t )用其星座点s i 表示的方法就叫做信号的几何表示。

信号调制算法

信号调制算法

信号调制算法
信号调制是一种将信息编码到载波信号的过程,以便在传输过程中有效地传输信息。

常见的信号调制算法有调幅(AM)、调频(FM)和调相(PM)。

调幅(AM)算法:是将调制信号的幅度随时间变化而变化,以实现信息的传输。

调幅信号的解调是将信号的幅度还原为原始信号。

调频(FM)算法:是将调制信号的频率随时间变化而变化,以实现信息的传输。

调频信号的解调是将信号的频率还原为原始信号。

调相(PM)算法:是将调制信号的相位随时间变化而变化,以实现信息的传输。

调相信号的解调是将信号的相位还原为原始信号。

此外,还有多种高级的信号调制算法,如QAM(Quadrature Amplitude Modulation,正交幅度调制)、QPSK(Quadrature Phase Shift Keying,正交相移键控)等。

这些算法在高速数字通信系统中得到了广泛应用。

在信号调制中,通常使用正弦波作为载波信号,因为正弦波具有恒定的幅度和频率,可以方便地进行调制和解调。

此外,为了提高信号传输的效率和可靠性,还可以采用多种调制技术的组合,如QAM和QPSK等。

总之,信号调制算法是实现信息传输的关键技术之一,广泛应用于通信、广播、电视等领域。

随着数字化和通信技术的发展,信号调制算法将会不断进步和完善,为人们提供更加高效、可靠的信息传输服务。

描述幅度调制的工作原理

描述幅度调制的工作原理

描述幅度调制的工作原理
幅度调制(Amplitude Modulation,简称AM)是一种将信息
信号加到载波波形上的调制技术。

其工作原理如下:
1. 产生载波信号:首先,产生一个高频信号作为载波信号,一般为正弦波形。

2. 产生信息信号:接下来,产生一个低频信号作为信息信号,代表了要传输的声音、图像等。

3. 调制过程:通过将信息信号与载波信号相乘,实现幅度调制。

具体操作是将信息信号添加到载波信号的振幅中,即增加或减小载波信号的幅度。

4. 产生调制后的信号:调制后的信号是将信息信号的振幅变化转移到了载波信号中,即载波信号的幅度随着信息信号而变化。

5. 传输与解调:调制后的信号经过传输介质传输到接收端,在接收端进行解调。

解调的过程与调制相反,即通过将调制信号再次与载波信号相乘,将信息信号从载波信号中分离出来。

通过这种方式,幅度调制可以实现在一定频率范围内传输和接收信息信号。

正交幅度调制(qam)信号解调方案原理及实现

正交幅度调制(qam)信号解调方案原理及实现

正交幅度调制(qam)信号解调方案原理及实现1. 引言1.1 概述本文主要探讨正交幅度调制(QAM)信号解调方案的原理及实现。

随着通信技术的快速发展,QAM已成为一种重要的数字调制方式,被广泛应用于无线通信、光纤通信以及数字电视等领域。

QAM具有高可靠性与高传输效率的优势,因此对于了解其解调原理以及实际应用具有重要意义。

1.2 文章结构本文包括以下几个部分:首先,我们将介绍QAM信号的基础知识,包括其特点、调制原理和解调原理。

然后,我们将详细讨论QAM信号解调方案的实现方法,包括直接检测法、匹配滤波器法和软判决法。

接下来,我们将进行实验验证,并对结果进行比较分析。

最后,在结论部分总结全文,并展望未来QAM技术的发展方向。

1.3 目的本文旨在深入探讨正交幅度调制(QAM)信号解调方案的原理和实现方法,帮助读者更好地理解QAM技术并能够应用于实际工程中。

通过对不同解调方案的比较与分析,读者将能够选择最适合自己应用场景的解调方法,并对未来QAM技术的发展有所展望。

2. 正交幅度调制(qam)基础知识:2.1 QAM信号特点:正交幅度调制(QAM)是一种常见的数字调制技术,它能够在有限的频谱资源中有效地传输多个数据位。

QAM信号的主要特点包括以下几点:首先,QAM信号是一种复合调制技术,它同时利用了载波的相位和幅度来传输信息。

其次,QAM信号由两个正交载波分量组成,一般被称为I路与Q路。

这意味着QAM信号可以提供更高的数据传输率,因为每一个载波上都可以携带独立的信息。

第三,QAM信号通过改变正弦波的相位和幅度来表示数字数据。

具体来说,将不同电平的比特映射到不同的相位角和能量水平上。

最后,QAM信号具有抗噪声和抗干扰能力强的优势。

由于不同相位角之间存在较大差异,并且存在着很多可选的相位和幅度组合方式,使得接收端可以根据接收到的信号选择最佳策略以抵御噪声和干扰。

2.2 QAM调制原理:正交幅度调制(QAM)的调制原理基于将数字数据映射到一组离散的复平面点上。

第五章 信号变换一:振幅调制、解调

第五章 信号变换一:振幅调制、解调
普通调幅( 普通调幅(AM):含载频、上、下边带 ) 含载频、 双边带调幅( 双边带调幅(DSB):不含载频 ) 单边带调幅( 单边带调幅(SSB):只含一个边带 ) 残留单边带调幅( 残留单边带调幅(VSB):含载频、一个 ) 含载频、 边带
二、双边带调制和单边带调制
1. 双边带调制
(1) 双边带调制电路的模型 )
例题
设载波功率Pc为100W,问调幅度为1及0.3 设载波功率 ,问调幅度为 及 总边频功率、总平均功率各为多少? 时,总边频功率、总平均功率各为多少? (ma =1时, P = 50W、 P∑a=150W、 时 、 、 ma = 0.3 时, P = 4.5W、 P∑a=104.5W) 、 )
7.调幅波的几种调制方式 调幅波的几种调制方式
二、混频器组成框图及工作原理
⒈ 组成框图
⒉ 工作原理
两个不同频率的高频电压作用于非线性器 件时,经非线性变换, 件时,经非线性变换,电流中包含直流分 基波、谐波、和频、差频分量等。 量、基波、谐波、和频、差频分量等。其 中差频分量f 中差频分量 Lo-fs就是混频所需要的中频成 分,通过中频带通滤波器把其它不需要的 频率分量滤掉,取出差频分量完成混频。 频率分量滤掉,取出差频分量完成混频。 若同一个非线性器件既完成混频、又作为 若同一个非线性器件既完成混频、 本地振荡,则这个混频器通常称为变频器 变频器。 本地振荡,则这个混频器通常称为变频器。
5.1.1 振幅调制电路
一、普通调幅(AM) 普通调幅( )
什么是调幅? ⒈ 什么是调幅? ——载波的振幅值随调制信号的大小作线 载波的振幅值随调制信号的大小作线 性变化,称为振幅调制,简称调幅 调幅( 性变化,称为振幅调制,简称调幅(AM) ) 2. 普通调幅电路模型

调制与解调的概念

调制与解调的概念

调制与解调的概念调制与解调是通信技术中重要的概念,它们是实现信息传输的关键技术。

在通信系统中,调制与解调的作用是将信息信号转换成一定的形式,以便能够在传输媒介中传输。

本文将从调制与解调的基本概念、调制与解调的分类、调制与解调的实现原理以及调制解调器的应用等方面进行介绍。

一、调制与解调的基本概念调制是指把信息信号(如语音、图像等)按照一定的规律转换成调制信号,使得信息信号能够适应传输媒介的特性,以便能够在传输媒介中传输。

调制的过程就是在信号中加入一定的高频载波信号,使得信息信号的频率被调制到高频载波信号的频率范围内,从而形成调制信号。

解调是指在接收端将调制信号还原成原始信息信号的过程。

解调的过程就是将接收到的调制信号中的高频载波信号去除,从而得到原始的信息信号。

解调是调制的逆过程,也是通信系统中非常重要的一个环节。

二、调制与解调的分类调制和解调可以根据不同的分类方式进行划分。

1. 按照信号的调制方式分类调制和解调可以按照信号的调制方式进行分类,常见的调制方式有模拟调制和数字调制。

模拟调制是指将模拟信号进行调制,将其转换成模拟调制信号。

模拟调制分为调幅、调频和调相三种方式。

调幅是指将模拟信号的幅度加到载波信号上,形成调幅信号;调频是指将模拟信号的频率加到载波信号上,形成调频信号;调相是指将模拟信号的相位加到载波信号上,形成调相信号。

数字调制是指将数字信号进行调制,将其转换成数字调制信号。

数字调制分为ASK、FSK、PSK、QAM等多种方式。

ASK是指将数字信号转换成调幅信号;FSK是指将数字信号转换成调频信号;PSK是指将数字信号转换成调相信号;QAM是指将数字信号同时转换成调幅和调相信号。

2. 按照载波信号的性质分类调制和解调可以按照载波信号的性质进行分类,常见的载波信号有连续波和脉冲波。

连续波调制是指将信息信号加到连续的正弦波或余弦波上,形成连续波调制信号。

连续波调制主要包括调幅、调频和调相三种方式。

通信调制方法

通信调制方法

通信调制方法通信调制方法是无线通信系统中至关重要的技术,它涉及到信号的传输、频率的利用以及抗干扰能力等多个方面。

本文将从通信调制技术的概述、分类与比较、选用与实施以及未来发展趋势等方面进行详细阐述。

一、通信调制方法概述通信调制技术是将信息信号与载波信号结合在一起,使载波信号承载信息信号并在传输过程中实现信号的恢复。

通信调制方法主要包括调制方式和解调方式两部分。

调制方式是将信息信号转换为适合在无线信道中传输的信号,而解调方式是在接收端将载波信号中的信息信号提取出来。

二、通信调制技术的分类与比较1.调制方式分类根据调制信号的性质,通信调制方式可分为幅度调制、频率调制和相位调制三大类。

幅度调制:通过改变信号的幅度来实现信息传输,主要有AM、FM和PM 三种。

频率调制:通过改变信号的频率来实现信息传输,主要有FSK、FSK、FDM和CDM等。

相位调制:通过改变信号的相位来实现信息传输,主要有PSK、DPSK和OOK等。

2.调制技术比较各种调制技术在抗干扰性能、频谱利用率、传输速率等方面存在一定的差异。

例如,频率调制技术具有较好的抗干扰性能,但频谱利用率较低;幅度调制技术频谱利用率较高,但抗干扰性能较差。

在实际应用中,需要根据具体场景和需求选择合适的调制技术。

三、通信调制方法的选用与实施在选用通信调制方法时,需综合考虑以下几个方面:1.无线信道特性:根据信道的频率特性、噪声特性、多径衰落等因素选择适合的调制方式。

2.系统性能要求:根据系统的传输速率、误码率、抗干扰能力等性能要求选择合适的调制技术。

3.与其他技术的兼容性:确保所选调制方法与其他技术(如调制解调器、信号处理模块等)的兼容性。

4.实施过程中应注意:调制技术的实际应用过程中,还需考虑功率控制、频率规划、信号检测与估计等问题。

四、通信调制技术的未来发展趋势1.高速率、高容量:随着5G等新一代通信技术的发展,通信调制技术将朝着高速率、高容量的方向发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科学生综合性实验报告
学号 114090315 开斌
学院物理与电子信息学院专业、班级 11电子
实验课程名称信号分析与处理
教师及职称宏宁
开课学期 2013 至 2014 学年下学期
填报时间 2014 年 6 月 18 日
师大学教务处编印
一实验设计方案及容
实验序号13 实验名称综合性信号的幅度调制和解调实验时间2014-6-18 实验室同析3栋313
1、设计要求
①为了加深理解信号幅度调制与解调的基本原理;
②认识从时域与频域分析信号幅度调制和解调过程;
③掌握信号幅度调制和解调的实现方法,以及信号调制的应用;
④应用Matlab软件实现信号的调制与解调。

2、设计原理
连续时间信号的幅度调制与解调是通信系统中常用的调制方式,其利用信号傅里叶变换的移频特性实现信号的调制。

2.1 抑制载波的幅度调制与解调
①对消息信号x(t)进行抑制载波的正弦幅度调制的数学模型为:
y(t)=x(t)cos(w
c
t)
式中:cos(w
c
t)为载波信号;
Wc为载波角频率。

②若信号x(t)的频谱为X(jw),根据傅里叶变换的频移特性,已调信号y(t)
的频谱Y(jw)为: Y(jw)=[X(j(w+w
c ))+X(j(w-w
c
))]
设调制信号x(t)的频谱如图a所示,则已调信号y(t)的频谱如图b所示。

可见正弦幅度调制就是将消息信号x(t)“搬移”到一个更合适的传输频带上去,这种方法中已调信号的频带宽度是调制信号频带宽度的两倍,占用频带较宽。

③然而在接收机端,通过同步解调的技术可以将消息信号x(t)恢复,这可由:
x
0(t)=y(t)cos(w
c
t)=x(t)[1+cos(2w
c
t)]
=x(t)+x(t)cos(2w
c
t)
图一抑制载波的幅度调制
④ x
(t)的频谱如图二所示,将x
(t)通过低通滤波器可以滤除2w
c
为中心的频谱分量,便可恢复x(t)。

图二抑制载波的幅度解调
以上解调方式称为同步解调,其要求接收端与发送端的载波信号必须具有相同的载波频率和初始相角,这在实际应用中存在一定的难度,另一种解调方式可以不受此条件约束,称为非同步解调方法。

2.2 含有载波的幅度调制与解调
⑴为实现信号的非同步解调,在信号幅度调制过程中,一个正的常数A需要叠加到信号x(t)使得x(t)+A>0,若调制信号x(t)满足|x(t)|≤K,则当A>K时,
就可以保证x(t)+A>0。

一般称m=为调制指数。

已调信号y(t)的时域表示式为:
y(t)=[x(t)+A]cos(w
c
t)
已调信号y(t)的频谱为:
Y(jw)=[X(j(w+w
c
))+X(j(w-w
c
))]+Aπ[∂(w+w
c
)+∂(w-w
c
)]
⑵设调制信号x(t)的频谱如下图a所示,则已调信号y(t)的频谱如图b所示。

图三含有载波的幅度调节
⑶由于已调信号包含正弦载波分量,因此一个包络检波器就可以实现对已调信号y(t)的解调,非同步解调的时域分析如下图四所示,在信号非同步解调中,由于已调信号包含正弦波分量,因此发射端的发射功率中包含了正弦载波信号的功率,从而降低了发送效率。

图四非同步调制与解调
二.实验报告
plot([-128:127],fftshift(abs(Y)));%幅频特性title(‘幅频特性’);
⑵采用Matlab自带的调制函数:y=modulate(x,F
C,F
S
,method,opt)也可实现该实
验的结果;
程序如下所示:
Fm=10;Fc=100;Fs=500;
x=sin(2*pi*Fm*t);
subplot(2,1,1);
y= modulate(x,Fc,Fs);
plot(y);
title('时域波形');
subplot(2,1,2);
Y=fft(y,256);
plot([-128:127],fftshift(abs(Y)));
title('幅频特性');
实验现象如图五所示:
图五已调信号时域波形与幅频特性实验结果:
⑶、实现抑制载波的幅度调制,已调信号y(t)=x(t)cos(w
c
t),式中:x(t)为调制
信号,cos(w
c t)为载波信号。

此处可以取x(t)=cos(w
m
πt),wc=80πrad/s,w
m
=10π
rad/s。

①分析调制信号x(t)的频谱,绘出其时域波形和频谱。

解:用Matlab实现该实验,程序如下:
Wm=10*pi;
x=cos(Wm*pi*t);
subplot(2,1,1);
plot(x);
title('时域波形');
subplot(2,1,2);
X=fft(x,256);
plot([-128:127],fftshift(abs(X)));
title('幅频特性');
实验现象如图六所示:
图六时域波形与幅频特性
②分析已调信号y(t)的频谱,绘出其时域波形和频谱。

解:该实验Matlab程序如下:
Wm=10*pi;
Wc=80*pi;
Fc=Wc/(2*pi);
Fm=Wm/(2*pi);
k=0:;Fs=500;
t=k/Fs;
x=cos(Wm*pi*t)
subplot(2,1,1);
y= modulate(x,Fc,Fs);
plot(y);
title('时域波形');
subplot(2,1,2);
Y=fft(y,256);
plot([-128:127],fftshift(abs(Y)));
title('幅频特性');
实验现象如图七所示:
图七时域波形与幅频特性2.实验总结。

相关文档
最新文档