AM调制与解调

合集下载

AM调制与解调电路设计

AM调制与解调电路设计

AM 调制与解调电路设计一.设计要求:设计AM 调制和解调电路调制信号为:()1S 3cos 272103cos164t V tV ππ=⨯+=⎡⎤⎣⎦ 载波信号:()2S 6 cos 2107210 6 cos1640t V tV ππ=⨯⨯+=⎡⎤⎣⎦二.设计内容:本题采用普通调幅方式,解调电路采用包络检波方法;调幅电路采用丙类功放电路,集电极调制;检波电路采用改进后的二极管峰值包络检波器。

1.AM 调幅电路设计: (1).参数计算:()6cos1640c u t tVπ=载波为,()3cos164t tVπΩ=调制信号为u则普通调幅信号为am cm U U [1cos164]cos1640a M t t ππ=+其中调幅指数0.5a M =最终调幅信号为am U 6[10.5cos164]cos1640t tππ=+为了让三极管处在过压状态cc U 的取值不能过大,本题设为6v 其中选频网络参数为21LC c ω=c 1640ωπ= L 200H,C 188F 1BB Vμμ===另U(2).调幅电路如下图所示:调幅波形如下:可知调幅信号与包络线基本匹配2.检波电路设计:参数计算:取10L R k =Ω 1.电容C对载频信号近似短路,故应有1cRCω,取()510/10/0.00194c c RCωω==2.为避免惰性失真,有max 10.00336a a RCM M -Ω=,取0.0022,1RC R k C F μ==Ω=,则3.设11212250.2,,330, 1.6566R R R R R R R k R ====Ω=Ω则。

因此, 4.c C 的取值应使低频调制信号能有效地耦合到L R 上,即满足min1cL C R Ω,取4.7c C F μ=3.调制解调电路如下图所示:o am U U 与波形为:o L U U 与解调信号的波形为:下面的波形为解调信号波形,基本正确,没有出现惰性失真和底部切割失真。

AM调制与解调

AM调制与解调

海南大学高频电子线路课程合计报告小功率调幅发射机及超外差式调幅接收机设计专业班级:姓名:学号:小功率调幅发射机一、系统设计发射机的主要作用是完成有用的低频信号对高频信号的调制,将其变为在某一个中心频率上具有一定带宽、适合通过天线发射出去的电磁波。

调幅发射机通常由主振级、缓冲级、中间放大级、振幅调制、音频输入和输出网络组成。

根据设计要求,载波频率f=4MHz,主振级采用西勒振荡电路,输出的载波的频率可以直接满足要求,不需要倍频器。

系统原理图如下图所示:图中,各组成部分的的作用如下:振荡级:产生频率为4MHz的载波信号。

缓冲级:将晶体振荡级与调制级隔离,减小调制级对晶体振荡级的影响。

放大级:增大载波输出功率。

AM调制级:将话音信号调制到载波上,产生已调波。

输出网络及天线:对前级送来的信号进行功率放大,通过天线将已调高频载波电流以电磁波的形式发射到空间二、各部分电路的具体设计和分析1、主振级主振级是条幅发射机的核心部件,主要用来产生一个频率稳定、幅度较大、波形失真小的高频正弦波信号作为载波信号。

该电路通常采用晶体管LC正弦波振荡器。

常用的正弦波振荡器包括电容三端式振荡器既考毕兹振荡器、克拉泼振荡器、西勒振荡器。

本级用来产生4MHz左右的高频振荡载波信号,由于整个发射机的频率稳定度由主振级决定,因此要求主振级有较高的频率稳定度,同时也要有一定的振荡功率(或电压),其输出波形失真较小。

为此,这里我采用西勒振荡电路,可以满足要求。

西勒振荡器电路所示R i、R2、R4提供偏置电压使三极管工作在放大区,C3 起到滤波作用。

输出电路的总电容: C C2C3C4C5 C4 C5乙c2c3+c3c4+c2c4振荡频率------ ::4MHz2 3.14 J3.5 10-6(15 87.5) 10」2主振级电路图如下:图1.主振级电路图主振级输出波形:12「L i(C「C5)图2.主振级输出波形输出频率:頻率计-XFC1图3.输出频率2、缓冲级为了减少后级对主振级振荡电路振荡频率的影响,米用缓冲级。

am调制与解调原理

am调制与解调原理

am调制与解调原理AM调制与解调(Amplitude Modulation, AM)是一种广泛应用于无线通信中的调制与解调技术。

它是通过改变载波的振幅来携带信息信号的一种方法。

在AM调制过程中,信息信号被用来调制高频载波的振幅大小,这样就能通过调制后的信号来携带信息。

AM调制的原理是,将要传输的信号与连续的正弦高频载波进行乘积运算,产生新的调制信号。

这个调制信号的幅度随着信息信号的变化而改变,从而使得信号的振幅发生调制。

被调制后的信号可以表示为S(t) = (1 + m*sin(ωm*t)) * Ac * cos(ωc*t),其中S(t)是调制后的信号,m是调制指数,ωm是信息信号的角频率,Ac是载波的振幅,ωc是载波的角频率。

在AM解调过程中,需要将调制后的信号恢复成原始的信息信号。

常见的AM解调方法有幅度解调(Envelope Detection)和同步解调(Coherent Detection)。

幅度解调是一种简单但常见的解调方法,它利用一个包络检波器将调制信号的幅度进行检测,以获得原始的信息信号。

同步解调则需要借助载波信号进行解调,通过将调制信号与载波进行相乘得到相关的信号,并利用低通滤波器恢复原始的信息信号。

AM调制与解调技术在广播、电视、无线通信等领域得到了广泛应用。

它的优点是实现简单、抗干扰能力较强,并且具有较好的传输质量。

然而,由于AM调制过程中只改变了载波的振幅而不改变其频率和相位,因此在传输过程中容易受到噪声的影响,同时也存在较大的带宽浪费问题。

为了解决这些问题,后续又出现了更高效的调制与解调技术,如FM(Frequency Modulation)和PM(Phase Modulation)等。

am调制与解调实验报告

am调制与解调实验报告

am调制与解调实验报告AM调制与解调实验报告引言:AM调制与解调是无线通信领域中非常重要的技术之一。

调制是将信息信号转换成适合传输的载波信号,而解调则是将载波信号还原为原始的信息信号。

本实验旨在通过实际操作,深入了解AM调制与解调的原理和过程。

一、实验目的本实验的主要目的是通过实际操作,掌握AM调制与解调的原理和过程,进一步了解无线通信技术的基本原理。

二、实验器材与原理1. 实验器材:- 信号发生器:用于产生调制信号。

- 调制器:用于将调制信号与载波信号相乘,实现AM调制。

- 解调器:用于将AM调制信号还原为原始的调制信号。

- 示波器:用于观察信号的波形和频谱。

2. 实验原理:AM调制是一种将信息信号与载波信号相乘的调制方式。

调制信号的幅度变化会导致载波信号的幅度变化,从而实现信息的传输。

解调则是将调制信号中的信息还原出来,使其能够被接收端正确解读。

三、实验步骤与结果1. 实验步骤:- 将信号发生器的输出接入调制器的输入端,调制器的输出接入示波器。

- 设置信号发生器的频率和幅度,产生一个正弦波作为调制信号。

- 设置调制器的载波频率和幅度,将调制信号与载波信号相乘,得到AM调制信号。

- 将AM调制信号接入解调器,解调器的输出接入示波器。

- 观察示波器上的波形和频谱,分析调制与解调的效果。

2. 实验结果:通过实验观察,可以看到示波器上显示出的波形和频谱。

在调制器输出的波形中,可以观察到载波信号的幅度随着调制信号的变化而变化。

而在解调器输出的波形中,可以看到原始的调制信号被成功还原出来。

四、实验分析与讨论通过本次实验,我们深入了解了AM调制与解调的原理和过程。

在调制过程中,调制信号的幅度变化会导致载波信号的幅度变化,从而实现信息的传输。

而在解调过程中,解调器能够将调制信号中的信息还原出来,使其能够被接收端正确解读。

AM调制与解调技术在无线通信中有着广泛的应用。

例如,在广播领域,AM调制技术可以将音频信号转换成适合传输的调制信号,从而实现广播节目的传播。

AM调制与解调系统的设计

AM调制与解调系统的设计

AM调制与解调系统的设计AM调制与解调系统是现代通信系统的关键组成部分,广泛应用于无线电通信、广播电视以及音频设备中。

本文将从AM调制与解调的原理、系统设计以及应用等方面进行探讨,旨在深入了解AM调制与解调系统的设计原理与实践。

一、AM调制与解调的原理AM调制是一种模拟调制方式,根据信息信号的幅度变化来调制载频信号的幅度。

它的基本原理是将要传输的信号信息通过线性调制器产生调制信号,然后直接与高频载波通过线性混频器进行混频操作,从而得到被调制后的载波信号。

这样产生的AM信号经过放大、滤波等处理后,就可以进行传输。

AM解调则是将调制信号恢复为原始信号的过程。

一般而言,AM解调的主要任务是将调制信号与收到的AM信号相乘,然后通过低通滤波器将高频成分滤除,从而得到原始信号。

根据调制信号与AM信号的相对幅度,可以得到不同幅度的载波信号,实现信息的解调。

1.调制器设计:调制器是AM调制与解调系统的关键组成部分。

其设计要点是选择合适的调制方式(DSB-SC、SSB、VSB等)、调制频率范围、调制度等参数,并根据需求选择合适的调制器IC,如AD633、AD537等。

2.混频器设计:混频器是将调制信号与载波信号进行混频的关键部件,需要选择合适的混频器IC并根据系统需求确定其工作频率范围和增益。

一般常用的混频器有单/双平衡混频器、高/中/低频混频器等。

3. 低通滤波器设计:低通滤波器的设计用于去除混频后的高频干扰,只保留原始信号的基带部分。

根据系统需求选择合适的滤波器类型(如RC、LC、Bessel、Butterworth等),并设计滤波器的截止频率、通带/阻带衰减等参数。

4.放大器设计:在AM调制与解调系统中,放大器的作用是将调制后的信号放大到合适的幅度,以提高信号质量。

根据系统需求选择合适的放大器型号,如运算放大器、功率放大器等,并确定放大器的放大倍数、带宽等参数。

5.误码率检测与纠错:在AM调制与解调系统中,为了提高信号的可靠性,可以通过引入差错控制技术进行误码率检测与纠错,如使用CRC校验、海明码等方案。

实验十一 AM振幅调制与解调

实验十一 AM振幅调制与解调

信号与系统实验报告3、AM 振幅调制与解调实验模块一块。

【实验原理】1、常规双边带调幅所谓调制,就是在传送信号的一方(发送端)将所要传送的信号(它的频率一般是较低的)“附加”在高频振荡信号上。

所谓将信号“附加”在高频振荡上,就是利用信号来控制高频振荡的某一参数,使这个参数随信号而变化,这里,高频振荡波就是携带信号的“运载工具”,所以也叫载波。

在接收信号的一方(接收端)经过解调(反调制)的过程,把载波所携带的信号取出来,得到原有的信息,解调过程也叫检波。

调制与解调都是频谱变换的过程,必须用非线性元件才能完成。

调制的方式可分为连续波调制与脉冲波调制两大类,连续波调制是用信号来控制载波的振幅、频率或相位,因而分为调幅、调频和调相三种方式;脉冲波调制是先用信号来控制脉冲波的振幅、宽度、位置等,然后再用这已调脉冲对载波进行调制,脉冲调制有脉冲振幅、脉宽、脉位、脉冲编码调制等多种形式。

本实验模块所要进行的实验是连续波的振幅调制与解调,即常规双边带调幅与解调。

我们已经知道,调幅波的特点是载波的振幅受调制信号的控制作周期性的变化,这变化的周期与调制信号的周期相同,振幅变化与调制信号的振幅成正比。

为简化分析,假定调制信号是简谐振荡,即为单频信号,其表达式为:图1 常规调幅波形如果用它来对载波进行调幅,那么,在理想情况下,常规调幅信号为:其中调幅指数,k为比例系数。

图1给出了UΩ(t),U c(t)和的波形图。

从图中并结合式(1)可以看出,常规调幅信号的振幅由直流分量U cm和交流分量kUΩm cosΩt迭加而成,其中交流分量与调制信号成正比,或者说,常规调幅信号的包络(信号振幅各峰值点的连线)完全反映了调制信号的变化。

另外还可得到调幅指数M a 的表达式:显然,当Ma>1 时,常规调幅波的包络变化与调制信号不再相同,产生了失真,称为过调制,如图2 所示。

所以,常规调幅要求Ma 必须不大于1。

图 2 过调制波形式(1)又可以写成可见,U AM (t) 的频谱包括了三个频率分量:ωc(载波)、ωc +Ω(上边频)和ωc -Ω(下边频)。

AM信号调制与解调实验报告

AM信号调制与解调实验报告

湖南农业大学信息科学技术学院学生实验报告【实验原理】1.AM调制解调原理标准调幅就是常规双边带调制,简称调幅(AM)。

假设调制信号m(t)的平均值为0,将其叠加一个直流分量A0后与载波相乘,即可形成调幅信号。

其时域表达式为:为外加的直流分量;m(t)可以是确知信号,也可以是随机信号。

AAM调制解调原理图模型如下图所示:AM调制器AM相干解调包络检波2.过调现象定义调幅系数m(及调幅度)——反映基带信号改变载波幅度的程度:m<1时正常调幅aX+b:x^1(交流系数 |m(t)|max):1,x^0(直流分量A0):0.5m>1时过调幅aX+b:x^1(交流系数|m(t)|max):1,x^0(直流分量A0):2【实验环境】【实验步骤、过程】1.根据AM 调制与解调原理,用Systemview 软件建立一个仿真电路,如下图所示:2.元件参数配置Token 0: 基带信号—正弦波信号源(F=50HZ,A=1V)Token 1:多项式函数(a=1,b=2)Token 2,8:高弦正向载波乘法器Token 3,9:正弦信号载波(f=500HZ,A=1V)Token 4,5,6,13,14,15,16:观测点Token 7:线性系统带通滤波器(LF=400HZ,HF=600HZ)Token 10,12:线性系统低通滤波器(LF=100HZ)Token 11:半波整流器3.运行时间设置运行时间=0.5s 抽样速率=2000HZ4.运行系统及分析结果(1)基带信号、载波信号和AM信号的波形分析:AM信号的频率与载波信号的频率变化相同,且AM基带的幅度是随基带幅度的变化而变化的,所以AM信号实际上是将载波的幅度进行调整使其随基带信号变化的一种调幅波。

(2)基带信号、载波信号和AM信号的频谱分析:从图中可知,AM信号中间高峰处为载波项,两边为边带项,基带信号的截止频率是100HZ,AM信号的截止频率是400HZ—600HZ。

am调制与解调实验报告

am调制与解调实验报告

am调制与解调实验报告实验报告:AM调制与解调实验目的:1. 掌握AM调制和解调原理;2. 熟悉模拟电路实验仪器的使用方法;3. 学习利用电路仿真软件进行电路分析和设计。

实验原理:AM调制是指用调制信号来控制载波振幅的大小,而产生的一种调制方式。

调制信号和载波信号一起通过非线性(比如二极管)电路进行调制,得到一种新的复合波,即调制信号的大小和频率与载波信号进行组合,产生新的带调制信号。

解调就是将带调制的信号分离出来,得到原来的调制信号。

实验内容:1. 制作AM调制电路和解调电路;2. 观察电路输出波形,验证调制和解调效果;3. 利用电路仿真软件,进行电路分析和设计。

实验仪器和材料:1. 功率放大器;2. 信号发生器;3. 变压器;4. 二极管;5. 电容器、电阻和万用表等元器件;6. 电路仿真软件(例如Multisim等)。

实验步骤:1. 将信号发生器和功率放大器依次连接,得到可调幅度的正弦波信号;2. 将正弦波信号通过变压器,达到更高的电压;3. 将二极管串联在正弦波信号的路径上,形成AM调制电路;4. 用示波器观察输出波形,并验证调制效果;5. 制作解调电路,将带调制信号通过解调电路,通过电容器得到原来的调制信号;6. 用示波器观察输出波形,并验证解调效果;7. 利用电路仿真软件进行电路分析和设计,同时分析和比较实验结果和仿真结果。

实验结果和分析:通过实验和仿真,得到了理想的调制和解调效果,展示了AM调制与解调原理的应用和使用。

同时,在电路设计和分析中,我们可以发现电路中各个元器件的作用和影响,从而更好地优化电路。

预计,在研究和学习更高层次的调制和解调技术方面,这些基础电路知识将帮助我们更好地理解和应用。

结论:通过实验和仿真,我们掌握了AM调制和解调原理,并通过电路设计、实验和仿真进行了实际验证。

这给我们提供了更好的基础知识和实践经验,同时也为将来的深入学习和应用奠定了基础。

AM调制及解调

AM调制及解调

课程设计线路班级:姓名:学号:指导教师:成绩:电子与信息工程学院信息与通信工程系摘要振幅调制信号的解调过程称为同步检波。

有载波振幅调制信号的包络直接反应调制信号的变化规律,可以用二极管包络检波的方法进行检波。

而抑制载波的双边带或单边带振幅调制信号的包络不能直接反应调制信号的变化规律,无法用包络检波进行解调,所以要采用同步检波方法。

同步检波器主要适用于对DSB和SSB信号进行解调,也可以用于AM,但是一般AM调制信号都用包络检波来进行检波。

同步检波法是加一个与载波同频同相的恢复载波信号。

外加载波信号电压加入同步检波器的方法有两种。

利用模拟乘法器的相乘原理,将已调信号频谱从载波频率附近搬移到原来位置,并通过低通滤波器提取多需要的调制(基带)信号,滤除无用的高频分量,从而实现双边带信号的解调。

本文详细介绍了根据模拟乘法器MC1496的AM调制系统和同步检波器的详细方案和各种参数。

给出了基于Multisim软件的解调和解调仿真结果。

关键字:同步检波;AM;Multisim;调制目录1 MC1496芯片设计21.1MC1496部结构及基本性能22 信号调制的一般方法4 2.1模拟调制42.2数字调制42.3脉冲调制43 振幅调制53.1基本原理53.2AM调制与仿真实现53.3DSB调制与仿真实现74解调84.1同步检波器原理框图84.2同步检波解调电路图104.3分析解调过程104.4解调仿真结果114.4.1 AM解调与仿真实现114.4.2 DSB解调与仿真实现125 小结与体会126附录:总电路图131 MC1496芯片设计1.1 MC1496部结构及基本性能在高频电子线路,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正式实现两个模拟量电压或电流相乘的电子器件。

采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。

无线通信中的调制与解调方法

无线通信中的调制与解调方法

无线通信中的调制与解调方法无线通信是指通过无线电波或其他电磁波进行信息传输的通信方式。

在无线通信中,调制和解调是最基本的信号处理方法,用于将信号转换为适合无线传输的形式。

本文将详细介绍无线通信中的调制与解调方法,并分步解析。

一、调制方法调制是将信息信号注入到载波信号中的过程,主要有以下几种调制方法:1. AM调制(Amplitude Modulation)AM调制是通过改变载波信号的幅度来传输信息的一种调制方法。

它的过程包括:调制信号经过调制器调制后与载波信号相乘,形成带有调制信号的调制波。

调制波的幅度随着调制信号的变化而变化,解调时可以从调制波中还原原始的调制信号。

2. FM调制(Frequency Modulation)FM调制是通过改变载波信号的频率来传输信息的一种调制方法。

它的过程包括:调制信号经过调制器调制后控制载波信号的频率变化,形成带有调制信号的调制波。

调制波的频率随着调制信号的变化而变化,解调时可以从调制波中还原原始的调制信号。

3. PM调制(Phase Modulation)PM调制是通过改变载波信号的相位来传输信息的一种调制方法。

它的过程包括:调制信号经过调制器调制后控制载波信号的相位变化,形成带有调制信号的调制波。

调制波的相位随着调制信号的变化而变化,解调时可以从调制波中还原原始的调制信号。

二、解调方法解调是将调制后的信号还原成原始信号的过程,主要有以下几种解调方法:1. AM解调(Amplitude Demodulation)AM解调是从调制波中还原出原始调制信号的一种解调方法。

它的过程包括:将调制波通过一个带通滤波器,滤除掉不必要的频率成分,得到基带信号,再经过放大器放大,即可得到原始的调制信号。

2. FM解调(Frequency Demodulation)FM解调是从调制波中还原出原始调制信号的一种解调方法。

它的过程包括:将调制波通过一个频率鉴别器,将频率变化转换成幅度变化,然后通过一个低通滤波器滤除高频噪声,得到原始的调制信号。

AM调制与解调的设计与实现

AM调制与解调的设计与实现

Simulink模块库简介



Continuous(连续模块)库 Discrete(离散模块)库 函数与表格模块库 Math(数学模块)库 Sinks(信号输出模块)库:常用模块为Scope(示波器 模块)、XYGraph(二维信号显示模块)、Display(显 示模块) Sources(信号源模块)库,常见模块有:Constant(输 入常数模块)、Signal Generator(信号源发生器模块)。 Signal Generator用于产生不同的信号波形,其中包括: 正弦波、方波、锯齿波信号。Sources(信号源模块)还 包括其它常用模块: Ramp(斜坡输入信号)、Sine Wave(正弦波输入信 号)、Step(阶跃输入信号)、Clock(时间信号)、 Pulse(脉冲信号)等。
2.4调幅波的解调
调幅波的解调即是从调幅信号中取出调制信号的过程,通常称 为检波。 调幅波解调方法有二极管包络检波器、同步检波器。不论哪种 振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进 行解调。但是,对于普通调幅信号来说,它的载波分量未被抑制掉, 可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不 必另加同步信号,通常将这种振幅检波器称为包络检波器。目前应用 最广的是二极管包络检波器,而在集成电路中,主要采用三极管射极 包络检波器。 同步检波,又称相干检波,主要用来解调双边带和单边带调制 信号,它有两种实现电路。一种由相乘器和低通滤波器组成,另一种 直接采用二极管包络检波。
设计举例: 1、通带频率调制的系统的参考仿真框图
图 2-7 通带频率调制的仿真系统中示波器的波形图
图2-8 通带频率调制后信号的频谱图
2、通带相位调制的系统的参考仿真框图

AM调制与解调

AM调制与解调

实验七 AM调制与解调一、 实验目的1、 掌握AM 调制器的组成;2、 掌握非相干AM (检波)解调器的原理;3、 掌握相干AM(同步)解调器的原理;二、 预备知识1、 学习“调制与解调";2、 全波整流信号频谱的组成;三、 实验仪器1、 J H5004“信号与系统”实验箱一台; 2、 20MHz 示波器 一台;四、 实验原理在通信过程中,一般一个用户只占据某一特定的频点与带宽,将信号的频谱搬移到载频0f 上,这一过程称之为调制,最简单的调制方式有AM 调制.如果一输入信号)(t S ,载频信号为)(t x ,则AM 调制输出信号为:)()](1[)()()()(t x t s a t x t x t s a t y ⋅⋅+=+⋅⋅=在接收端从AM 已调信号中恢复出原始信号S(t )的过程称之为解调。

对AM 常用的解调方式有:非相干解调(检波)与相干解调(同步解调)。

AM 的非相干解调是将AM 信号通过一检波二极管,再经过一低通滤波器即可获取原始的模拟信号S (t)。

AM 的非相干解调不需要本地载波,此方法常用于民用通信设备中,可大大降低接收机的成本,提高整机通信的可靠性。

AM 的同步解调是将接收的AM 信号与本地相干载波(同步载波)相乘,经低通滤波器获得原始的模拟信号S(t )。

同步解调需要在接收端产生与发送端频率相同的本地载波,该方法可提高解调器的性能(即提高接收机的灵敏度),但这也将使接收机复杂化。

五、 实验模块说明在JH5004“信号与系统”实验箱的中有一“AM 传输系统”模块,该模块主要由四个单元组成:1、 两个完全相同的乘法器:)()()(t x t s t y ⋅=。

为了叙述上的方便,左边相乘器称之为乘法器1,右边相乘器称之为乘法器2;2、 两个完全相同的检波器:主要由一个检波管与电容滤波器组成。

为了叙上的方便,左边检波器称之为检波器1,右边检波器称之为检波器2;上述两单元的组成电路如下图所示:六、 实验步骤1、 载波信号的产生:通过按键使JH5004的信号发生器处于模式1,在该模式下在正弦信号16KHz 、32KHZ输出端产生相应的信号输出,同时在信号A 组产生1KHz 信号,在信号B 组产生125KHZ 信号输出. 2、 A M 调制波形的产生:)()()(t x t s t y ⋅=(1) 将16KHz 的正弦信号作为AM 的发送载波,通过短路线将16KHz 正弦信号输出端与相乘器1的X 输入端相连。

AM调制与解调

AM调制与解调

, 本地解调载波
,则两信号相乘后的输出为
= 式中,k 为乘法器的相乘系数。令 滤波器后的输出信号为
,且低通滤波器的传输系数为 1,则经低通
当恢复的本地载波与发射端的调制载波同步(同频,同相),即 即表明同步检波器能无失真地将调制信号恢复出来。

时,有
源程序:
clear;%将工作空间数据清空 ma=0.3;%调制系数 omega_c=2*pi*8000; omega=2*pi*400; t=0:5/400/1000:5/400; u_cm=1;fam=1;fcm=1;
摘要
AM 调制与解调
解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。对于幅度调制来说, 解调是从它的幅度变化提取调制信号的过程。对于频率调制来说,解调是从它的频率变化提 取调制信号的过程。而在在实际应用当中大型、复杂的系统直接实验是十分昂贵的,而采用 仿真实验,可以大大降低实验成本。在实际通信中,很多信道都不能直接传送基带信号,必 须用基带信号对载波波形的某些参量进行控制,使载波的这些参量随基带信号的变化而变 化,即所谓正弦载波调制。利用仿真软件对系统进行仿真可以弥补真实的实验设备所不能满 足的条件,减少实验成本。
非线性电路 图1
低通滤波器
包络检波器的输入信号为振幅调制信号
,其频谱由载频 和边


组成,载频与上下边频之差就是 。因而它含有调制信号的信息。
DSB 调制与解调
AM 调制与解调
在 AM 调制过程中,如果将载波分量抑制掉,就可形成抑制载波双边带信号。双边带信 号可以用载波和调制信号直接相乘得到,即
式中,常数 k 为相乘电路的相乘系数。
仿真及分析
AM 调制与解调

实验2:AM调制与解调仿真

实验2:AM调制与解调仿真

实验2:AM调制与解调仿真一、实验目的1、掌握AM的调制原理和MATLAB Simulink仿真方法2、掌握AM的解调原理和MATLAB Simulink仿真方法二、实验原理1、AM调制原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。

这里高频振荡波就是携带信号的运载工具,也叫载波。

振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。

在线性调回系列中,最先应用的一种幅度调制是全条幅或常规调幅,简称为调制(AM)。

在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。

m(t)为取值连续的调制信号,c(t)为正弦载波。

下图为AM调制原理图:2、AM解调原理从高频已调信号中恢复出调制信号的过程为解调,又称为检波。

对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程,解调是调制的逆过程。

下图为AM解调原理图:三、实验步骤1、AM调制方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器Constant和Add 以及低通滤波器,sine wave2和product1是对已调信号频谱进行线性搬移,低通滤波器是滤除高频部分,得到原始信号②调制后调制后信号加上了2v的偏置,频率变大了,幅度随时间在不断的呈现周期性变化,在1~2.5之间,大于调制前的幅度。

③模拟信号的调制是将要发送的模拟信号附加到高频振荡上,再由天线发射出去,这里的高频振荡就是载波。

振幅调制就是由调制信号去控制高频振荡的振幅,直至随调制信号做线性变化。

2、AM解调方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器Sine wave2和product1是低通滤波器,Sine wave2 和 product1是对已调信号的频谱进行线性搬移,低通滤波器是滤除信号的高频部分以得到原始信号。

通信原理AM的调制和解调

通信原理AM的调制和解调

AM调制与解调仿真一、实验目的:1.掌握AM 的调制原理和Matlab Simulink 仿真方法2.掌握AM 的解调原理和Matlab Simulink 仿真方法二、实验原理:1. AM 调制原理基带信号m(t)先与直流分量A叠加,然后与载波相乘,形成调幅信号。

2.AM 解调原理调幅信号再乘以一个与载波信号同频同相的相干载波,然后经过低通滤波器,得到解调信号。

三、实验内容:1. AM 调制方式 Matlab Simulink 仿真1.1 仿真框图图1 仿真图图中的Sine Wave1和Sine Wave2模块分别产生发送端和接收端的载波信号的角频率ωc都设为40rad/s,调幅系数为1;调制信号m(t)由Sine Wave模块产生,其为正弦信号,角频率为5rad/s,幅度为1V;直流分量A0由Constant模块产生,为2V;低通滤波器模块的截止角频率设为5rad/s。

1.2 仿真参数设置图图2 低通滤波器截止角频率参数设置图3 发送端、接收端的载波信号Sine Wave1、Sine Wave2 角频率参数设置图4 调制信号角频率参数设置1.3仿真结果图5 调制信号波形图6 AM信号波形图7 基带信号频谱2. AM 解调方式 Matlab Simulink 仿真2.1 仿真框图\图7 仿真图图中的Sine Wave1和Sine Wave2模块分别产生发送端和接收端的载波信号的角频率ωc都设为40rad/s,调幅系数为1;调制信号m(t)由Sine Wave模块产生,其为正弦信号,角频率为5rad/s,幅度为1V;直流分量A0由Constant模块产生,为2V;低通滤波器模块的截止角频率设为5rad/s。

2.2仿真结果图8 解调信号波形从示波器 Scope 可以看到 AM 信号及解调信号的波形,如图5所示。

从图中可以看出,解调前后在频域上市频谱的搬移,时域上解调后的信号延时输出,经过解调的波形与原调制信号波形基本相同。

AM信号的调制与解调(带仿真图)

AM信号的调制与解调(带仿真图)

AM信号的调制与解调(带仿真图)
AM调制(Amplitude Modulation)是指将一个较低频率的信息信号,如语音、音乐等,通过调制将其变成一个载波的振幅随时间变化的信号,使之能够通过远距离传输,同时也可通过解调还原出原始信号。

AM信号的调制过程:
首先,我们需要一个高频载波信号(通常为数十kHz至数百kHz范围内的正弦波信号),用于携带信息信号。

将载波信号的振幅、频率、相位等参数保持不变,称为“未调制”的载波信号。

接着,将需要传输的信息信号(如语音、音乐等)与未调制的载波信号进行线性加和,得到调制信号。

调制信号的振幅随着信息信号的变化而变化,从而实现了信息的传输。

AM信号的解调过程:
当调制信号到达接收端时,需要通过解调还原出原始信号。

解调方法有多种,这里介绍AM信号的一个简单解调方法——幅度解调(AM Detector)。

幅度解调的基本原理是利用二极管的阻抗特性,将入射信号的高频载波部分“切掉”,只保留信息信号的部分,从而实现解调。

具体操作过程为:
首先,将接收到的调制信号通过一个带通滤波器(Bandpass Filter)滤掉不需要的高频信号,保留低频信息信号。

接着,将滤波后的信号通过一个二极管(Detector)进行整流(Rectify),从而将信号全部变为正半波。

最后,将整流后的信号再通过一个低通滤波器(Lowpass Filter)滤掉高频噪声,从而还原出原始信息信号。

AM调制与解调的设计与实现

AM调制与解调的设计与实现

AM调制与解调的设计与实现首先,AM调制的设计与实现。

AM调制即将模拟信号与载波进行幅度调制,其原理是根据调制信号的幅度变化来改变载波的幅度。

设计和实现AM调制需要进行以下步骤:1.选择合适的载波频率:根据传输信号的带宽和频谱要求,选择适当的载波频率。

一般可以选择AM广播中使用的550kHz至1.6MHz的频率范围。

2.生成载波信号:使用信号发生器或振荡器产生制定频率的正弦波作为载波信号。

3.调制信号处理:将模拟信号经过适当的增益控制、滤波等处理,使其适合用于调制。

4.幅度调制:将调制信号与载波信号相乘,即可完成幅度调制。

可以采用电路或数字信号处理器等设备进行计算和运算。

5.输出调制信号:信号调制后,需要经过功率放大等处理,以增加信号的传输距离和稳定性,并输出到信号发送设备或模拟调制器。

接下来,是AM解调的设计与实现。

AM解调是将调制信号还原为原始信号的过程,其中常用的解调方法有包络检波和同步检波。

1.包络检波:包络检波是一种简单有效的AM解调方法。

将AM调制信号经过一个非线性元件(如二极管、晶体管等)进行整流,得到信号的包络。

然后再通过一个低通滤波器将高频成分滤除,得到原始信号的波形。

2. 同步检波:同步检波是一种高级的AM解调方法。

通过与载波频率相同的Local Oscillator(LO)产生一路相干的参考信号,并与接收到的调制信号进行乘法运算。

得到的乘积信号经过低通滤波器后,即可得到原始信号。

无论是包络检波还是同步检波,解调后得到的信号仍然可能存在一定的噪声和失真。

因此,在实际的设计与实现中,还需要对解调信号进行进一步的处理,如增益控制、滤波、抗干扰处理等,以获得清晰、稳定的原始信号。

总结起来,AM调制与解调的设计与实现需要进行载波频率选择、信号处理、幅度调制、解调方法选择等步骤。

在实际应用中,还需要对调制和解调信号进行进一步的合理处理,以提高信号的质量和稳定性。

c语言 am调制解调

c语言 am调制解调

c语言am调制解调摘要:1.C 语言简介2.AM 调制3.AM 解调4.总结正文:一、C 语言简介C 语言是一种通用的、过程式的计算机程序设计语言。

它被广泛应用于底层开发、操作系统、嵌入式系统等领域。

C 语言具有运行速度快、可移植性好、语言简洁等优点,因此成为了许多程序员的首选。

本篇文章将介绍在C 语言中实现AM 调制和解调的方法。

二、AM 调制AM(Amplitude Modulation,振幅调制)是一种最基本的调制方法。

在AM 调制中,信号的振幅随着音频信号的变化而变化。

具体实现方法是将音频信号与载波信号相乘,从而得到调制后的信号。

在C 语言中,可以通过以下步骤实现AM 调制:1.导入所需的库:`#include <stdio.h> <stdlib.h> <math.h>`2.定义一个函数,计算音频信号与载波信号的乘积3.在主函数中,初始化音频信号和载波信号,并调用函数计算调制后的信号4.将调制后的信号输出,通常通过音频设备或者文件存储三、AM 解调AM 解调是AM 调制的逆过程,通过从调制后的信号中恢复出原始音频信号。

在C 语言中,可以通过以下步骤实现AM 解调:1.导入所需的库:`#include <stdio.h> <stdlib.h> <math.h>`2.定义一个函数,实现AM 解调算法,通常采用包络检波法3.在主函数中,读取调制后的信号,并调用函数实现解调4.输出解调后的音频信号,通常通过音频设备或者文件存储四、总结通过以上介绍,我们可以在C 语言中实现AM 调制和解调。

这种方法可以帮助我们更好地理解和掌握通信原理,同时也为实际应用提供了可能。

AM调制与解调

AM调制与解调

第一章 调制解调的基本原理第一节 调制的基本原理“调制”就是使信号f(t)控制载波的某一个或某些参数(如振幅、频率、相位等),是这些参数按照信号f(t)的规律变化的过程。

载波可以是正弦波或脉冲序列。

以正弦型信号作载波的调制叫做连续波调制。

调制后的载波就载有调制信号所包含的信息,称为已调波。

对于连续波调制,已调信号可以表示为())(cos )()t (t ot t A ϑωϕ+=它有振幅频率和相位三个参数构成。

改变三个参数中的任何一个都可以携带同样的信息。

因此连续波的调制可分为调幅、调相、和调频。

调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易以电磁波形势辐射的较高范围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。

按照被调制信号参数的不同,调制的方式也不同。

如果被控制的参数是高频振荡的幅度,则称这种调制方式为幅度调制,简称调幅;如果被控制的参数是高频振荡的频率或相位,则称这种调制方式为频率调制或相位调制,简称调频或调相(调频与调相又统称调角)。

振幅调制是一种实用很广的连续波调制方式。

幅度调制的特点是载波的频率始终保持不变,它的振幅却是变化的。

其幅度变化曲线与要传递的低频信号是相似的。

它的振幅变化曲线称之为包络线,代表了要传递的信息。

第二节解调的基本原理解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。

调制过程是一个频谱搬移的过程,它将低频信号的频谱搬移到载频位置。

如果要接收端回复信号,就要从已调信号的频谱中,将位于载频的信号频谱再搬回来。

解调分为相干解调和非相干解调。

相干解调是指为了不失真地恢复信号,要求本地载波和接收信号的载波必须保持同频同相。

非相干解调主要指利用包络检波器电路来解调的。

包络检波电路实际上是一个输出端并接一个电容的整流电路。

二极管的单向导电性和电容器的充放电特性和低通滤波器滤去高频分量,得到与包络线形状相同的音频信号,见图1.2.3 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计班级:姓名:学号:指导教师:成绩:电子与信息工程学院信息与通信工程系摘要振幅调制信号的解调过程称为同步检波。

有载波振幅调制信号的包络直接反应调制信号的变化规律,可以用二极管包络检波的方法进行检波。

而抑制载波的双边带或单边带振幅调制信号的包络不能直接反应调制信号的变化规律,无法用包络检波进行解调,所以要采用同步检波方法。

同步检波器主要适用于对DSB和SSB信号进行解调,也可以用于AM,但是一般AM调制信号都用包络检波来进行检波。

同步检波法是加一个与载波同频同相的恢复载波信号。

外加载波信号电压加入同步检波器的方法有两种。

利用模拟乘法器的相乘原理,将已调信号频谱从载波频率附近搬移到原来位置,并通过低通滤波器提取多需要的调制(基带)信号,滤除无用的高频分量,从而实现双边带信号的解调。

本文详细介绍了根据模拟乘法器MC1496的AM调制系统和同步检波器的详细方案和各种参数。

给出了基于Multisim软件的解调和解调仿真结果。

关键字:同步检波;AM;Multisim;调制目录1 MC1496芯片设计 (2)1.1MC1496内部结构及基本性能 (2)2 信号调制的一般方法 (3)2.1模拟调制 (3)2.2数字调制 (3)2.3脉冲调制 (3)3 振幅调制 (4)3.1基本原理 (4)3.2AM调制与仿真实现 (4)3.3DSB调制与仿真实现 (6)4解调 (7)4.1同步检波器原理框图 (7)4.2同步检波解调电路图 (9)4.3分析解调过程 (9)4.4解调仿真结果 (10)4.4.1 AM解调与仿真实现 (10)4.4.2 DSB解调与仿真实现 (11)5 小结与体会 (12)6附录:总电路图 (12)1 MC1496芯片设计1.1 MC1496内部结构及基本性能在高频电子线路,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正式实现两个模拟量电压或电流相乘的电子器件。

采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。

MC1496是一款完全四通道四象限电压输出模拟乘法器,适用于电压控制放大器、可变滤波器、多通道功率计算以及低频解调器等电路。

非常适用于产生复杂的要求高的波形,尤其适用于高精度CRT显示系统的几何修正,其内部结构及引脚排列如图1.1所示图1.1 MC1496内部结构图MC1496是由互补双极性工艺制作而成,它包含有四个高精度四象限乘法单元。

温度漂移小于0.005%/℃。

0.3μV/Hz的点噪声电压使低失真的Y通道只有0.02%的总谐波失真噪声,四个8MHz 通道的总静止功耗也仅为150mW。

MC1496的工作温度范围为-40℃~+85℃。

MC1496的其它主要特性如下:●四个独立输入通道;●四象限乘法信号;●电压输入电压输出;●乘法运算无需外部元件;●电压输出:W=(X×Y)/2.5V,其中X或Y上的线性度误差仅为0.2%;●具有优良的温度稳定性:0.005%;●模拟输入范围为±2.5V,采用±5V电压供电;●低功耗一般为150mW。

2 信号调制的一般方法调制就是对信号源的信息进行处理,使其变为适合于信道传输的形式的过程。

一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。

基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。

这个信号叫做已调信号,而基带信号叫做调制信号。

调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。

而解调则是将基带信号从载波中提取出来以便预定的接收者(也称为信宿)处理和理解的过程。

调制在通信系统中有十分重要的作用。

通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。

在通信中,我们常常采用的调制方式有以下几种。

2.1模拟调制模拟调制就是用用连续变化的信号去调制一个高频正弦波。

主要有:(a) 幅度调制:调幅AM,双边带调制DSB,单边带调幅SSB,残留边带调制VSB以及独立边带ISB。

(b) 角度调制:调频FM,调相PM。

因为相位的变化率就是频率,所以调相波和调频波是密切相关的。

2.2数字调制用数字信号对正弦或余弦高频振荡进行调制. 主要有:(a) 振幅键控ASK;(b) 频率键控FSK;(c) 相位键控PSK.2.3 脉冲调制用脉冲序列作为载波。

主要有:1.脉冲幅度调制PAM;2.脉宽调制PDM;3.脉位调制PPM;4.脉冲编码调制PCM.3 振幅调制3.1 基本原理在本设计中调制方法采用的是振幅调制。

振幅调制,也可简称为调幅,AM(Amplitude Modulation),通过改变输出信号的振幅,来实现传送信息的目的。

一般在调制端输出的高频信号的幅度变化与原始信号成一定的函数关系,在解调端进行解调并输出原始信号。

实际上的函数关系一般是正比关系。

这种调制方式的最大好处是调制和解调非常简单,只需要一个二极管和一个电容器即可,当然最大的缺点是失真比较大,同时对干扰比较敏感,相对来说是一种比较古老的技术。

不过技术古老并不表示应用不广泛,目前仍然在很多领域应用,如收音机(中波广播)及航空无线电,尤其在航空无线电的领域,飞机的行进速度非常快,战斗机更快,对调频而言,多普勒效应太大了,会影响通讯,而调幅不受多普勒效应的影响,故无法被取代。

同时调幅也有一些改进的技术,如单边带调制(Single Side Band, SSB,又称旁波调制)、残边带调制(Vestigial Side Band, VSB),以及调幅的变种如目前在移动通信广泛使用的多幅度数字调制等。

使受调波的幅度随调制信号而变化的电路。

调幅器输出信号幅度ua与调制信号瞬时值的关系曲线叫作调幅特性。

理想的调幅特性应是直线,否则便会产生失真。

用于大功率广播或通信发射机的调幅器,还要求有足够大的输出功率和较高的效率。

调幅器主要由非线性器件和选择性电路构成。

非线性器件实现频率变换,产生边带和谐波分量;选择性电路用来选出所需的频率分量并滤掉其他成分,如高次谐波等。

常用的非线性器件有晶体二极管、晶体管、场效应晶体管和电子管等。

选择性电路大多用谐振回路或带通滤波器。

按照电平的高低,调幅器可分为高电平调幅和低电平调幅。

大功率调幅发射机多采用高电平调幅器。

这种调幅器输出功率大,效率高。

载波电话机和各种电子仪器多采用低电平调幅器。

它们对输出功率和效率要求不高,可以选用调幅特性较好的电路。

幅度调制系统框图如图3-1所示。

图3-1幅度调制系统原理方框图3.2 AM调制与仿真实现本次设计中采用的基于MC1496的AM调制,电路如图3-3所示。

图3-3基于Multisim的AM调制仿真电路图其中,两路输入端口加载的信号如下:载波输入端加入的信号为:f=500KHZ,Vp-p=200mv。

调制信号输入端加入的信号为:f=1KHZ,Vp-p=200mv。

直流电压为110mv仿真输出波形如图3-4所示:图3-4 AM调制仿真输出波形3.3 DSB调制与仿真实现基于MC1496的DSB调制,调制电路如图3-5图3-5基于Multisim的DSB调制仿真电路图同样载波输入端加入的信号为:f=500KHZ,Vp-p=200mv。

调制信号输入端加入的信号为:f=1KHZ,Vp-p=200mv。

仿真输出波形如图3-6图3-6 DSB调制仿真输出波形4解调4.1同步检波器原理框图这种方法是将外加载波信号电压与接收信号在检波器中相乘,再经过低通滤波器,最后检出原调制信号,如图4-1所示。

图4-1乘积型同步检波器设输入的已调波为载波分量被抑制的DSB 信号u 1为:t t U u ωcos cos 11Ω= (4-1)本地载波电压: )cos(ϕω+=t U u c c c (4-2)上两式中,1ωω=c ,即本地载波的角频率等于输入信号的角频率,它们的相位不一定相同)cos(cos cos 1112ϕωω+Ω=t t U U u C (4-3)低通滤波器滤除21ω附近的频率分量后,得到频率为Ω的低频信号: t U U u C o Ω=cos cos 211ϕ (4-4)由上式可见,低频信号的ϕcos 成正比。

当ϕ=0时,低频信号电压最大,随着相位差变大,输出电压变小。

所以我们不但要求本地载波与输出信号载波的角频率必须相等。

根据公式可知,要实现同步检波需将与高频载波同频的同步信号与已调信号相乘,实现同步解调。

经过低通滤波器滤除21ω附近的频率分量后,得到频率为Ω的低频信号:t U U u C o Ω=cos cos 211ϕ (4-5)同步检波亦采用模拟乘法器MC1496将同步信号与已调信号相乘,其电路图如图3.5所示。

x v 端输入同步信号或载波信号c v ,y v 端输入已调波信号s v ,输出端接有电阻R 11、C 6组成的低通滤波器和1uF 的隔直电容,所以该电路对有载波调幅信号及抑制载波的调幅信号均可实现解调,但要合理的选择低通滤波器的截止频率。

图4-2 同步检波电路4.2同步检波解调电路图图4-2同步检波电路4.3分析解调过程在模拟乘法器MC1496的一个输入端输入振幅调制信号如抑制载波的双边带信号()t t U t U c sm S Ω=cos cos ω,另一输入端输入同步信号(即载波信号)()t U t U c cm c ωcos =,经乘法器相乘,可得输出信号U 0(t )为()()()()()t U U K t U K t U U K t U t U K t U c cm sm E c sm E cm sm E c s E o Ω-+Ω++Ω==ωω2412cos 41cos 21 (条件:mV U U C x 26<=,S y U U =为大信号) (4-6)上式中,第一项是所需要的低频调制信号分量,后两项为高频分量,可用低通滤波器滤掉,从而实现双边带信号的解调。

若输入信号()t U S 为单边带振幅调制信号,则乘法器的输()t U 0为:()()()t U U K t U K t t U U K t U c cm sm E sm E C c cm sm E o Ω++Ω=Ω+=ωωω241cos 41cos 2cos 21(4-7)上式中,第一项是所需要的低频调制信号分量,第二项为高频分量,也可以被低通滤波器滤掉。

如果输入信号()t U S 为有载波振幅调制信号,同步信号为载波信号()t U C ,利用乘法器的相乘原理,同样也能实现解调。

相关文档
最新文档