第四章 (1)根轨迹法(基本概念)
自动控制原理 第四章根轨迹
第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。
根指的是闭环特征根(闭环极点)。
根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。
K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。
3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。
4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。
★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。
有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。
(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。
说明属于I型系统,阶跃作用下的稳态误差为0。
在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。
(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。
由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。
2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。
由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。
自动控制原理第第四章 线性系统的根轨迹法
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
自动控制原理 第四章 根轨迹法
第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
第四章 根轨迹法(1)
第四章 根轨迹法
(1)当 K * = 0时,s1 = 0、s2 = -2, 此时闭环极点就是开环极点。 (2)当0< K * <1时, s1 、 s2 均为负 实数,且位于负实轴的(-2,0) 一 段上。 (3)当K * = 1时,s1 = s2 = -1,两 个负实数闭环极点重合在一起。 (4)当1< K * <∞时, s1, 1 1 k * 2 两个闭环极点变为一对共轭复数极点。 s1 、 s2 的实部不随K * 变化,其位于过 (-1,0)点且平行于虚轴的直线上。 (5)当K * =∞时, s1 = -1+ j∞、 s2 = -1-j∞,此时s1、s2将趋于无限 远处。
第四章 根轨迹法
② 位于s1左边的实数零、极 点: (S1 – P4 ) 、(S1 – Z1 ) 、 向量引起的相角为0°
∴ 判断 s1是否落在根轨迹 上,位于s1左边的零、极点不 考虑。
③ 位于s1右边的实数零、极点: 每个零、极点提供180°相 角,其代数和为奇数,则满足相角条件。
第四章 根轨迹法
a
(0) (1 j1) (1 j1) (4) (1) 5 4 1 3
60 180 2k 1 180 2k 1 a 180 nm 3 300
k 0 k 1 k 2
第四章 根轨迹法
五、法则五 根轨迹分离点和分离角
K G( s) H ( S )
* i 1 n j 1
(s z )
i
m
S (s p j )
-1
m个开环零点 n个开环极点 K *根轨迹增益
∴在s平面上凡是满足上式的任意一个点s1、s2、…、 s∞,都 是闭环特征根,即闭环极点。
第四章 根轨迹法
第04章(1) 根轨迹法
K s1 s2
0 0 -1
0.25 -0.5 -0.5
0.5 -0.5+j0.5 -0.5-j0.5 0.5-
1 -0.5+j0.87 -0.5-j0.87 0.5-
… … …
∞ -0.5+j∞ -0.5-j∞ 0.5-
2010-5-9
第四章
根轨迹法
4
自动控制理论 对于不同的K值,系统有下列三种不同的工作状态: 1) 0≤K<, s1, s1为两相异的实数根(过阻尼状态) 2) K=, s1, s1为两相等实根,s1 = s2 =-0.5,(临界阻尼) 3) <K<∞, s1 ,s2为一对共轭复根(欠阻尼) 如要求系统在阶跃信号的作用下,超调量为49%. 由式(3-26)求得
注意: 注意:检验只有满足 K =
2010-5-9
dK =Байду номын сангаас ds
图4-11 根轨迹的复数分离点
A( s ) 0 的s才是真正的分离点和会合点 B(s)
普通高等教育"十一五" 普通高等教育"十一五"国家级规划教材
自动控制理论
第四章
根轨迹法
2010-5-9
第四章
根轨迹法
1
第一节
根轨迹法的基本概念
根轨迹法的基本概念
根轨迹的定义 根轨迹是闭环系统特征方程的根随着开环系统参数变化(从0变到 根轨迹 ∞时)在s 平面上变化的轨迹. 根轨迹法(W.R.Evans,伊凡思在1948提出 ): 根轨迹法 当开环增益或其它参数从0到∞改变时,其全部数值所对应的 闭环极点(特征根)均可在根轨迹图上简便地确定.根轨迹法是一 种图解法.
K
闭环系统的特征方程: 闭环系统的特征方程:
自动控制原理 第四章.
s1.2 1 1 K1 1 1 2 K
第 4章
根轨迹
根轨迹的基本概念(续)
s1 0 ① K 0 s 2 2
j
2
② K 0.5 s1 s2 1 ③ K 1 s1 , 2 1 j ④ K 2.5 s1 , 2 1 j 2 p2
由于实际控制系统闭环特征方程的系数或为已知
实数,或为根轨迹增益Kg 的函数,所以当Kg 由0→∞
连续变化时,闭环特征根的变化必然也是连续的,所
以根轨迹具有连续性。 系统闭环特征方程的系数仅与系统的参数有关。
对于实际控制系统而言,这些参数都是实数。具有实
系数的闭环特征方程的根为共轭复数的形式,必然对
称于实轴。因而,根轨迹也必然பைடு நூலகம்于实轴对称。
s pi s zj
j 1
n
而 ( s z j ) ( s pi ) ( 2 K 1) ——相角方程
j 1 i 1
m
n
第 4章
根轨迹
根轨迹的基本概念(续)
若s平面上的点是闭环极点,则它与zj 、pi所组成
的相量必定满足上述两方程,而且模值方程与Kg有
第四章 根轨迹法
§4-1 根轨迹的基本概念 §4-2 绘制根轨迹的基本法则 §4-3 广义根轨迹
主要内容
1.根轨迹基本概念和根轨迹方程
2.绘制常规根轨迹的九大法则
3.参量根轨迹与零度根轨迹
第 4章
根轨迹
重点与难点
重 点
1、绘制常规根轨迹的九大法则 2、参量根轨迹与零度根轨迹 3、控制系统根轨迹法分析
§4—2 绘制根轨迹的基本法则
绘制根轨迹的基本法则(续)
控制工程基础第4章 根轨迹法
n 3, m 0, 故三条根轨迹趋向处。
渐进线与实轴交点的坐标为
[S]
a
0
1
3
2
0
1
渐进线与实轴正向的夹角为
a -2 -1 0
a
2k
1180
3
60 , 180
六、根轨迹的起始角与终止角
起始角:起始于开环极点的根轨迹在起点 处的切线与水平线正方向的夹角。
终止角:终止于开环零点的根轨迹在终点 处的切线与水平线正方向的夹角。
s4
2
1
s3 -2 s20 s1
s3 180 , s3 2 180 s4 1, s4 2 2
若s4位于根轨迹上,则必满足
幅角条件,即1 2 180,
N
s4一定在 2,0的中垂线MN上。
利用幅值条件可算出各根轨迹上的 K 值。
例
Gs
K
s0.5s 1
2K
ss 2
K
ss 2
终止于 zb 的根轨迹在终点处
的切线与水平正方向的夹角
j 1
i 1
ib
其它零点到 zb 的向量夹角
七、分离点的坐标
几条根轨迹在[S]平面上相遇后又分开的点, 称为根轨迹的分离点(或会合点)。
分离点坐标的求法:
1 d (G(s)H (s)) 0
ds
2 由根轨迹方程
令:dK 0 解出s ds
n
1 180 p1 z p1 p2
180 116.57 90
206.57
由于对称性
2 206.57
会合点 -3
206.57
p1
[S]
z116.57
2.12
-2 -1 0
第四章根轨迹1
根轨迹示例1
j
j j
j j
0
j
0
0
0
0
0
同学们,头昏了吧?
j
j
j
j j 0
0
0
0
根轨迹示例2
j
jLeabharlann jj0j j 0 0
0
0
0
n=[1 2];d=conv([1 2 0],[1 262]);rlocus(n,d) n=1;d=conv([1 5],[[1 10]);rlocus(n,d)
j
j j
0
j
s(s 2)(s 3) K1 (s 1) 0
K1 ( s 1) 1 G( s) H ( s) 1 s( s 2)( s 3)
• 开环传递函数为:
K1 ( s 1) G( s) H ( s) s( s 2)( s 3)
开环传递函数的三个极点为: 时特征方程式的三个根相同
1
K1 G(s) H ( s) s( s 1)( s 2) p1 0 p2 1 p3 2
K1达到某一数值
时,两条根轨迹汇合在一起,然后随 的继续增大,从负实轴上 K1 分离出来进入右半平面,最后趋向无穷远处 另一条 p3 2 从出发,随 K 的增大一直沿着负实轴趋向于 1 负无穷远处。
确定闭环特征方程式的根轨迹,判断 与虚轴交点
s 3s 2s K1 0
3 2
用劳斯判据
设系统特征方程为:
s3+3s2+2s+K=0 劳 斯 表
s3 1 2 s2 3 k s1 (6-k)/3 s0 K
第一列全大于零, 系统稳定
3s2+K= 3s2 +6+0
根轨迹法的基本概念
K*
s1,2 1
1 K*
令K*(由0到∞ )变动,s1、s2在s平面的移动轨 迹即为根轨迹。
K* 0, s1 0, s2 2 K* 1, s1 1, s2 1 K* 2, s1 1 j, s2 1 j K* 5, s1 1 2 j, s2 1 2 j
特征方程的根 运动模态 性、系统性能)
1
1
1 ,d 4
m
(s zi )
1 G(s)H(s) 0
G(s)H(s) K*
i1 n
m
(s pj )
(s zi )
j 1
K * i1 n
1
(s pj )
j 1
m
n
模值条件: (s zi ) (s pj ) (2k 1)
i1
j1
n
s pj
相角条件: K *
j 1 m
s zi
i 1
相角条件是确定根轨迹的充分必要条件。相角条件满足(2k 1) 称为180º根轨迹。
4-2 绘制根轨迹的基本法则
一、基本法则
1、 根轨迹的起点和终点:
根轨迹起始于开环极点,终止于开环零点;如果开环零点个数少于 开环极点个数,则有(n-m)条根轨迹终止于无穷远处。
起点: K* 0 s pi
K* s p1 s z1
i 1, 2, n
s pn s zm
终点: K* s zi j 1, 2, m
例题:单位反馈系统的开环传递函数为:G(s)H (s) K *(s 1)
s(s 2)(s 3)
试绘制闭环系统的根轨迹
解: 1、开环零点z1=-1,开环极点p1=0,p2=-2,p3=-3, 根轨迹分支数为3条,有两个无穷远的零点。
第4章 根轨迹法
时,由根轨迹方程知根轨迹的终点为
,即系统的开环零点。
但是,当
时,
条根轨迹趋向于开环零点(称为有限零点),还有
条根轨迹将趋于无穷远处(称为无限零点)。
如果出现
的情况,必有
条根轨迹的起点在无穷远处。
规则2 根轨迹的分支数、对称性和连续性根轨迹的分支 数等于 , 根轨迹对称于实轴并且连续变化。
由根轨迹的对称性和连续性,根轨迹只需作出上半部分,对称画出另一部分,且根轨迹连续变化。
规则3 根轨迹的渐近线 当开环极点数大于开环零点数时,有n-m条根轨迹 趋于无穷远处,无穷远处的渐近线与实轴的交点为 , 渐近线与实轴正方向的夹角(倾角)为
例4-1单位负反馈系统的开环传递函数为
规则10 根之积 根据特征方程根和系数的关系,得
第1章 引 论
例:系统的开环传递函数为
开环极点为
渐近线于实轴的交点为
渐近线的倾角为
与虚轴的交点为
第1章 引 论
根轨迹的分会点:
第1章 引 论
第1章 引 论
第1章 引 论
例:系统的开环传递函数为
开环极点为
渐近线于实轴的交点为
4.6 MATLAB绘制系统的根轨迹 对于比较复杂的系统,人工绘制根轨迹十分复杂和困难,MATLAB绘制系统根轨迹是十分方便的。 通常将系统的开环传递函数写成如下形式
分别为分子和分母多项式。
采用MATLAB命令: pzmap(num,den)可以绘制系统的零、极点图; rlocus(num,den)可以绘制系统的根轨迹图; rlocfind(num,den)可以确定系统根轨迹上某些点的增益。
渐近线的倾角为
与虚轴的交点为
线性系统的根轨迹法
法则7. 根轨迹与虚轴的交点
交点和临界根轨迹增益的求法:
解: 方法一
例8.
,试求根轨迹与虚轴的交点。
K*=0 w =0 舍去(根轨迹的起点)
与虚轴的交点:
闭环系统的特征方程为:
s=jw
劳斯表:
01
s2的辅助方程:
02
K* =30
03
当s1行等于0时,特征方程可能出现纯虚根。
04
等效的开环传递函数为:
参数根轨迹簇
二、附加开环零、极点的作用
试验点s1点
例1.设系统的开环传递函数为: 试求实轴上的根轨迹。
解:
零极点分布如下:
p1=0,p2=-3,p3=-4,z1=-1,z2=-2
实轴上根轨迹为:[-1,0]、[-3,-2]和 (- ∞ ,-4]
jw
-2
-1
1
2
-1
-2
s
.
.
.
.
.
.
.
.
三、闭环零极点与开环零极点的关系
反馈通路传函:
前向通路传函:
典型闭环系统结构图
KG*--前向通路根轨迹增益 KH*--反馈通路根轨迹增益
K*--开环系统根轨迹增益
1
闭环传递函数:
2
开环传递函数:
01
04
02
03
闭环系统根轨迹增益,等于开环系统前向通路根轨迹增益。 对于单位反馈系统,闭环系统根轨迹增益等于开环系统根轨迹益。
(5)用(s-s1)去除Q(s),得到余数R2 ;
(6)计算s2 =s1-R1/R2 ;
(7)将s2 作为新的试探点重复步骤(4)~(6)。
例4.试用牛顿余数定理法确定例3的分离点。
第四章根轨迹分析法
j=1
i=1 ≠b
例 设系统开环传递函数零、极点的分布如图4-9所
示,试确定根轨迹离开复数共极点- p1 、- p2的出
射角。
解 按公式(4-28),由作图结果得
øb= +180°(2k+1) + - p1+ z1- - p1+ p2-
jw
- p1+ p3- - p1+ p4
S平面
= +180°(2k+1) +45° -90°-135°-26.6°
根轨迹与虚轴相交,意味着闭环特征方程出现 纯虚根。故可在闭环特征方程中令s=jw,然后令 其实部和虚部分别等于0,从中求得交点的坐标 值及其相应的Kg值。 例 设系统的开环传递函数为
Gk(s)=s(s+1K)g(s+2)
试求根轨迹和虚轴的交点,并计算临界根轨迹增 益Kgp。
解 闭环系统的特征方程为 s(s+1)(s+2)+Kg=0
确定根轨迹上某点对应的K*值
例:开环传函 G(s)H(s)= K ,求根轨迹
(s+1)(s+2)
解 1、确定极点、零点
开环 –p1= -1, –p2= -2
无零点
1、相角条件
∠(s+zi)- ∠(s+pj) = 0-[∠(s+1)+ ∠(s+2)] =±180o(2k+1)
试差法 s= -1.5
∠θ1+ ∠θ2=180 o
故 D’(s)=3s2+6s+2
N’(s)=0
解得 s1=-0.423 s2=-1.577
由于s2不在根轨迹上,因而分离点是s1 。
自动控制原理第四章根轨迹法
第四章 根轨迹法反馈系统的稳定性由系统的闭环极点确定。
研究系统参数变化对闭环系统特性的影响,是分析系统和设计控制器的重要内容。
参数变化的作用,体现在对闭环极点的影响上。
对于高阶系统,用解析方法说明这种影响,很困难,且不易理解。
图解法是一种方便的近似方法。
l 、基本内容和要点 (l )根轨迹的基本概念根轨迹的定义。
以二阶系统为例说明什么是根轨迹,怎样从根轨迹分析闭环零、极点与系统的性能。
(2)绘制根轨迹的基本规则根轨迹的特点和性质。
绘制以系统开环增益K 为变量的根轨迹的规则与方法。
常见的几种典型系统的根轨迹图。
(3)参数根轨迹参数根轨迹的定义。
多参变量根轨迹。
多环系统的根轨迹。
(4)非最小相位系统的根轨迹最小相位和非最小相位系统的定义和特点。
非最小相位系统根轨迹的特点和绘制规则。
(5)含有延迟环节的系统的根轨迹有延迟环节的系统的极轨迹特点及绘制规则。
延迟环节的近似表达式及使用条件。
(6)基于根轨迹分析系统的响应根轨迹的形状,零极点的位置与系统时域响应性能指标间的关系。
几种常见的典型系统的零、极点分布与其暂态响应性能指标。
2、重点(l )最小相位系统的以开环增益K 为变量的根轨迹的特点及其绘制的规则和方法。
(2)系统根轨迹的形状,零、极点的分布与其时域响应性能指标的关系。
3、难点对“根轨迹上所有的点只是可能的闭环极点”的理解以及非最小相位系统中含最高次冥项系数为负的因子时根轨迹的绘制。
4-1 根轨迹法的基本概念1. 根轨迹概念根轨迹法:根据参数变化∞→0,研究系统闭环极点变化轨迹的一种图解方法。
即在参数变化时图解特征方程。
近似作图;重要区域,如与虚轴的交点与实轴的交点等,根轨迹要准确;依据根轨迹图,可以确定合适的系统参数,为设计控制器提供依据。
例图4-1,研究系统的开环增益K 的变化∞→0, 对闭环极点的影响。
开环传递函数)15.0()(+=s s Ks G ,闭环传递函数Ks s K s 222)(2++=Φ,特征方程0222=++K s s ,根轨迹方程1)2(-=+s s k ,∞→=0,2K k 。
自动控制原理第4章-根轨迹
zl
1800
m
( zl
j 1 jl
zj)
n
( zl
j 1
p
j
)
第四章 根轨迹法
4.2.3 绘图示例
G(s)H (s)
K
s(s 1)(s 2)
闭环特征方程 : s3 3s2 2s K 0
按7个基本规则绘制根轨迹图:
首先,系统有三个无穷远
零点,有三个开环极点:
p1=0,p2=-1,p3=-2,将它们 标在复平面上。
第四章 根轨迹法
7、 根轨迹的出射角和入射角
根轨迹从某个开环极点出发时的切线与正实轴的夹角称
为出射角,根轨迹从开环极点pi出发的出射角为:
pi
1800
m
( pi
j 1
zj)
n
( pi
j 1
p
j
)
ji
根轨迹进入某个开环零点的切线与正实轴的夹角称为 入射角,根轨迹进入开环零点Zl的入射角为:
根据规则1)和2),根轨
迹将有3支,分别开始于这
三个开环极点,趋向无穷
远。
第四章 根轨迹法
根据规则3),根轨迹有3根渐近线,它们与实轴的夹角是:
k
(2k
1)1800 3
,
k 0,1,2
0 600 ,1 1800 ,2 3000
所有渐近线交于实轴上 的一点,其坐标为:
0 1 2 1
3
1 K (s z1 )(s z2 )....(s zm ) 0 (s p1 )(s p2 )....(s pn )
m
上式变形: K (s zl )
l 1 n
1 0 ——典型根轨迹方程
(s pi )
自动控制原理课后答案第4章
5
的不同,系统的稳定性和动态性能不一定能同时得到满足。因此,只有当附加开环零点的位 置选配得当,才有可能使系统的稳态性能和动态性能同时得到显著改善。 ② 增加开环极点 增加开环极点后,系统阶次升高,渐近线数量增加,使得渐近线与实轴的夹角变小,从 而导致根轨迹向右弯曲,致使系统不稳定成分增加。同时,实轴上的分离点也向右移动。系 统响应减缓,过渡过程延长,调节时间增加,系统的稳定性降低。当增加的极点在[-1,0]范 围内时,越靠近虚轴的极点,其产生的阶跃响应振荡越剧烈,稳定性越差;而当增加的极点 在(-∞, -1)范围内时,越远离虚轴的极点,对根轨迹的影响越小,从而对系统的动态性能影 响越小。
式中,A(s)为开环传递函数的分母多项式,B(s)为开环传递函数的分子多项式。则分离点或 会合点坐标可用下式确定,即 A( s) B '( s ) A '( s ) B ( s ) 0 3)极值法
dK 0 ds
规则 7:根轨迹的出射角和入射角 根轨迹的出射角是指根轨迹离开开环复数极点处的切线与实轴正方向的夹角,如图 4-2 中的角 p1 ; 而根轨迹的入射角是指根轨迹进入开环复数零点处的切线与实轴正方向的夹角, 如图 4-2 中的角 z1 。
n n
n l
m
s
l 1
n
(1) n pi (1) m K z j
i 1
n
j 1
( 1)
n
s
l 1
l
(1)
nLeabharlann pi 1i
K (系统无开环零点时)
5、根轨迹与系统性能之间的关系 根轨迹可以直观地反映闭环系统特征根在[s]平面上的位置以及变化情况,所以利用根轨 迹可以很容易了解系统的稳定性和动态性能。除此之外,由于根轨迹上的任意一点都有与之对 应的开环增益值,而开环增益又与系统稳态误差有一一对应的关系,因此通过根轨迹也可以 确定出系统的稳态误差,或者根据给定系统的稳态误差要求,来确定闭环极点位置的容许范 围。由此可以看出,根轨迹与系统性能之间有着比较密切的联系。
第四章 根轨迹法
s1 s2 a
。
第四章 根轨迹法
§4-1 根轨迹的基本概念
当 a 2 K1 时,两根成为共轭的复数 根,其实部为
a
,这时根轨迹与实
j
轴垂直并相交于 ( a, j0) 点。
(s+2a)
K1由0向∞变化时的根轨迹,如图4-2 所示。箭头表示K1增大方向。 由图可见: 1) 此二阶系统的根轨迹有两条, K1 0 时分别从开环极点 p1 0 和 p2 2a 出发。
m
| s pi |
i 1
j
1
或
K1
| s pi | | s z j |
j 1 i 1 m
n
(s z
j 1
m
) ( s pi ) 180 (2q 1)
i 1
n
q 0, 1, 2,
在s平面上满足相角条件的点所构成的图形就是闭环系统的根轨迹。 因此,相角条件是决定闭环系统根轨迹的充分必要条件,而幅值条件
D' (s) A' (s) K1B(s) 2(s s1 ) p(s) (s s1 ) 2 p(s) 0
将
A( s ) K1 代入上式,得 B( s)
图4-3 反馈控制系统
G(s) H (s) 1 和 G(s) H (s) 180 (2q 1) q 0, 1, 2,
以上两式是满足特征方程的幅值条件和相角条件,是绘制根轨迹的重 要依据。在s平面的任一点,凡能满足上述幅值条件和相角条件的,就是
系统的特征根,就必定在根轨迹上。
s p1=0 O a
p2=2a
第四章 根轨迹法(1)
an1 p1 p2
n
pn p j , j 1
n
a0 p1 • p2 • • pn p j j 1
闭环系统的特征方程为:F (s) 1 Gk (s) 0 ,即: (1)
设闭环系统的极点为: s1, s2 ,... sn ,则
(2)
系统闭环特征方程为:
F (s) sn an1sn1 ... a0 Kg (sm bm1sm1 ... b0 )
倾角:设根轨迹在无限远处有一点 sk ,则s平面上所有的 开环有限零点和极点到 sk 的相角都相等,即为渐近线的倾
角 。代入根轨迹的相角条件得:
m
n
(s zi ) (s p j ) m n (2k 1)
i 1
j 1
规定:相角逆时针为正,顺时针为负。
渐近线与实轴的交点
[例]系统开环传递函数为:Gk (s)
(2)实轴上相邻开环零点(包括无穷远零点)之间是根轨迹, 则这段根轨迹上必有会合点;
(3) 实轴上根轨迹在一个开环零点与开环极点之间, 则存在两种情况,既有 分离点也有会合点,既无分离点 也无会合点;
[分离点和会合点的求法]:
代数重根法:
m
Go (s) Kg
(s zj )
j 1
n
(s pi )
根轨迹法的优点有哪些:
1、从已知的开环零、极点的位置及某一变化参数来求 取闭环极点的分布,即解决闭环特征式的求根问题。
2、根轨迹图不仅可以直接给出闭环系统时间响应的全部 信息,而且可以指明系统参数应该怎样变化才能满足给定 闭环系统的性能指标要求。
2
4.1根轨迹法的基本概念
一、根轨迹的定义
例4-1 某随动系统如图所示
p3
自动控制原理第4章
z2 ) p2 )
m
sm z j n1
i 1
(s zm )
(s pn )
m
(zj)
j 1
n
( pi )
i 1
自动控制原理
第四章 复域分析法-根轨迹法
如果开环零、极点的数目满足n-m 2,则 闭环特征方程为
snnp isn 1 n( p i)K *m( zj) 0
证明:系统的闭环特征方程
n
m
D(s) (spi)K* (szj)0
i1
j1
根轨迹有分离点,说明闭环特征方程有重
根。因此,
n
m
(s pi ) K* (s zj ) 0
i1
j1
d
ds
n i1
(s
pi )
K*
m j1
(s zj )
0
自动控制原理
第四章 复域分析法-根轨迹法
将上面两式相除,整理得
自动控制原理
第四章 复域分析法-根轨迹法
4.1 根轨迹的基本概念
一、根轨迹的定义
根轨迹:是指系统开环传递函数中某个参数 (如开环增益K)从零变到无穷时,闭环特征 根在s平面上移动所画出的轨迹。
常规根轨迹:当变化的参数为开环增益时 所对应的根轨迹。
广义根轨迹:当变化的参数为开环传递函 数中其它参数时所对应的根轨迹。
自动控制原理
第四章 复域分析法-根轨迹法
证明: 由根轨迹方程,得
m
(s
j 1
n
(s
zj) pi )
1 K*
i1
令K* =0,得
m
j 1 n
(s (s
zj) pi )
1 K*
精品文档-自动控制原理(第二版)(薛安克)-第4章
(2) 当0<k<1时, s1, s2均为(-2, 0)区间内的负实数;
(3) 当k=1时, s1 = s2=-1, 即两闭环极点重合; (4) 当1<k<∞s1时 ,1 j k 1, s2 1 j k 1 , 即 两 闭 环 极点互为共轭;
(5) 当k→∞时, s1, s2将沿着直线σ=-1趋于无穷远处。
为入射角。
轨迹
由于根轨迹的对称性, 对应于同一对极点(或零点)的出
射角(或入射角)互为相反数。因此, 在图4-5中p1 有 p2 ,z1 z2
。 从相角条件, 可以推出如下根轨迹出射 角和入射角的计算公式。
pr 根18轨0迹(2从q复数1)极点pnr arg( pr p j ) m arg( pr z j )
图 4-1 控制系统框图
轨迹
将图4-1所示系统的开环传递函数转化为 G(s) K k s(0.5s 1) s(s 2)
(4.1)
其中, k=2K, 式(4.1)便是绘制根轨迹所用的传递函数的标准形式。
由式(4.1)可得两开环极点分别为p1=0, p2=-2, 并且没 有开环零点。 将这两个开环极点绘于图4-2上, 并用“×”表示。 由式(4.1)可得闭环系统的特征方程为
12 4.5204 ,34 1.2514
因为ω34对应的K小于零,所以舍去。因此,系统根轨迹与虚轴交点 坐标为(0,±j4.5204)。
轨迹 6.
所谓根轨迹的出射角(或入射角), 指的是根轨迹离开开
环复数极点处(或进入开环复数零点处)的切线方向与实轴正方向
的夹角。图4-5中的 p1 , p2 为出射角,z1 ,z2
轨迹 图4-5 根轨迹出射角和入射角
轨迹 4.2.3 MATLAB绘制根轨迹
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
K
* H
(s z j )
H (s)
j 1 h
(s p j )
j 1
K
* H
— 反馈通路的根轨迹增益
f
l
K *
(s zi )
(s z j )
G(s)H (s)
i 1
q
j 1 h
(s pi ) (s p j )
i 1
j 1
K*
K
* G
K
* H
— —开环根轨迹增益
z(i i 1,,f)— 前向通路传递函数的零 点
点处的K值,就是临界稳定的开环增益Kc。 2.稳态性能 开环系统在坐标原点有一个极点,
所以属Ⅰ型系统,因而根轨迹上的K值就是静态
速度误差系数。
如果给定系统的稳态误差要求,则由根轨迹图
确定闭极点位置的允许范围. K
如何分析系统性能?
3.动态性能:当 K>1时,所有闭环极点
均位于实轴上,系统为过阻尼系统,其单位 阶跃响应为单调上升的非周期过程。
另一个问题是,通过解方程求得的闭环 极点,是在系统参数一定的情况下求得的。 但当系统中的参数变化时,如开环增益K变化 时,又得重新解方程求根,因而很不方便。
为了解决以上问题,1948年,伊万斯提 出了控制系统分析设计的根轨迹法。
这种方法是根据反馈控制系统的开环、闭 环极点传递函数之间的关系,根据一定的准 则,直接由开环传递函数的零、极点,求出 闭环极点。从而,比较容易的得到系统的性能.
z j ( j 1,,l) — 反馈通路传递函数的零 点
引言
A.闭环系统的稳定性和动态性能 取决于闭环极点特征方程的根。
B.当待定参数变化时特征根随之变 化,这个根的变化轨迹就形成根轨迹。
C.用来研究根轨迹的变化规律以及 和闭环系统性能间的关系的方法,称为 控制系统根轨迹分析法。
§4.2 根轨迹的概念
要求: 1)掌握根轨迹的概念 2)掌握根轨迹幅值条件和相角条件
开环极点:s1=0 , s2= 2
开环零点: 无
如何绘制根轨迹图?
k
Y
s(s+2)
2)闭环传函:
(s)
s
2
K 2s
K
闭环特征方程: s2+2s+K=0
闭环特征根:
K 0
0.25
1 2 5
s1 0 1 3
2 1
1 j
1 2 j
1 j
s1 1 1 K
j
s2 1 j
三. 幅值和相角条件
由根轨迹方程得:
m
(s zi )
K
i 1 n
1
(s pj )
j 1
幅值条件方程 相角条件方程
m
K
i 1 n
j 1
(s zi ) 1
(s pj )
m
n
(s zi ) (s p j ) (2k 1)
i 1
j 1
两个条件与轨迹上的点有什么关系?
结论:
1)相角条件方程与K无关,幅值方程才 与K相关;
第四章 根轨迹法
根轨迹法是解决由开环零点,得到闭环极点分布 情况的图解法。
根轨迹:是当开环系统中某一个参数(增益K)变 化时,闭环系统特征方程根在平面上变 化的轨迹。
如果一旦获得根轨迹, 则: ①可直接得到闭环极点。 ②得到系统对时间响应的全部信息。 ③可间接得到闭环频率响应的信息。
本章的目的: ①画根轨迹。 ②从根轨迹上分析系统各种信息。
G(s)
KG
(1s
1)(
2 2
s
2
21 2s
1)
sv (T1s 1)(T22s2 2 2s 1)
f
KG* (s zi )
i 1 q
(首1式)
(s pi )
i 1
KG —前向通路增益 (尾1式)
KG* —前向通路根轨迹增益 (首1式)
(尾1式)
K G*=K G
1 T1
22 T2 2
闭环传函:
(s zi )
G(s)H (s) K
i 1 n
(s pj )
G
c
(s)
1
G(s) G(s)H
(s)
j 1
闭环特征方程: G(s)H (s) 1 0
G(s)H (s) 1
根轨迹方程
m
(s zi )
K
i 1 n
1
(s pj )
j 1
根轨迹方程与点有什么关系?
K--根轨迹增益
引言
根轨迹法是一种图解方法,它是经典控 制理论中对系统进行分析和综合的基本方法 之一。
由于根轨迹图直观地描述了系统特征方程的 根(即系统的闭环极点)在S平面上的分布, 因此,用根轨迹法分析自动控制系统十分方 便,特别是对于高阶系统和多回路系统,应 用根轨迹法比用其他方法更为方便。
本章主要介绍根轨迹的概念,应用 MATLAB绘制根轨迹和用根轨迹法分析自动 控制系统的性能.
2)相角条件是决定根轨迹的充要条件, s平面上一点若满足相角条件,即为根轨迹 上的一点。
3)幅值方程用于确定根轨迹上一点的K值;
根轨迹点
幅值方程
四. 根轨迹与系统性能
1.稳定性 如果系统特征方程的根都位于S平面 的左半部,系统是稳定的,否则是不稳定的。若
根轨迹穿越虚轴进入右半S平面,根轨迹与虚轴交
重点: 1)根轨迹的概念 2)闭环系统的特征根的根轨迹与开环 传递函数的关系
什么是根轨迹?
一.根轨迹基本概念
m
(s zi )
G(s)H (s) K
i 1 n
(s pj)
j 1
根轨迹:开环传函某个参数由0 时闭环
特征根在S平面上移动的轨迹。
什么是根轨迹?
例1:
X
1)开环传函:
-
G(s) K s(s 2)
1 2 j
1 j
s2 -2 1
s1
如何绘制根轨迹?
闭环特征根: s1 1 1 K
s2 1 1 K
分析:1K=1 临界阻尼,重根;
20K1,两个负实根 过阻尼状态;
(3)K>1 共轭复根 , 欠阻尼 衰减振荡 , 且K越大 越小 ,振荡越烈;
K与根轨迹有什么关系?
二.根轨迹方程
开环传函:
m
当K=1时,特征方程的两个相等负实 根,系统为临界阻尼系统,单位阶跃响应 为响应速度最快的非周期过程。
当0<K<1时,特征方程为一对共轭复根, 系统为欠阻尼系统,单位阶跃响应为阻尼振 荡过程,振荡幅度或超调量随K 值的增加而 加大,但调节时间不会有显著变化。
五、闭环零、极点与开环零、极点的关系
(s) G(s) 1 G(s)H (s)
4.1 引 言
问题的提出: 闭环控制系统的稳定性和性能指标是由
闭环极点在复平面的上的位置决定的,因此 在系统设计分析中,确定系统闭环极点的位 置尤为重要。
在一般情况下,系统的开环传递函数是容 易求得。如采用分析法、实验法等。因而容 易求得系统的开环极点。
但是系统的闭环极点却难以求取。一般要 解高次代数方程。那么能否通过不解方程来近 似获取系统的闭环极点呢?