机械设计基础第1章-运动简图
机械设计全套课件 ppt课件
凡具备上述(1)、(2)两个特征的实物组合体称为机构。 机器能实现能量的转换或代替人的劳动去做有用的机械功,而 机构则没有这种功能。
仅从结构和运动的观点看,机器与机构并无区别,它们 都是构件的组合,各构件之间具有确定的相对运动。因此,通 常人们把机器与机构统称为机械。
ppt课件
7
机械设计基础
绪论
如图1-1所示的内燃机,
图1-5(a)闭式运动链
机械设计基础
ppt课件
图1-5(a)开式运动链
16
• 将运动链中的一个构件固定,并且它的一个 或几个构件作给定的独立运动时,其余构件 便随之作确定的运动,此时,运动链便成为 机构。
• 机构的组成:
• 机 架:固定不动的构件
• 原动件:输入运动的构件
• 从动件:其余的活动构件
1)运动副:两构件之间直接接触并能产生一定的相对
运动的连接称为运动副。
运动副元素:两构件上直接参与接触而构成运动副的部分— —点、线或面。
2) 运动副的分类
平面
运 运动副 动 副
空间 运动副
机械设计基础
高副:点、线接触 低副:面接触
球面副 螺旋副
ppt课件
运动副 转动副
13
图1-2 转动副
图1-3 移动副
是由汽缸体1、活塞2、连杆3、曲轴4、 小齿轮5、大齿轮6、凸轮7、推杆8等系列 构件组成,其各构件之间的运动是确定的。
0.1.2 构件与零件
机构是由具有确定运动的单元体组成的,这 些运动单元体称为构件。
组成构件的制造单元体称为零件。 零件则是指机器中不可拆的一个最基本的 制造单元体。构件可以由一个或多个零件组成。
ppt课件
20
机械设计基础
机械设计基础(黄华梁)第1章 机械系统的运动简图设计
第1章机械系统的运动简图设计一、基本内容及要求本章学习的主要内容是:(1)平面运动副及其分类;(2)平面机构运动简图的绘制方法;(3)平面机构自由度的计算。
本章的学习要求:1. 掌握各种平面运动副的一般表示方法。
能较熟练看懂教材中的平面机构运动简图。
通过实验初步掌握将实际机构绘制成机构运动简图的技能。
2. 能够识别平面机构运动简图中的复合铰链、局部自由度和最常见的虚约束。
会运用公式计算平面机构的自由度并判断其运动是否确定。
看懂和绘制平面机构运动简图是本章的重点。
复合铰链、局部自由度和虚约束的判断是个难点。
只要求掌握教材中列举的几种实例,不宜在此花费过多时间。
二、自学指导1. 为了反映机构的真实运动,绘制机构运动简图时,代表回转副的小圆,其圆心必须与相对回转中心重合;代表移动副的滑块,其导路方向必须与相对移动方向一致。
学生应当学会分析由这类构件构成的复杂图形。
例如图1.1所示压缩机机构在铰链C处各构件间的关系如下:构件2—3、3—4间组成回转副,构件3—8、4—5间组成移动副。
2. 对复合较链,应注意:(1)复合铰链是指两个以上回转副中心重合为一,而不应仅仅根据构件汇交数来判断。
例如图1.1铰链E处虽有5、6、7、8四个构件汇交,但它构成两个移动副和一个回转副,故不存在复合铰链。
(2)图1.2所示周转轮系机构中,1、2、3是活动构件,4是机架,构件1、3和4在O点形成复合铰链。
由于齿轮、凸轮等构件习惯于用外形来表示,简图上看不出构件汇交,故这种复合铰链易被忽略。
图1.13. 局部自由度在平面机构中主要出现在有滚子的场合。
在计算自由度时,为了防止错算构件数和运动副数,建议将图1.3,a中的滚子及其安装件固联为一整体,如图1.3,b所示。
图1.2 图1.34. 虚约束比较复杂,不要求深入研究,只要求理解和熟悉以下几个实例:(1)由两构件组成多个导路平行的移动副而产生的虚约束;(2)轮系中的对称部分产生的虚约束;(3)在平行四边形机构中加入一个与某边平行且相等的构件造成轨迹重迭而产生的虚约束(其他类型的轨迹重迭往往需要复杂的数学证明,可不深究);(4)“两构件间组成多个轴线重合的回转副”,这类虚约束通常出现在轮系的侧视图中,在运动平面内绘制的机构运动简图不会出现这类虚约束。
机械设计基础第1章
K个构件具有K-1个转动副.
• 2.局部自由度
与输出构件运动无关的自由度称 为局部自由度。
• 3.虚约束
• 对机构运动不起限制作用的重复约 束称为虚约束。
•
虚约束虽然对运动不起作用,
但有增加构件刚性、使构件受力均
衡等作用。
•
例题4 例题5
局部自由度
2
2
2
2
1
1 1
Hale Waihona Puke 11(a) 1
2
2
1
2
2
运动副表示
2
1 (b) 1
2 1
2
a)
b) 构件表示
c)
2 构件分类: 1) 固定构件(机架):用来支承运动构件的构件。 相对地面不动。 2)原动件(主动件):运动规律已知的活动构件。如: 原动机,又称输入构件。 3)从动件:机构中随着原动件的运动而运动的其余活 动构件。其中输出预期运动规律的从动件称输出构件。
第1章 平面机构的自由度和速度分析
本章要解决问题 构件组合具有确定相对运动的条件是什么? 怎样绘制机构运动简图。 何谓速度瞬心?速度瞬心有哪些用途?
基本要求 自由度、运动副、瞬心、复铰、局部自由度、虚约束; 能正确计算平面机构的自由度; 能绘制简单机械的机构运动简图;能正确判定瞬心。
重点 机构自由度的计算,机构运动简图绘制。 所有构件都在相互平行的平面内运动的机构称为平面机
• 瞬心数目 一个机构若有N个构件,则瞬心总数为
•
k=N(N-1)/2
瞬心位置 两构件相互接触 分为4种情况
• 三心定理 作平面运动的三构件的三瞬心必位于同一
《机械设计基础》课件 第1章 平面机构的自由度和速度分析
13
§1-2 平面机构运动简图
机构示意图 —— 不按比例绘制
三、机构运动简图的作用
是机构分析和设计的工具
四、机构中构件的分类
分为三类:
1)固定构件(机架):用来支承活动构件的构件。在研究机构
中活动构件的运动时,常以固定构件作为参考坐标系;
2)原动件(主动件):运动规律已知(外界输入)的构件;
61
3. 直动从动件凸轮机构
求构件2的速度?
62
课后作业:
5、7、9、11、13、15
63
1
1
1
2)移动副
17
§1-2 平面机构运动简图
3)高副:应画出接触处的曲线轮廓
18
§1-2 平面机构运动简图
六、机构运动简图中构件的表示方法
轴、杆
机架
永久连接
固定连接,如轴和齿轮
19
§1-2 平面机构运动简图
参与组成两转动副的构件
一个转动副+一个移动副的构件
参与组成三个转动副的构件
20
§1-2 平面机构运动简图
4
3
2
2
1
4
32
§1-3 平面机构的自由度★
平面机构自由度:
所有活动构件相对于机架所能具有的独立运动数目之和。
作用:
讨论机构具有确定运动的条件。
C
C
D
B
A
B
D
A
E
F
33
§1-3 平面机构的自由度★
一、平面机构自由度计算公式
1. 每个低副引入两个约束,使构件失去两个自由度
34
2. 每个高副引入一个约束,使构件失去一个自由度
石油大学 机械设计基础 第1章 机构结构分析
§1-5 计算自由度时的注意事项
(1)复合铰链
F 3n 2P l P h
3 5 2 6 1 0
3
复合铰链问题分析:
F 3n 2P l P h
3 5 2 7 1 0
1
(2)局部自由度
[1] 问题描述
尖顶推杆凸轮机构
F 3n 2P l P h
二、运动副约束
constraint
运动副自由度:确定组成运动副中的一个构件 相对另一个构件的位置所需的独立参变量的数目.
1、低副
转动副、
移动副
低副---2 个约束 低副个数: Pl 所有低副约束总数:2 Pl
2、高副
凸轮副
齿轮副
平面高副 ---1 个约束
高副个数:Ph
所有高副约束总数: Ph
三、机构自由度
1原动件
机架 平面铰链四杆机构
原动件
2 3
从动件
平面机构/空间机构
1
机架
4
空间铰链四杆机构
§1-2 机构运动简图
一、机构运动简图 kinematic scheme
简单线条与符号按比例表示各构件相对运动关系。
机构示意图--不严格按比例绘制
(1)构件表示
(2)运动副表示
(3)常用机构表示
(3)常用机构表示
运动副--两构件直接接触而构成的可动连接。 1、平面运动副 2、空间运动副
planar pair spatial pair
1、平面运动副 planar pair
按接触形式分
点、线接触 高副: 转动副 低副: 面接触 移动副
2、空间运动副 spatial pair 点高副 球面副 螺旋副 圆柱副 等
机械设计基础第1章运动简图ppt课件
机械设计基础第1章运动简图ppt课件•运动简图概述•机构运动简图绘制方法•平面连杆机构运动简图分析•凸轮机构运动简图分析目•齿轮机构运动简图分析•轮系运动简图分析录运动简图概述01运动简图定义与作用定义运动简图是用简单的线条和符号来表示机构运动情况的图形。
作用能够清晰地表达机构的组成、运动传递关系和运动特性,是机械设计中的重要工具。
在保证能够准确表达机构运动情况的前提下,尽量简化图形,突出重点。
简化原则图形应清晰易懂,符号、线条和标注应符合规范。
清晰原则应完整地表达机构的组成、运动传递关系和运动特性,不遗漏任何重要信息。
完整性原则运动简图绘制原则机构运动分析机构设计优化机构故障诊断机构创新设计运动简图在机械设计中的应用通过运动简图可以直观地了解机构的运动情况,包括速度、加速度、位移等运动参数的变化规律。
通过对机构运动简图的观察和分析,可以发现机构中存在的故障和隐患,为故障诊断和维修提供依据。
根据运动简图的分析结果,可以对机构进行优化设计,提高机构的性能和使用寿命。
通过对不同机构运动简图的比较和分析,可以启发设计人员的创新思维,探索新的机构设计方案。
机构运动简图绘制方02法高副两构件通过点或线接触而构成的运动副。
高副能同时承受两个方向的力,具有较高的承载能力和较小的摩擦损失,但制造和维修较为困难。
机构组成机构是由刚性构件通过运动副连接而成的系统。
构件是机构中的运动单元,可以是单一的整体,也可以是几个零件组成的刚体。
运动副类型运动副是两构件直接接触并能产生相对运动的活动联接。
根据接触形式的不同,运动副可分为低副和高副两大类。
低副两构件通过面接触而构成的运动副。
根据两构件的相对运动形式,低副可分为转动副和移动副两种。
机构组成及运动副类型机构运动简图符号表示法构件的表示在机构运动简图中,构件用直线或折线表示,长度与实际构件的大小无关,只表示构件间的相对位置关系。
运动副的表示转动副和移动副分别用特定的符号表示。
第1章 平面机构运动简图及其自由度1
C A
F =3n-2pl-ph = 3 3-2 4- 0 = 1
F =3n-2pl-ph = 3 4-2 5- 1 = 1
机构自由度举例2:
偏心轮传动机构
F =3n-2pl-ph = 3 5-2 7- 0
=1
机构自由度举例3:
牛头刨床机构
F =3n-2pl-ph = 3 6-2 8- 1
③选择恰当的投影面,一般选择机构多数构件的运动平面作为投影面;
④选择合适的比例尺;
l
真实长度(mm) 图上所画长度(mm)
⑤选择合适的位置,定出各运动副间的相对位置,并画出各运动副和构
件;
⑥标出运动副代号、构件编号、原动件运动方向和机架。
实例
实例1
颚 式 破 碎 机
颚式破碎机由六个构件组成。根据机构的工作原理,构件6是 机架,原动件为曲柄1,它分别与机架6和构件2组成转动副,其回 转中心分别为A点和B点。构件2是一个三副构件,它还分别与构件 3和5组成转动副。构件5与机架6、构件3与动颚板4、动颚板4与机 架6也分别组成转动副,它们的回转中心分别为C、F、G、D和E点。 在选定长度比例尺和投影面后,定出各转动副的回转中心点A、B、 C、D、E、F、G的位置,并用转动副符号表示,用直线把各转动副 连接起来,在机架上加上阴影线,即得机构运动简图。
– 通用零件、专用零件
构件可以是单一的整体即一个零件,也可 以是由几个零件(注意:这些零件间没有 相对运动)组成的刚性结构。
注 :当可以不考虑构件自身变形时,则 称为刚性构件。本书在不作特殊说明时所提 及的构件,均指刚性构件。
1 原动件
2 从动件 3
机架 4
机器的组成
(从运动观点看)由构件组成 (从制造观点看)由零件组成
机械设计基础课件01平面机构及自由度
一个作平面运动的自由构件具有三个独立运动数。如图 所示,在Oxy坐标系中,构件S可随其上任一点A沿x轴、y轴 方向移动和绕A点转动。即一个作平面运动的自由构件具有 三:在机构中由两构件直接接触形成的一种可动联接。 运动副对构件产生约束,约束的多少和特点取决于运动副 型式。 运动副分类: • 按照接触的特性,分为低副和高副。面接触的运动副称
(4)对称结构:在输入件与输出件之间用多组完全相同的运动链 来传递运动时,只有一组起独立传递运动的作用,则其余各组引 入的约束为虚约束。如图1-16所示轮系中有2个行星轮,计算自由 度时只需考虑一个。
虚约束虽不影响机构的运动,但却可以增加构件的刚性,改善 其受力状况,因而在结构设计中被广泛使用。必须指出,只有在 特定的几何条件下才能构成虚约束,如果加工误差太大,满足不 了这些特定的几何条件,虚约束就会成为实际约束,从而使机构 失去运动的可能性。
1.3.1 平面机构的自由度
机构的自由度: 机构中各构件相对于机架所能有的独立运动的数目 称为机构的自由度。
一个作平面运动的自由构件具有三个自由度。因此,平面机构 中的每个活动构件,在未用运动副联结之前,都有三个自由度。 • 每个低副引入两个约束,使构件失去两个自由度; • 每个高副引入一个约束,使构件失去一个自由度。
移动副:是使构件的一个相对移动和相对转动受到约束, 而只有一个方向独立相对移动自由度的运动副。也称为棱 柱副。如汽缸与活塞、滑块与导轨等,如右图所示。
2 高副(平面高副)
平面高副:构件间沿公法线方向的移动受到约束,但可以 沿接触点切线的方向独立移动,还可以同时绕点独立转动, 是具有一个约束而相对自由度等于2的平面运动副。如齿 轮副、凸轮副等,如图所示。
机械设计基础第一章
机械设计基础 —— 平面连杆机构
2-1 平面机构的运动简图和自由度
一、构件 二、运动副 三、机构 四、平面机构的运动简图 五、平面机构的自由度
精品课件
机械设计基础 —— 平面连杆机构
一、构件
构件:独立影响机构功能并能独立运 动的单元体 (实物、刚体、运动的整体)
机架、原动构件、从动构件 零件:单独加工的制造单元体
(运动副)
精品课件
与动力 源组合
机器
机械设计基础 —— 平面连杆机构
二、运动副
❖ 运动副: 两构件直接接触而形成的可动联接 ❖ 运动副元素:构成运动副时直接接触的点、线、面部分 ❖ 接触形式: 点、线、面
精品课件
y
o
x
机械设计基础 —— 平面连杆机构
运动副分类
❖ 按接触形式分类 ❖ 按相对运动分类
闭链
开链
精品课件
原动件 1
2 从动件 3
机构
机架 4
机械设计基础 —— 平面连杆机构
四、平面机构的运动简图
1 概述 2 构件的表示方法 3 运动副的表示方法 4 运动简图的绘制方法 5 例题
精品课件
机械设计基础 —— 平面连杆机构
1 概述
❖ 机构各部分的运动,取决于: 原动件的运动规律、各运动副的类型、机构的运动尺寸( 确定各运动副相对位置的尺寸)
❖ 机构运动简图: (表示机构运动特征的一种工程用图)
用简单线条表示构件 规定符号代表运动副 按比例定出运动副的相对位置 与原机械具有完全相同的运动特性 ❖ 比较: 机构示意图:没严格按照比例绘制的机构运动简图 ❖ 用途:分析现有机械,构思设计新机械
精品课件
机械设计基础 —— 平面连杆机构
0 第1章(1-4)平面机构运动简图及自由度
两构件以点、线的形式接触而组成的运动副
常见的平面运动副:
转
移
动
动
副
副
平面机构的组成
高
高
副
副
常见的空间运动副:
转
柱
动
面
副
高
副
圆
线
柱
高
副
副
平面机构的组成
常见的空间运动副:
球
球
销
副
副
点
螺
高
旋
副
副
平面机构的组成
平面机构的组成
案例1-1分析
自行车机构中由人力直接驱动的构件是脚 踏,而它与大链轮是固连在一起的同一构 件,故大链轮是原动件;在分析自行车的 运动时,应该以车架为静参考系,故车架 是固定件;除大链轮和车架之外的其余构 件都是从动件。
卓越工程师教育培养机械类创新系列规划教材
机械设计基础
(PPT课件)
ppt包含大量高质量的动画如下
第1章 平面机构的运动简图和自由度
开门时,门把手和锁芯相对于门是转动,弹子相对于锁 芯是平行移动;撑开雨伞时,伞骨轴套相对于伞柄的运动为 平行移动,伞骨各节之间是转动。机构中各构件如何连接才 能实现上述的移动或转动呢?只要把构件连接到一起就能得 到具有确定相对运动的机构吗?如何方便的研究机构中各构 件的相对运动关系呢?
= 3×5 -2×7 – 0 = 1
复合铰链
惯性筛机构
计算中注意观察是否有复合铰链,以免漏算转动副数目, 出现计算错误。
复合铰链
案例1-3分析 活动毛巾杆中的立杆为连接件,它将4个横 杆和机架连接在一起,所以共有5个构件参 与形成复合铰链。图中可以数出共有4个转 动副,因而4个横杆均可独自转动。
机械基础 教学最好的PPT 第一章平面机构运动简图及其自由度
常用机构运动简图符号(续)
内啮 合圆 柱齿 轮传 动
棘 轮 机 构
机械设计基础
第一章
2. 机构运动简图的绘制 步骤: ⑴ 分析机械的动作原理、组成情况和运动情况,确定 原动件、机架、执行部分和传动部分。 ⑵ 沿着运动传递路线,逐一分析每两个构件间相对运 动的性质,确定运动副的类型和数目。 ⑶ 选择与机械多数构件的运动平面平行的平面,作为 机构运动简图的视图平面。 ⑷ 选择适当的机构运动瞬时位置和比例尺 l(mmm), 定出各运动副的相对位置,并用各运动副的代表符号、常用 机构的运动简图符号和简单线条,绘制机构运动简图。 ⑸ 从原动件开始,按运动传递顺序标出各构件的编号 和运动副代号。在原动件上标出箭头以表示其运动的方向。
1. 局部自由度 2. 复合铰链 3. 虚约束 计算实例
机械设计基础
第一章
一、运动链的自由度计算 运动链的自由度 —确定运动链中各构件相对于其中某一 构件的位置所需的独立参变量的数目。 考察由N个构件组成的运动链,活动构件数 n=N-1。 空间运动
构件 I级副 总自由度 约束数 p1 6n II级副约 III级副约 束数 束数 2p2 3p3 IV级副 V级副 约束数 约束数 4p4 5p5
机械设计基础
第一章
平面机构运动简图绘制举例
3 2 1 4
偏心泵
机械设计基础
第一章
第三节 平面机构的自由度
机构的自由度:机构具有确定运动时所给定的独立运动参数的 数目。 一、运动链自由度计算公式
F 3 n 2 P P L H
n为活动构件个数;
PL 为低副个数;
PH 为高副个数。
二、运动链成为机构的条件 三、计算平面机构的自由度应注意的事项
01机械设计基础-平面机构的运动简图及自由度
三、 计算平面机构自由度的注意事项
1.复合铰链 两个以上构件组成两个或更多个共 轴线的转动副,即为复合铰链,如图112a),为三个构件在A处构成复合铰 链。由其侧视图b)可知,此三构件共 组成两个共轴线转动副。当由K个构件 组成复合铰链时,则应当组成(K-1) 个共轴线转动副。
c
图1-12 复合铰链
1、搞清机构的结构、动作原理和运动情况 。 2、沿着运动传递路线,逐一分析每两个构件之间 相对运动的性质,确定运动副的类型和数目。 3、恰当选择运动简图的视图平面,通常选择机构 中多数构件的运动平面为视图平面。 4、选择恰当的作图比例尺。 5、确定各运动副的相对位置,用各运动副的代 表 符号、常用机构运动简图符号和简单线条 绘制机构运动简图。 6、在原动件上标出箭头以表示其运动方向。
c
图1-1 移动副
c
图1-2 转动副
c
2.高副
两构件通过点或线接触构成的运动副称 为高副。 如图1-3,凸轮1与尖顶推杆2间构成了高
副;
又如图1-4,两齿轮轮齿啮合处构成的高 副。
c
图1-3 凸轮高副
c
图1-4 齿轮高副
c
§1-2 平面机构运动简图
实际构件的外形和结构往往很复杂,在 研究机构运动时,为了突出与运动有关的因素, 将那些无关的因素删减掉、注意保留与运动有 关的外形,用规定的符号来代表构件和运动副, 并按一定的比例表示各种运动副的相对位置。 这种表示机构各构件之间相对运动的简化图形, 称为机构运动简图。部分常用机构运动简图符 号见表1-1。
c
该机构的自由度数F:
F=3n-2PL-PH
c
(1-1)
式(1-1)就是平面机构自由度的 计算公式。由公式可知,机构自由度F 取决于活动构件的数目以及运动副的 性质和数目。 机构的自由度必须大于零,机构才 能够运动,否则成为桁架。
机械设计基础项目一任务二、内燃机机构运动简图的绘制及其结构分析
齿轮6′ 槽凸轮6 杆件3
滑块7 杆件4 压杆8
滚子5
杆件2
移动副
1′—— 6′ 平面高副 5 —— 6
偏心轮1 齿轮1′ 机座9
3.选择适当的视图平面及原动件的静态位置
选择原则
1)清楚表达机构的主体部分;
滑块7 齿轮6′ 槽凸轮6 杆件3 滚子5 杆件2
2)尽可能反映机构的全面运动;
3)可以选择其他视图平面
▲以及怎样的结构才能保证具有确定的相对运动?
这对于设计新的机构显得尤其重要。
2.绘制机构运动简图
目的是为运动分析和动力分析作准备。
3.按结构特点对机构进行分类 不同的机构都有各自的特点,把各种机构按 结构加以分类,其目的是按其分类建立运动分析
和动力分析的一般方法。
4.研究机构的组成原理 目的是搞清楚按何种规律组成的机构能满足 运动确定性的要求。
高副产生的约束数: 1 Ph
计算公式:
例三: 计算平面运动链自由度
2 3
4 1
5
n = 4 PH = 1
P L= 5
F = 3 × 4 – 2× 5 – 1 = 1
知识点5 机构机构具有确定运动的条件
机构自由度F≤0
1
2
机构自由度F > 0
运动链成为机构的条件
3
1
机构自由度F≤0
机构的自由度数目和机构原动件的数目与 机构的运动有着密切的关系: 若机构自由度F≤0,则机构不能运动(桁架)。
B 1 2
D
4
5 6
F C
E
3 8
7
A
可以证明:F点的轨迹为一直线。
圆盘锯机构
2
局部自由度
例五:
《机械设计基础》第1章 机构运动简图及自由度
F = 3× 4 − 2× 5 − 0 = 2
F = 3× 5 − 2× 7 − 0 = 1
关于虚约束的几点说明 机构中的虚约束都是在一定的几何条件下出现的, 机构中的虚约束都是在一定的几何条件下出现的, 如果这些几何条件不满足, 如果这些几何条件不满足,则虚约束将变成有效约 而使机构不能运动。 束,而使机构不能运动。 采用虚约束是为了:改善构件的受力情况;传递较 采用虚约束是为了:改善构件的受力情况; 大功率;或满足某种特殊需要。 大功率;或满足某种特殊需要。 在设计机械时, 在设计机械时,若为了某种需要而必须使用虚约束 则必须严格保证设计、加工、装配的精度, 时,则必须严格保证设计、加工、装配的精度,以 满足虚约束所需要的几何条件。 满足虚约束所需要的几何条件。
4.运动副符号及构件的表示(国标GB4460-84) 4.运动副符号及构件的表示(国标 运动副符号及构件的表示 -
转动副
移动副
高副(齿 高副( 轮副、 轮副、凸轮 副)
2
杆、轴类构件 机架 同一构件
两副构件
三副构件
四、机构中构件的分类及组成
构件
固定构件 机架( 机架(相对不 动的构件) 动的构件)
步骤: 步骤: 1.运转机械,搞清楚运动副的性质、数目和构件 运转机械,搞清楚运动副的性质、 运转机械 数目; 数目; 2.测量各运动副之间的尺寸,选投影面(运动平 测量各运动副之间的尺寸,选投影面( 测量各运动副之间的尺寸 ),绘制示意图 绘制示意图。 面),绘制示意图。 3.按比例绘制运动简图。 按比例绘制运动简图。 按比例绘制运动简图 简图比例尺: 实际尺寸m 图上长度mm 简图比例尺:µ = 实际尺寸 / 图上长度 4.检验机构是否满足运动确定的条件。 检验机构是否满足运动确定的条件。 检验机构是否满足运动确定的条件 注意:画构件时应撇开构件的实际外形, 注意:画构件时应撇开构件的实际外形,而只考 虑运动副的性质。 虑运动副的性质
机械设计基础陈云飞第一章_平面机构的自由度讲解
解:
(a) F =3×7-2×9-2=1 (b) F =3×4-2×4-2=2
例、计算大筛机构的自由度 解: F=3n-2PL-PH =3×7-2×9- 1 =2
例、计算直线机构的自由度
解: F=3n-2PL-PH =3×7-2×10- 0 =1
本章小结
1、自由度的概念、运动副的分类 2、平面机构的运动简图的概念及画法 3、机构自由度的计算公式 4、计算自由度注意事项
4
1原动件
构安装在运动的机械上时则是运动的。 原动件——按给定已知运动规律
机架 平面铰链四杆机构
独立运动的构件;常以转向箭头表示。 原动件
从动件 ——机构中其余活动构件。
2
其运动规律决定于原动件的运动规律 和机构的结构及构件的尺寸。
3 从动件 1
机构常分为平面机构和空间机构 机架
4
两类,其中平面机构应用最为广泛。
计算平面机构的自由度应注意的事项(2/3)
2. 复合铰链
两个以上的构件在同一处以转动副联接,则构成复合铰链。 m 个构件在同一处构成转动副(在机构运动简图上显现为1个转 动副),但该处的实际转动副数目为(m-1)个。
计算平面机构的自由度应注意的事项(3/3)
3. 虚约束 对机构运动实际上不起限 制作用的约束称为虚约束。 (a) AB、CD、EF平行且相等 (b)平行导路多处移动副 (c)同轴多处转动副 (d) AB=BC=BD且A在D、C 轨 迹交点 (e)两构件上两点始终等距 (f)轨迹重合 (g)全同的多个行星轮 (h)等径凸轮的两处高副 (i) 等宽凸轮的两处高副
计 算
计算如图所示双曲线画规机构和牛头刨床机构的
实
自由度。
机械设计基础重点知识结构图
第1章 平面机构的自由度和速度分析平面机构的自由度和速度分析组成机构自由度的计算构件运动副机构运动简图运动副、构件、常用机构表达方法定义平面机构自由度的计算:机构具有确定运动的条件:自由度等于原动件数固定构件(机架)低副从动件原动件(主动件)高副移动副回转副机构运动简图绘制hl P P n F--=23计算自由度应注意的事项局部自由度:滚子绕其中心的转动正确计算运动副的数量 (复合铰链等)虚约束存在的几种情况平面机构的速度分析:速度瞬心法瞬心机构瞬心数瞬心位置的确定机构的速度分析相对瞬心绝对瞬心2/)1(-=N N K 两构件不直接连接:三心定理两构件直接以运动副连接求构件的角速度和速度求两构件的角速度之比第2章 平面连杆机构曲柄摇杆机构曲柄滑块机构 演化机构杆机平面四杆机构的 基本型式按行程速比系数设计:利用机构在极位时几何关系已知连杆三个位置,求圆心法应用:夹紧装置中的防松构连面平基本型式及其演化双曲柄机构 双摇杆机构 导杆机构 摇块机构和定块机构 双滑块机构 偏心轮机构平面四杆机构 的主要特性急回特性急回运动行程速比速度变化系数 θθ-+==18018012v v K应用: 当θ>0时,K >1,机构有急回特性 压力角 压力角α:从动件受力方向和速度方向所夹锐角 传动角γ:压力角的余角传动角α越小,γ越大,机构的传力性能越好40min ≤γ,出现在曲柄与机架共线两位置之一和 死点曲柄为从动件时,曲柄与连杆共线位置, 0=γ 消除方法:利用飞轮或机构自身的惯性力 有整转副条件 ≤+max min l l 另两杆长度之和;整转副由最短杆与其邻边组成有整转副时, 曲柄摇杆机构—最短杆邻边为机架 双曲柄机构—最短杆为机架 双摇杆机构—最短杆对边为机架存在的不同机构四杆机构设计 作图法:解析法:利用几何关系列解析式求解实验法凸轮机构的分类凸轮机构及其设计推杆的运动形式基本概念:基圆、基圆半径、推程、升程、推程运动角、回程、回程运动角、休止、远休止角、近休止角、压力角。
机械设计基础朱龙英平面机构运动简图
6
第六页,编辑于星期五:十一点 三十五分。
2.移动副
两构件只能沿某一方向线作相对移动的运动副称为移动副。
2022/1/8
限制两个自由度:(一个移动,一个转动)
保留一个自由度(移动 )
7
第七页,编辑于星期五:十一点 三十五分。
(二)高副 两构件通过点或线接触组成的运动副称为高副。
2022/1/8
限制一个自由度:(一个移动) 保留两个自由度(一个移动,一个转动)
自由度,
3个
作空间运动的自由构件有 6个自由度。
2022/1/8
当这些构件之间以 一定的方式联接起来成 为机构时,各个构件不 再是自由构件。两相互 接触的构件间只能作一 定的相对运动,自由度 减少。这种对构件独立 运动所施加的限制称 为约束。
5
第五页,编辑于星期五:十一点 三十五分。
三、运动副及其分类
找出相对转动中心。
1.偏心轮机构
绘制转动副时,转动副的位置是关键:代表转动副小圆的圆心必须与回转中
心重合;两个转动副中心连线的长度一定要精确。
2022/1/8
17
第十七页,编辑于星期五:十一点 三十五分。
2.圆弧形滑块
绘制移动副时,导路的方向和位置是关键。必须注意:代表移
动副的滑块,其导路的方向必须与相对移动的方向一致;转动副到移 动副导路间的距离要精确。
6)校核计算;
7)绘制零件的工作图,并编写计算说明书。
2022/1/8
1
第一页,编辑于星期五:十一点 三十五分。
第一章 平面机构的运动简图及自由度
1.平面机构的组成
2.平面机构自由度及其计算 3.平面机构运动简图及绘制画法 4.平面机构具有确定相对运动的条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/11
4
§1-2 机械系统的运动简图设计
实际构件的外形和结构往往很复杂, 在研究机械运动时,为简化问题,有必要 撇开那些与运动无关的构件外形和运动副 的具体构造,仅用简单线条和规定符号来 表示构件和运动副,并按比例定出各运动 副的位置。这种说明机构各构件间相对运 动关系的简化图形,称为机构运动简图。
任何一个机构中,必有一个构件被相对地看作固定构件。 例如气缸体虽然跟随汽车运动,但在研究发动机的运动时, 仍把气缸体当作固定构件。
机构中必须有一个或几个原动件,其余的都是从动件。
2021/3/11
6
运动副表达
其中:a、b、c表示两个构件组成转动副。圆圈表示转 动副,其圆心代表相对转动轴线。代表机架的构件上加 阴影线。
第1章 机械系统的 运动简图设计
运动副
平面机构运动简图
平面机构具有确定运动的条件
平面机构自由度的计算
2021/3/11
1
§1-1 运动副
两构件直接接触并能产生一定相对运动的联接称为运动 副。例如轴与轴承的联接、活塞与气缸的联接、传动齿 轮的两个轮齿间的联接等都构成运动副。
根据两构件是点、线接触还是面接触,平面机构中 的运动副可分为:平面低副和平面高副。
2021/3/11
2021/3/11
17
平面机构具有确定运动的条件
例1:铰链三杆组合体
• 无法运动
2021/3/11
18
平面机构具有确定运动的条件
例2:铰链四杆组合体
• 若给定一个独立运动 参数(1为原动件), 运动确定。
• 若给定二个独立运动 参数,无法运动。
2021/3/11
19
平面机构具有确定运动的条件
例3:铰链五杆组合体
凸轮7
10
2021/3/11
11
§1-3 机械系统具有确定运动的条件
机构的构件之间应具有确定的相对运 动,不能产生相对运动或无规则乱动的一 堆构件是不能成为机构的。下面讨论机构 具有确定相对运动的条件。
2021/3/11
ቤተ መጻሕፍቲ ባይዱ
12
平面机构自由度的计算公式
一个作平面运动的自由构 件有几个自由度?
具有三个自由度。
2021/3/11
9
例:试绘制内燃机的机构运动简图
解:1)分析运动,确定构 件的类型和数量
进气阀3
2)确定运动副的类型
和数目
活塞2
3)选取比例尺,根
顶杆8
据机构运动尺寸,定出各运 连杆5
动副间的相对位置
曲轴6
4)画出各运动副和机
构符号,并表示出各构件
齿轮 10
2021/3/11
排气阀 4气缸体 1
运动副 低副:面接触
高副:点、线接触
2021/3/11
2
平面低副
两构件通过面接触而组成的运 动副称为低副。平面机构中的低 副又分为转动副(组成运动副的两 构件只能在一个平面内相对转动, 这种运动副又称为铰链);移动副 (组成运动副的两构件只能沿某一 轴线相对移动)。
2021/3/11
3
平面高副
两构件通过点或线接触组成的运动 副称为高副。
2021/3/11
14
平面高副约束了几个自由度?
高副约束了沿接触处 公法线n-n方向的移 动自由度,保留沿接 触处公切线t-t方向的 移动自由度和绕接触 点的转动自由度。
2021/3/11
15
平面机构自由度的计算公式
平面机构的自由度:指机构中各活动构件相对机 架的可能独立运动数目;
=活动构件的自由度总数减去运动副引入的约束 总数就是该机构的自由度。
2021/3/11
5
构件分类
(1) 固定构件(机架) 用来支承活动构件,研究活动构件 的运动时,常以固定构件作为参考坐标系。
(2) 原动件 运动规律已知的活动构件。它的运动由外界 输入,故又称为输入构件。在机构运动简图中,用箭头标 出运动方向的构件都是原动件。
(3) 从动件 机构中随着原动件的运动而运动的其余活动 构件。其中输出预期运动的称为输出构件。
• 若给定一个独立运动 参数(1个原动件), 乱动。
• 若给定二个独立运动 参数(2个原动件), 运动确定。
2021/3/11
20
构件组合具有确定的相对运动的条件
只有原动件才能独立运动,从动件是不能独立运 动的,通常每个原动件只有一个独立运动。 因此机构具有确定的相对运动的条件是: 机构自由度F>0,且F等于原动件的数目。
d为移动副:移动副的导路必须与相对移动方向一致。 两构件组成高副时,在简图中应当画出两构件接触处的
曲线轮廓。
2021/3/11
7
构件表达
图a表示参与组成两个转动副的构件;图b表示参与组成 一个转动副和一个移动副的构件。在一般情况下,参与 组成三个转动副的构件可用三角形表示。为了表明三角 形是一个刚性整体,常在三角形内加剖面线或在三个角 上涂以焊缝的标记,如图c所示;如果三个转动副中心 在一条直线上,则可用图d表示。超过三个转动副的构 件的表示方法可依此类推。
还可采用惯用画法表示机械中常用的构件,例如用粗实 线或点划线画出一对节圆来表示互相啮合的齿轮;用完 整的轮廓曲线来表示凸轮。可参看GB4460—84《机构 运动简图符号》。
2021/3/11
8
绘制机构运动简图的一般作图步骤:
绘制图示颚式破 碎机的机构运动 简图
1、确定构件数目, 辨清主、从动件; 2、分析相对运动 性质,从而确定 运动副类型和数 目; 3、选定比例尺, 用线条和规定符 号作图.
机构自由度 F 3n 2PL PH
高副(齿轮副、凸轮副)数目 活动构件数
低副(转动副、移动副)数目
2021/3/11
16
计算图所示颚式破碎机主体机构的自由度
在颚式破碎机主体机构中, 共有4个构件(1、2、3、4), 除去机架1,活动构件数n =3;共有4个转动副,Pl =4; 没式有(1-高1)副得,机构Ph自=由0。度所:以由 F=3n-2 Pl - Ph = 3×3-2×4=1
当两个构件组成运动副之 后,它们的相对运动就受 到约束,自由度数目随之 减少。不同种类的运动副 引入的约束不同,所以保 留的自由度数也不同。
2021/3/11
13
平面低副约束了几个自由度?
转动副约束了两个移动的自由度,只保留一个 转动自由度;移动副约束了沿一个轴方向的移 动和在平面内的转动,只保留一个移动自由度。