材料摩擦磨损资料

合集下载

摩擦磨损实验报告

摩擦磨损实验报告

摩擦磨损实验报告一、引言摩擦磨损实验是工程领域中常见的一种实验方法,通过模拟材料或器件表面的微观接触,研究摩擦过程中的磨损特性和机理。

本实验报告旨在对摩擦磨损实验的目的、原理、实验装置和结果进行全面、详细、完整且深入地探讨。

二、目的本实验的目的是通过设计和进行摩擦磨损实验,探究不同材料在不同工况下的磨损特性及其机理,为工程设计和材料选择提供理论依据。

三、原理摩擦磨损实验的原理基于摩擦学和材料科学的知识。

在实验中,通过施加一定的载荷和运动速度,使两个试样或试样与摩擦片之间发生摩擦接触。

在摩擦接触过程中,表面微观起伏、化学反应和热效应等因素共同作用,导致材料表面的磨损和形貌变化。

摩擦磨损实验可分为干摩擦和润滑摩擦两种情况。

在干摩擦实验中,试样之间没有润滑剂的存在,摩擦过程可能引起大量的磨粒生成和表面热量积累,导致试样表面的磨损。

而润滑摩擦实验则通过添加润滑剂,减少试样间的摩擦热和磨损程度。

四、实验装置进行摩擦磨损实验需要一套实验装置,包括:1.摩擦磨损试验机:用于施加载荷和控制运动速度,一般具有高精度和可控性能。

2.试样和摩擦片:选择不同材料的试样和摩擦片,根据实验需求确定形状、尺寸和表面处理方式。

3.测量仪器:包括摩擦力传感器、位移传感器、温度传感器等,用于实时监测试样的摩擦力、位移和温度等参数。

4.润滑剂:用于润滑摩擦接触表面,减少磨损程度和摩擦热。

五、实验过程本次实验的具体过程如下:1.准备试样和摩擦片:根据实验要求选择不同材料的试样和摩擦片,进行尺寸加工和表面处理。

2.调节实验参数:根据实验设计,设置载荷大小、运动速度和实验时间等参数。

3.安装试样和摩擦片:将试样和摩擦片固定在实验装置上,确保摩擦接触表面平整、清洁。

4.启动实验:运行实验装置,开始施加载荷和控制运动速度,记录实验过程中的数据和现象。

5.停止实验:根据实验时间或实验目标要求,停止实验运行,取下试样和摩擦片进行观察和分析。

6.数据处理:根据实验结果,进行数据处理和曲线拟合,得到摩擦力、位移和温度等参数的变化趋势。

常见的磨损分类、定义以及它们发生的条件

常见的磨损分类、定义以及它们发生的条件

磨损是指材料表面因摩擦、碰撞、剧烈运动等作用而逐渐失去其原有形状和尺寸的过程。

磨损现象是许多工程和生产活动中普遍存在的问题,了解常见的磨损分类、定义以及它们发生的条件,可以帮助我们更好地预防和解决磨损问题。

一、磨损的分类1. 表面磨损:表面磨损是指物体表面由于与外界环境或其他物体的作用而逐渐失去其原有形状和尺寸的现象。

表面磨损通常包括磨粒磨损、疲劳磨损、附着磨损等类型。

2. 体积磨损:体积磨损是指材料在受力作用下,局部或整体地磨损。

体积磨损主要包括磴岩磨损、疲劳磨损等类型。

二、磨损的定义磨损是指材料表面或体积由于摩擦引起的粒子脱落、塑性流动、位错聚集和断裂现象而逐渐失去其原有形状和尺寸的过程。

三、磨损的条件在工程和生产实践中,磨损的发生通常受到以下一些条件的影响:1. 材料硬度:硬度较低的材料容易受到表面磨损的影响,而硬度较高的材料更容易发生体积磨损。

2. 材料强度:材料的强度越低,越容易受到磨损的影响。

3. 环境条件:如温度、湿度、氧化性等环境条件对磨损的影响。

4. 润滑条件:润滑油的性质和润滑膜的形成对磨损有着重要的影响。

5. 负载条件:负载大小和方向对磨损的发生和发展有着重要影响。

6. 表面粗糙度:表面粗糙度的大小和形状对磨损的发生和发展也有着重要的影响。

通过对常见的磨损分类、定义以及它们发生的条件的了解,我们可以更好地预防和解决磨损问题,提高材料的使用寿命和性能。

磨损是材料表面或体积由于摩擦引起的粒子脱落、塑性流动、位错聚集和断裂现象而逐渐失去原有形状和尺寸的过程。

磨损的发生对工程和生产活动而言是不可避免的,但我们可以通过控制磨损的条件和采取相应的预防措施来减少磨损带来的损失。

一、磨损的分类1. 表面磨损表面磨损是指物体表面由于与外界环境或其他物体的作用而逐渐失去其原有形状和尺寸的现象。

表面磨损主要包括以下几种类型:- 磨粒磨损:在材料表面受到磨料颗粒的作用下,材料表面的微观形貌逐渐改变,最终形成磨损痕迹。

磨损及磨损理论

磨损及磨损理论
摩擦学基础知识 —磨损及磨损理论
第一节 概 述
任何机器运转时,相互接触的零件之间都将因相对运动而产 生摩擦,而磨损正是由于摩擦产生的结果。由于磨损,将造成 表层材料的损耗,零件尺寸发生变化,直接影响了零件的使用 寿命。从材料学科特别是从材料的工程应用来看,人们更重视 研究材料的磨损。据不完全统计,世界能源的1/3~1/2消耗 于摩擦,而机械零件80%失效原因是磨损。
表表面面存存在在明明显显粘粘着着痕痕迹迹和和材材料料转转移移,,有有较较大大粘粘着着坑坑块,块在,高在速高重速 载重下载,下大,量大摩量擦摩热擦使热表使面表焊面合焊,合撕,脱撕后脱留后下留片下片片粘片着粘坑着。坑。
黏黏着着坑坑密密集集,,材材料料转转移移严严重重,,摩摩擦擦副副大大量量焊焊合合,,磨磨损急损剧急增剧加增,加, 摩摩擦擦副副相相对对运运动动受受到到阻阻碍碍或或停停止止。。 材材料料以以极极细细粒粒状状脱脱落落,,出出现现许许多多““豆豆斑斑””状状凹凹坑坑。。
所以磨损是机器最常见、最大量的一种失效方式。据调查轮,胎压联痕(SEM 邦德国在1974年钢铁工业中约有30亿马克花费在维修上,其5中000X) 直接由于磨损造成的损失占47%,停机修理所造成的损失与磨损 直接造成的损失相当,如果再加上后续工序的影响,其经济损失 还需加上10%一20%。
摩擦痕迹 (350X)
此时虽然摩擦系数增大,但是磨损却很小,材料迁移也不显著。通常 在金属表面具有氧化膜、硫化膜或其他涂层时发生轻微粘着摩损。
(2)涂抹:
粘着结合强度大于较软金属抗剪切强度,小于较硬金属抗剪切强度。 剪切破坏发生在离粘着结合面不远的较软金属浅层内,软金属涂抹在硬 金属表面。这种模式的摩擦系数与轻微磨损差不多,但磨损程度加剧。
(3)磨损比

摩擦磨损试验标准(一)

摩擦磨损试验标准(一)

摩擦磨损试验标准(一)摩擦磨损试验标准背景摩擦磨损试验是指模拟机械部件在使用过程中因摩擦磨损所导致的性能变化和寿命缩短等现象的试验。

针对不同的材料和应用场景,需要制定相应的试验标准,以保证测试结果的可靠性和可重复性。

测试方法常用的摩擦磨损试验方法包括橡胶摩擦试验、磨损轮试验、球盘试验、滑动轮试验等。

其中,磨损轮试验是最为常见的方法之一,它通过在磨损轮和试样之间施加一定的负载、速度和循环次数,模拟实际工作环境下的摩擦磨损条件,来评价材料的耐磨性能。

试验参数为了确保试验结果可比较,需要规定一系列试验参数,包括载荷、速度、循环次数、试验温度等。

其中,载荷和速度是影响磨损试验结果的关键参数,需要根据实际使用情况选择适当的数值。

循环次数和试验温度则需要考虑材料的疲劳寿命和温度敏感性等因素。

结果分析磨损试验得到的结果一般包括材料的磨损量、磨损形貌、摩擦系数等。

在分析试验结果时,需要考虑试验方法和参数的影响因素,并结合实际使用环境进行评价。

此外,还需要注意试验误差的来源和限制,以确保结果的准确性和可靠性。

结论摩擦磨损试验标准是保证材料质量和性能的重要手段。

制定合理的试验方法和参数,准确分析试验结果,才能为实际应用场景提供可靠的参考数据。

因此,需要各行业相关专家和企业共同努力,不断完善和优化试验标准,推动材料科学和工程应用的发展。

不同产业的试验标准按照不同的产业领域和产品类型,摩擦磨损试验标准也有所不同。

以机械制造业为例,国际标准组织 ISO 发布了多项与摩擦磨损有关的标准,如 ISO 7148-2:1988 金属材料光洁度和粗糙度的测量和评价—第2部分:微表面形状的术语和 ISO 11505-2003 摩擦材料—旋转圆盘方法下生成的磨损方法。

而在汽车、建筑、航空等领域,也都有相应的标准适用于材料摩擦磨损性能的评价,并针对不同测试参数和环境规定了详细的规程和操作要求。

摩擦磨损试验设备进行摩擦磨损试验需要用到专门的设备和仪器,包括磨损仪、磨耗测试机、滑动磨损试验机等。

金属材料表面摩擦磨损机理研究

金属材料表面摩擦磨损机理研究

金属材料表面摩擦磨损机理研究一、引言金属材料是工业生产中使用广泛的材料之一,其表面的摩擦磨损问题影响着机械设备的性能和寿命。

因此,研究金属材料表面的摩擦磨损机理对于提高机械设备的可靠性有着重要意义。

本文将对金属材料表面摩擦磨损的机理研究进行梳理和总结。

二、金属材料表面摩擦磨损机理的分类1. 粘着磨损物体在摩擦过程中,由于接触表面产生的表面张力,导致物体表面产生差异形变, 造成损伤。

这种损伤形式我们称之为粘着(nowear)损伤.这种损伤是粒级以上(即微观尺度)表征摩擦过程的典型特征。

而微观尺度的磨损和水平方向的相互剪切是密切相关的。

当物体表面的粘着力越大,磨损越严重。

而硬度低, 表面粗糙度高的材料, 粘着损伤容易形成。

2. 疲劳磨损在应力循环的情况下,可能发生一系列的表面裂纹或者成为裂缝。

如果在这些裂纹处引入外力,就会使这些裂隙扩大甚至破裂,这种磨损形式我们称之为疲劳损伤。

疲劳磨损主要发生在金属材料经过重复循环或长时间的运动过程中,当材料表面应变过大或存在应力集中时,疲劳磨损很容易发生。

3. 磨粒磨损这种磨损模式的主要特征是物体表面明显存在磨损痕迹。

在物体表面经过长时间的运动过程中,很容易被杂质、粉尘、磨料等物质颗粒悬浮在介质中。

物质颗粒在物体表面上运动时,会产生表面切削,从而造成磨损。

磨粒磨损是金属材料摩擦磨损中最常见、最为普遍的一种机理。

三、金属材料表面摩擦磨损机理的原理1. 粘着磨损在两个金属物体的接触面上,会产生吸引力或剪切力,而这种力的大小与表面间的接触面积直接相关。

所以,当表面间的接触面积越大,粘着力越大,金属材料的表面粘着磨损越明显。

损伤的形式是由于表面接触部位接受高压力而形成的, 如盘状疲劳菲林(Fatigue Spalling)及磨耗铁锈(wear oxidation)等。

2. 疲劳磨损疲劳磨损的原理是由于物体表面裂纹处的应力集中效应,容易导致表面裂纹的形成和扩展。

在材料的裂纹阈值以下,材料表面裂纹会逐渐扩大和疲劳断裂,进而导致疲劳磨损。

7-材料磨损与耐磨材料(第3章粘着磨损)4详解

7-材料磨损与耐磨材料(第3章粘着磨损)4详解
将粘附对摩件金属,发生“金属转移”,即发生”物质 转移”。
在以后的摩擦过程中,附着物碾转于对磨件的表面之 间,有些粘附物在反复的摩擦中可能由金属表面脱落下 来→磨屑。
9
§3.1.1 粘着磨损的概念
粘着磨损也称咬合(胶合)磨损。磨损产物通常呈小 颗粒状,从一物体表面粘附到另一个物体表面上,然 后在继续的摩擦过程中,表面层发生断裂,有时还发 生反粘附.即被粘附到另一个表面上的材料又回到原 来的表面上,这种粘附反粘附往往使材料以自由磨屑 状脱落下来。粘着磨损产物可以在任意的循环中形成。 粘着以后的断裂分离,并不一定在最初的接触表面产 生。
4
Chapter 3: 材料的磨损机理
图(d)为腐蚀磨损。它的主要特征是磨损表面有化 学反应膜或小麻点,但麻点比较光滑。磨损物为簿的 碎片或粉末,典型工件如船舶外壳、水力发电的水轮 机叶片等。
5
Chapter 3: 材料的磨损机理
• §3.1 • §3.2 • §3.3 • §3.4 • §3.5 • §3.6
10
§3.1 粘着磨损
• §3.1.1 粘着磨损的概念 • §3.1.2 粘着磨损一般规律 • §3.1.3 粘着磨损分类 • §3.1.4 粘着磨损表达式与定律 • §3.1.5 影响粘着磨损的因素
11
Hale Waihona Puke §3.1.2 粘着磨损一般规律
• 粘着磨损过程一般分为三个阶段: (1)跑合阶段亦称 磨合阶段(磨合磨损阶段); (2)稳定磨损阶段; (3)急 剧磨损阶段亦称破坏磨损阶段。如下图所示:
26
§3.1.3 粘着磨损分类
第一类胶合的相关因素: • 材料性能(表面物性、表面化性、表面力性);
• e.g.强度、塑性、韧性、氧化性等

必修实验八材料的摩擦与磨损实验

必修实验八材料的摩擦与磨损实验

必修实验八材料的摩擦与磨损实验一、实验目的1) 熟悉往复式摩擦磨损试验机的结构、实验原理和操作方法。

2) 掌握摩擦系数、磨损量的测定方法。

3) 比较不同材料的摩擦磨损性能,并分析其原因。

二、实验原理摩擦磨损是工业生产中普遍存在的现象,凡是具有相对运动的摩擦副间,必然会伴随有摩擦和磨损现象。

影响材料摩擦与磨损的因素很多,如压力、运动速度、工件表面质量、润滑剂及材料性能等。

所以材料的摩擦磨损特性并不是材料固有的,而是摩擦条件与材料性能的综合特性。

摩擦磨损试验机的种类很多,一般由加力装置、摩擦力测量机构及摩擦副相对运动驱动机构等部分组成。

现以往复式摩擦磨损试验机为例,介绍摩擦磨损试验机的结构及测试原理。

摩擦副由上试样和下试样组成;上试样与下试样间的往复运动由电机带动偏心轮的旋转而实现。

往复运动的振幅可通过偏心距进行调节。

摩擦副间的压力通过砝码加载、并由压力传感器进行测量;而摩擦副间的摩擦力通过拉/压传感器进行测量,如图1所示。

将压力、摩擦力和时间信号输入到计算机中,便可得到摩擦力、摩擦系数随时间的变化曲线,如图2。

经过一定时间(或滑动距离)后,下试样(待测试样)表面将产生具有一定深度的磨痕(图3a)。

利用表面轮廓仪,在垂直于往复运动的方向上测量磨痕的微观形貌(图3b),确定磨痕的深度、截面积,从而与往复运动的振幅相乘得到磨损的体积。

也可进一步由磨损体积求出材料的磨损重量,根据磨损量的大小即可判断材料的耐磨性能。

若在相同的时间(或距离)内磨损量愈大,表明材料的耐磨性能愈差。

反之,则表明耐磨性愈好。

图 1 往复式摩擦磨损试验机的原理图01002003004005006000.00.10.20.30.40.50.6摩擦时间 / s 摩擦系数图 2摩擦系数与时间的变化关系(a )宏观形貌 (b )微观形貌图 3 磨痕的宏微观形貌三、实验材料与样品本实验的上试样选用直径Φ8mm 的ZrO 2球或GCr15钢球,试验载荷为10N ,往复运动振幅为10mm ,频率为1Hz ,测试周期为20分钟。

摩擦、磨损简介

摩擦、磨损简介

磨损基本概念磨损是零部件失效的一种基本类型.通常意义上来讲,磨损是指零部件几何尺寸〔体积〕变小.零部件失去原有设计所规定的功能称为失效.失效包括完全丧失原定功能;功能降低和有严重损伤或隐患,继续使用会失去可靠性及安全性和安全性.1、磨损的分类:按照表面破坏机理特征,磨损可以分为磨料磨损、粘着磨损、表面疲劳磨损、腐蚀磨损和微动磨损等.前三种是磨损的基本类型,后两种只在某些特定条件下才会发生.磨料磨损:物体表面与硬质颗粒或硬质凸出物〔包括硬金属〕相互摩擦引起表面材料损失.粘着磨损:摩擦副相对运动时,由于固相焊合作用的结果,造成接触面金属损耗.表面疲劳磨损:两接触表面在交变接触压应力的作用下,材料表面因疲劳而产生物质损失.腐蚀磨损:零件表面在摩擦的过程中,表面金属与周围介质发生化学或电化学反应,因而出现的物质损失.微动磨损:两接触表面间没有宏观相对运动,但在外界变动负荷影响下,有小振幅的相对振动〔小于100μm〕,此时接触表面间产生大量的微小氧化物磨损粉末,因此造成的磨损称为微动磨损2、表征材料磨损性能的参量为了反映零件的磨损,常常需要用一些参量来表征材料的磨损性能.常用的参量有以下几种:<1>磨损量由于磨损引起的材料损失量称为磨损量,它可通过测量长度、体积或质量的变化而得到,并相应称它们为线磨损量、体积磨损量和质量磨损量.<2>磨损率以单位时间内材料的磨损量表示,即磨损率I=dV /dt <V为磨损量,t为时间〕.<3>磨损度以单位滑移距离内材料的磨损量来表示,即磨损度E=dV/dL <L为滑移距离〕.<4>耐磨性指材料抵抗磨损的性能,它以规定摩擦条件下的磨损率或磨损度的倒数来表示,即耐磨性=dt/dV或dL/dV.<5>相对耐磨性指在同样条件下,两种材料〔通常其中一种是Pb-Sn合金标准试样〕的耐磨性之比值,即相对耐磨性εw=ε试样/ε标样.摩擦基本概念当物体与另一物体沿接触面的切线方向运动或有相对运动的摩擦趋势时,在两物体的接触面之间有阻碍它们相对运动的作用力,这种力叫摩擦力.接触面之间的这种现象或特性叫"摩擦".摩擦有利也有害,但在多数情况下是不利的,例如,机器运转时的摩擦,造成能量的无益损耗和机器寿命的缩短,并降低了机械效率.因此常用各种方法减少摩擦,如在机器中加润滑油等.但摩擦又是不可缺少的,例如,人的行走,汽车的行驶都必须依靠地面与脚和车轮的摩擦.在泥泞的道路上,因摩擦太小走路就很困难,且易滑倒,汽车的车轮也会出现空转,即车轮转动而车厢并不前进.所以,在某些情况下又必须设法增大摩擦,如在太滑的路上撒上一些炉灰或沙土,车轮上加挂防滑链等.3.〔个人或党派团体间〕因彼此厉害矛盾而引起的冲突.|| 也作磨擦.摩擦种类摩擦的类别很多,按摩擦副的运动形式摩擦分为滑动摩擦和滚动摩擦,前者是两相互接触物体有相对滑动或有相对滑动趋势时的摩擦,后者是两相互接触物体有相对滚动或有相对滚动趋势时的摩擦;按摩擦副的运动状态摩擦分为静摩擦和动摩擦,前者是相互接触的两物体有相对运动趋势并处于静止临界状态时的摩擦,后者是相互接触的两物体越过静止临界状态而发生相对运动时的摩擦;按摩擦表面的润滑状态,摩擦可分为干摩擦、边界摩擦和流体摩擦.摩擦又可分为外摩擦和内摩擦.外摩擦是指两物体表面作相对运动时的摩擦;内摩擦是指物体内部分子间的摩擦.干摩擦和边界摩擦属外摩擦,流体摩擦属内摩擦.干摩擦摩擦副表面直接接触,没有润滑剂存在时的摩擦.常用库仑摩擦定律表达摩擦表面间的滑动摩擦力F、法向力N和摩擦系数f间的关系:f=F/N.钢对钢的f值在大气中约为0.15~0.20,洁净表面可达0.7~0.8.根据英国的F.P.鲍登等人的研究,极为洁净的金属〔表面上的气体用加热、电子轰击等方法排除〕在高真空度的实验条件下,表面接触处被咬死,f值可高达100.这种极为洁净的金属表面一旦与大气相接触便立即被污染或氧化,从而使f值显著下降.静摩擦的测定方法有倾斜法和牵引法.①倾斜法:把重力为N的欲测物体放在对偶材料的斜面上,逐渐增加斜面的倾角,测得物体开始滑动时的倾角θ<摩擦角>,由此求得摩擦系数f=tgθ.②牵引法:把重力为N 的欲测物体放在对偶材料的平面上,以力P牵引,物体开始滑动时的力F就是最大的静摩擦力〔此时F=P〕,由此求得摩擦系数f=F/N.接触面粗糙程度决定摩擦力大小动摩擦可在各类型试验机上〔如往复式摩擦磨损试验机、旋转圆盘-销式摩擦磨损试验机和四球式摩擦试验机〕测定,为此在试验机上装设测定摩擦力或摩擦力矩的机构,先测出摩擦力,而后换算出摩擦系数.常见的测量方法有杠杆法、弹簧法和电测法等.测定时需要确保清洁,否则会影响所测的摩擦力.边界摩擦和流体摩擦边界润滑状态下的摩擦称为边界摩擦.边界摩擦系数低于干摩擦系数.边界摩擦状态下的摩擦系数只取决于摩擦界面的性质和边界膜的结构形式,而与润滑剂的粘度无关.流体润滑状态下的摩擦称为流体摩擦.这种摩擦是流体粘性引起的.其摩擦系数较干摩擦和边界摩擦为低.。

材料的耐磨和摩擦学

材料的耐磨和摩擦学

材料的耐磨和摩擦学材料的耐磨性和摩擦学是研究物质表面和界面的摩擦、磨损和润滑行为的重要科学领域。

在工程和科学领域中,我们经常面对材料在摩擦和磨损环境下的性能要求。

因此,了解材料的耐磨性及其与摩擦学之间的关系对于开发新材料、改进工程设计以及提高设备和产品的寿命至关重要。

一、耐磨性的定义和测试方法耐磨性是指材料在受到摩擦和磨损作用时能够维持其功能性能的能力。

不同材料因其组成和结构的不同,其耐磨性也会有显著差异。

衡量耐磨性主要通过磨损测试来进行,常用的测试方法包括滑动磨损试验、磨料磨损试验以及交互磨损试验等。

这些试验方法能够模拟不同工况下的摩擦和磨损行为,以评估材料的耐磨性能。

二、摩擦学的基本原理摩擦学是研究物体之间相对运动时所产生的摩擦力和摩擦现象的学问。

摩擦力是指两个物体相对运动时产生的抵抗运动的力,其大小受到材料表面性质、载荷、速度等多种因素的影响。

摩擦学的基本原理可以通过考虑材料之间的接触、摩擦和变形来解释。

表面粗糙度、润滑、界面接触的方式以及材料的硬度等因素都会对摩擦行为产生影响。

三、影响耐磨性的因素耐磨性能的好坏受到很多因素的影响,包括材料的硬度、表面粗糙度、润滑状况、载荷、温度等。

硬度是衡量材料耐磨性的重要参数,材料的硬度越高,其抗磨损性能通常也越好。

表面粗糙度对于摩擦行为和磨损的影响也非常显著,较光滑的表面能够减少材料之间的物理接触,从而减少摩擦力和磨损。

此外,润滑剂的使用和界面的润滑状态也会对材料的耐磨性能产生显著影响。

四、改善耐磨性的方法针对不同材料和工况,我们可以采取一些措施来改善材料的耐磨性能。

首先,可以通过选择合适的材料来满足特定的摩擦和磨损要求。

例如,在需要高耐磨性的装备部件中,常使用硬度高、耐磨性好的材料如陶瓷、金属基复合材料等。

其次,可以通过调整材料的表面粗糙度、润滑剂的选择以及改变载荷和温度等来改善材料的耐磨性能。

此外,利用表面涂层和热处理等方法也可以提高材料的耐磨性能。

材料力学性能教学课件材料的摩擦与磨损性能

材料力学性能教学课件材料的摩擦与磨损性能
通过选用合适的材料、表面处理、润滑和改善工艺等措施来改善材料的摩擦 与磨损性能,并延长材料的使用寿命。
结论及展望
通过对材料的摩擦与磨损性能的深入研究,可以为材料的选择和应用提供科学依据,进一步提高材料的性能和可靠 性。
金属材料
金属材料通常具有较高的摩擦系数,但也可以通过表面处理和润滑来减少磨损。
聚合物材料
聚合物材料具有较低的摩擦系数,但其耐磨性能相对较差。
陶瓷材料
陶瓷材料通常具有较低的摩擦系数和较高的耐磨性能,但也容易产生表面粉化。
影响摩擦与磨损的因素
1 接触压力
增加接触压力会增加摩擦力和磨损。
3 温度
高温环境下摩擦和磨损会加剧。
2 表面粗糙度
粗糙表面会增加摩擦力和磨损。
摩擦与磨损的测试方法
1
磨损实验
2
使用特定装置和试样进行磨损实验,以获得
材料的磨损特性和性能。
3
滑动摩擦测试
通过模拟实际工况下的滑动摩擦来评估材料 的摩擦和磨损性能。
表面分析
通过观察和分析材料表面的变化,了解摩擦 和磨损的影响。
改善材料的摩擦与磨损性能的 措施
材料力学性能教学课件 PPT材料的摩擦与磨损性 能
在本课程中,我们将探讨材料的摩擦与磨损性能。了解摩擦力与摩擦系数的 含义,并分析擦力与磨损之间的相互作用。探讨不同材料之间的摩擦和 磨损的特点,以及它们对材料性能和寿命的影响。
常见材料的摩擦与磨损性能比较

摩擦磨损试验

摩擦磨损试验

摩擦磨损试验
摩擦磨损试验是一种常见的物理实验,旨在测试材料的耐磨和强度,可以帮助
我们判断材料在实际使用中经受压力的能力。

摩擦磨损试验由循环摩擦磨损法进行,一般使用耐磨材料。

该试验仪需要在一定的温度下,或者说在某一种可控的环境下进行。

循环摩擦磨损法的实验步骤首先是放置好实验仪器,仿真被测材料的表面和硬度,并把控制环境,以确保完全相同的温度和湿度控制。

接着,根据需要,可以设置耐磨件,一般使用耐磨材料,然后在一定的载荷下,定义相关规范,确定明确的磨损量和时间,这个周期可以重复多次,实验结果每个时间点都会被记录下来。

并对比数据,测量材料的耐磨性能。

摩擦磨损试验实验的成果,有助于判断材料的实际使用效果,结合实验结果,
可以分析出耐磨性能概要、耐磨性能极限和耐磨性能趋势,即材料耐磨性能状态。

有助于选择需要耐磨性能的材料,企业可以根据材料的耐磨性能及生产成本,综合考虑选择适合当前产品的材料。

摩擦磨损试验使用方便、效率高,是实验室试验技术中的经典而重要的一种,
被应用于各种材料耐磨性测试中,为材料的强度和耐磨性度测试、产品的强度检验和新材料的开发研究提供一种重要依据。

第三章 磨损及磨损理论

第三章 磨损及磨损理论

c.材料的组织结构和表面处理
多相金属比单相金属的抗粘着磨损能力高;金 属中化合物相比单相固溶体的粘着倾向小。
通过表面处理技术在金属表面生成硫化物、磷 化物或氯化物等薄膜可以减少粘着效应,同时 表面膜限制了破坏深度,提高抗粘着磨损的能 力。
d.元素周期表中的B族元素,如锗、银、镉、铟、 锡、锑、铊、铅、铋与铁的冶金相容性差,抗 粘着磨损性能好。而铁与A族元素组成的摩擦副 粘着倾向大。
b. 相同金属或冶金相溶性大的材料摩擦副易发生 粘着磨损。异种金属或冶金相溶性小的材料摩 擦副抗粘着磨损能力较高。金属与非金属摩擦 副抗粘着磨损能力高于异种金属摩擦副。
应避免使用同种金属或冶金相溶性大的金属组成 摩擦副。
冶金的相(互)溶性:两种金属能在固态互相溶解的性能。 摩擦的相(互)溶性:一定配对材料在发生摩擦和磨损时抵 抗粘着的性能。 一般,冶金相溶性好的金属摩擦副,其摩擦相溶性就差, 相同金属摩擦副,摩擦互溶性最差。
③ 速度的影响
随着滑动速度的变化,磨损类型由一种形式转变为另一种 形式。 如图(a)所示,当摩擦速度很低时,主要是氧化磨损,出 现Fe2O3的磨屑,磨损量很小。 随速度的增大,氧化膜破裂,金属的直接接触,转化为粘 着磨损,磨损量显著增大。 滑动速度再高,摩擦温度上升,有利于氧化膜形成,又转 为氧化磨损,磨屑为Fe3O4,磨损量又减小。 如摩擦速度再增大,将再次转化为粘着磨损,磨损量又开 始增加。
它们不产生切削作用,因此Ks值明显减小。
图(b)是滑动速度保持一定而改变载荷所得到的钢对钢磨
损实验结果。
载荷小产生氧化磨损, 磨屑主要是Fe2O3;
当载荷达到W0后, 磨屑是FeO、Fe2O3 和Fe3O4的混合物。 载荷超过临界载荷Wc以后, 便转入危害性的粘着磨损。

材料摩擦磨损

材料摩擦磨损
根据功能原理得 Wc=2γa
物质的表面能和界面能
假如柱的上段为物质a,下段为物质b,则接触部分的 界面能为γab。若使柱在a、b界面上断开,对柱所作的功 称为粘附功Wab。断开后柱增加表面能γa和γb。根据功能 原理得
第二节 表面热力学
一、表面张力与表面能
1. 表面热力学函数
在表面,晶格的周期性被切断,因此表面原子处 于与固体内部不同的环境之中。其实,表面的组成和 物理性质是由单一相慢慢地变化而来的领域,虽然很 难把它当作原来的热力学相,但能作为一种由温度、 面积、曲率半径以及各组分原子的质量等决定的特殊 相来处理。总之,固体表面相的热力学性质必须与固 体内部区别开来考虑。
表面是一个抽象的概念,实际常把无厚度的抽象表 面叫数学表面,把厚度在几个原子层内的表面叫作物 理表面,而把我们常说实际的固体表面叫工程表面。
金属表面的实际构成示意图
工程表面
表面结构
表面原子 M 的配位数 为 5。而基 体中的任一 个原子的配 位数为 6。
面心立方表面原子的配位数
在表面的位置 配位数 表面所处晶面 配位数
材料摩擦磨损
引起来的 一门新兴边沿学科。它主要包括摩擦、磨损和润滑等研 究领域。摩擦导致大量机械能的损耗,而磨损则是机械 零件失效的一个重要原因。
据估计,工业化国家能源的约30%消耗于摩擦。 对一个高度工业化的国家,每年因摩擦和磨损所造成 的经济损失差不多占其国民经济年产值的l~2%。摩擦 与磨损的研究是一个有重大社会经济效益的课题。
如果没有任何非可逆过程,那么这个可逆功
W
s T
,P就
等于表面能量的变化。因此
WsT,Pd(Gsa)
W sT,P (G a sa) T,Pd a G sa G as T,P da

磨损基本类型

磨损基本类型

磨损基本类型
1.磨粒磨损:也简称磨损,外界硬颗粒或摩擦表面上的硬突起在摩擦过程中引起表层材料脱落的磨损。

(获得较高的磨粒磨损寿命的条件是材料表面硬度最少为磨粒硬度的1.3倍)
2.粘着磨损:又称胶合,当摩擦表面的轮廓峰在相互作用的各点处由于瞬时温升和压力发生“冷焊”后,在相对运动时,材料从一个表面迁移到另一个表面,便形成了粘着磨损,严重时会造成运动副咬死。

3.疲劳磨损:又称作点蚀,是由于摩擦表面材料微体积在交变的摩擦力作用下,反复变形所产生的材料疲劳所引起的机械磨损。

4.冲蚀磨损:流动的液体或气体中所夹带的硬质物体或硬质颗粒冲击零件表面所引起的机械磨损。

5.腐蚀磨损:摩擦表面材料所在环境的化学或电化学作用下引起的腐蚀,在摩擦副相对运动时所产生的磨损即为腐蚀磨损。

6.微动磨损:如果两接触表面宏观上是相对静止的,但是受环境的影响下,以小于100μm的振幅彼此做相对运动,这样的接触表面也会出现磨损,称其为微动磨损或微动腐蚀磨损。

是一种复合型磨损。

1。

摩擦材料的磨损状况

摩擦材料的磨损状况

摩擦材料的磨损状况简介
磨损,是一个物体工作表面的物质由于表面相对运动而逐渐损耗的现象。

摩擦的正常磨损过程一般分为三个阶段。

1.磨合阶段。

新摩擦表面具有一定的粗粗糙度,真实接触面积较小。

在磨合阶段,摩擦表面逐渐磨平,真实接触表面逐渐增大,磨损速率减小。

2.稳定磨损阶段。

这一阶段磨损缓慢稳定。

这是摩擦的正常工作时间。

3.剧烈磨损阶段。

在稳定磨损阶段后,磨损速率急剧增大。

这时机械效率下降,精度丧失,产生异常噪声及振动,摩擦的温度迅速升高,最后导致零件失效。

洛阳隆力专业生产制造.。

《材料摩擦磨损》课件

《材料摩擦磨损》课件
2023-2026
ONE
KEEP VIEW
《材料摩擦磨损》ppt 课件
REPORTING
CATALOGUE
目 录
• 引言 • 材料摩擦学基础 • 材料磨损的机理 • 材料耐磨性的评价 • 材料摩擦磨损的实验研究 • 材料摩擦磨损的研究进展
PART 01
引言
摩擦与磨损的定义
摩擦
是两个接触表面在相对运动时,由于 表面间的切向阻力所引起的相互作用 的力。
粘着磨损
由于接触表面间粘着力作用, 导致材料从一个表面转移到另 一个表面。
疲劳磨损
在循环应力作用下,材料表面 产生疲劳裂纹和剥落。
微动磨损
在微小振幅的振动下,接触表 面产生氧化膜破裂和材料转移 。
磨损的影响因素
硬度与强度
硬度与强度较高的材料具有较 好的耐磨性。
表面粗糙度
表面粗糙度较大时,容易发生 粘着磨损和磨料磨损。
详细描述
材料摩擦学主要研究材料在摩擦过程中表现出的各种性质和行为,包括摩擦力、磨损率、摩擦系数等,以及这些 性质和行为与材料本身性质、表面形貌、环境条件等因素之间的关系。
材料摩擦学的原理
总结词
材料摩擦学的原理主要包括分子间的相互作用、表面能与表面张力、粘着与粘 着磨损等。
详细描述
分子间的相互作用是材料摩擦学的基础,表面能与表面张力决定了材料表面的 润湿性和摩擦系数。粘着是指两个接触表面之间的吸引力,粘着磨损则是由于 粘着效应导致的材料转移和粘着结点断裂等现象。
摩擦系数
通过测量材料在摩擦过程中的摩擦系数来评 价耐磨性。
表面粗糙度
通过测量材料摩擦后的表面粗糙度变化来评 价耐磨性。
耐磨性的影响因素
材料硬度

材料的磨损与摩擦性能评价

材料的磨损与摩擦性能评价

材料的磨损与摩擦性能评价磨损和摩擦性能评价是材料工程领域中非常重要的研究方向之一。

磨损是指材料表面因摩擦或其他力的作用而逐渐减少或丧失的现象,而摩擦性能则是指材料在与其他物体接触时,所表现出的摩擦特性。

本文将探讨材料磨损和摩擦性能评价的方法和意义。

一、磨损评价方法材料的磨损评价方法多种多样,下面将介绍其中几种常用的方法。

1. 质量损失法质量损失法是一种直接测量材料质量变化的方法。

在实验中,首先测量材料的初始质量,然后通过与其他材料或固体表面进行摩擦,再次测量质量,并计算质量损失。

这种方法的优势在于直接、简便,能够准确反映材料的磨损程度。

2. 磨损剖面观察法磨损剖面观察法是通过对材料磨损表面进行显微镜等观察,来评价磨损程度的方法。

这种方法能够直观地观察到材料的磨损特征,如磨痕的长度、宽度和深度等,从而对磨损机制进行分析和评价。

3. 磨损体积法磨损体积法是通过测量磨损表面的体积来评价磨损程度的方法。

实验中,将磨损前后的材料表面进行三维扫描,并分析扫描数据,计算磨损体积。

与质量损失法相比,磨损体积法更能准确地描述磨损的形状,为磨损机理的研究提供更多数据。

二、摩擦性能评价方法材料的摩擦性能评价方法多种多样,下面将介绍其中几种常用的方法。

1. 摩擦系数法摩擦系数法是一种通过测量材料在与其他材料或固体表面接触时的摩擦系数来评价摩擦性能的方法。

实验中,通过施加一定的力,使被试材料与摩擦体进行接触,并测量摩擦力和正压力,从而计算摩擦系数。

这种方法能够客观地反映材料在摩擦过程中的性能。

2. 表面形貌观察法表面形貌观察法是通过对材料表面形貌进行观察和分析,来评价摩擦性能的方法。

这种方法可以使用扫描电子显微镜等设备对材料表面进行观察,并分析表面的粗糙度、摩擦痕迹等特征,以评估材料的摩擦性能。

3. 摩擦磨损试验法摩擦磨损试验法是通过在实验条件下模拟材料的实际工作环境,测量和评价材料的摩擦性能。

这种方法可以模拟不同的工作条件,如不同的载荷、速度和温度等,从而更真实地反映材料的摩擦特性和磨损机制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

W da
s
如果没有任何非可逆过程,那么这个可逆功 W 等于表面能量的变化。因此
s
T ,P就
W
W
s T ,P
s
T ,P
d( G a )
s
s ( G sa ) G s da G a da a T ,P a T ,P
热力学函数
现就其周围包含有N个原子的固体平面而言,若每 一原子的体能量为E0,则每单位面积的表面能ES与总 能量E之间有下述关系 :

E NE aE
o
s
a是表面积。
每单位面积的表面熵为SS ,体熵为S0,则固体的总的 熵S为: o s
S NS aS
热力学函数
表面每单位面积的功为: s
前景
随着工业的发展,特别是在现代 工业与技术中高速、重载的运转条件, 核反应堆、宇宙飞船那样的恶劣工作 环境,微型机构、生物等方面,对摩 擦与磨损提出了越来越高的要求,为 这门新兴学科的发展提供了强大动力。 目前的研究热点:空间、生物、 微纳米、高速机械等。
课程内容
1、材料表面特性及接触力学
2、材料的摩擦
G G a a
s
T ,P
表面能的物理图像
以面心立方金属的(100)面作为表面
只有当每个原子有12个最近邻,能量才最低,结 构最稳定。当少了四个最近邻原子,出现了四个“断 键”时,表面原子的能量就会升高。和表面原子的这 种高出来的能量相连的就是表面能。
晶面的表面能
表面张力
高温时,在由解理而制得的新的表面的情况下,表 面原子自由地在表面扩散的时候,与面积无关,则
G s a
所以
0 T ,P
W
G
s
s
T ,P
G da
s
(表面张力与表面自由能相一致 )
低温,解理表面的原子不能自由扩散时,由于在表面 残留有畸变,因此 s
材料摩擦磨损
引言
摩擦学(Tribology)是近三十多年来迅速发展起来的 一门新兴边沿学科。它主要包括摩擦、磨损和润滑等研 究领域。摩擦导致大量机械能的损耗,而磨损则是机械 零件失效的一个重要原因。 据估计,工业化国家能源的约30%消耗于摩擦。 对一个高度工业化的国家,每年因摩擦和磨损所造成 的经济损失差不多占其国民经济年产值的l~2%。摩擦 与磨损的研究是一个有重大社会经济效益的课题。
3、材料的磨损
第一章 固体表面特性
第一节 固体表面特性及结构 但物质不是无限的,在晶体中原子或分子的周期 性排列发生大面积突然终止的地方就出现了界面,如 固体-液体、固体-气体及固体-固体的界面,常把 固体-气体(或真空)、固体-液体的界面称为固体 的表面。
很多物理化学过程:催化、腐蚀、摩擦和电 子发射等都发生在“表面”,可见其重要性。
表面的电子分布
(a) 电荷密度分布
(b) 电荷分布
表面缺陷
点缺陷、线缺陷和面缺陷
点缺陷:在三维方向上都很小的缺陷。 线缺陷:它是在一个方向上尺寸较大,而在另外两个 方向上尺寸较小的线缺陷。 面缺陷:晶体的缺陷若主要是沿二维方向伸展开来, 由于界面特殊的结构和界面能量,使得界面有许 而在另一维方向上的尺寸变化相对地甚小,则称为面 多与晶体内部不同的性质。例如,界面的扩散、界面 缺陷。各种界面如晶体表面、晶界、亚晶界及相界等 吸附、界面腐蚀、界面与位错的相互作用等,并对材 都是面缺陷,它们通常只有一个至几个原子层厚。 料的机械性能(强度、韧性)以及对变形、再结晶和 相变过程等都有重要影响。
摩擦与磨损自古以来就存在,利弊共存。
摩擦与磨损
摩擦与磨损是涉及两个或两个以上作相对 运动物体之间的界面的科学和技术问题的一门 学科。
包含着许多物理、化学及力学过程。物理学、化 学及材料科学工作者对此相当关注。摩擦与磨损直接 影响机械零件间力、功或运动的传递,因此,又是机 械工程师们重视的问题。不难看出,摩擦和磨损的研 究将是多学科的综合,涉及物理、化学、数学、材料 科学和机械工程等方面的很多基础知识。
表面是一个抽象的概念,实际常把无厚度的抽象表 面叫数学表面,把厚度在几个原子层内的表面叫作物 理表面,而把我们常说实际的固体表面叫工程表面。
金属表面的实际构成示意图
工程表面
表面结构
表面原子 M 的配位数 为 5。而基 体中的任一 个原子的配 位数为 6。
面心立方表面原子的配位数
在表面的位置 角上原子 边缘原子 配位数 3 5 表面所处晶面 原子在(111)上 原子在(100)上 配位数 9 8
三个问题
为解决摩擦学领域中的技术问题,必须弄清楚摩擦 学基本的问题。 (1)通过物理和化学作用,环境对表面特征的影响; (2)接触表面之间的力的产生和传输;
(3)作用在表面接触点处的外力附近表面材料的特性。
摩擦学的这三个方面问题显然是互相联系的。因 此,为了能全面解决摩擦学问题,必须对这三个方面 问题有所了解。
第二节 表面热力学
一、表面张力与表面能 1. 表面热力学函数
在表面,晶格的周期性被切断,因此表面原子处 于与固体内部不同的环境之中。其实,表面的组成和 物理性质是由单一相慢慢地变化而来的领域,虽然很 难把它当作原来的热力学相,但能作为一种由温度、 面积、曲率半径以及各组分原子的质量等决定的特殊 相来处理。总之,固体表面相的热力学性质必须与固 体内部区别开来考虑。
A E TS
s
s s
s
表面每单位面积的吉布斯(Gibbs)自由能为:
G H TS
系统总的自由能为:
s
G NG aG
o
s
表面张力
在建立新的表面时,邻近的原子丢失、键被切断。 为此,必须作某种功。在一定的温度、压力下,保持 平衡条件,当表面积a只增加da时,该系统也必须做 功。这个可逆的表面功W S由下式给出:
不同晶面作表面时,断键数目不同,因而表面能不同。
表面能
还可以更直观地说明表面能,设有一横截面 为1cm2的固体柱,在理想条件下(真空中)将它 分成两段时所作的功称为内聚功 Wc ,它表征了 相同物质间的吸引强度。拉断后的固体柱增加了 两个面积为1cm2的新表面,相应增加的表面能为 2γa,γa为固体a增加的表面能。
相关文档
最新文档