PID控制详解
详细讲解PID控制
详细讲解PID控制PID的数学模型在工业应用中PID及其衍生算法是应用最广泛的算法之一,是当之无愧的万能算法,如果能够熟练掌握PID算法的设计与实现过程,对于一般的研发人员来讲,应该是足够应对一般研发问题了,而难能可贵的是,在很多控制算法当中,PID控制算法又是最简单,最能体现反馈思想的控制算法,可谓经典中的经典。
经典的未必是复杂的,经典的东西常常是简单的,而且是最简单的。
PID算法的一般形式:PID算法通过误差信号控制被控量,而控制器本身就是比例、积分、微分三个环节的加和。
这里我们规定(在t时刻):1.输入量为2.输出量为3.偏差量为PID算法的数字离散化假设采样间隔为T,则在第K个T时刻:偏差=积分环节用加和的形式表示,即微分环节用斜率的形式表示,即PID算法离散化后的式子:则可表示成为:其中式中:比例参数:控制器的输出与输入偏差值成比例关系。
系统一旦出现偏差,比例调节立即产生调节作用以减少偏差。
特点:过程简单快速、比例作用大,可以加快调节,减小误差;但是使系统稳定性下降,造成不稳定,有余差。
积分参数:积分环节主要是用来消除静差,所谓静差,就是系统稳定后输出值和设定值之间的差值,积分环节实际上就是偏差累计的过程,把累计的误差加到原有系统上以抵消系统造成的静差。
微分参数:微分信号则反应了偏差信号的变化规律,或者说是变化趋势,根据偏差信号的变化趋势来进行超前调节,从而增加了系统的快速性。
PID的基本离散表示形式如上。
目前的这种表述形式属于位置型PID,另外一种表述方式为增量式PID,由上述表达式可以轻易得到:那么:上式就是离散化PID的增量式表示方式,由公式可以看出,增量式的表达结果和最近三次的偏差有关,这样就大大提高了系统的稳定性。
需要注意的是最终的输出结果应该为:输出量 =+ 增量调节值目的PID 的重要性应该无需多说了,这个控制领域的应用最广泛的算法了.本篇文章的目的是希望通过一个例子展示算法过程,并解释以下概念:(1)简单描述何为PID, 为何需要PID,PID 能达到什么作用。
PID功能详解及PWM波的产生和PWM波形生成原理
PID功能详解及PWM波的产生和PWM波形生成原理PID(比例-积分-微分)控制是一种常用的闭环控制算法,它根据过程变量的误差及其变化率来调整控制器的输出,以实现精确的控制。
PID 控制器分为比例、积分和微分三个部分,它们分别代表了响应速度、稳态精度和稳定性。
下面详细介绍PID控制的各个功能。
1.比例控制(P控制):比例控制使用误差的比例来调整输出。
当误差增大时,输出也会增大,使系统更快地向目标值靠拢。
但是,比例控制会导致超调和不稳定。
2.积分控制(I控制):积分控制使用误差的累积来调整输出。
当误差积累到一定程度时,输出也会增大,以消除积累的误差。
积分控制解决了比例控制的稳态误差问题,但会增加响应时间和超调。
3.微分控制(D控制):微分控制使用误差的变化率来调整输出。
当误差发生急剧变化时,输出也会增大或减小,以快速调整系统。
微分控制提高了系统的稳定性和响应速度,但会导致噪声的放大。
PID控制通过调整比例、积分和微分参数的大小,可以在不同的应用中获得最佳的控制效果。
PID控制广泛应用于机械控制、电力系统、化工过程等领域。
PWM(脉冲宽度调制)是一种电信号调制技术,通过调整脉冲的宽度来控制电路的平均电压。
PWM波形是由一系列周期相等但宽度不同的脉冲组成的。
PWM波形的产生和生成原理如下:1.产生PWM波形:PWM波形可以通过计算机、微控制器或专用的PWM发生器来产生。
一般来说,PWM波形是通过设定一个固定的周期和一个可调节的占空比来实现的。
周期指的是脉冲的重复时间,占空比指的是脉冲高电平的时间与周期的比值。
2.PWM波形生成原理:生成PWM波形的原理是通过不断比较一个固定频率的信号(比较源)和一个波形信号(调制源)来控制输出。
当比较源大于调制源时,输出为高电平;当比较源小于调制源时,输出为低电平。
通过调整调制源的波形和比较源的频率,可以得到不同占空比的PWM波形。
PWM波形的优点是可以实现电路的精确控制,特别适用于需要调节输出电压、频率、功率的应用。
PID控制原理和形式解析
PID控制原理和形式解析PID控制是一种常用的控制算法,它由比例项(P),积分项(I)和微分项(D)组成。
PID控制器根据被控系统输出与设定值之间的差异进行调整,以使系统输出接近设定值,并保持稳定。
以下是对PID控制原理和各项解析的详细说明。
1. 比例项(Proportional term, P):比例项根据被控系统输出与设定值之间的差异进行调整。
它的作用是根据差异的大小产生一个与设定值之间的线性关系,使得差值越大,控制器对输出的调整幅度就越大。
选择合适的比例增益可以改善系统的快速响应和稳态误差。
然而,如果比例增益过大,系统可能会出现超调和振荡的问题。
2. 积分项(Integral term, I):积分项根据被控系统输出与设定值之间的积分累积值进行调整。
积分作用的目的在于消除稳态误差,即通过持续积分的方式将系统输出调整到设定值附近。
积分项对系统的快速响应能力较弱,但对于快速消除稳态误差非常有效。
然而,如果积分增益过大,系统可能会产生过度积分的问题,导致超调或振荡。
3. 微分项(Derivative term, D):微分项根据被控系统输出与设定值之间的变化率进行调整。
它对系统响应速度的快慢有较大影响。
微分项的作用是预测系统未来的状态,并对输出进行调整以减小超调和振荡。
通过对被控系统输出的变化率进行反馈控制,微分项可以提高系统的稳定性和快速响应能力。
然而,如果微分增益过大,系统可能出现过度抑制的问题。
u(t) = Kp * e(t) + Ki * ∫[0,t](e(t)dt) + Kd * d e(t)/dt其中,u(t)是控制器的输出,Kp、Ki和Kd分别是比例、积分和微分增益,e(t)是设定值与被控系统输出之间的差异,de(t)/dt是e(t)的导数。
对于PID控制器的参数调整方法有很多种,例如经验法、Ziegler-Nichols法、最小二乘法等。
在实际应用中,可以根据具体情况选择最合适的调整方法。
pid控制原理详解及实例说明
pid控制原理详解及实例说明PID控制是一种常见的控制系统,它通过比例、积分和微分三个控制参数来实现对系统的控制。
在工业自动化等领域,PID控制被广泛应用,本文将详细介绍PID控制的原理,并通过实例说明其应用。
1. PID控制原理。
PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的控制器。
比例部分的作用是根据偏差的大小来调节控制量,积分部分的作用是根据偏差的累积值来调节控制量,微分部分的作用是根据偏差的变化率来调节控制量。
PID控制器的输出可以表示为:\[ u(t) = K_p e(t) + K_i \int_{0}^{t} e(\tau) d\tau + K_d \frac{de(t)}{dt} \]其中,\(u(t)\)为控制量,\(e(t)\)为偏差,\(K_p\)、\(K_i\)、\(K_d\)分别为比例、积分、微分系数。
比例控制项主要用来减小静差,积分控制项主要用来消除稳态误差,微分控制项主要用来改善系统的动态性能。
通过合理地调节这三个参数,可以实现对系统的精确控制。
2. PID控制实例说明。
为了更好地理解PID控制的原理,我们以温度控制系统为例进行说明。
假设有一个加热器和一个温度传感器组成的温度控制系统,我们希望通过PID 控制器来控制加热器的功率,使得系统的温度稳定在设定的目标温度。
首先,我们需要对系统进行建模,得到系统的传递函数。
然后,根据系统的动态特性和稳态特性来确定PID控制器的参数。
接下来,我们可以通过实验来调节PID控制器的参数,使系统的实际响应与期望的响应尽可能接近。
在实际应用中,我们可以通过调节比例、积分、微分参数来实现对系统的精确控制。
比如,增大比例参数可以加快系统的响应速度,增大积分参数可以减小稳态误差,增大微分参数可以改善系统的动态性能。
通过不断地调节PID控制器的参数,我们可以使系统的温度稳定在设定的目标温度,从而实现对温度的精确控制。
总结。
通过本文的介绍,我们可以了解到PID控制的原理及其在实际系统中的应用。
PID控制算法详细讲解
PID控制算法详细讲解5.1 PID控制原理与程序流程5.1.1过程控制的基本概念过程控制一一对生产过程的某一或某些物理参数进行的自动控制。
一、模拟控制系统图5-1-1基本模拟反馈控制回路被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。
控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。
二、微机过程控制系统微型计算机图5-1-2微机过程控制系统基本框图以微型计算机作为控制器。
控制规律的实现,是通过软件来完成的。
改变控制规律,只要改变相应的程序即可。
三、数字控制系统DDC图5-1-3 DDC系统构成框图DDC(Direct Digital Congtrol)系统是计算机用于过程控制的最典型的一种系统。
微型计算机通过过程输入通道对一个或多个物理量进行检测,并根据确定的控制规律(算法)进行计算,通过输出通道直接去控制执行机构,使各被控量达到预定的要求。
由于计算机的决策直接作用于过程,故称为直接数字控制。
DDC系统也是计算机在工业应用中最普遍的一种形式。
5.1.2模拟PID 调节器 一、模拟PID 控制系统组成二、模拟PID 调节器是一种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进行控制。
、PID 调节器的微分方程u(t)二 K p e(t) T .0e (t)dt T D 售)式中 e(t)二 r(t) 一c(t)2 、PID 调节器的传输函数 三、PID 调节器各校正环节的作用1、 比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节器 立即产生控制作用以减小偏差。
2、 积分环节:主要用于消除静差,提高系统的无差度。
积分作用的强弱取决于积分 时间常数TI ,TI越大,积分作用越弱,反之则越强。
PID控制详解
PID 控制原理和特点 工程实际中,应用最为广泛调节器控制规律为比例、积分、微分控制,简称 PID 控制,又称PID 调节。
PID 控制器问世至今已有近 70 年历史,它以其结构简单、稳定性好、工作可靠、 调整方便而成为工业控制主要技术之一。
当被控对象结构和参数不能完全掌握,或不到精确 数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调 试来确定,这时应用 PID 控制技术最为方便。
即当我们不完全了解一个系统和被控对象﹐或 不能有效测量手段来获系统参数时,最适合用PID 控制技术。
PID 控制,实际中也有PI 和 PD 控制。
PID 控制器就是系统误差,利用比例、积分、微分计算出控制量进行控制。
1、比例控制(P): 比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温 100 度,当开始加热 时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过 100 度时,我们则关闭输出,通常我们会使用这样一个函数e(t) = SP – y(t)-u(t) = e(t)*PSP ——设定值e(t)——误差值y(t)——反馈值u(t)——输出值P ——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为 有滞后性。
也就是如果设定温度是 200度,当采用比例方式控制时,如果P 选择比较大,则会出现当温 度达到 200度输出为 0 后,温度仍然会止不住的向上爬升,比方说升至 230 度,当温度超过 200 度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度 才会止跌回升,比方说降至 170度,最后整个系统会稳定在一定的范围内进行振荡。
如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制2、比例积分控制(PI): 积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比 例一块进行控制,也就是PI 控制。
PID控制原理详解及实例说明
PID控制原理详解及实例说明PID控制器是一种广泛应用于自动控制系统中的一种控制算法。
它可以根据被控对象的反馈信号,调整控制器的输出信号,从而实现对被控对象的控制。
PID控制器适用于各种自动控制系统,包括工业过程控制、机械运动控制和温度控制等。
本文将从PID控制原理和实例两个方面进行详细介绍。
首先,我们来看PID控制的原理。
PID控制器由三个部分组成,分别是比例(P)、积分(I)和微分(D)部分。
这三个部分可以根据具体的控制需求进行组合或选择。
比例部分(P)根据被控对象的反馈信号与期望值之间的偏差,输出与该偏差成正比的控制信号。
积分部分(I)通过积分被控对象的偏差信号,来消除静态误差。
微分部分(D)通过对被控对象的反馈信号进行微分,来预测被控对象未来的变化趋势。
PID控制的原理可以总结为以下几个步骤:首先,获取被控对象的反馈信号和期望值,计算偏差值;然后,根据比例系数和偏差值计算比例部分的输出;接着,将比例部分的输出与被控对象的反馈信号进行积分,并根据积分系数进行调整,计算积分部分的输出;最后,将比例部分和积分部分的输出与被控对象的反馈信号进行微分,并根据微分系数进行调整,计算微分部分的输出。
最终,将比例部分、积分部分和微分部分的输出进行加权求和,得到PID控制器的最终输出信号。
下面,我们以温度控制为例进行说明。
假设我们需要将一个物体加热到指定温度。
我们可以使用PID控制器来控制加热装置的功率,在达到指定温度时自动停止加热。
首先,我们需要将温度传感器的输出与设定温度进行比较,计算出温度的偏差。
然后,根据比例系数和偏差值计算出比例部分的输出。
如果比例部分的输出过大,可能会引发温度的过冲现象。
为了解决这个问题,我们引入积分部分,通过积分被控对象的偏差信号来消除静态误差。
如果积分部分的输出过大,可能会引发温度的振荡现象。
为了解决这个问题,我们引入微分部分,通过对温度的变化趋势进行预测,来控制加热装置的功率的变化速度。
由入门到精通吃透PID
由入门到精通吃透PIDPID控制器(Proportional-Integral-Derivative Controller)是一种常见的控制器,广泛应用于工业自动化领域。
它通过对系统的反馈信号进行比例、积分和微分运算,以达到控制系统稳定和响应速度的目的。
本文将从入门到精通分别介绍PID控制器的基本原理、参数调整方法和应用实例。
一、基本原理在控制系统中,PID控制器根据反馈信号与设定值之间的差异来调整输出信号,从而实现对被控对象的控制。
它由三个基本部分组成:比例控制部分、积分控制部分和微分控制部分。
1. 比例控制部分:根据反馈信号与设定值之间的差异,以一定的比例调节输出信号。
比例控制的作用是根据差异的大小来进行精确调节,但它不能解决系统的超调和稳态误差问题。
2. 积分控制部分:通过累积反馈信号与设定值之间的差异,对输出信号进行调节。
积分控制可以消除系统的稳态误差,但会增大系统的超调。
3. 微分控制部分:通过反馈信号的变化率来预测未来的发展趋势,以调节输出信号。
微分控制可以提高系统的响应速度和稳定性,但过大的微分作用会引入噪声和振荡。
PID控制器的输出信号可以表示为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,u(t)为输出信号,Kp、Ki和Kd分别为比例、积分和微分增益,e(t)为反馈信号与设定值之间的误差,∫e(t)dt为误差的积分,de(t)/dt为误差的微分。
二、参数调整方法PID控制器的参数选择对控制系统的性能至关重要。
有许多方法可以调整PID控制器的参数,常见的包括经验法、试错法和优化算法。
1. 经验法:根据实际经验,选择适当的参数范围,并逐步调整参数,观察系统的响应变化。
这种方法简单直观,但需要具备一定的经验和调试能力。
2. 试错法:通过不断试验不同的参数组合,观察系统的响应,并根据系统的性能指标进行优化调整。
试错法可以快速找到合适的参数组合,但依赖于多次试验和手动调整。
pid控制原理详解及实例说明
pid控制原理详解及实例说明PID控制是一种经典的控制算法,适用于很多控制系统中。
它通过对误差进行反馈调整,以实现系统稳定和快速响应的目标。
PID控制包含三个部分,即比例(Proportional)、积分(Integral)和微分(Derivative)控制。
比例控制(P)是根据误差的大小来调整控制输出的大小。
当误差较大时,控制输出也会相应增加;而当误差较小时,控制输出减小。
比例系数Kp用于调节比例作用的强弱。
积分控制(I)是根据误差的累积值来调整控制输出的大小。
它主要用于消除稳态误差。
积分系数Ki用于调节积分作用的强弱。
微分控制(D)是根据误差的变化率来调整控制输出的大小。
它主要用于快速响应系统的变化。
微分系数Kd用于调节微分作用的强弱。
PID控制的输出值计算公式为:Output = Kp * Error + Ki * Integral(Error) + Kd * Derivative(Error)下面举一个温度控制的例子来解释PID控制的应用。
假设有一个温度控制系统,希望将温度维持在设定值Tset。
系统中有一个可以控制加热器功率的变量,设为u。
温度传感器可以实时测量当前温度T,误差为Error = Tset - T。
比例控制(P):根据误差值来调整加热器功率,公式为u =Kp * Error。
当温度偏低时,加热器功率增加;当温度偏高时,加热器功率减小。
积分控制(I):根据误差的累积值来调整加热器功率,公式为u = Ki * ∫(Error)。
当温度持续偏离设定值时,积分控制会逐渐累积误差,并调整加热器功率,以消除误差。
微分控制(D):根据误差的变化率来调整加热器功率,公式为u = Kd * d(Error)/dt。
当温度变化率较大时,微分控制会对加热器功率进行快速调整,以避免温度过冲。
这样,通过比例、积分和微分控制的组合,可以实现温度控制系统对设定温度的稳定和快速响应。
总结起来,PID控制通过比例、积分和微分控制,根据误差的大小、累积值和变化率来调整控制输出,使系统能够稳定地达到设定目标。
控制系统中PID控制算法的详解
控制系统中PID控制算法的详解在控制系统中,PID控制算法是最常见和经典的控制算法之一。
PID控制算法可以通过对反馈信号进行处理,使得控制系统能够实现稳定、精确的控制输出。
本文将详细介绍PID控制算法的原理、参数调节方法和优化方式。
一、PID控制算法的原理PID控制算法是由三个基本部分组成的:比例控制器、积分控制器和微分控制器。
这三个部分的输入都是反馈信号,并根据不同的算法进行处理,最终输出控制信号,使得系统的输出能够与期望的控制量保持一致。
A. 比例控制器比例控制器是PID控制算法的第一部分,其输入是反馈信号和期望控制量之间的差值,也就是误差信号e。
比例控制器将误差信号与一个比例系数Kp相乘,得到一个控制信号u1,公式如下:u1=Kp*e其中,Kp是比例系数,通过调节Kp的大小,可以改变反馈信号对控制输出的影响程度。
当Kp增大时,控制输出也会随之增大,反之亦然。
B. 积分控制器积分控制器是PID控制算法的第二部分,其输入是误差信号的累积量,也就是控制系统过去一定时间内的误差总和。
积分控制器将误差信号的累积量与一个积分系数Ki相乘,得到一个控制信号u2,公式如下:u2=Ki*∫e dt其中,Ki是积分系数,通过调节Ki的大小,可以改变误差信号积分对控制输出的影响程度。
当Ki增大时,误差信号积分的影响也会增强,控制输出也会随之增大,反之亦然。
C. 微分控制器微分控制器是PID控制算法的第三部分,其输入是误差信号的变化率,也就是控制系统当前误差与上一个采样时间的误差之差,用微分运算符表示为de/dt。
微分控制器将de/dt与一个微分系数Kd相乘,得到一个控制信号u3,公式如下:u3=Kd*de/dt其中,Kd是微分系数,通过调节Kd的大小,可以改变误差信号变化率对控制输出的影响程度。
当Kd增大时,误差信号的变化率的影响也会增强,控制输出也会随之增大,反之亦然。
综合上述三个控制部分可以得到一个PID控制输出信号u,公式如下:u=u1+u2+u3二、PID控制算法的参数调节PID控制算法的实际应用中,需要对其参数进行调节,以达到控制系统稳定、精确的控制输出。
PID控制详解
比例积分微分目录1基本内容调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节.PID 控制器的参数整定是控制系统设计的核心内容。
它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。
P:比例系数 I:积分时间 D:微分时间比例(P)控制比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。
为了消除稳态误差,在控制器中必须引入“积分项”。
积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。
其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。
解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。
所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。
PID控制原理详解及实例说明
PID控制原理详解及实例说明PID控制是一种常用的控制算法,它能够在工业控制系统中实现对各种参数的精确控制。
PID分别代表比例(proportional)、积分(integral)和微分(derivative),这三个参数共同决定了控制系统的输出。
在本文中,我们将详细介绍PID控制的原理,并通过一个实例来说明PID控制的应用。
**PID控制原理**PID控制算法的基本原理是通过反馈来调节控制系统的输出值,使其与期望值尽可能接近。
PID控制器根据当前的误差值(e),积分项(i)和微分项(d)来计算控制输出(u)。
具体来说,控制输出可以表示为以下公式:\[ u(t)=K_p \cdote(t)+K_i\cdot\int{e(t)dt}+K_d\cdot\frac{de(t)}{dt} \]其中,\(K_p\)、\(K_i\)和\(K_d\)分别是比例增益、积分增益和微分增益。
比例项用于根据误差信号的大小来调整输出,积分项用于修正系统的静态误差,微分项用于预测误差的变化趋势。
通过调节这三个参数的数值,可以使PID控制器在不同的控制情况下获得最佳性能。
**实例说明**为了更好地理解PID控制的应用,我们以一个简单的温度控制系统为例进行说明。
假设我们需要设计一个PID控制器来维持一个恒定的温度值,控制系统的输入是一个加热元件的功率,输出是系统的温度。
首先,我们需要建立一个数学模型来描述系统的动态特性。
假设系统的温度动态可以由以下微分方程描述:\[ \tau \cdot \frac{dT(t)}{dt}+T(t)=K \cdot P(t) \]其中,\(T(t)\)代表系统的温度,\(P(t)\)代表加热元件的功率,\(\tau\)代表系统的时间常数,\(K\)代表系统的传递函数。
接下来,我们可以根据这个数学模型来设计PID控制器。
首先,我们需要对系统进行参数调试,确定合适的比例增益\(K_p\)、积分增益\(K_i\)和微分增益\(K_d\)。
PID控制详解
PID控制详解一、PID控制简介PID( Proportional Integral Derivative)控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业过程控制,尤其适用于可建立精确数学模型的确定性控制系统。
在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节,它实际上是一种算法。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
从信号变换的角度而言,超前校正、滞后校正、滞后-超前校正可以总结为比例、积分、微分三种运算及其组合。
PID调节器的适用范围:PID调节控制是一个传统控制方法,它适用于温度、压力、流量、液位等几乎所有现场,不同的现场,仅仅是PID参数应设置不同,只要参数设置得当均可以达到很好的效果。
均可以达到0.1%,甚至更高的控制要求。
PID控制的不足1. 在实际工业生产过程往往具有非线性、时变不确定,难以建立精确的数学模型,常规的PID控制器不能达到理想的控制效果;2. 在实际生产现场中,由于受到参数整定方法烦杂的困扰,常规PID控制器参数往往整定不良、效果欠佳,对运行工况的适应能力很差。
二、PID控制器各校正环节任何闭环控制系统的首要任务是要稳(稳定)、快(快速)、准(准确)的响应命令。
PID调整的主要工作就是如何实现这一任务。
增大比例系数P将加快系统的响应,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现,过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。
pid通俗讲解
pid通俗讲解
PID全称是Proportional-Integral-Derivative(比例、积分、微分)控制,是一种广泛应用于工业过程控制的控制策略,也是最早发展的控制策略之一。
PID 控制器是一种将比例、积分、微分三部分合而为一的控制器,通过计算出控制量进行控制。
比例控制P是一种基于反馈的控制方式,能够快速调整系统输出,以满足需求的变化。
它将偏差(目标值和实际值的差值)乘以比例系数Kp作为控制输出,以确保输出能够快速跟上偏差的变化。
比例控制可以快速调整系统输出,在一些简单的系统中可以单独使用。
积分控制I是一种基于累计的控制方式,用于消除静态误差。
它的输出是过去偏差的积分值,即偏差乘以积分时间Ti。
积分控制可以消除静态误差,因此在一些需要保持一定稳定性的系统中可以单独使用。
微分控制D是一种基于变化趋势的控制方式,用于改善系统动态品质。
它的输出是偏差的变化率,即偏差的导数。
微分控制可以预测未来的变化趋势,并在偏差还未达到预期值时进行提前调整,从而改善系统动态品质。
在实际应用中,这三种控制方式可以单独使用,也可以结合使用。
例如,在一些简单的系统中,可以单独使用比例控制,以保证系统的快速响应。
在一些复杂的系统中,可以结合使用比例、积分、微分三种控制方式,以达到更好的控制效果。
需要注意的是,PID控制需要通过参数整定来达到最佳的控制效果。
不同的系统需要不同的PID参数,通常需要根据实际情况进行调整。
调整顺序为比例、积分、微分。
在调整参数时,需要注意曲线振荡的情况,此时需要调整比例度盘或积分时间,理想的曲线为前高后低4比1。
PID控制详细介绍
PID控制详细介绍PID控制是一种常用的反馈控制算法,常用于工业过程控制系统中。
PID控制是根据被控对象的输出与期望值之间的误差,通过调节控制器的输出来驱动被控对象,以使输出接近期望值。
PID控制算法通过不断地调整比例、积分和微分三个参数来实现系统的动态响应和稳态性能。
下面将详细介绍PID控制算法的原理及其参数调节方法。
PID控制算法基于以下原理:比例控制器通过测量被控对象的输出与期望值的误差,将该误差乘以一个比例常数Kp作为控制变量的改变量;积分控制器则根据误差的累积值乘以一个积分常数Ki,将结果作为控制变量的改变量;微分控制器通过测量误差的变化率乘以一个微分常数Kd,将结果作为控制变量的改变量。
总的控制变量即为上述三个改变量之和。
比例控制器起到的作用是实现系统的快速响应,但不能消除稳态误差;积分控制器的作用是消除稳态误差,但响应时间较慢,导致系统的超调现象;微分控制器的作用是根据误差的变化率进行控制,用于改善系统的动态性能,减小超调现象和震荡。
1.经验法:根据经验选择参数,根据系统的特性和需求来调整参数,但该方法存在主观性较强和不易精确控制的问题。
2. Ziegler-Nichols方法:这是一种基于试验的调参方法,首先将比例控制器参数Kp设为零,然后逐渐增加,直到系统发生振荡。
根据振荡的周期和振幅,可以得到系统的临界增益Kcr和临界周期Tcr,进而计算出Kp、Ki和Kd的值。
3.平衡点附近方法:首先通过施加一个步变输入,使系统达到一个稳态;然后通过观察系统的响应曲线,根据系统的平衡点附近的动态特性来调整参数。
4.自整定法:根据被控对象的频率响应特性和控制系统的要求,使用自整定算法来自动调整PID参数。
常见的自整定算法有最小二乘法、最小方差法和模拟退火法等。
总结来说,PID控制是一种基于反馈的控制算法,通过不断调整控制器的输出来使系统的输出接近期望值。
PID控制算法的原理主要基于比例、积分和微分三个环节,通过调整这三个环节的参数来实现系统的快速响应和稳态性能。
PID控制原理详解及实例说明
PID控制原理详解及实例说明PID控制是一种常用的控制算法,它通过测量系统的状态与设定值之间的差异,利用比例、积分和微分三个控制参数来调节系统的控制量,使其尽量接近设定值。
PID控制器通过不断调整这三个参数,可以在稳态误差小的情况下快速、平稳地将系统控制到设定值。
PID控制器的输出由三个部分组成:比例项、积分项和微分项。
比例项是测量误差与设定值之间的比例关系,调整比例参数可以控制系统的敏感程度;积分项是历史误差的积累,调整积分参数可以消除稳态误差;微分项是测量误差的变化率,调整微分参数可以增强系统的稳定性。
PID控制器的输出可以用以下公式表示:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,u(t)是控制器的输出,e(t)是测量误差,Kp、Ki和Kd是分别对应比例、积分和微分参数。
接下来以一个温度控制系统为例说明PID控制的原理:假设有一个恒温箱,我们希望将箱内的温度控制在一个设定值。
首先,我们需要测量箱内的温度和设定值之间的差异,即测量误差。
然后,根据测量误差的大小,我们可以调整控制器的输出,通过增加或减少加热器的功率,使温度接近设定值。
在PID控制中,我们可以通过调节比例参数Kp来控制系统的灵敏度。
增大Kp可以使系统对误差更敏感,但过大的Kp可能导致系统震荡。
当温度误差较大时,控制器会输出较大的功率,加热箱内的温度快速升高;当温度接近设定值时,控制器会输出较小的功率,使温度稳定在设定值附近。
积分参数Ki用于消除稳态误差。
如果系统存在稳态误差,说明温度无法完全达到设定值,可能是由于传感器或加热器的不精确性引起的。
通过调节Ki的大小,积分项可以自动调整系统的控制量,消除稳态误差。
微分参数Kd用于增强系统的稳定性。
如果系统的温度变化率很大,说明加热或冷却过程不够平稳。
通过调节Kd的大小,微分项可以抑制温度的剧烈波动,使系统更加稳定。
综上所述,PID控制器通过比例、积分和微分三个参数的调节,可以实现快速、平稳地将系统控制到设定值。
(完整版)PID控制详解
PID控制原理和特点工程实际中,应用最为广泛调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要技术之一。
当被控对象结构和参数不能完全掌握,或不到精确数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象﹐或不能有效测量手段来获系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是系统误差,利用比例、积分、微分计算出控制量进行控制。
1、比例控制(P):比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数e(t) = SP – y(t)-u(t) = e(t)*PSP——设定值e(t)——误差值y(t)——反馈值u(t)——输出值P——比例系数滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。
也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。
如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制2、比例积分控制(PI):积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。
其公式有很多种,但大多差别不大,标准公式如下:u(t) = Kp*e(t) + Ki∑e(t) +u0u(t)——输出Kp——比例放大系数Ki——积分放大系数e(t)——误差u0——控制量基准值(基础偏差)大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的PI两个结合使用的情况下,我们的调整方式如下:1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,我们还可以在些P值的基础上再加大一点。
pid通俗讲解
pid通俗讲解PID控制是一种常见的闭环控制算法,它广泛应用于工业过程控制和自动化系统中。
PID控制器根据系统反馈信号与给定的目标值进行比较,并根据误差的大小调整控制输出,以使系统实现期望的控制效果。
一、PID控制的基本概念1.1 PID控制器的含义PID控制是指用比例(P)、积分(I)和微分(D)三个参数对系统进行控制的方式。
控制器通过比较给定值和反馈信号的差异,并根据这个差异调整输出信号,以使系统达到所期望的状态。
1.2 PID控制器的结构PID控制器由比例环节、积分环节和微分环节组成。
比例环节根据给定值和反馈信号的差异,按照一定比例调整输出信号;积分环节根据反馈信号与给定值的累积误差来调整输出信号;微分环节根据反馈信号的变化速率来调整输出信号。
1.3 PID参数的选择PID控制器的参数选择对于控制效果非常重要。
一般情况下,可以根据系统的特性和需求来优化PID参数。
比例参数决定了控制器对于误差的敏感程度,积分参数可以消除长期的误差累积,微分参数可以对系统的快速变化作出快速的响应。
二、PID控制的原理2.1 比例控制比例控制是PID控制中最基本的控制方式。
比例控制器根据给定值和反馈信号的差异按照一定的比例系数进行调整。
当比例系数增大时,控制器对误差的敏感程度增加,系统的过渡响应时间缩短,但可能引起系统的振荡和不稳定。
当比例系数过小时,系统的控制效果较差,可能导致较大的偏差。
2.2 积分控制积分控制是PID控制中的另一种控制方式,它可以消除长期的误差累积。
积分控制器根据反馈信号与给定值的累积误差进行调整。
当系统存在常态误差时,积分控制器可以通过积分作用逐渐消除误差。
但当积分系数过大时,会导致系统的过度抵消误差,甚至引起系统的不稳定。
2.3 微分控制微分控制是PID控制中的第三种控制方式,它主要用于响应系统快速变化的情况。
微分控制器根据反馈信号的变化速率来调整输出信号。
当系统存在突变或快速变化的情况时,微分控制器可以通过快速响应减小系统的超调和振荡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PID控制原理和特点工程实际中,应用最为广泛调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要技术之一。
当被控对象结构和参数不能完全掌握,或不到精确数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象﹐或不能有效测量手段来获系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是系统误差,利用比例、积分、微分计算出控制量进行控制。
1、比例控制(P):比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数e(t) = SP – y(t)-u(t) = e(t)*PSP——设定值e(t)——误差值y(t)——反馈值u(t)——输出值P——比例系数滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。
也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。
如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制2、比例积分控制(PI):积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。
其公式有很多种,但大多差别不大,标准公式如下:u(t) = Kp*e(t) + Ki∑e(t) +u0u(t)——输出Kp——比例放大系数Ki——积分放大系数e(t)——误差u0——控制量基准值(基础偏差)大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的PI两个结合使用的情况下,我们的调整方式如下:1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,我们还可以在些P值的基础上再加大一点。
2、加大I值,直到输出达到设定值为止。
3、等系统冷却后,再重上电,看看系统的超调是否过大,加热速度是否太慢。
通过上面的这个调试过程,我们可以看到P值主要可以用来调整系统的响应速度,但太大会增大超调量和稳定时间;而I值主要用来减小静态误差。
(超调量也叫最大偏差(maximum deviation)或过冲量。
偏差是指被调参数与给定值的差。
对于稳定的定值调节系统来说,过渡过程的最大偏差就是被调参数第一个波峰值与给定值的差A。
随动调节系统中常采用超调量这个指标B。
在y(∞)不等于给定值时:超调量=[Y(Tm)-Y(∞)]/Y(∞)×100%,(A—最大偏差;B—超调量)。
超调量是指输出量的最大值减去稳态值,与稳态值之比的百分数,二阶系统稳态输出为最大输出在峰值时为最大,把tm代入输出公式,减1除t等于把ξ代入,可求出%表达式。
超调量只与阻尼比与有关。
对于RLC二阶系统,阻尼比ξ=L/2R * sqrt(1/(LC)),ξ越大,超调量越小。
)pid 算法控制点目前包含三种比较简单的PID控制算法,分别是:增量式算法,位置式算法,微分先行。
这三种是最简单的基本算法,各有其特点,一般能满足控制的大部份要求:1、PID增量式算法离散化公式(注:各符号含义如下):u(t)----- 控制器的输出值。
e(t)----- 控制器输入与设定值之间的误差。
Kp------- 比例系数。
Ti------- 积分时间常数。
Td------- 微分时间常数。
T-------- 调节周期。
2、积分分离法离散化公式:Δu(t) = q0e(t) + q1e(t-1) + q2e(t-2) 当|e(t)|≤β时q0 = Kp(1+T/Ti+Td/T)q1 = -Kp(1+2Td/T)q2 = Kp Td /T当|e(t)|>β时q0 = Kp(1+Td/T)q1 = -Kp(1+2Td/T)q2 = Kp Td /Tu(t) = u(t-1) + Δu(t)注:各符号含义如下u(t)----- 控制器的输出值。
e(t)----- 控制器输入与设定值之间的误差。
Kp------- 比例系数。
Ti------- 积分时间常数。
Td------- 微分时间常数。
(有的地方用"Kd"表示)T-------- 调节周期。
β------- 积分分离阈值3、微分先行PID算法离散化公式:u(t)----- 控制器的输出值。
e(t)----- 控制器输入与设定值之间的误差。
Kp------- 比例系数。
Ti------- 积分时间常数。
Td------- 微分时间常数。
(有的地方用"Kd"表示)T-------- 调节周期。
β------- 积分分离阈值PID控制:因为PI系统中的I的存在会使整个控制系统的响应速度受到影响,为了解决这个问题,我们在控制中增加了D微分项,微分项主要用来解决系统的响应速度问题,其完整的公式如下:u(t) = Kp*e(t) + Ki∑e(t) + Kd[e(t) – e(t-1)]+u0在PID的调试过程中,我们应注意以下步骤:1、关闭I和D,也就是设为0.加大P,使其产生振荡;2、减小P,找到临界振荡点;3、加大I,使其达到目标值;4、重新上电看超调、振荡和稳定时间是否吻合要求;5、针对超调和振荡的情况适当的增加一些微分项;6、注意所有调试均应在最大负载的情况下调试,这样才能保证调试完的结果可以在全工作范围内均有效;PID控制器参数整定PID控制器参数整定是控制系统设计核心内容。
它是被控过程特性确定PID控制器比例系数、积分时间和微分时间大小。
PID控制器参数整定方法很多,概括起来有两大类:一是理论计算整定法。
它主依据系统数学模型,理论计算确定控制器参数。
这种方法所到计算数据未必可以直接用,还必须工程实际进行调整和修改。
二是工程整定方法,它主要依赖工程经验,直接控制系统试验中进行,且方法简单、易于掌握,工程实际中被广泛采用。
PID控制器参数工程整定方法,主要有临界比例法、反应曲线法和衰减法。
三种方法各有其特点,其共同点都是试验,然后工程经验公式对控制器参数进行整定。
但采用哪一种方法所到控制器参数,都需要实际运行中进行最后调整与完善。
现一般采用是临界比例法。
利用该方法进行 PID 控制器参数整定步骤如下:(1)首先预选择一个足够短采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入阶跃响应出现临界振荡,记下这时比例放大系数和临界振荡周期;(3)一定控制度下公式计算到PID控制器参数。
PID控制最通俗的解释与PID参数的整定方法[ 2010/6/18 15:15:45 | Author: 廖老师 ] PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。
参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。
阅读本文不需要高深的数学知识。
1.比例控制有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。
下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。
假设用热电偶检测炉温,用数字仪表显示温度值。
在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。
然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。
操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。
炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。
炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。
上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。
闭环中存在着各种各样的延迟作用。
例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。
由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。
比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。
比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。
增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。
但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。
单纯的比例控制很难保证调节得恰到好处,完全消除误差。
2.积分控制PID控制器中的积分对应于图1中误差曲线与坐标轴包围的面积(图中的灰色部分)。
PID控制程序是周期性执行的,执行的周期称为采样周期。
计算机的程序用图1中各矩形面积之和来近似精确的积分,图中的TS就是采样周期。
图1 积分运算示意图每次PID运算时,在原来的积分值的基础上,增加一个与当前的误差值ev(n)成正比的微小部分。
误差为负值时,积分的增量为负。
手动调节温度时,积分控制相当于根据当时的误差值,周期性地微调电位器的角度,每次调节的角度增量值与当时的误差值成正比。
温度低于设定值时误差为正,积分项增大,使加热电流逐渐增大,反之积分项减小。
因此只要误差不为零,控制器的输出就会因为积分作用而不断变化。
积分调节的“大方向”是正确的,积分项有减小误差的作用。
一直要到系统处于稳定状态,这时误差恒为零,比例部分和微分部分均为零,积分部分才不再变化,并且刚好等于稳态时需要的控制器的输出值,对应于上述温度控制系统中电位器转角的位置L。
因此积分部分的作用是消除稳态误差,提高控制精度,积分作用一般是必须的。