概率统计-习地的题目及答案详解(1)

合集下载

概率统计参考答案(习题一)

概率统计参考答案(习题一)

概率统计参考答案(习题一)1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。

解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。

(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。

则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)} A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。

2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。

3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。

解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C);(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生: BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。

4、设P(A)=0.5,P(B)=0.6,问:(1)什么条件下,P(AB)取得最大值,最大值是多少?解:由P(AUB)=P(A)+P(B)-P(AB)得到P(AB)=P(A)+P(B)-P(AUB)<=0.5+0.6-0.6=0.5,此时,P(AUB)=0.6。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案### 概率统计试题及答案#### 一、选择题1. 题目一:设随机变量X服从正态分布N(0, σ^2),若P(X ≤ 0) = 0.5,则σ的值为多少?- A. 0- B. 1- C. 2- D. 无法确定答案:B2. 题目二:若随机变量Y服从二项分布B(n, p),且已知E(Y) = 5,Var(Y) = 2,求n和p的值。

- A. n = 10, p = 0.5- B. n = 5, p = 0.4- C. n = 2, p = 0.75- D. n = 1, p = 5答案:A#### 二、填空题3. 若随机变量X服从均匀分布U(a, b),其概率密度函数为f(x) = \[ \frac{1}{b-a} \],当a = 0,b = 2时,求X的期望E(X)和方差Var(X)。

- E(X) = \[ \frac{1}{2}(b + a) \] = \[ \frac{2}{2} \] = 1 - Var(X) = \[ \frac{(b - a)^2}{12} \] = \[ \frac{2^2}{12}\] = \[ \frac{4}{12} \]4. 对于一个样本数据集{2, 3, 4, 5, 6},求其样本均值和样本方差。

- 样本均值 \( \bar{x} = \frac{2+3+4+5+6}{5} = 4 \)- 样本方差 \( s^2 = \frac{(2-4)^2 + (3-4)^2 + (4-4)^2 +(5-4)^2 + (6-4)^2}{5-1} = \frac{2+1+0+1+4}{4} = 2 \)#### 三、简答题5. 简述大数定律和中心极限定理的区别和联系。

- 大数定律:随着样本容量的增加,样本均值会越来越接近总体均值。

- 中心极限定理:无论总体分布如何,样本均值的分布会趋近于正态分布,当样本容量足够大时。

#### 四、计算题6. 假设有一批产品,其中次品率为0.1,求:- (a) 随机抽取5件产品,至少有1件次品的概率。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。

本文将提供一套概率统计的试题及答案,以供学习和复习之用。

一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。

答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。

答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。

答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。

答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。

答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案

概率统计第一章概率论的基础知识习题与答案概率论与数理统计概率论的基础知识习题一、选择题1、下列关系正确的是( )。

A、0∈∅B、{0}∅=∅⊂D、{0}∅∈C、{0}答案:C2、设{}{}2222=+==+=,则( )。

P x y x y Q x y x y(,)1,(,)4A、P Q⊂B、P Q<C、P Q⊂与P Q⊃都不对D、4P Q=答案:C二、填空1、6个学生和一个老师并排照相,让老师在正中间共有________种排法。

答案:6!720=2、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。

答案:723、编号为1,2,3,4,5的5个小球任意地放到编号为A、B、C、D、E、F的六个小盒子中,概率论的基础知识第 1 页(共 19 页)每一个盒至多可放一球,则不同的放法有_________种。

答案:()65432720⨯⨯⨯⨯=4、设由十个数字0,1,2,3, ,9的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是_______________。

答案:710个5、九名战士排成一队,正班长必须排在前头,副班长必须排在后头,共有_______________种不同的排法。

答案:77!5040P==6、平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。

答案:1207、5个篮球队员,分工打右前锋,左前锋,中锋,左后卫右后卫5个位置共有_____________种分工方法?答案:5!120=8、6个毕业生,两个留校,另4人分配到4个概率论的基础知识第 2 页(共 19 页)不同单位,每单位1人。

则分配方法有______种。

答案:(6543)360⨯⨯⨯=9、平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_____________条不同的直线。

答案:6610、编号为1,2,3,4,5的5个小球,任意地放到编号为A,B,C,D,E,F,的六个小箱子中,每个箱子中可放0至5个球,则不同的放法有___________种。

概率论与数理统计习习题解答

概率论与数理统计习习题解答

欢迎阅读第一章随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和;(2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,(6)A、B、C至少有一个发生;(7)A、B、C不多于一个发生;(8)A、B、C至少有两个发生.解所求的事件表示如下欢迎阅读3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立?(3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立? 解(1(2(3(4立.4.设解 所以 5. 解 则–6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率:A ={两球颜色相同},B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B 的事件数为1111112a b b a a b A A A A A A +=, 则2211222()()a b a b a ba bA A A AP A P B A A +++==欢迎阅读7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率;(2)每次从中任取一件,有放回地取三次,求取到三次次品的概率.解 (1)设A={取得三件次品} 则33人颗,(2) 取到两颗白子,一颗黑子的概率; (3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则欢迎阅读3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C .(3) 设C={取三颗子中至少的一颗黑子} ()1()0.745=-=P C P A .(4) 设D={取到三颗子颜色相同}3384+C C 10. (年按(2解(1) (2)11. 将成解 因此有12. 从解 要共有45C 13. 解 设A i = {第i 个零件不合格},i=1,2,3, 则()1i i P A p i==+ 所以()11i i i P A p i=-=+ 由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =,123123()()()()P A A A P A P A P A =欢迎阅读14.假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解设A={目标出现在射程内},B={射击击中目标},B i ={第i次击中目标}, i=1,2.则P(A)=0.7, P(B i|A)=0.6 另外B=B1+B2,由全概率公式,件C={产品中次品不超两件}, 由题意由于A0, A1, A2, A3, A4构成了一个完备的事件组, 由全概率公式由Bayes公式故欢迎阅读16.由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解设B={三件都是好的},A1={损坏2%}, A2={损坏10%}, A1={损坏P(A2由为17.和(1(2)通过验收的箱中确定无残次品的概率β.解设H i={箱中实际有的次品数}, 0,1,2i, A={通过验收}则P(H0)=0.8, P(H1)=0.15, P(H2)=0.05, 那么有:(1)由全概率公式(2)由Bayes公式得欢迎阅读18.一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被使用的概率为0.1,问在同一时刻(1)恰有两台设备被使用的概率是多少?(2)至少有三台设备被使用的概率是多少?解设5台设备在同一时刻是否工作是相互独立的, 因此本题可以第二章 随机变量及其分布1. 有10件产品,其中正品8件,次品两件,现从中任取两件,求取得次品数X 的分律. 解 X 的分布率如下表所示:律?解 由题意, 1()1k f x ∞==∑, 即解得:1(1)C e λ=-7. 已知X的分布律 X -112P162636求:(1)X 的分布函数;(2)12P X ⎛⎫< ⎪⎝⎭;(3)312P X ⎛⎫<≤ ⎪⎝⎭.解 (1) X 的分布函数为()()k k x xF x P X x p ≤=≤=∑(1) P(A) =2232233(2)(1)3(1)P C p p p p -=-=-(2) P(B) =22323333233333(2)(3)(1)(1)32P P C p p C p p p p --+=-+-=- 12. 一电话交换台每分钟的呼唤次数服从参数为4的泊松分布,求: 13. (1)每分钟恰有6次呼唤的概率; 14. (2)每分钟的呼唤次数不超过10次的概率.解(1) P(X=6) =6440.104!6!k e e k λλ--==或者P(X=6) = !kek λλ-446744!!k k k k e e k k ∞∞--===-∑∑= 0.21487 – 0.11067 =X~B(1000, 0.003), 由于n 比较大,p 比较小,np=3, 因此可以用泊松分布来近似, 即X~π(3). 因此 (1) P(X=2)2330.2242!e -==(2)323(2)1(2)110.80080.1992!k k P X P X e k ∞-=<=-≥=-=-=∑(3)333(2)(2)0.5768!k k P X P X e k ∞-=>=>==∑(4)313(1)0.9502!k k P X e k ∞-=≥==∑17. 设连续型随机变量X 的分布函数为18.20,0(),011,1x F x kx x x <⎧⎪=≤≤⎨⎪>⎩1/21/1/21111arcsin 1/22663P x x ππππ--⎛⎫⎛⎫<===-= ⎪ ⎪-⎝⎭⎝⎭⎰ (3) X 的分布函数 21. 某城市每天用电量不超过100万千瓦时,以Z 表示每天的耗电率(即用电量除以100万千瓦时),它具有分布密度为若该城市每天的供电量仅有80万千瓦时,求供电量不够需要的概率是多少?如每天供电量为90万千瓦时又是怎样的?解 如果供电量只有80万千瓦,供电量不够用的概率为: P(Z>80/100)=P(Z>0.8)=120.812(1)0.0272x x dx -=⎰如果供电量只有80万千瓦,供电量不够用的概率为:P(Z>90/100)=P(Z>0.9)=120.912(1)0.0037x x dx -=⎰解 由于()()10|10|10222a X a P X a P a X a P --⎛⎫-<=-<-<=<<⎪⎝⎭所以0.952a ⎛⎫Φ= ⎪⎝⎭查表可得,2a=1.65即 a = 3.325.设某台机器生产的螺栓的长度X服从正态分布N(10.05,0.062),规定X在范围(10.05±0.12)厘米内为合格品,求螺栓不合格的概率.解由题意,设P为合格的概率,则则不合格的概率=1?P = 0.045626.设随机变量X服从正态分布N(60,9),求分点x1,x2,使X分别落在(-∞,x1)、(x1,x2)、(x2,+∞)的概率之试求:(1)2X的分布列;(2)x2的分布列.解(1) 2X的分布列如下2X -4 0 4 6(2) x 2的分布列 29. 设X 服从N(0,1)分布,Y =|X |的密度函数.解 的反函数为,0h(y)=,x x x x -<⎧⎨≥⎩, 从而可得Y=|X|的密度函数为:当y>0时,222222()()|()'|()|'|yyy Y X X f y f y y f y y e e e---=--+==解 由于ln y x =严格单调,其反函数为(),'()y y h y e h y e ==且, 则 32. 设随机变量X 服从N(μ,2σ)分布,求Y =x e 的分布密度. 解 由于x y e =严格单调,其反函数为1()ln ,'(),h y y h y ==且yy>0,则 当0y ≤时()0Y f y =因此221(ln )2,0()0,y Y y f y y μσ--⎧>=≤⎩33. 假设随机变量X 服从参数为2的指数分布,证明:Y =21x e --在区间(0, 1)上服从均匀分布.解 由于21x y e -=-在(0, +∞)上单调增函数,其反函数为:1()ln(1),01,2h y y y =--<<35. 在10件产品中有2件一级品,7件二级品和1件次品,从10件产品中无放回抽取3件,用X 表示其中一级品件数,Y 表示其中二级品件数,求: 36. (1)X 与Y 的联合概率分布; (2)X 、Y 的边缘概率分布;(3)X 与Y 相互独立吗?解 根据题意,X 只能取0,1,2,Y 可取的值有:0,1,2,3,由古典概型公式得:(1) 271310(,),i j k ijC C C p P X i Y j C====其中,3,0,1,2,i j k i ++==0,1,2,3j =P(X=4,Y=4)=1/6+1/6+1/6=1/2.38. 设二维连续型随机变量(X, Y)的联合分布函数为(,)arctan arctan 23x y F x y A B C ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭,求:(1)系数A 、B 及C ; (2)(X, Y)的联合概率密度; (3)X ,Y 的边缘分布函数及边缘概率密度;(4)求:(1)常数A ;(2)X ,Y 的边缘概率密度;(3)(01,02)P X Y <≤<≤.解 (1) 由联合概率密度的性质,可得解得 A=12.(2) X, Y 的边缘概率密度分别为:(3) (01,02)P x y <≤<≤41. 设随机变量(X ,Y )的联合概率密度为 求 P(X +Y ≥1).解 由题意,所求的概率就是(X,Y)落入由直线x=0 ,x=1, y=0, y=2, x+y=1围的区域G 中, 则 42. 设二维随机变量(X, Y)在图2.20所示的区域G 上服从均匀分布,试求(X, Y)的联合概率密度及边缘概率密度.12153101434求二维随机变量(X ,Y )的联合分布律. 解 由独立性,计算如下表46. 设X123Y函数为 求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <1时, ()0X f x =当x ≥1时,113331222()1y y X f x e dy e x x x+∞--+∞-===⎰再计算()Y f y , 当y <1时, ()0Y f y =当y ≥1时,11132121()1y y y Y f y e dx e e x x+∞---+∞-===⎰可见, (,)()()X Y f x y f x f y =, 所以随机变量X, Y 相互独立49. 设二维随机变量(X ,Y )的联合分布函数为求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y因此, 得Z 的密度函数为: 51. 设随机变量X 和Y 独立,X ~2()N μ,σ,Y 服从[-b ,b ](b>0)上的均匀分布,求随机变量Z =X +Y 的分布密度. 解 解法一 由题意,令)/,,[,],z y a t dy dt y b b σσ--==-∈-(则 解法二 52. 设X 服从参数为12的指数分布,Y 服从参数为13的指数分布,且X 与Y 独立,求Z =X +Y 的密度函数. 解 由题设,X ~12120,0(),0X xx f x e x -≤⎧⎪=⎨>, Y ~13130,0(),0Y xx f y e x -≤⎧⎪=⎨> P(Z=2)=P(X=2,Y=0) + P(X=0,Y=2) + P(X=1,Y=1) = 0.19 P(Z=3)=P(X=3,Y=0) + P(X=1,Y=2) + P(X=2,Y=1) = 0.35 P(Z=4)=P(X=2,Y=2) + P(X=3,Y=1) = 0.28 P(Z=5)=P(X=3,Y=2) = 0.12U∈{0,1,2,3}同理,V=min(X,Y)的分布分别如下V∈{0,1,2}第三章 随机变量的数字特征1. 随机变量X 的分布列为X -1 0 1212P13161611214求E(X),E(-X +1),E(X 2) 解111111136261243()1012E X =-⨯+⨯+⨯+⨯+⨯=5. 设随机变量X 的密度函数为 求E(2X),E(2x e -). 解(2)2()2x E X xf x dx xe dx ∞∞--∞==⎰⎰6. 对球的直径作近似测量,其值均匀分布在区间[a ,b ]上,求球的体积的数学期望.解 由题意,球的直接D~U(a,b), 球的体积V=()3432D π因此,341()()32bax E V Vf x dx dx b aπ∞-∞⎛⎫== ⎪-⎝⎭⎰⎰ 7. 设随机变量X ,Y 的密度函数分别为 求E(X +Y),E(2X -3Y 2). 解()()()E X Y E X E Y +=+8. 设随机函数X 和Y 相互独立,其密度函数为E(X 1+X 2+…+X 12)=12E(X) = 42D(X 1+X 2+…+X 12) =D(X 1)+D(X 2)+…+D(X 12)=12D(X)=35 12. 将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球,将一只球装入与球同号码的盒子中,称为一个配对,记X 为配对的个数,求E(X), D(X).解 (1)直接求X 的分布律有些困难,我们引进新的随机变量X k1,0,k k X k ⎧=⎨⎩第只球装入第k 号盒子第只球没装入第k 号盒子,则有:1nkk X X ==∑,X k 服0-1分布因此:11(0)11,(1),kk P X p P X p n n==-=-===解 由切比雪夫不等式, 取27.5, 2.5==εσ, 得 22.52(()7.5)7.545P X E X -≥≤=.16. 在每次试验中,事件A 发生的概率为0.5,如果作100次独立试验,设事件A 发生的次数为X ,试利用切比雪夫不等式估计X 在40到60之间取值的概率解由题意,X~B(100,0.5), 则E(X) = np = 50, D(X) = npq = 25根据切比雪夫不等式, 有253=-=.1100417.设连续型随机变量X的一切可能值在区间[a,b]内,其密度函数为()f x,证明:(1)a≤E(X)≤b;XY矩阵.解由题设,E(XY) = 0×0×0.1+0×1×0.2+1×0×0.3+1×1×0.4 = 0.4cov(X,Y) = E(XY)?E(X)E(Y) = 0.4?0.6×0.7 = ?0.02协方差矩阵为19.设二维随机变量(X,Y)的分布律为X-1 01Y-1 18 1818 0 18 01821. 已知随机变量(X, Y)服从正态分布,且E(X)=E(Y)=0,D(X)=16,D(Y)=25,cov(X,Y)=12,求(X, Y)的密度函数.解 由题意, 123205===ρ则密度函数为22.设随机变量X和Y相互独立,且E(X)=E(Y)=0,D(X)=D(Y)=1,试求E((X+Y)2).解()()22222+=++=++E X Y E X Y XY E X E Y E XY()2()()(2)由于()()222222-=-=D(X)=E(X)E(X)E(X)=1,D(Y)=E(Y)E(Y)E(Y)=1因此有23.设随机变量X和Y的方差分别为25,36,相关系数为0.4,试求D(X+Y),D(X-Y).第四章 大数定律与中心极限定理1. 设X i ,i =1,2,…,50是相互独立的随机变量,且它们都服从参数为?=0.02的泊松分布. 记X =X 1+X 2+…+X 50,试利用中心限定理计算P(X ≥2). 解 由题意,E(X i ) = D(X i ) = ????????,501ii X X ==∑????????由中心极限定理???1X ==-近似服从标准正态分布解 设X i 表示一部分的长度, i=1, 2, …, 10. 由于X 1, X 2, …, X 10相互独立, 且E(X i ) =2, D(X i )=0.052, 根据独立同分布中心极限定理,随机变量1011(2)(20)0.158kkX X=-=-近似地服从标准正态分布.于是4.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5, 0.5)上服从均匀分布.查表得=1.645,解得:n=443即443个数相加可使误差总和绝对值小于10的概率为0.05的概率5.为了确定事件A的概率,进行了一系列试验. 在100次试验中,事件A发生了36次,如果取频率0.36作为事件A的概率p的近似值,求误差小于0.05的概率.解(删除)6.一个复杂系统由10000个相互独立的部件组成,在系统运行期间,每个部件损坏的概率为0.1,又知为使系统正常运行,至少有89%的部件工作.(1)求系统的可靠度(系统正常运行的概率);(2)上述系统由n个相互独立的部件组成,而且要求至问该单位总机要安装多少条外线才能以90%以上的概率保证分机使用外线时不等待?解设X为某时刻需要使用外线的户数(分机数),显然X~(200, 0.05),E(X) = np = 10, D(X) = np(n-p) = 9.5.设k是为要设置的外线的条数,要保证每个要使用外线的用户能够使用上外线,必须有k≥X. 根据题意应有:这里n=200,较大,可使用中心极限定理,近似地有X~N(10, 9.5):1.29,13.97k ≥≥, 取k = 14即至少14条外线时,才能保证要使用外线的用户都能使用外线的概率大于95%.8. 设μn 为n 重伯努利试验中成功的次数,p 为每次成功的概率,当n 充分大时,试用棣莫弗-拉普拉斯定律证明6的概率保证其中良种的比例与16相差多少?这时相应的良种粒数落在哪个范围?解 设X 为6000粒种子中良种粒数,设所求的差异为p, 则所求的概率为:因为,X ~ B(6000, 1/6), E(X) = np = 1000, D(X) = np(1-p)= 2500/3, 由棣莫弗-拉普拉斯定理,有因此0.995Φ=查表可得 2.575,=解得0.0124p==由于0.0124600074⨯=所以, 良种的粒数大约落在区间(926, 1074)之间.第五章 数理统计的基本概念1. 在总体N(52,632)中随机抽取一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率. 解 由题意,由定理1 (1),~(0,1)N = 2. 在总体N(80,202)中随机抽取一容量为100的样本,求样本均值与总体均值的绝对值大于3的概率是多少? 解 这里总体均值为?=80, ?=20, n=100, 由定理1(1)1936,1697,3030,2424,2020,2909,1815,2020,2310.采用下面简化计算法计算样本均值和样本方差. 即先作变换2000i i y x =-,再计算y 与2y S ,然后利用第5题中的公式获得x 和2x S 的数值.解做变换后,得到的样本值为:-61,-303,1030,424,20,-91,-185,20,3107.某地抽样调查了1995年6月30个工人月工资的数据,试画出它们的直方图,然后利用组中间值给出经验分布函数.440 444 556 430 380 420 500 430 420 384合计:30 1由于第6组与第9组频数为0,可将其与下一组合并。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案在概率统计学中,试题和答案的准确性和清晰度非常重要。

下面将给出一系列关于概率统计的试题和详细的解答,以帮助读者更好地理解和应用概率统计的基本概念和技巧。

试题一:基础概率计算某餐厅有3个主菜,每个主菜又有4种不同的配菜。

如果顾客在选择主菜和配菜时是随机的,那么一个顾客会选择哪种搭配的概率是多少?解答一:根据概率统计的基本原理,计算顾客选择搭配的概率可以使用“事件数除以样本空间”的方法。

在这个问题中,总共有3个主菜和4种配菜,所以样本空间的大小为3 × 4 = 12。

而一个顾客选择一种特定的搭配可以有1种选择,因此事件数为1。

因此,顾客选择某种搭配的概率为1/12。

试题二:概率的加法规则某班级有25名男生和15名女生。

从中随机选择一名学生,那么选择一名男生或选择一名女生的概率分别是多少?解答二:根据概率统计的加法规则,选择一名男生或选择一名女生的概率可以通过计算每个事件的概率然后相加来得到。

在这个问题中,男生和女生分别属于两个互斥事件,因此可以直接相加。

男生的概率为25/40,女生的概率为15/40。

因此,选择一名男生或选择一名女生的概率为25/40 + 15/40 = 40/40 = 1。

试题三:条件概率计算某电子产品的退货率是0.05,而该产品是有瑕疵的情况下才会退货。

对于一台已经退货的产品,有0.02的概率是有瑕疵的。

那么一台被退货且有瑕疵的电子产品占所有退货产品的比例是多少?解答三:根据条件概率的定义,求一台被退货且有瑕疵的电子产品占所有退货产品比例的问题,可以用有瑕疵且被退货的产品数除以所有被退货的产品数来得到。

假设有1000台电子产品被退货,根据退货率的定义,有5%的产品会被退货,即退货的产品数为0.05 * 1000 = 50台。

而在这50台退货产品中,有2%有瑕疵,即有瑕疵且被退货的产品数为0.02 * 50 = 1台。

因此,一台被退货且有瑕疵的电子产品占所有退货产品的比例为1/50,即0.02。

概率统计练习题答案

概率统计练习题答案

概率统计练习题答案概率统计练习题答案概率统计是一门重要的数学学科,它研究的是随机事件的概率和统计规律。

在学习概率统计的过程中,练习题是非常重要的一部分,通过解答练习题可以巩固知识,提高解题能力。

下面我们来看一些常见的概率统计练习题及其答案。

1. 随机变量X服从正态分布N(2, 4),求P(X<3)。

答案:首先计算标准差,标准差为2,然后计算X的标准化值z=(3-2)/2=0.5。

查找标准正态分布表可得P(Z<0.5)=0.6915,所以P(X<3)=0.6915。

2. 一批产品中有10%的次品,从中随机抽取5个产品,求恰好有1个次品的概率。

答案:假设成功事件为抽到次品,失败事件为抽到正品。

根据二项分布的公式,概率P(X=k)=C(n,k)p^k(1-p)^(n-k),其中n为试验次数,k为成功次数,p为成功概率。

代入数据可得P(X=1)=C(5,1)0.1^1(1-0.1)^(5-1)=0.32805。

3. 某班级有60%的学生喜欢数学,40%的学生喜欢英语,20%的学生既喜欢数学又喜欢英语,求一个学生既不喜欢数学也不喜欢英语的概率。

答案:根据概率公式P(A∪B)=P(A)+P(B)-P(A∩B),其中A、B为事件。

代入数据可得P(数学∪英语)=P(数学)+P(英语)-P(数学∩英语)=0.6+0.4-0.2=0.8。

所以一个学生既不喜欢数学也不喜欢英语的概率为1-0.8=0.2。

4. 某地每天的天气有30%的可能是晴天,20%的可能是雨天,50%的可能是阴天。

如果今天是晴天,那么明天是雨天的概率是多少?答案:根据条件概率公式P(B|A)=P(A∩B)/P(A),其中A为今天是晴天的事件,B为明天是雨天的事件。

代入数据可得P(明天是雨天|今天是晴天)=P(今天是晴天∩明天是雨天)/P(今天是晴天)=0.3*0.2/0.3=0.2。

5. 一批产品中有10%的次品,从中随机抽取10个产品,求至少有1个次品的概率。

《概率论与数理统计的》(韩旭里)课后习地的题目答案详解

《概率论与数理统计的》(韩旭里)课后习地的题目答案详解

概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC =ABC(5) ABC=A B C (6) ABC精彩文案(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A B)=0.3,求P(AB).【解】P(AB)=1P(AB)=1[P(A)P(A B)]=1[0.70.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)=14+14+13112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=5332131313131352C C C C/C8.对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;精彩文案精彩文案(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1P (A 1)=1(17)59.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m 次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从NM 件次品中取nm 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成精彩文案P (A )=C C C m n mM N MnN-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n 次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m种取法,nm 次取得次品,每次都有N M 种取法,共有(N M )nm种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为 ()C 1mn mmnM M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====精彩文案故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p == 16.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212333()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+ 22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076精彩文案17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+精彩文案0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x y |>30.如图阴影部分所示.22301604P ==22.从(0,1)中随机地取两个数,求:精彩文案(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】 ()()()()()()()()P AB P A P AB P B AB P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有精彩文案3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702%(2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.精彩文案26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少? 【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种) 【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得精彩文案()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少? 【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.1(0.8)0.9n -≥精彩文案即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3精彩文案由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率. (2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 3101100C(0.35)(0.65)0.5138kk k k p -===∑(2) 10102104C(0.25)(0.75)0.2241k k k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:精彩文案224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-精彩文案(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a x y .则基本事件集为由0<x <a ,0<y <a ,0<a x y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--===精彩文案40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )P (BC )≤P (A ).【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+- ()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故精彩文案1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5 (2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.精彩文案【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1甲反≤n乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则精彩文案121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n 1是1,2,…,n 中的任n 1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i jnn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k kn n kn n n n nnn--=---++--故所求概率为精彩文案121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少?精彩文案【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n r 次,设n 次取自B 1盒(已空),nr 次取自B 2盒,第2n r +1次拿起B 1,发现已空。

概率统计习题1答案

概率统计习题1答案

1答案一、填空题1.答案:0.86;2.答案:8821010(8)=0.80.20.302P C =; 3.答案:0.6;4.答案:1e -;5.答案:0.8;6.答案:78; 7.答案:(3,4)F ; 8.答案:2ˆμ二、选择题9.D ; 10. C ; 11. C ; 12. C ; 13. B 三、计算题14.答案:设i A 分别表示“乘汽车、火车、轮船、飞机”(i =1,2,3,4),B 表示“迟到”则由题意知:11()10p A =,23()10p A =,31()5p A =,42()5p A = 11(|)12p B A =,21(|)4p B A =,31(|)3p B A =,4(|)0p B A =(1)由全概率公式得41()()(|)i i i p B p A p B A ==∑113111************=⨯+⨯+⨯+⨯320==0.15 (2)由贝叶斯公式得33341()(|)(|)()(|)i ii p A p B A p A B p A p B A ==∑ 1153320⨯=40.449=≈ 15.答案:(1)边沿概率密度为()(,)X p x p x y dy +∞-∞=⎰=01,020,xydy x ⎧≤≤⎪⎨⎪⎩其他=18,020,x x ⎧≤≤⎪⎨⎪⎩其他()(,)Y p y p x y dx +∞-∞=⎰=1208,00,⎧⎪≤≤⎨⎪⎩⎰其他xydx y,00,y y ⎧≤≤⎪⎨⎪⎩其他(2)由于在(,),()()X Y p x y p x p y 和所有连续点处,都有(,)()(),X Y p x y p x p y =⋅ Y X ,∴相互独立。

(3)11(,)34F =1134(,)-∞-∞⎰⎰p x y dxdy =1134008⎰⎰xydxdy =17216.答案:X ,Y 的边沿分布(1)()00.440.6 2.4E X =⨯+⨯=2()00.4160.69.6E X =⨯+⨯= ()22(X)(X )(X) 3.84D E E =-=()30.1500.5+20.350.25E Y =-⨯+⨯⨯=(2) ()(,)4(3)0.08420.2ijijijE XY x y p x y ==⨯-⨯+⨯⨯∑∑=0.64所以(,)()()()=-Cov X Y E XY E X E Y 0.64 2.40.250.04=-⨯= 四、解答题17.答案:(1) 110()()(1)E X xp x dx x dx θθ+∞+-∞==+⎰⎰ 2111022x θθθθθ+++==++ 令1()2X E X θθ+==+,得θ的矩估计量为12ˆ1X X θ-=- (2)01i x <<时,似然函数为1()(1)ni i L x θθθ==+∏1(1)nn i i x θθ=⎛⎫=+ ⎪⎝⎭∏取对数得1ln ()ln(1)ln nii L n xθθθ==++∑令1ln ()ln 01ni i d L nx d θθθ==+=+∑ 解得θ的最大似然估计量为1ˆ1ln nii nXθ==--∑18.答案:因为2σ未知,所以设X T =~(1)t n -由22(1)(1)1X P t n t n ααα⎧⎫⎪⎪--<<-=-⎨⎬⎪⎪⎩⎭得μ的置信度为1α-的置信区间为22(1),(1)X n X n αα⎛⎫-- ⎪⎝⎭ 由已知,得12,0.05n α==,0.0252(1)(11) 2.201t n t α-==,1000.25x =,23s =计算得μ的置信度为95%的置信区间为1000.25 2.201,1000.25 2.201⎛⎫+ ⎪ ⎪⎝⎭=(999.1495,1001.3505)。

概率统计精选练习题及答案

概率统计精选练习题及答案

概率统计精选练习题及答案练题一- 问题:有一袋子里面装有5个红球和3个蓝球,从袋子里随机取两个球,求取出的两个球颜色相同的概率。

- 解答:首先,我们计算取两个红球的概率。

从5个红球中取出2个红球的组合数为C(5, 2) = 10。

总的取球组合数为C(8, 2) = 28。

所以,取两个红球的概率为10/28。

同理,取两个蓝球的概率为C(3, 2)/C(8, 2) = 3/28。

因为取球的过程是相互独立的,所以取出的两个球颜色相同的概率等于取两个红球的概率加上取两个蓝球的概率,即(10/28) + (3/28) = 13/28。

练题二- 问题:某商场每天的顾客数量服从均值为100,标准差为20的正态分布。

求该商场下一个月(30天)的总顾客数量的期望值和标准差。

- 解答:下一个月的总顾客数量等于每天顾客数量的总和。

因为每天的顾客数量服从正态分布,所以总顾客数量也服从正态分布。

总顾客数量的期望值等于每天顾客数量的期望值的总和,即30 * 100 = 3000。

标准差等于每天顾客数量的标准差的总和,即sqrt(30) * 20 ≈ 109.544。

练题三- 问题:某城市的交通事故发生率为每年100起。

求在下一个月内该城市发生至少一起交通事故的概率。

- 解答:在下一个月内,发生至少一起交通事故的概率等于1减去没有发生交通事故的概率。

没有发生交通事故的概率可以用泊松分布来计算。

假设一个月内发生交通事故的平均次数为100/12 ≈ 8.333,那么没有发生交通事故的概率为P(X = 0),其中X服从参数为8.333的泊松分布。

计算得到P(X = 0) ≈ 0.。

所以,在下一个月内该城市发生至少一起交通事故的概率为1 - P(X = 0) ≈ 0.。

以上是概率统计的精选练习题及答案,希望能对您的学习有所帮助。

概率统计练习题答案

概率统计练习题答案

概率统计练习题答案一、概率1.(1)P(摸出一个球是红球)=8816+=824=13;(2)解法一:24×58=15,15-8=7.答:取走了7个白球.解法二:设取走了x个白球,则824x+=58,解得x=7.答:取走了7个白球.2、(1)(解法一)画树状图列举所有等可能的结果:(解法二)列表如下:(2)不同意这种说法.由(1)知,P(两红)=26=13,P(一红一白)=36=12.∴P(两红)<P(一红一白).3、(1)任取两张卡片共有10种取法,它们是:(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6);和为偶数的共有四种情况:(1,3),(2,4),(2,6),(4,6).∴P(数字之和为偶数)=410=25;红红1 红2 白白甲袋乙袋红1 红2 白(2)抽得的两个数字分别作为点P 横、纵坐标共有20种机会均等的结果,在直线y =x -2上的只有(3,1),(4,2),(6,4)三种情况,∴P (点P 在直线y =x -2上)=320.4、(1)树状图为:开始正面 反面 正面反面正面 反面 正面 反面 正面 反面 正面 反面小王 小李小林 不确定确定结果 确定确定确定确定确定不确定(2)由(1)中的树状图可知:P (一个回合能确定两人先上场)=68=34.5、(1)12;(2)13;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44. 所以,P (4的倍数)=416=14.或根据题意,画表格:1 2 3 4 1第一次第二次 1 2 3 4 21 2 3 4 31 2 3 44开始由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P (4的倍数)=416=14.二、统计1、(1)25,54,补充后的图如下:(2)乙班应交费:3281004100129004⨯+⨯⨯-=⎛⎫⎪⎝⎭元甲班受到国家资助教科书的学生占全班人数的百分比:255100%60%50+⨯=(3)总册数:15÷30%=50(册) 艺术类图书共有:()()50130%44%13⨯--=册2、(1)a =8,b =0.08 (2)(3)小华被选上的概率是:41 3、(1)50人 ; 15元;)甲班乙班x (年级)图(2)50-6-16-10=18(人) 图略(3)4、(1)∵13÷26%=50,∴本次被调查的人数是50. 补全的条形统计图如图所示.(2)∵1500×26%=390,∴该校最喜欢篮球运动的学生约为390人.(3)如“由于最喜欢乒乓球运动的人数最多,因此,学校应组织乒乓球对抗赛”等.(只要根据调查结果提出合理、健康、积极的建议即可给分) 5、(1)36045%162⨯=°°; (2)4030%12⨯=;图略.(3)40121864100%10%---=⨯=4,40.。

概率统计习题集答案

概率统计习题集答案

概率统计习题集答案概率统计习题集答案概率统计是一门重要的数学学科,它研究了随机事件的发生规律以及对这些规律进行量化和分析的方法。

在学习概率统计的过程中,习题集是必不可少的辅助工具。

通过解答习题,我们可以更好地理解和掌握概率统计的概念和方法。

下面是一些常见的概率统计习题及其答案,希望对大家的学习有所帮助。

一、概率计算1. 一个骰子投掷一次,求出现奇数的概率。

答案:一个骰子有6个面,其中3个是奇数(1、3、5),所以出现奇数的概率为3/6=1/2。

2. 从一副扑克牌中随机抽取一张牌,求抽到红桃的概率。

答案:一副扑克牌有52张牌,其中有13张红桃牌,所以抽到红桃的概率为13/52=1/4。

二、条件概率1. 一家餐馆的顾客中,男性占40%,女性占60%。

男性中有30%喜欢吃牛排,女性中有20%喜欢吃牛排。

求一个随机选取的顾客是男性且喜欢吃牛排的概率。

答案:男性喜欢吃牛排的概率为40% × 30% = 12%。

所以一个随机选取的顾客是男性且喜欢吃牛排的概率为12%。

2. 一批产品中有10%的次品。

从中随机抽取两个产品,求两个产品都是次品的概率。

答案:第一个产品是次品的概率为10%,第二个产品是次品的概率为9%(因为已经抽取了一个次品)。

所以两个产品都是次品的概率为10% × 9% = 0.9%。

三、随机变量1. 设X为一次投掷一枚骰子所得点数的随机变量,求E(X)和Var(X)。

答案:骰子的点数为1、2、3、4、5、6,每个点数出现的概率为1/6。

所以E(X) = (1 × 1/6) + (2 × 1/6) + (3 × 1/6) + (4 × 1/6) + (5 × 1/6) + (6 × 1/6) = 3.5。

Var(X) = [(1-3.5)^2 × 1/6] + [(2-3.5)^2 × 1/6] + [(3-3.5)^2 × 1/6] + [(4-3.5)^2× 1/6] + [(5-3.5)^2 × 1/6] + [(6-3.5)^2 × 1/6] = 35/12。

2024届新高考数学大题精选30题--概率统计(1)含答案

2024届新高考数学大题精选30题--概率统计(1)含答案

大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.2024届新高考数学大题精选30题--概率统计(1)3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO问界M7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望Eξ .5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a 中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i=1,第i局乙当裁判0,第i局甲或丙当裁判,i=1,2,⋅⋅⋅,n,p i=P X i=1,X表示前n局中乙当裁判的次数.(1)求事件“n=3且X=1”的概率;(2)求p i;(3)求E X ,并根据你的理解,说明当n充分大时E X 的实际含义.附:设X,Y都是离散型随机变量,则E X+Y=E X+E Y.8(2024·安徽池州·二模)学校组织某项劳动技能测试,每位学生最多有3次测试机会.一旦某次测试通过,便可获得证书,不再参加以后的测试,否则就继续参加测试,直到用完3次机会.如果每位学生在3次测试中通过的概率依次为0.5,0.6,0.8,且每次测试是否通过相互独立.现某小组有3位学生参加测试,回答下列问题:(1)求该小组学生甲参加考试次数X的分布列及数学期望E X ;(2)规定:在2次以内测试通过(包含2次)获得优秀证书,超过2次测试通过获得合格证书,记该小组3位学生中获得优秀证书的人数为Y,求使得P Y=k取最大值时的整数k.9(2024·辽宁·二模)一枚棋子在数轴上可以左右移动,移动的方式以投掷一个均匀的骰子来决定,规则如下:当所掷点数为1点时,棋子不动;当所掷点数为3或5时,棋子在数轴上向左(数轴的负方向)移动“该点数减1”个单位;当所掷的点数为偶数时,棋子在数轴上向右(数轴的正方向)移动“该点数的一半”个单位;第一次投骰子时,棋子以坐标原点为起点,第二次开始,棋子以前一次棋子所在位置为该次的起点.(1)投掷骰子一次,求棋子的坐标的分布列和数学期望;(2)投掷骰子两次,求棋子的坐标为-2的概率;(3)投掷股子两次,在所掷两次点数和为奇数的条件下,求棋子的坐标为正的概率.10(2024·广东湛江·一模)甲进行摸球跳格游戏.图上标有第1格,第2格,⋯,第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第n格的概率为P n n=1,2,3,⋅⋅⋅,25.(1)甲在一次摸球中摸出红球的个数记为X,求X的分布列和期望;(2)证明:数列P n-P n-1n=2,3,⋅⋅⋅,24为等比数列.11(2024·广东韶关·二模)小明参加社区组织的射击比赛活动,已知小明射击一次、击中区域甲的概率是13,击中区域乙的概率是14,击中区域丙的概率是18,区域甲,乙、丙均没有重复的部分.这次射击比赛获奖规则是:若击中区域甲则获一等奖;若击中区域乙则有一半的机会获得二等奖,有一半的机会获得三等奖;若击中区域丙则获得三等奖;若击中上述三个区域以外的区域则不获奖.获得一等奖和二等奖的选手被评为“优秀射击手”称号.(1)求小明射击1次获得“优秀射击手”称号的概率;(2)小明在比赛中射击4次,每次射击的结果相互独立,设获三等奖的次数为X,求X分布列和数学期望.12(2024·河北邢台·一模)小张参加某知识竞赛,题目按照难度不同分为A类题和B类题,小张回答A类题正确的概率为0.9,小张回答B类题正确的概率为0.45.已知题库中B类题的数量是A类题的两倍.(1)求小张在题库中任选一题,回答正确的概率;(2)已知题库中的题目数量足够多,该知识竞赛需要小张从题库中连续回答10个题目,若小张在这10个题目中恰好回答正确k个(k=0,1,2,⋯,10)的概率为P k,则当k为何值时,P k最大?13(2024·湖南衡阳·模拟预测)某电竞平台开发了A、B两款训练手脑协同能力的游戏,A款游戏规则是:五关竞击有奖闯关,每位玩家上一关通过才能进入下一关,上一关没有通过则不能进入下一关,且每关第一次没有通过都有再挑战一次的机会,两次均未通过,则闯关失败,各关和同一关的两次挑战能否通过相互独立,竞击的五关分别依据其难度赋分.B款游戏规则是:共设计了n(n∈N*且n≥2)关,每位玩家都有n次闯关机会,每关闯关成功的概率为13,不成功的概率为23,每关闯关成功与否相互独立;第1次闯关时,若闯关成功则得10分,否则得5分.从第2次闯关开始,若闯关成功则获得上一次闯关得分的两倍,否则得5分.电竞游戏玩家甲先后玩A、B两款游戏.(1)电竞游戏玩家甲玩A款游戏,若第一关通过的概率为34,第二关通过的概率为23,求甲可以进入第三关的概率;(2)电竞游戏玩家甲玩B款游戏,记玩家甲第i次闯关获得的分数为X i i=1,2,⋯,n,求E X i关于i的解析式,并求E X8的值.(精确到0.1,参考数据:2 37≈0.059.)14(2024·湖南邵阳·模拟预测)2023年8月3日,公安部召开的新闻发布会公布了“提高道路资源利用率”和“便利交通物流货运车辆通行”优化措施,其中第二条提出推动缓解停车难问题.在持续推进缓解城镇老旧小区居民停车难改革措施的基础上,因地制宜在学校、医院门口设置限时停车位,支持鼓励住宅小区和机构停车位错时共享.某医院门口设置了限时停车场(停车时间不超过60分钟),制定收费标准如下:停车时间不超过15分钟的免费,超过15分钟但不超过30分钟收费3元,超过30分钟但不超过45分钟收费9元,超过45分钟但不超过60分钟收费18元,超过60分钟必须立刻离开停车场.甲、乙两人相互独立地来该停车场停车,且甲、乙的停车时间的概率如下表所示:停车时间/分钟0,1515,30 30,45 45,60甲143a14a 乙162b13b设此次停车中,甲所付停车费用为X ,乙所付停车费用为Y .(1)在X +Y =18的条件下,求X ≥Y 的概率;(2)若ξ=X -Y ,求随机变量ξ的分布列与数学期望.15(2024·湖北·一模)2023年12月30号,长征二号丙/远征一号S运载火箭在酒泉卫星发射中心点火起飞,随后成功将卫星互联网技术实验卫星送入预定轨道,发射任务获得圆满完成,此次任务是长征系列运载火箭的第505次飞行,也代表着中国航天2023年完美收官.某市一调研机构为了了解当地学生对我国航天事业发展的关注度,随机的从本市大学生和高中生中抽取一个容量为n的样本进行调查,调查结果如下表:学生群体关注度合计关注不关注大学生12n710n高中生合计3 5 n附:α0.10.050.00250.010.001χα 2.706 3.841 5.024 6.63510.828χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.(1)完成上述列联表,依据小概率值α=0.05的独立性检验,认为关注航天事业发展与学生群体有关,求样本容量n的最小值;(2)该市为了提高本市学生对航天事业的关注,举办了一次航天知识闯关比赛,包含三个问题,有两种答题方案选择:方案一:回答三个问题,至少答出两个可以晋级;方案二:在三个问题中,随机选择两个问题,都答对可以晋级.已知小华同学答出三个问题的概率分别是34,23,12,小华回答三个问题正确与否相互独立,则小华应该选择哪种方案晋级的可能性更大?(说明理由)16(2024·湖北·二模)吸烟有害健康,现统计4名吸烟者的吸烟量x 与损伤度y ,数据如下表:吸烟量x 1456损伤度y3867(1)从这4名吸烟者中任取2名,其中有1名吸烟者的损伤度为8,求另1吸烟者的吸烟量为6的概率;(2)在实际应用中,通常用各散点(r ,y )到直线y =bx +a 的距离的平方和S =ni =1(bx i +a -y i )2 来刻画“整体接近程度”.S 越小,表示拟合效果越好.试根据统计数据,求出经验回归直线方程y =b x +a.并根据所求经验回归直线估计损伤度为10时的吸烟量.附:b =ni =1(x i -x )(y i -y)ni =1(x i -x)2,a =y -b x.17(2024·山东枣庄·一模)有甲、乙两个不透明的罐子,甲罐有3个红球,2个黑球,球除颜色外大小完全相同.某人做摸球答题游戏.规则如下:每次答题前先从甲罐内随机摸出一球,然后答题.若答题正确,则将该球放入乙罐;若答题错误,则将该球放回甲罐.此人答对每一道题目的概率均为12.当甲罐内无球时,游戏停止.假设开始时乙罐无球.(1)求此人三次答题后,乙罐内恰有红球、黑球各1个的概率;(2)设第n n ∈N *,n ≥5 次答题后游戏停止的概率为a n .①求a n ;②a n 是否存在最大值?若存在,求出最大值;若不存在,试说明理由.18(2024·安徽合肥·二模)树人中学高三(1)班某次数学质量检测(满分150分)的统计数据如下表:性别参加考试人数平均成绩标准差男3010016女209019在按比例分配分层随机抽样中,已知总体划分为2层,把第一层样本记为x 1,x 2,x 3,⋯,x n ,其平均数记为x,方差记为s 21;把第二层样本记为y 1,y 2,y 3,⋯,y m ,其平均数记为y,方差记为s 22;把总样本数据的平均数记为z ,方差记为s 2.(1)证明:s 2=1m +nn s 21+x -z 2 +m s 22+y -z 2 ;(2)求该班参加考试学生成绩的平均数和标准差(精确到1);(3)假设全年级学生的考试成绩服从正态分布N μ,σ2 ,以该班参加考试学生成绩的平均数和标准差分别作为μ和σ的估计值.如果按照16%,34%,34%,16%的比例将考试成绩从高分到低分依次划分为A ,B ,C ,D 四个等级,试确定各等级的分数线(精确到1).附:P μ-σ≤X ≤μ+σ ≈0.68,302≈17,322≈18,352≈19.19(2024·福建福州·模拟预测)甲企业生产线上生产的零件尺寸的误差X服从正态分布N0,0.22,规定X∈-0.2,0.2的零件为合格品.的零件为优等品,X∈-0.6,0.6(1)从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数(精确到整数);(2)乙企业拟向甲企业购买这批零件,先对该批零件进行质量抽检,检测的方案是:从这批零件中任取2个作检测,若这2个零件都是优等品,则通过检测;若这2个零件中恰有1个为优等品,1个为合格品但非优等品,则再从这批零件中任取1个作检测,若为优等品,则通过检测;其余情况都不通过检测.求这批零件通过检测时,检测了2个零件的概率(精确到0.01).(附:若随机变量ξ∼Nμ,σ2,则Pμ-σ<ξ<μ+σ=0.9545,=0.6827,Pμ-2σ<ξ<μ+2σPμ-3σ<ξ<μ+3σ=0.9973)20(2024·河北保定·二模)某兴趣小组调查并统计了某班级学生期末统考中的数学成绩和建立个性化错题本的情况,用来研究这两者是否有关.若从该班级中随机抽取1名学生,设A =“抽取的学生期末统考中的数学成绩不及格”,B =“抽取的学生建立了个性化错题本”,且P (A |B )=23,P (B |A )=56,P B =23.(1)求P A 和P A B .(2)若该班级共有36名学生,请完成列联表,并依据小概率值α=0.005的独立性检验,分析学生期末统考中的数学成绩与建立个性化错题本是否有关,个性化错题本期末统考中的数学成绩合计及格不及格建立未建立合计(3)为进一步验证(2)中的判断,该兴趣小组准备在其他班级中抽取一个容量为36k 的样本(假设根据新样本数据建立的列联表中,所有的数据都扩大为(2)中列联表中数据的k 倍,且新列联表中的数据都为整数).若要使得依据α=0.001的独立性检验可以肯定(2)中的判断,试确定k 的最小值参考公式及数据:χ2=n ad -bc 2a +b c +d a +c b +d,n =a +b +c +d .α0.010.0050.001x a6.6357.87910.82821(2024·浙江绍兴·模拟预测)书接上回.麻将学习小组中的炎俊同学在探究完问题后返回家中观看了《天才麻将少女》,发现超能力麻将和现实麻将存在着诸多不同.为了研究超能力麻将,他使用了一些”雀力值”和”能力值”来确定每位角色的超能力麻将水平,发现每位角色在一局麻将中的得分与个人值和该桌平均值之差存在着较大的关系.(注:平均值指的是该桌内四个人各自的“雀力值”和“能力值”之和的平均值,个人值类似.)为深入研究这两者的关系,他列出了以下表格:个人值与平均值之差x-9-6-30369得分y-38600-23100-10900+11800+24100+36700(1)①计算x ,y 的相关系数r ,并判断x ,y 之间是否基本上满足线性关系,注意:保留至第一位非9的数.②求出y 与x 的经验回归方程.③以下为《天才麻将少女》中几位角色的”雀力值”和”能力值”:角色宫永照园城寺怜花田煌松实玄雀力值249104能力值241636试估计此四位角色坐在一桌打麻将每一位的得分(近似至百位)(2)在分析了更多的数据后,炎俊发现麻将中存在着很多运气的成分.为衡量运气对于麻将对局的影响,炎俊建立了以下模型,其中他指出:实际上的得分并不是一个固定值,而是具有一定分布的,存在着一个标准差.运气实际上体现在这一分布当中取值的细微差别.接下去他便需要得出得分的标准差.他发现这一标准差来源自两个方面:一方面是在(1)②问当中方程斜率b 存在的标准差Δb ;另一方面则是在不影响平均值的情况下,实际表现“个人值”X 符合正态分布规律X ~N μ,σ2 .(μ为评估得出的个人值.)已知松实玄实际表现个人值满足P X >10.5 =0.02275,求(1)③中其得分的标准差.(四舍五入到百位)(3)现在新提出了一种赛制:参赛者从平均值为10开始进行第一轮挑战,之后每一轮对手的”雀力值”和”能力值”均会提升至原来的43.我们设进行了i 轮之后,在前i 轮内该参赛者的总得分为E X i ;若园城寺怜参加了此比赛,求ni =1E X i2i参考数据和公式:①7i =1x i y i =1029000;7i =1y 2i =4209320000.②相关系数r =ni =1x i -x y i -yni =1x i -x2ni =1y i -y2;经验回归方程y =b x +a ,b =ni =1x i -x y i -yni =1x i -x2,a =y -b ⋅x;Δbb=1r 2-1n -2,其中n 为回归数据组数.③对于随机变量X~Nμ,σ2,Pμ-σ≤X≤μ+σ≈0.6827,Pμ-2σ≤X≤μ+2σ≈0.9545,Pμ-3σ≤X≤μ+3σ≈0.9973.④x <<1时,1+xα≈1+αx,α∈R;⑤对间接计算得出的值f=xy有标准差Δf满足Δff=Δx x 2+Δy y 2.⑥13136≈3.2×10-4;6.8≈2.6;2946524≈1715×1+9×10-422(2024·江苏南通·模拟预测)“踩高跷,猜灯谜”是我国元宵节传统的文化活动. 某地为了弘扬文化传统,发展“地摊经济”,在元宵节举办形式多样的猜灯谜活动.(1)某商户借“灯谜”活动促销,将灯谜按难易度分为B、C两类,抽到较易的B类并答对购物打八折优惠,抽到稍难的C类并答对购物打七折优惠,抽取灯谜规则如下:在一不透明的纸箱中有8张完全相同的卡片,其中3张写有A字母,3张写有B字母,2张写有C字母,顾客每次不放回从箱中随机取出1张卡片,若抽到写有A的卡片,则再抽1次,直至取到写有B或C卡片为止,求该顾客取到写有B卡片的概率.(2)小明尝试去找全街最适合他的灯谜,规定只能取一次,并且只可以向前走,不能回头,他在街道上一共会遇到n条灯谜(不妨设每条灯谜的适合度各不相同),最适合的灯谜出现在各个位置上的概率相等,小明准备采用如下策略:不摘前k1≤k<n条灯谜,自第k+1条开始,只要发现比他前面见过的灯谜适合的,就摘这条灯谜,否则就摘最后一条,设k=tn,记小明摘到那条最适合的灯谜的概率为P.①若n=4,k=2,求P;②当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k+1k+1+⋯+1n-1=ln nk)23(2024·安徽·模拟预测)某校在90周年校庆到来之际,为了丰富教师的学习和生活,特举行了答题竞赛.在竞赛中,每位参赛教师答题若干次,每一次答题的赋分方法如下:第1次答题,答对得20分,答错得10分,从第2次答题开始,答对则获得上一次答题所得分数两倍的得分,答错得10分,教师甲参加答题竞赛,每次答对的概率均为12,每次答题是否答对互不影响.(1)求甲前3次答题的得分之和为70分的概率.(2)记甲第i次答题所得分数X i i∈N*的数学期望为E X i.(ⅰ)求E X1,E X2,E X3,并猜想当i≥2时,E X i与E X i-1之间的关系式;(ⅱ)若ni=1E X i>320,求n的最小值.24(2024·辽宁·模拟预测)某自然保护区经过几十年的发展,某种濒临灭绝动物数量有大幅度的增加.已知这种动物P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某动物研究小组计划在该区域中捕捉100个动物P ,统计其中A 种的数目后,将捕获的动物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i i =1,2,⋯,20 .设该区域中A 种的数目为M ,B 种的数目为N (M ,N 均大于100),每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E X i +X j =E X i +E X j ,D X i +X j =D X i +D X j (i )证明:E X =E X 1 ,D X =120D X 1 ;(ii )该小组完成所有试验后,得到X i 的实际取值分别为x i i =1,2,⋯,20 .数据x i i =1,2,⋯,20 的平均值x =30,方差s 2=1.采用x和s 2分别代替E X 和D X ,给出M ,N 的估计值.(已知随机变量x 服从超几何分布记为:x ∼H P ,n ,Q (其中P 为总数,Q 为某类元素的个数,n 为抽取的个数),则D x =nQ P 1-QPP -nP -1 )25(2024·广东广州·一模)某校开展科普知识团队接力闯关活动,该活动共有两关,每个团队由n (n ≥3,n ∈N *)位成员组成,成员按预先安排的顺序依次上场,具体规则如下:若某成员第一关闯关成功,则该成员继续闯第二关,否则该成员结束闯关并由下一位成员接力去闯第一关;若某成员第二关闯关成功,则该团队接力闯关活动结束,否则该成员结束闯关并由下一位成员接力去闯第二关;当第二关闯关成功或所有成员全部上场参加了闯关,该团队接力闯关活动结束.已知A 团队每位成员闯过第一关和第二关的概率分别为34和12,且每位成员闯关是否成功互不影响,每关结果也互不影响.(1)若n =3,用X 表示A 团队闯关活动结束时上场闯关的成员人数,求X 的均值;(2)记A 团队第k (1≤k ≤n -1,k ∈N *)位成员上场且闯过第二关的概率为p k ,集合k ∈N *p k <3128中元素的最小值为k 0,规定团队人数n =k 0+1,求n .26(2024·广东深圳·二模)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X ,求X 的分布列和数学期望;(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件A =“甲工厂提高了生产该零件的质量指标”,事件B =“该大型企业把零件交给甲工厂生产”、已知0<P B <1,证明:P A B >P A B.27(2024·湖南·二模)某大学有甲、乙两个运动场.假设同学们可以任意选择其中一个运动场锻炼,也可选择不锻炼,一天最多锻炼一次,一次只能选择一个运动场.若同学们每次锻炼选择去甲或乙运动场的概率均为12,每次选择相互独立.设王同学在某个假期的三天内去运动场锻炼的次数为X ,已知X 的分布列如下:(其中a >0,0<p <1)X0123Pa (1-p )2apa a 1-p(1)记事件A i 表示王同学假期三天内去运动场锻炼i 次i =0,1,2,3 ,事件B 表示王同学在这三天内去甲运动场锻炼的次数大于去乙运动场锻炼的次数.当p =12时,试根据全概率公式求P B 的值;(2)是否存在实数p ,使得E X =53若存在,求p 的值:若不存在,请说明理由;(3)记M 表示事件“甲运动场举办锻炼有奖的抽奖活动”,N 表示事件“王同学去甲运动场锻炼”,0<P M <1.已知王同学在甲运动场举办锻炼有奖的抽奖活动的情况下去甲运动场锻炼的概率,比不举办抽奖活动的情况下去甲运动场锻炼的概率大,证明:P M ∣N >P M ∣N.28(2024·山东济南·二模)随机游走在空气中的烟雾扩散、股票市场的价格波动等动态随机现象中有重要应用.在平面直角坐标系中,粒子从原点出发,每秒向左、向右、向上或向下移动一个单位,且向四个方向移动的概率均为14.例如在1秒末,粒子会等可能地出现在1,0,-1,0,0,1,0,-1四点处.(1)设粒子在第2秒末移动到点x,y,记x+y的取值为随机变量X,求X的分布列和数学期望E X ;(2)记第n秒末粒子回到原点的概率为p n.(i)已知nk=0(C k n)2=C n2n求p3,p4以及p2n;(ii)令b n=p2n,记S n为数列b n的前n项和,若对任意实数M>0,存在n∈N*,使得S n>M,则称粒子是常返的.已知2πnnen<n!<6π 142πn n e n,证明:该粒子是常返的.29(2024·山东潍坊·二模)数列a n 中,从第二项起,每一项与其前一项的差组成的数列a n +1-a n 称为a n 的一阶差数列,记为a 1 n ,依此类推,a 1 n 的一阶差数列称为a n 的二阶差数列,记为a 2n ,⋯.如果一个数列a n 的p 阶差数列a pn 是等比数列,则称数列a n 为p 阶等比数列p ∈N * .(1)已知数列a n 满足a 1=1,a n +1=2a n +1.(ⅰ)求a 1 1,a 1 2,a 13;(ⅱ)证明:a n 是一阶等比数列;(2)已知数列b n 为二阶等比数列,其前5项分别为1,209,379,789,2159,求b n 及满足b n 为整数的所有n 值.。

概率论与数理统计的习地的题目2及答案详解

概率论与数理统计的习地的题目2及答案详解

习题二3.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ========== 故X 的分布律为(2) 当x <0时,F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)1122()(),2235333434(1)()(1)02235353312(1)(1)(1)2235341(12)(2)(1)(2)10.3535P X F P X F F P X P X P X P X F F P X ≤==<≤=-=-=≤≤==+<≤=<<=--==--=4.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==5.(1) 设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a .(2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1) 由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑故 ea λ-=(2) 由分布律的性质知111()NNk k aP X k a N======∑∑即 1a =.6.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ (2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==12322333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)=++ 33221233(0.6)(0.3)C (0.6)0.4C 0.7(0.3)++ 31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.3+=0.2437.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即 2002002001C(0.02)(0.98)0.01k k k k N -=+<∑利用泊松近似2000.02 4.np λ==⨯=41e 4()0.01!kk N P X N k -∞=+≥<∑ 查表得N ≥9.故机场至少应配备9条跑道.8.已知在五重伯努利试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率;(2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32(0)eP X -== (2) 52(1)1(0)1e P X P X -≥=-==-11.设P {X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }=mmmp p --44)1(C , m =0,1,2,3,4分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}. 【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -=即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==⨯=得 25e 2(5)0.00185!P X -=≈= 13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =113()()44k P X k -==(2)(4)(2)P X P X P X k =+=++=+321131313()()444444k -=++++213141451()4==- 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑即保险公司获利不少于10000元的概率在98%P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑即保险公司获利不少于20000元的概率约为62%15.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰得||01e d 2e d 2x x A x A x A ∞∞---∞===⎰⎰故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰(3) 当x <0时,11()e d e 22x x x F x x -∞==⎰ 当x ≥0时,0||0111()e d e d e d 222x x x xx F x x x x ---∞-∞==+⎰⎰⎰ 11e 2x-=-故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a⎧≤≤⎪=⎨⎪⎩其他 故当x <0时F (x )=0 当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1即分布函数0,0(),01,x x F x x a a x a<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他 5312(3)d 33P X x >==⎰故所求概率为22333321220C ()C ()33327p =+=19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--⎛⎫<=<== ⎪⎝⎭若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--⎛⎫<=<== ⎪⎝⎭若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--⎛⎫<=<=- ⎪⎝⎭1(1.25)0.1056Φ=-= 故走第一条路乘上火车的把握大些.21.设X ~N (3,22),(1) 求P {2<X ≤5},P {-4<X ≤10},P {|X |>2},P {X >3}; (2) 确定c 使P {X >c }=P {X ≤c }. 【解】(1) 23353(25)222X P X P ---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222X P X P ----⎛⎫-<≤=<≤ ⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----⎛⎫⎛⎫=>+< ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器生产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率. 【解】10.050.12(|10.05|0.12)0.060.06X P X P ⎛-⎫->=>⎪⎝⎭1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=23.一工厂生产的电子管寿命X (小时)服从正态分布N (160,σ2),若要求P {120<X ≤200}≥0.8,允许σ最大不超过多少? 【解】120160160200160(120200)X P X P σσσ---⎛⎫<≤=<≤⎪⎝⎭ 404040210.8ΦΦΦσσσ-⎛⎫⎛⎫⎛⎫=-=-≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故 4031.251.29σ≤= 24.设随机变量X 分布函数为F (x )=e ,0,(0),00.x A B x ,x -⎧+≥>⎨<⎩λλ(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2) 2(2)(2)1eP X F λ-≤==-33(3)1(3)1(1e)e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩25.设随机变量X 的概率密度为f (x )=,01,2,12,0,x x x x ≤<⎧⎪-≤<⎨⎪⎩其他.求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰20d 2xx t t ==⎰当1≤x<2时()()d xF x f t t -∞=⎰111122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-⎰⎰⎰⎰⎰当x ≥2时()()d 1xF x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩26.设随机变量X 的密度函数为(1) f (x )=a e -λ|x |,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x x x bx试确定常数a ,b ,并求其分布函数F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰知||021e d 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22xxxx F x f x x x x λλλλ--∞-∞==+⎰⎰⎰11e 2xλ-=-故其分布函数11e ,02()1e ,02xx x F x x λλ-⎧->⎪⎪=⎨⎪≤⎪⎩(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1即X 的密度函数为2,011(),120,x x f x x x<<⎧⎪⎪=≤<⎨⎪⎪⎩其他当x ≤0时F (x )=0 当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰2d 2xx x x ==⎰当1≤x <2时012011()()d 0d d d x xF x f x x x x x x x-∞-∞==++⎰⎰⎰⎰312x=- 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤⎧⎪⎪<<⎪=⎨⎪-≤<⎪⎪≥⎩27.求标准正态分布的上α分位点, (1)α=0.01,求z α; (2)α=0.003,求z α,/2z α. 【解】(1) ()0.01P X z α>=即 1()0.01z αΦ-= 即()0.09z αΦ=故 2.33z α= (2) 由()0.003P X z α>=得1()0.003z αΦ-=即 ()0.997z αΦ= 查表得 2.75z α= 由/2()0.0015P X z α>=得/21()0.0015z α-Φ=即/2()0.9985z αΦ=查表得 /2 2.96z α=求Y =X 的分布律.【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======-+==+====-=====故Y 的分布律为29.设P {X =k }=(2)k, k =1,2,…,令 1,1,.X Y X ⎧=⎨-⎩当取偶数时当取奇数时求随机变量X 的函数Y 的分布律. 【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+242111()()()222111()/(1)443k =++++=-=2(1)1(1)3P Y P Y =-=-==30.设X ~N (0,1).(1) 求Y =e X 的概率密度; (2) 求Y =2X 2+1的概率密度; (3) 求Y =|X |的概率密度.【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )x Y F y P Y y P y P X y =≤=≤=≤ln ()dyX f x x -∞=⎰故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤212y P X P X ⎛-⎛⎫=≤=≤ ⎪ ⎝⎭⎝()dX f x x =故 d ()()d Y Y X X f y F y f f y ⎤⎛==+⎥⎥⎝⎦(1)/4,1y y --=>(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤()d yX yf x x -=⎰故d()()()()d Y Y X X f y F y f y f y y==+-2/2,0y y -=>32.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<arcsin π220πarcsin 22d d ππyy x x x x -=+⎰⎰222211arcsin 1πarcsin ππy y =+--()() 2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为22,01π()10,Y y f y y⎧<<⎪=-⎨⎪⎩其他 33.设随机变量X 的分布函数如下:⎪⎩⎪⎨⎧≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项.【解】由lim ()1x F x →∞=知②填1。

概率统计练习题答案

概率统计练习题答案

概率统计练习题答案概率统计练习题答案在学习概率统计的过程中,练习题是非常重要的一部分。

通过练习题的完成,我们可以巩固所学的知识,并且提高解决实际问题的能力。

在这篇文章中,我将为大家提供一些概率统计练习题的答案,希望能对大家的学习有所帮助。

第一题:某公司有10名员工,其中3名是女性。

如果从中随机选择2名员工,求至少选择到一名女性的概率。

解答:首先,我们计算没有选择到女性的概率。

选择两名员工,都是男性的概率为:(7/10) * (6/9) = 42/90。

因此,至少选择到一名女性的概率为:1 - 42/90 = 48/90 = 8/15。

第二题:一批产品中有10%的次品。

从中随机抽取5个产品,求抽取到至少一个次品的概率。

解答:抽取到至少一个次品的概率等于1减去抽取到全是良品的概率。

抽取到全是良品的概率为:(90/100) * (89/99) * (88/98) * (87/97) * (86/96) ≈ 0.697。

因此,抽取到至少一个次品的概率为:1 - 0.697 ≈ 0.303。

第三题:一批产品中有10%的次品。

从中随机抽取10个产品,求抽取到恰好两个次品的概率。

解答:抽取到恰好两个次品的概率等于从总体中选择两个次品和八个良品的概率。

计算公式为:C(10, 2) * (0.1)^2 * (0.9)^8 ≈ 0.193。

其中C(10, 2)表示从10个产品中选择2个的组合数。

因此,抽取到恰好两个次品的概率为约0.193。

通过以上三道练习题的解答,我们可以看到概率统计的计算方法。

在解答这些题目时,我们需要根据题目给出的条件,运用概率统计的知识进行计算。

在实际问题中,我们也可以运用这些方法来解决各种概率统计的问题。

除了以上的练习题,还有很多其他类型的概率统计问题可以进行练习。

例如,计算两个骰子的点数之和为7的概率,计算从一副扑克牌中随机抽取5张牌中有两张红心的概率等等。

通过不断的练习,我们可以更加熟练地掌握概率统计的知识,提高解决实际问题的能力。

(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)

(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)

(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)概率论与数理统计习题答案详解版(廖茂新复旦版)习题⼀1.设A,B,C为三个事件,⽤A,B,C的运算式表⽰下列事件:(1)A发⽣⽽B与C都不发⽣;(2)A,B,C⾄少有⼀个事件发⽣;(3)A,B,C⾄少有两个事件发⽣;(4)A,B,C恰好有两个事件发⽣;(5)A,B⾄少有⼀个发⽣⽽C不发⽣;(6)A,B,C都不发⽣.解:(1)A CB或A-B-C或A-(B∪C).(2)A∪B∪C.(3)(AB)∪(AC)∪(BC).(4)(AB C)∪(AC B)∪(BC A).(5)(A∪B)C.(6)CY或CBA IA.B2.对于任意事件A,B,C,证明下列关系式:(1)(A+B) (A+B)(A+ B)(A+B)= ?;(2)AB+A B +A B+A B AB-= AB;(3)A-(B+C)=(A-B)-C.证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1)A发⽣但B不发⽣的概率;(2)A,B都不发⽣的概率;(3)⾄少有⼀个事件不发⽣的概率.解(1)P(A B)=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4;(2) P(B A)=P(BA )=1-P(A∪B)=1-0.7=0.3;(3) P(A∪B)=P(AB)=1-P(AB)=1-0.1=0.9.4.调查某单位得知。

购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD占5%,三种电器都购买占2%。

求下列事件的概率。

(1)⾄少购买⼀种电器的;(2)⾄多购买⼀种电器的;(3)三种电器都没购买的.解:(1)0.28, (2)0.83, (3)0.725.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。

解:8/156.任意将10本书放在书架上。

其中有两套书,⼀套3本,另⼀套4本。

概率统计课后习题答案

概率统计课后习题答案

概率统计课后习题答案概率统计是一门研究随机现象的数学分支,它在各个领域都有广泛的应用。

课后习题是巩固和检验学生对课堂知识掌握程度的重要手段。

以下是一些概率统计课后习题的答案示例:习题1:抛一枚均匀的硬币,求正面朝上的概率。

答案:抛一枚均匀硬币,有两种可能的结果:正面朝上和反面朝上。

由于硬币是均匀的,这两种结果发生的概率是相等的。

因此,正面朝上的概率 P(正面) = 1/2。

习题2:一个袋子里有3个红球和2个蓝球,随机抽取一个球,求抽到红球的概率。

答案:袋子里总共有5个球,其中3个是红球。

抽到红球的概率是红球数量除以总球数。

所以,P(红球) = 3/5。

习题3:连续抛两次骰子,求至少出现一次6点的概率。

答案:首先,计算不出现6点的概率。

每次抛骰子,不出现6点的概率是5/6。

连续两次都不出现6点的概率是 (5/6) * (5/6) = 25/36。

因此,至少出现一次6点的概率是 1 - 25/36 = 11/36。

习题4:一个班级有30名学生,其中15名男生和15名女生。

随机选择3名学生,求至少有1名男生的概率。

答案:首先,计算没有男生的概率。

从15名女生中选择3名,组合数为C(15,3)。

班级中所有可能的3人组合数为 C(30,3)。

没有男生的概率是 C(15,3) / C(30,3)。

至少有1名男生的概率是 1 - C(15,3) /C(30,3)。

习题5:一个工厂生产的产品中有2%是次品。

一批产品中有100件,求至少有5件次品的概率。

答案:这是一个二项分布问题,其中n=100,p=0.02。

使用二项分布公式计算至少有5件次品的概率,即P(X ≥ 5) = 1 - P(X < 5)。

这需要计算从0到4件次品的概率之和,然后从1中减去这个值。

结束语:概率统计的习题答案需要根据具体的题目条件来计算。

上述答案仅供参考,实际解题时需要根据题目给出的详细条件进行计算。

希望这些示例能够帮助你更好地理解和掌握概率统计的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一1.1 写出下列随机试验的样本空间,并把指定的事件表示为样本点的集合:(1)随机试验:考察某个班级的某次数学考试的平均成绩(以百分制记分,只取整数);设事件A 表示:平均得分在80分以上。

(2)随机试验:同时掷三颗骰子,记录三颗骰子点数之和;设事件A 表示:第一颗掷得5点;设事件B 表示:三颗骰子点数之和不超过8点。

(3)随机试验:一个口袋中有5只球,编号分别为1,2,3,4,5,从中取三个球; 设事件A 表示:取出的三个球中最小的号码为1。

(4)随机试验:某篮球运动员投篮练习,直至投中十次,考虑累计投篮的次数;设事件A 表示:至多只要投50次。

(5)随机试验:将长度为1的线段任意分为三段,依次观察各段的长度。

1.2 在分别标有号码1~8的八张卡片中任抽一张。

(1)写出该随机试验的样本点和样本空间;(2)设事件A 为“抽得一张标号不大于4的卡片”,事件B 为“抽得一张标号为偶数的 卡片”,事件C 为“抽得一张标号能被3整除的卡片”。

试将下列事件表示为样本点的集合,并说明分别表示什么事件?(a )AB ; (b) B A +; (c) B ; (d) B A -; (e) BC ; (f) C B + 。

1.3 设A 、B 、C 是样本空间的事件,把下列事件用A 、B 、C 表示出来:(1)A 发生; (2)A 不发生,但B 、C 至少有一个发生;(3)三个事件恰有一个发生; (4)三个事件中至少有两个发生;(5)三个事件都不发生; (6)三个事件最多有一个发生;(7)三个事件不都发生。

1.4 设}10,,3,2,1{ =Ω,}5,3,2{=A ,}7,5,3{=B ,}7,4,3,1{=C ,求下列事件:(1)B A ; (2))(BC A 。

1.5 设A 、B 是随机事件,试证:B A AB A B B A +=-+-)()(。

1.6 在11张卡片上分别写上Probability 这11个字母,从中任意抽取7张,求其排列结果为ability 的概率。

1.7 电话号码由6位数字组成,每个数字可以是0,1,2,…,9中的任一个数字(但第一位不能为0),求电话号码是由完全不相同的数字组成的概率。

1.8 把10本不同的书任意在书架上放成一排,求其中指定的3本书恰好放在一起的概率。

1.9 为了减少比赛场次,把20个球队任意分成两组(每组10队)进行比赛。

求最强的两个队被分在不同组内的概率。

1.10 在桥牌比赛中,把52张牌任意分给东、南、西、北四家(每家13张),求北家的13张牌中:(1)恰有5张黑桃、4张红心、3张方块、1张草花的概率。

(2)恰有大牌A 、K 、Q 、J 各一张,其余为小牌的概率。

1.11 从0,1,2,…,9十个数字中任意选出三个不同的数字,试求下列事件的概率:(1)=1A {三个数字中既不含0,也不含5};(2)=2A {三个数字中不同时含有0和5};(3)=3A {三个数字中含有0,但不含5}。

1.12 一学生宿舍有6名学生,求:(1)6个人的生日都在星期天的概率;(2)6个人的生日都不在星期天的概率;(3)6个人的生日不都在星期天的概率。

1.13 将长为a 的细棒折成三段,求这三段能构成三角形的概率。

1.14 A 、B 是随机事件,已知a A P =)(,b B P =)(,c AB P =)(,求:(1))(B A P +; (2))(B A P ; (3))(B A P ; (4))(B A P + 。

1.15 设A 、B 、C 是事件,已知4/1)()()(===C P B P A P ,8/1)()(==AC P BC P ,0)(=AB P ,求A 、B 、C 都不发生的概率。

1.16 设A 、B 是随机事件,且满足)()(B A P AB P =和p A P =)(,求)(B P 。

1.17 设10件产品中有4件不合格品,从中任取两件,已知取出的两件中至少有一件是不合格品,问:两件都是不合格品的概率是多少?1.18 两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02。

加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍。

(1)求任意取出的零件是合格品的概率。

(2)如果已知任意取出的零件是废品,求它是第二台车床加工的概率。

1.19 已知5%的男性和0.25%的女性患有色盲,随机选取一人,经查确定为色盲。

求此人是男性的概率(假定男性和女性各占总人数的一半)。

1.20 设A 、B 是随机事件,且满足)()(A B P A B P =,证明事件A 、B 是相互独立的。

1.21 设A 、B 是随机事件,且0)(>A P ,0)(>B P 。

证明事件A 、B 相互独立与互不相容不能同时成立。

1.22 三人独立地破译一个密码,他们各自能译出的概率分别为a ,b ,c ,问三人中至少有一人能将此密码译出的概率是多少?1.23 设A 、B 是随机事件,假定4.0)(=A P ,而7.0)(=+B A P ,令p B P =)(。

(1)p 取何值时才能使A 、B 互不相容?(2)p 取何值时才能使A 、B 相互独立?1.24 一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7。

求:在一小时内三台车床中最多有一台需要工人照管的 概率。

1.25 已知某篮球运动员每次投篮的命中率为0.7,求该运动员五次投篮,至少投中两次的概率(假设各次投篮都是独立的随机事件)。

1.26 某工厂生产过程中出现次品的概率为0.05,对某批产品检验时,用如下方法:随机取50个,如果发现其中的次品不多于一个,则认为该批产品是合格的。

问:用这种方法认为该批产品合格的概率是多少?1.27 已知每支枪射击飞机时,击中飞机的概率为004.0=p ,各支枪能否击中飞机是相互独立的。

求:(1)250支枪同时进行射击,飞机至少被击中一次的概率;(2)需要多少支枪同时进行射击,才能以99%以上的概率保证至少击中一次飞机?1.28 甲、乙、丙三人相互独立地向同一飞机射击,设每个人击中飞机的概率都是0.4。

如果只有一人击中,则飞机被击落的概率为0.2;如果有两人击中,则飞机被击落的概率为0.6;如果三人都击中,则飞机一定被击落。

求飞机被击落的概率。

习题解答习题一1.1(1)样本空间可以表示为}100,,3,2,10{ ,=Ω;事件}100,,82,81{ =A 。

(2)样本空间可以表示为}18,,5,4,3{ =Ω;事件}17,,8,7{ =A ,}8,,4,3{ =B 。

(3)样本空间可以表示为),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(,),4,2,1(),3,2,1{(=Ω )}5,4,3(),5,4,2(),5,3,2(;事件)}5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3.2,1{(=A 。

(4)样本空间可以表示为},12,11,10{ =Ω;事件}50,,12,11,10{ =A 。

(5)样本空间可以表示为}0,0,0,1),,{(>>>=++=Ωz y x z y x z y x 。

1.2 (1)设样本点i ω表示“抽到i 号卡片”(8,,2,1 =i ),样本空间可以表示为},,,{821ωωω =Ω;(2)},{42ωω=AB 表示“抽到标号不大于4且是偶数的卡片”;},,,,,{864321ωωωωωω=+B A 表示“抽到标号不大于4或者是偶数的卡片”; },,,{7531ωωωω=B 表示“抽到标号是奇数的卡片”;},{31ωω==-B A B A 表示“抽到标号不大于4而且是奇数的卡片”;},,,,,,{8754321ωωωωωωω=BC 表示“抽到标号不能同时既是偶数又能被3整除(即标号不是6的倍数)的卡片”;},,{751ωωω==+C B C B 表示“抽到标号是奇数而且不能能被3整除的卡片”。

1.3(1)A ;(2))(C B C B BC A ++ 或)(C B A +;(3)C B A C B A C B A ++;(4)BC A C B A C AB ABC +++ 或BC AC AB ++;(5)C B A 或C B A ++;(6)C B A C B A C B A C B A +++ 或B A C A C B ++;(7)ABC 或C B A ++。

1.4(1)}7,5,3,2{=+=B A B A ;(2)}10,9,8,7,6,4,3,1{)(=+=BC A BC A 。

1.5 由事件差的定义、德摩根定律及分配律可知:))(()()(A B B A A B B A A B B A ++=+=-+-B A AB BA B B A A B A +=+++=。

1.6 在11张卡片中任意抽7张,依次排成一列,有 711P 种不同的方法。

要得到ability ,每次取一张卡片,如果取卡时,这种字母的卡片只有1张,则只有1种取法,如果取卡时,这种字母的卡片有2张,则有2种取法。

所以,P {连抽7张,排列结果为ability}=41580011111221711=⨯⨯⨯⨯⨯⨯P 。

1.7 由6位数字组成的首位不能为0的有重复的排列(作为电话号码)共有5109⨯种,其中满足条件的(电话号码是由完全不相同的数字组成)的有567899⨯⨯⨯⨯⨯种。

所以,所求概率为: P {满足条件的电话号码}1512.0105678910956789955=⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯=。

1.8 10本不同的书任意在书架上放成一排,排法的总数为 !101010=P 。

为了使指定的3本书放在一起,我们可以想象把这三本书“捆绑”在一起作为一个整体看待,于是10本书就变成了8个物体,8个物体的排法总数有!888=P 种;但这3本书还可以有!333=P 种排法,所以,满足条件的排法共有!3!8⨯种。

因此,所求概率P {其中指定的3本书恰好放在一起}=0667.0151!10!3!8≈=⨯。

1.9 解法一 我们先来求把20个球队任意分成两组的方法数。

注意到每种这样的分法可以这样得到:从20个球队中任意取出其中的10个队作为一组(剩下的为另一组)。

所以共有1020C 种不同的分法。

再求满足要求“最强的两个队被分在不同组内”的分法数。

每种这样的分法可以这样求得:先从2个强队中任意取出1个队,有12C 种取法,再从18个不是强队的球队中任意取出9个队,有918C 种取法,这样取出的10个队作为一组(剩下的为另一组)。

所以共有91812C C 种不同分法。

相关文档
最新文档