概率论 第五章 大数定律与中心极限定理
概率论与数理统计第五章 大数定律及中心极限定理

在100次炮击中炮弹命中的总颗数
100
X = ∑ Xk k =1
相互独立地服从同一分布,
E(Xk)=2, D(Xk)=1.52 (k=1,2,…,100)
随机变量
∑ 1
100 × 1.5
100 k =1
(
X
k
−
2)
=
1 15
(
X
−
200)
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 (随机变量序列独立同分布且数学期望存在)
n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
给出了“频率稳定性”的严格数学解释. 提供了通过试验来确定事件概率的方法. 是数理统计中参数估计的重要理论依据之一.
§5.2 中心极限定理
望 E( Xk ) = µ (k = 1,2,"),则对于任意ε > 0,有
∑ lim
n→∞
P {|
1 n
n k =1
Xk
−
µ
|<
ε
}
=
1
说明
伯努利大数定理是辛钦定理的特殊情
况。n个随机变量的算术平均值以概率收敛于算
术平均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 算术平均值依概率收敛于数学期望
= 1 − P { V − 100 ≤ 0.387 } (10 12 ) 20
∫ 0.387
≈ 1−
1
e − t 2 dt
−∞ 2π
= 1 −Φ (0.387) = 0.348
所以 P{V > 105} ≈ 0.348
第五章 大数定律和中心极限定理

第三节 中心极限定理
所谓中心极限定理,就是关于大量微小的随机变量之和的极限分布在什么条件下是正态分布的定理. 定义 1 设 { X n } 为一随机变量序列, DX n , n 1,2, ,若
2
83
n a n lim P(a X i b) P n i 1 n
X
i 1
n
i
n
n
b n b n a n ) ( ). ( n n n
例 1 一加法器同时收到 50 个噪声电压 Vi (i 1,2, ,50 ) , 设 V i (单位: 微伏)相互独立且均在 [0,10] 上 服从均匀分布,求该加法器上总电压 V
i 1
n
1 n2
c n 0(n ) ,
i 1
n
c
推论 2 (贝努里大数定律) 设 S n 为 n 重贝努里试验中事件 A 出现的次数, p 为 A 在每次 n
证 明 :令 Xi
1 在第i 次试验中A出现 , 则 X i ~ B(1, p ) , i 1,2,, n 且 相 互 独 立 , 0 在第 i 次试验中 A 不出现
c 0 ,使得 DX n c , n 1,2, ,则
P 1 n ( X i EX i ) 0 . n i 1
证明:只须验证马尔可夫条件成立即可.由于 { X n } 两两互不相关,故
0
因此马尔可夫条件成立.
n 1 1 D ( Xi) 2 2 n n i 1
DX i
第5章_大数定律和中心极限定理

3) 用平均值近似积分值
1 即 I N
g(r ) I
n1 n
N
问:若求 I b g ( x )dx 的值
a
应如何近似计算?请思考.
大数定律以严格的数学形式表达了随 机现象最根本的性质之一: 平均结果的稳定性 它是随机现象统计规律的具体表现. 大数定律在理论和实际中都有广泛的应用.
0
1
我们介绍均值法,步骤是
1) 产生在(0,1)上均匀分布的随机数rn, n=1,2,…,N 2) 计算g(rn), n=1,2,…,N
3) 用平均值近似积分值
1 即 I N
g(r ) I
n1 n
N
求 I g ( x )dx 的值
0
1
我们介绍均值法,步骤是
1) 产生在(0,1)上均匀分布的随机数rn, n=1,2,…,N 2) 计算g(rn), n=1,2,…,N
n
P a 则称{Xn}依概率收敛于a。可记为 X n
意思是: 当
n 时, Xn落在 (a , a )
Xn
内的概率越来越大。即 n0 , 使得n n0 ,
a
a
a
二、几个常用的大数定律
切比雪夫大数定律 设{Xk,k=1,2,...}为独立的随机变 量序列,且有相同的数学期望,及方差2>0,则
1 n P Yn X k n k 1
例 在掷骰子过程中,以Xn记第n次掷出的点数, 1 n 在依概率收敛意义下,求 X X k 的极限。
n
k 1
下面我们再举一例说明大数定律的 应用. 定积分的概率计算法 求 I g ( x )dx 的值
0 1
概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列
∑
n
i =1
Xi −
∑ E(X
i =1
n
i
)
∑
n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0
概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。
数学中研究大量的工具是极限。
因此这一章学习概率论中的极限定理。
第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。
意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。
大数定律解释了这一结论。
首先介绍切比雪夫不等式。
一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。
切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。
进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。
当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。
二、依概率收敛随机变量序列即由随机变量构成的一个序列。
不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。
只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。
依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。
注意这三个大数定律的条件有何异同。
定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。
定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。
伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。
伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。
(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理一、内容提要(一)切贝谢夫不等式 1. 切贝谢夫不等式的内容设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。
(){}()(){}().1,22εεεεX D X E X P X D X E X P -≤-≤≥-2. 切贝谢夫不等式的意义(1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){}ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。
(2)不足之处为要计算(){}ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。
另外,利用本不等式估值时精确性也不够。
(3)当X 的方差D (X )越小时,(){}ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。
(二)依概率收敛如果对于任何ε>0,事件{}ε a X n -的概率当n →∞时,趋于1,即{}1lim =-∞→ε a X P n n ,则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。
(三)大数定律 1. 大数定律的内容(1)大数定律的一般提法若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有11lim 1=⎭⎬⎫⎩⎨⎧-∑=∞→ε n i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。
(2)切贝谢夫大数定律设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即()().,,,2,1, n i C X D i =≤则对于任意的ε>0,恒有()111lim 11=⎭⎬⎫⎩⎨⎧-∑∑==∞→ε n i ni i i n X E n X n P 。
概率论与数理统计----第五章大数定律及中心极限定理

= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>
∫
+∞
−∞
东华大学《概率论与数理统计》课件 第五章 大数定律与中心极限定理

7 8.75E-06 6.2863E-05 7.19381E-05 7.28862E-05 7.2992E-05
8 3.65E-07 7.3817E-06 8.93826E-06 9.1053E-06 9.124E-06
4 0.01116 0.01494171 0.015289955 0.015324478 0.01532831
5 0.001488 0.00289779 0.003048808 0.003063976 0.00306566
6 0.000138 0.00046345 0.0005061 0.000510458 0.00051094
ln n) + 1 ( 2
ln n) = 0
Dn
=
E
2 n
=
1 2
(ln n) +
1 2
(ln n)
=
ln n
→
但 1
n2
n
D( i ) =
i =1
1 n2
n i =1
Di
=
1 n2
n
ln i
i =1
1 n2
n
ln n =
i =1
ln n n
→0
满足马尔可夫条件,{
}服从大数定律
n
注意: 辛钦大数定律只要求一阶矩存在,但是 随机变量序列是独立同分布的. 若所讨论的 随机变量序列是不服从同分布的要求或不独 立可应用切比雪夫大数定律 或者马尔可夫大 数定律 .
(2)设 n 为 n 次独立重复试验中 A 出现的次数, p 是事件 A 在每次试验中出现的概率, 0 ,
则
lim
n→
P{
n
n
−
p
概率论与数理统计 第三版 第五章 大数定律和中心极限定理

依概率收敛的序列还有以下性质: 设 X n p a, Yn pb, 且函数 g(x,y) 在点 (a,b)连续,
具有数学期望 E(X ) 和方差 D(X ) , 0 ,有
P{
X
E
(
X
)
≥
}≤
D(
X
2
)
,
或
P{ X E(X ) }≥1 D(X ) .
2
上页 下页 返回
证 以连续型随机变量X为例.
P{ X E( X ) ≥} f (x)dx x E ( X ) ≥
≤ x E ( X ) ≥
x E(X ) 2
E(
X
k
)
,D(
X
k
)
2
(k
1,2,
上页
,
n).
下页
返回
则对任意的ε>0, 有
1
lim P{ n n
n
Xk
k 1
}1
证 由于
lim P X 1.
n
E
1 n
n k 1
X
k
1 n
n k 1
E(X
k
)
1 n
n
,
D
1 n
n k 1
Xk
1 n2
n
D
k 1
XK
1 n2
n
2
2
n
,
上页 下页 返回
由切比雪夫不等式知
P
1 n
n
Xk
k 1
≥1
2
n
2
.
令n , 并注意到概率不能大于1, 即得
1
lim
n
P
概率论与数理统计 第五章

贝努里定理. 它的叙述如下:设是n次重复独立 对于任意给定的ε>0,有
lim P{| nA p | } 1
n
n
lim P{| nA p | } 1
n
n
其中nA/n是频率,p是概率,即次数多
时事件发生的频率收敛于概率.表示频率的稳定性.
定理3
lim P{|
n
1 n
n i 1
Xi
| } 1
数理统计的方法属于归纳法,由大量的资料作依据,而不
是从根据某种事实进行假设,按一定的逻辑推理得到的.例
如统计学家通过大量观察资料得出吸烟和肺癌有关,吸烟
者得肺癌的人比不吸烟的多好几倍.因此得到这个结论.
数理统计的应用范围很广泛.在政府部门要求有关的资
料给政府制定政策提供参考.由局部推断整体,学生的假期
第五章 大 数 定 律 与 中 心 极 限 定 律
§ 5.1大 数 定 律
定理1(切比雪夫定理) 设X1,X2,...,Xn,...是相互独立的随机变
量序列若存在常数C,使得D(Xi)≤C. (i=1,2,...n),则对任意给
定的ε>0,有
lim P{|
n
1 n
n i 1
[Xi
E( X i )] |
7200 6800 2
200 1
D 2
1
2100 2002
0.95
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度 不高.为此我们研究下面的内容.
2021/9/5
10
§ 5.2 中 心 极 限 定 理
在随机变量的一切可能性的分布律中,正态分布占有特殊的
概率论第五章大数定律与中心极限定理讲解

1 P
1200
Xk
k 1
10
0
2
1[
2
2
]
2 22 2 0.0228 0.0456
例2 根据以往经验,某种电器元件的寿命服从均 值为100小时的指数分布. 现随机地取16只,设它们的 寿命是相互独立的. 求这16只元件的寿命的总和大于 1920小时的概率.
可知,当 n 时,有 1nn 源自1XiP E( X1)
a
因此我们可取 n 次测量值 x1, x2, , xn 的算术平均值
作为a
得近似值,即
a
1 n
n i1
xi ,当n充分大时误差很小。
例4 如何估计一大批产品的次品率 p ? 由伯努利大数定律可知,当 n 很大时,可取频率
则对任意的 x ,有
n ~ N(np, np(1 p)) n , 近似地
即 n np ~ N (0,1)
np(1 p)
或 lim P{ n np
x
x}
1
t2
e 2 dt x
n np(1 p)
2
证 因为 n ~ b(n, p)
n
所以 n X k k 1
i 1
1200
1200
心极限定理可得 X k ~ N (n,n 2),即 X k ~ N (0,100)
k 1
k 1
则所求概率为
1200
1200
P k1 X k
20
P
Xk 0
k 1
概率统计(5)大数定律与中心极限定理

i =1 上一页 下一页
返回
定理2: 定理
上一页
下一页
返回
贝努利大数定律) (贝努利大数定律)设nA是n次独立重复试 次独立重复试 定理3: 定理 验中事件A出现的次数 是事件 出现的次数. 是事件A在每次试验中发生的 验中事件 出现的次数 p是事件 在每次试验中发生的 概率 (0<p<1),则对任意的ε >0有: 则对任意的 有 或 证明:设Xi表示第 i 次试验中事件 出现的次数, 次试验中事件A出现的次数 出现的次数, 证明: i=1,2,…,n,则X1,X2,…,Xn相互独立且均服从参数为 的 相互独立且均服从参数为p的 则 (0-1)分布,故有 E(Xi)=p, D(Xi)=p(1-p) i=1,2,…,n 分布, 分布 由契比雪夫大数定律知, 且 ,由契比雪夫大数定律知,对于任意 的 ,有
定理1: 定理
相互独立, 证 因X1,X2,…相互独立,所以 相互独立
1 n 1 n 1 l D ∑ X i = 2 ∑ D( X i ) < 2 nl = n n n i =1 n i =1
又因
1 n 1 n E ∑ X i = ∑ E ( X i ), n i =1 n i =1
ε
ε2
可见契比雪夫不等式成立. 可见契比雪夫不等式成立
上一页
下一页
返回
设电站供电网有10000盏电灯 夜晚每一盏灯开灯的 盏电灯,夜晚每一盏灯开灯的 例2 设电站供电网有 盏电灯 概率都是0.7,而假定开,关时间彼此独立 估计夜晚同时 而假定开, 概率都是 而假定开 关时间彼此独立,估计夜晚同时 开着的灯数在6800与7200之间的概率 之间的概率. 开着的灯数在 与 之间的概率 表示在夜晚同时开着的灯的数目,它服从参数为 解 设X表示在夜晚同时开着的灯的数目 它服从参数为 表示在夜晚同时开着的灯的数目 n=10000,p=0.7的二项分布 的二项分布. 的二项分布 若要准确计算,应该用贝努利公式 应该用贝努利公式: 若要准确计算 应该用贝努利公式:
第五章大数定律与中心极限定理

Xi
1 n
n i 1
E(Xi)
1,
则称{Xn}服从大数定律.
(2)伯努利大数定律是切比雪夫大数定律的特例
(3) 伯努利大数定律和切比雪夫大数定律的证明 都用到切比雪夫不等式,而且需要方差存在。
定理 5.1.4. 辛钦大数定律
设X1, X 2 ,..., X n,...是独立同分布的随机变量序列,
意义:只要试验次数够大,发生事件的频率无限接近于 概率,频率稳定性,频率代替概率。
定理 5.1.3. 切比雪夫大数定律
设X1 , X 2 ,, X n ,是一相互独立的随机变 量序列,
它们的数学期望和方差 均存在,且方差有共同 的上界,
即存在常数 K 0,使得 D ( X i ) K , i 1,2, ,
不等式给出了X 与它的期望的偏差不小于的概率
的估计式.
例 1 E( ) 4, D( ) 0.2, 则由切比雪夫不等式知
P{| 4 | 2} P{| 4 | 1}
,
P{ X
}
2 2
,
P{1 7}
定义 5.1.1设{X n}是一个随机变量序列,a是常数,
若对于任意的 0,有
已知整个系统中至少有84个部件正常工作,系统
工作才正常.试求系统正常工作的概率.
解: 记Y为100个部件中正常工作的部件数,则
Y 近似服从 N(100 0.9,100 0.9 (1 0.9))
即Y 近似服从N (90, 9)
因此,所求概率为
P{Y 84}=1-P{Y<84}=1-P{ Y-90 < 84-90 }
解: 设Xi为第i个螺丝钉的重量,i 1, 2,...,100.
且设X 为一盒螺丝钉的重量.
第五章大数定律与中心极限定理

• 例:一加法器同时收到 个噪声电压 k(k=1,2,…,20), 一加法器同时收到20个噪声电压 一加法器同时收到 个噪声电压V 它们相互独立且都在区间[0,10]上服从均匀分布 噪声 上服从均匀分布,噪声 它们相互独立且都在区间 上服从均匀分布 的近似值. 电压总和V=V1+V2+…+V20,求P{V>105}的近似值 电压总和 求 的近似值 • 解:易知 易知E(Vk)=5,D(Vk)=100/12,由独立同分布的中心 易知 由独立同分布的中心 20 极限定理知
∑ D( X
k =1
n
k
)=
σ2
n
1 n 所以 P{| ∑ X k − µ |< ε } = P {| X n − E ( X n ) |< ε } n k =1 D( X n ) σ2 ≥ 1− = 1− 2 2 nε ε
设随机变量序列{Y 如果存在一个常数a 定义 设随机变量序列{Yn},如果存在一个常数a,使得 ε>0 对任意的 ε>0,有
1 故 n
X k 1 . ∑ 2 P→ 3 k =1
§2
中心极限定理
定理(林德贝尔格 勒维 定理):设 定理 林德贝尔格-勒维 林德贝尔格 勒维(Lindeberg-Levy)定理 设 定理 {Xk}为相互独立的随机变量序列 服从同一分布 且 为相互独立的随机变量序列,服从同一分布 为相互独立的随机变量序列 服从同一分布,且 具有数学期望E(Xk)=µ和方差 和方差D(Xk)=σ2 ,则随机变 具有数学期望 和方差 则随机变 量
X 1 ~ U ( −1, 1). 则 1 (1) n X k,(2)1 ∑ n k =1
n 2 X k 分别 依概 率收 敛吗 ? ∑ k =1 n
《概率论与数理统计》课件第五章大数定律及中心极限定理

4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为
第五章大数定理与中心极限定理

2. 随机事件的频率
lim P p =1 n n
p f n p
n
作业
P112
1、3、6、7
§5.4中心极限定理
在客观实际中有许多随机变量,它们是由大 量的相互独立的随机因素的综合影响所形成的。 而其中每一个别因素在总的影响中所起的作用 都是微小的。这种随机变量往往近似地服从正 态分布,这种现象就是中心极限定理的客观背 景。
设{ξn}为随机变量序列,ξ为随机变量,其对 应的分布函数分别为Fn(x), F(x). 若在F(x)的连 续点,有
第五章
大数定律与中心极限定理
5.1大数定律的概念 5.2切贝谢夫不等式 5.3切贝谢夫定理 5.4中心极限定理
“概率是频率的稳定值”。前面已经提到, 当随机试验的次数无限增大时,频率总在其概 率附近摆动,逼近某一定值。大数定理就是从 理论上说明这一结果。正态分布是概率论中的 一个重要分布,它有着非常广泛的应用。中心 极限定理阐明,原本不是正态分布的一般随机 变量总和的分布,在一定条件下可以渐近服从 正态分布。这两类定理是概率统计中的基本理 论,在概率统计中具有重要地位。
பைடு நூலகம்
大数定律以确切的数学形式表达了这种规 律性,并论证了它成立的条件,即从理论上阐述 了这种大量的、在一定条件下的、重复的随机 现象呈现的规律性即稳定性.由于大数定律的作 用,大量随机因素的总体作用必然导致某种不依 赖于个别随机事件的结果.
§5.2 切贝谢夫不等式
一个随机变量离差平方的数学期望就是它的
f n p
n
证明:设
则
1 第i次试验事件A发生 i 0 第i次试验事件A不发生
E (i ) p, D(i ) p(1 p)
第五章 大数定律和中心极限定理

第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22}{εσεμ≤≥-X P 或221}{εσεμ-><-X P 成立.2、大数定律(1)切贝雪夫大数定理:设 ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1( =i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<-∑=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2=≠=i X D i σ.则对任意实数x ,随机变量σμσμn n Xn XY ni ini in ∑∑==-=-=11)(的分布函数)(x F n 满足⎰∞--∞→∞→=≤=xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2=≠=i X D i i σ .记 ∑==ni inB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→-∑=++ni ii nX E Bδδμ, 则随机变量nni ini ini i ni i ni in B X X D X E XZ ∑∑∑∑∑=====-=-=11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰∑∑∞--==∞→∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=x t n ni i n i i n n n dt e x B X x F 2/11221lim )(lim πμ.当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni in B N XN Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰∞--∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于 1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析【例1】设每次试验中某事件A 发生的概率为0.8,请用切贝雪夫不等式估计:n 需要多大,才能使得在n 次重复独立试验中事件A 发生的频率在0.79~0.81之间的概率至少为0.95? 分析:根据切贝雪夫不等式进行估计,须记住不等式.解: 设X 表示n 次重复独立试验中事件A 出现的次数,则)8.0,(~n B X ,A 出现的频率为n n X D n X E nX16.02.08.0)(,8.0)(,=⨯==, 220001.016.01)01.0()(1}01.08.0{81.079.0n n n X D n n X P n X P -=-≥<-=⎭⎬⎫⎩⎨⎧<< n16001-= 由题意得 95.016001≥-n,32000≥n .可见 做32000次重复独立试验中可使事件A 发生的频率在0.79~0.81之间的概率至少为0.95.【例2】证明:(马尔柯夫定理)如果随机变量序列 ,,,,21n X X X ,满足0)(1lim 12=∑=∞→n k k n X D n ,则对任给0>ε,有1)(11lim 11=⎭⎬⎫⎩⎨⎧<-∑∑==∞→εn k k n k k n X E n X n P .证明: )(1)1(),(1)1(12111∑∑∑∑======nk k n k k n k k n k k X D n X n D X E n X n E ,由切贝雪夫不等式,得22111)(1)(11lim εεn X D X E n X n P nk k nk k n k k n ∑∑∑===∞→-≥⎭⎬⎫⎩⎨⎧<-,根据题设条件,当∞→n 时, 1)(11lim 11≥⎭⎬⎫⎩⎨⎧<-∑∑==∞→εnk k n k k n X E n X n P ,但概率小于等于1,故马尔柯夫定理成立.【例3】一本书共有100万个印刷符号.排版时每个符号被排错的概率为0.0001,校对时每个排版错误被改正的概率为0.9,求校对后错误不多于15个的概率.分析:根据题意构造一个独立同分布的随机变量序列,具有有限的数学期望和方差,然后建立一个标准化的随机变量,应用中心极限定理求得结果.解:设随机变量⎩⎨⎧=.,0,1 其它 错个印刷符号校对后仍印 第n X n 则)1(≥n X n 是独立同分布随机变量序列,有5101.00001.0}1{-=⨯===n X P p .作)10(,61==∑=n XY nk Kn ,n Y 为校对后错误总数.按中心极限定理(德—拉定理),有)58.1(]))101(1010/[5(15}15{553Φ≈-Φ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-=≤--npq np npq np Y P Y P n n9495.0=.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体. 从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21 称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21 是随机变量n X X X ,,,21 的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21 是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f 称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值 ∑==ni i X n X 11;(2)样本方差 ][11)(11122122∑∑==--=--=ni i n i i X n X n X X n S ; (3)样本标准差 2S S =;(4)样本k 阶原点矩 ,2,1,11==∑=k X n A n i ki k ;(5)样本k 阶中心矩 ,2,1,)(11=-=∑=k X X n B kn i i k .2、经验分布函数设n x x x ,,,21 是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤ ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(nk k n x x x x x nk x x x n x x x F 为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21 是X 的一个样本,则统计量∑==ni iX122χ服从自由度为n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且Y X ,相互独立,则随机变量nY X t /=服从自由度为n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,相互独立,则随机变量21//n Y n X F =服从自由度为),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21 是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ或)1,0(~/2N nX U σμ-=;(2)样本方差)1(~)1(222--n S n χσ;(3)统计量)1(~/--n t nS X μ.设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X 是X 的一个样本, 2,,,21n Y Y Y 是Y 的一个样本,两者相互独立.则(1)统计量)1,0(~//)()(22212121N n n Y X σσμμ+---;(2)当21σσ=时,统计量)2(~/2/1)()(212121-+⋅+---n n t S n n Y X wμμ,其中2)1()1(21222211-+-+-=n n S n S n S w ;(3)统计量 )1,1(~//2122222121--n n F S S σσ; (4)统计量),(~/)(/)(2112221222112121n n F n n yxn j jn i i⋅--∑∑==σμσμ.疑 难 分 析1、为什么要引进统计量?为什么统计量中不能含有未知参数?引进统计量的目的是为了将杂乱无序的样本值归结为一个便于进行统计推断和研究分析的形式,集中样本所含信息,使之更易揭示问题实质.如果统计量中仍含有未知参数,就无法依靠样本观测值求出未知参数的估计值,因而就失去利用统计量估计未知参数的意义. 2、什么是自由度?所谓自由度,通常是指不受任何约束,可以自由变动的变量的个数.在数理统计中,自由度是对随机变量的二次型(或称为二次统计量)而言的.因为一个含有n 个变量的二次型),,2,1,,(11n j i a a X X aji ij n i nj j i ij==∑∑==的秩是指对称矩阵n n ij a A ⨯=)(的秩,它的大小反映n 个变量中能自由变动的无约束变量的多少.我们所说的自由度,就是二次型的秩.例 题 解 析【例1】设)5,2,1)(,(~2=i N X i i σμ,(1)521,,,μμμ 不全等;(2)521μμμ=== .问:521,,,X X X 是否为简单随机样本?分析:相互独立且与总体同分布的样本是简单随机样本,由此进行验证.解:(1) 由于)5,2,1)(,(~2=i N X i i σμ,且521,,,μμμ 不全等,所以521,,,X X X 不是同分布,因此521,,,X X X 不是简单随机样本.(2)由于521μμμ=== ,那么521,,,X X X 服从相同的分布,但不知道521,,,X X X 是否相互独立,因此521,,,X X X 不一定是简单随机样本.【例2】设),(~2σμN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值,2n S 为样本二阶中心矩,2S 为样本方差,问下列统计量(1)22σn nS ,(2)1/--n S X n μ,(3)212)(σμ∑=-ni i X 各服从什么分布?分析:利用已知统计量的分布进行分析.解:(1)由于)1(~)1(222--n S n χσ,又有21221)(1S nn X X n S n i i n-=-=∑=22)1(S n nS n-=,因此)1(~222-n nS nχσ;(2)由于)1(~/--n t nS X μ,又有1-=n S nS n ,因此)1(~1/---n t n S X n μ;(3)由),,2,1)(,(~2n i N X i =σμ得:),,2,1)(1,0(~n i N X i =-σμ,由2χ分布的定义得:)(~)(2212n Xni iχσμ∑=-.【例3】设总体服从参数为λ的指数分布,分布密度为⎩⎨⎧≤>=-0,00,);(x x e x p x λλλ求X D X E ,和2ES .分析:利用已知指数分布的期望、方差和它们的性质进行计算.解:由于),,2,1(/1,/12n i DX EX i i ===λλ,所以λ1)(1)1(11===∑∑==n i i n i i X E n X n E X E ;21211)(1)1(λn X D nX n D X D ni i n i i ===∑∑==; 221212)1(111)(11])(11[λλ-=⋅-=-=--=∑∑==n n n n X D n X X n E ES n i i n i i .【例4】设总体)4,(~μN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值.问样本容量n 取多大时有:(1)1.0)(2≤-μX E ;(2)95.0}1.0{≥≤-μX P .解:(1)要使1.0/4/)()()(2≤===-n n X D X D X E μ,即有40≥n ,故取40=n .(2)由中心极限定理,要使)05.0(}4/1.0)(/{}1.0{n n X D X P X P Φ≈≤-=≤-μμ95.01)05.0(2)05.0(≥-Φ=-Φ-n n ,即有64.1536,96.105.0,975.0)05.0(≥≥≥Φn n n ,故取1537=n .。
概率论-第5章 大数定律及中心极限定理

§1 大数定律
一、问题的引入
生产过程中的 字母使用频率 废品率 启示:从实践中人们发现大量测量值的算术平均值 有稳定性.
大量抛掷硬币 正面出现频率
§1 大数定律
一、问题的引入
大数定律的概念 概率论中用来阐明大量随机现象平均结果的 稳定性的一系列定理,称为大数定律(law of large number)
§2 中心极限定理
即考虑随机变量X k (k 1, n)的和 X k的标准化变量
k 1 n
Yn
X
k 1
n
k
E ( X k )
k 1 n
n
D ( X k )
2
说明每一个随机变量都有相同的数学期望。
§1 大数定律
检验是否具有相同的有限方差?
Xn P
2
( na ) 1 2 2n
2 n
2
0 1 1 2 n
2
( na ) 1 2 2n
2
1 2 a , E ( X ) 2( na ) 2 2n 2 ) [ E ( X n )]2 a 2 . D( X n ) E ( X n
使得当 x a y b 时,
g( x , y ) g(a , b)பைடு நூலகம் ,
§1 大数定律
于是 { g( X n , Yn ) g(a, b) }
{ X n a Yn b }
X n a Yn b , 2 2
§2 中心极限定理
自从高斯指出测量误差服从正态分布之后,人 们发现,正态分布在自然界中极为常见.
如果一个随机变量是由大量相互独立的随机因 素的综合影响所造成,而每一个别因素对这种综合 影响中所起的作用不大. 则这种随机变量一般都服 从或近似服从正态分布. 现在我们就来研究独立随机变量之和所特有 的规律性问题.
概率论第五章 大数定律及中心极限定理

的标准化变量为
n
X i n
Yn i1 n
则Yn的分布函数Fn(x)对任意的x∈(-∞,+∞)都有
n X i n
lim
n
Fn
(
x)
lim
n
P(Yn
x)
lim
n
P
i 1
n
x
x
1
t2
e 2 dt
2
该定理说明,当n充分大时, Yn近似地服从标准正 态分布,Yn~N(0,1), (n )
P|
X
|
2 2
P X
1
2 2
证明 (1)设X的概率密度为p(x),则有
P{| X | } p(x)dx
| x |2
p(x)dx
|x|
|x|
2
1
2
(x
)2
p(
x)dx
2 2
Xi 2
0
pi
1 4
1 2
2
(i 1,2, , n, )
1 4
解
因为 X1, X 2 , , X n ,
相互独立, EX i 0 , E
X
2 i
1
又
DX i
E
X
2 i
EX i
2
1 0
1, i
1,2,
, n,
所以,满足切比雪夫大数定理的条件,可使用大数定理.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解
22 1 P{| X 20 | 4} 42 4
P{| X 20 | 4}
1 P{| X 20 | 4}
1 1 3 44
例:已知随机变量 X 的数学期望为 E(X)=μ,方 差 D(X ) 2 ,当 2 和 3 时,试用切比雪夫
不等式求概率 P X 的近似值.
解 当 2时
(5.5 5) ( 4.5 5) =0.1742
4.95
4.95
显然,本例中Possion 逼近较正态逼近更精确.
例: 将一颗骰子连掷100次,则点数之和不少于 500的概率是多少?
解 设Xk为第k 次掷出的点数,k=1,2,…,100,则
X1,…,X100独立同分布.
E( X1)
7 2
• 例如对某物的长度进行测量,在测量时有许多随机 因素影响测量的结果.如温度和湿度等因素对测量仪 器的影响,使测量产生误差X1;测量者观察时视线所 产生的误差X1;测量者心理和生理上的变化产生的测 量误差X3;…显然这些误差是微小的、随机的,而且 相互没有影响.测量的总误差是上述各个因素产生的 误差之和,即∑Xi.
(即方差有公共上界)则对于任意给定的ε>0,恒有
证明
lim P{|
n
1 n
n k 1
Xk
1 n
n k 1
E( X k ) | } 1
记
Xn
1 n
n k 1
Xk,
则E(X n )
E(1 n
n k 1
Xk
)
1 n
n k 1
E( X k
)
D(X n )
D( 1 n
n k 1
Xk)
1 n
n k 1
n
n
n
Yn
k 1
Xk E( Xk )
k 1
n
D( X k )
k 1
X k n n
n k 1
Xk n
k 1
的分布函数Fn(x),对于任意x,满足
lim lim Fn(x) P{Yn x}
n
n
1
t2
e 2 dt (x)
2
例.设每颗炮弹命中目标的概率为0.01,求500发炮弹中 命中 5发的概率。
证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于0.9,D(X)=0.009.则用
切比绍夫不等式估计ε的 最小值是( 0.3 ).
4. 设随机变量X的数学期望为μ, 标准差为σ,则由切比绍夫不等式 P{|X-μ|≥3σ}≤( 1/9 ).
5. 设随机变量X的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率.
200 2
190 10
200 2
20.707 1 0.52
• 定理(De Moivre-Laplace中心极限定理):设随
机变量Yn服从二项分布Yn ~B(n,p), (o<p<1),则对 于任意x,恒有
lim P{ Yn np x} 1
t2
e 2 dt
n
np(1 p)
2
证明 设X1,X2,…,Xn是n个相互独立的服从(0-1)分布 (P{Xi=0}=1-p,P{Xi=1}=p)的随机变量,则
又
fn A
X n
而P
0.74
X n
0.76
P X 0.75n
0.01n
1
0.1875n
0.01n 2
1
1875 n
0.90
n
18750
20
§5.2 中心极限定理
• 在一定条件下,许多随机变量的极限分布是正态分 布:“若一个随机变量X可以看着许多微小而独立的 随机因素作用的总结果,每一种因素的影响都很小,都 有不起压倒一切的主导作用,则X一般都可以认为近 似地服从正态分布.”
• “概率是频率的稳定值”。前面已经提到,当 随机试验的次数无限增大时,频率总在其概 率附近摆动,逼近某一定值。大数定理就是 从理论上说明这一结果。正态分布是概率论 中的一个重要分布,它有着非常广泛的应用。 中心极限定理阐明,原本不是正态分布的一 般随机变量总和的分布,在一定条件下可以 渐近服从正态分布。这两类定理是概率统计 中的基本理论,在概率统计中具有重要地位。
例: 设随机变量 X1, X 2 , , X n , 相互独立,且有如 下表的分布律,问:对随机变量 X1, X 2 , , X n , 可 否使用大数定理?
Xi 2
0
pi
1 4
1 2
2
(i 1,2, , n, )
1 4
解
因为 X1, X 2 , , X n ,
相互独立, EX i 0 , E
n
Xi,
i 1
n 1,2,...
• 我们关心的是当n→∞时,随机变量和∑Xi的极限分
布是什么?由于直接研究∑Xi的极限分布不方便,故
先将其标准化为:
n
n
Xi E(Xi)
Yn i1
i 1 n
D( Xi )
i 1
再来研究随机变量序列{Yn}的极限分布.
• 定义:设{Xk}为相互独立的随机变量序列,有有限 的数学期望E(Xk)=μk和方差D(Xk)=σk2,令
i 1
n
定理(伯努里大数定理)
设 A 是 n 次独立 重复试验中 事件A 发 生
的次数, p 是事件 A 在每次试验中发生的概率,
则对于任意正数 0, 有
lim
n
P
A
n
p
0
或
lim P n
A
n
p
1.
证明 引入随机变量
0 A事件在第k次试验中不发生
k
1
A事件在第k次试验中发生
k 1,2,3 , n
D(X k )
C n
所以
lim
n
P{|
1 n
n k 1
Xk
1 n
n k 1
E(Xk )
|
}
lim
n
P{|
Xn
E( X n )
|
}
lim (1 D(X n )) lim (1 C ) 1
n
2
n n 2
• 推论(切比雪夫大数定律的特殊情况):设{Xk}是 相互独立同分布的随机变量序列,具有相同的数学 期望E(Xk)=μ和方差D(Xk)=σ2(k=1,2,…),则对于任 意给定的ε>0,恒有
Y100
210 .
i 1
解 因为 X i 服从 (2) ,i 1,2,
即 PX i
k
2k k!
e2 , (k
1,2,
)
所以 E( X i ) 2, D( X i ) 2 , i 1,2, ,100
近似服从 Y100
N 200, 10
22 ,于是
P 190 Y100 210
210 10
解: (1) 设X表示命中的炮弹数, 则 X~B(500,0.01)
C P{X 5} 5 0.015 0.99495 =0.17635 500
(2)np=λ=5,应用Possion逼近: P{X 5} 55 e5 =0.17547
5!
(3)应用正态逼近: X~N(5,4.95)
P{X=5}=).
由独立性知道
n
D(i )
i 1
n2 2
.
n
n
D(i ) Di npq.
i 1
i 1
从而P(
n
n
p
)
npq
n2 2
0, n
关于伯努里定理的说明:
贝努里定理表明事件发生的频率 A 依概
n 率收敛于事件的概率p, 它以严格的数学形式 表达了频率的稳定性.
故而当n很大时, 事件发生的频率与概率有 较大偏差的可能性很小. 在实际应用中, 当试验 次数很大时, 便可以用事件发生的频率来代替 事件的概率.
P X 2 2 1
2 2 4
当 3时
P X 3 2 1
3 2 9
课堂练习
P X EX 1 DX
2
1. 设随机变量X的方差D(X)=0.0001,
则由切比绍夫不等式可知
P{|X-E(X)|<3×0.01}>(
).
2. 设随机变量X~E(1/n),用切比雪夫不等式
0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01
0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
P
23
• 一般地,在研究许多随机因素产生的总影响时,很 多可以归结为研究相互独立的随机变量之和的分布 问题,而通常这种和的项数都很大.因此,需要构造一 个项数越来越多的随机变量和的序列:
X
2 i
1
又
DX i
E
X
2 i
EX i
2
1 0
1, i
1,2,
, n,
所以,满足切比雪夫大数定理的条件,可使用大数定理.
思考:频率是概率的反映,随着观察的次数增加, 频率将会“逐渐稳定”或“靠近”到概率,“逐渐 稳定”或“靠近”到概率是什么?
n p n np
n
n
n
n
i E(i )
i1
• 定理(切比雪夫(Chebyshev)不等式):设随机变
量X具有数学期望E(X)=μ,方差D(X)=σ2 ,则对于任
意正数ε,有
P| X | 2