稳恒磁场一章习题解答..
大学物理稳恒磁场习题及答案 (1)
衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。
2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。
3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。
4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。
5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。
6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。
二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。
电磁感应一章习题答案
电磁感应一章习题答案习题11—1 如图,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速度旋转,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时。
图(A)——(D)的ε—t 函数图象中哪一条属于半圆形闭合导线回路中产生的感应电动势?[ ]解:本题可以通过定性分析进行选择。
依题设,半圆形闭合导线回路作匀角速度旋转,因此回路内的磁通量变化率的大小是一个常量,但是其每转动半周电动势的方向改变一次。
另一方面,若规定回路绕行的正方向为顺时针的,则通过回路所围面积的磁通量0>Φ,当转角从0到π时,0>Φdt d ,由法拉第电磁感应定律,0<ε;当转角从π到π2时,0<Φdt d ,由法拉第电磁感应定律,0>ε,如此重复变化……。
因此,应该选择答案(A)。
习题11—2 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线。
外磁场垂直水平面向上,当外力使ab 向右平移时,cd [ ](A) 不动。
(B) 转动。
(C) 向左移动。
(D) 向右移动。
解:ab 向右平移时,由动生电动势公式可以判断出ab 中的电动势的方向是b →a →c →d →b ,因而在cd 中产生的电流方向是c →d ,由安培力公式容易判断出cd 将受到向右的磁场力的作用,因此,cd 也将向右移动。
所以应选择答案(D)。
习题11—3 一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴O O '转动,转轴与磁场方向垂直,转动角速度为ω,如图所示。
用下述哪一种方法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?[ ](A) 把线圈的匝数增加到原来的两倍。
习题11―1图t εO(A)tεO(B)tεO(C)tεO(D)abc d M NB ρ 习题11―2图(B) 把线圈的面积增加到原来的两倍,而形状不变。
《大学物理学》习题解答(第13章 稳恒磁场)(1)
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R
(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,
稳恒磁场习题(包含答案)
练习八磁感应强度毕奥—萨伐尔定律(黄色阴影表示答案) 一、选择题如图所示,边长为l的正方形线圈中通有电流I,则此线圈在: AlIπμ220.(C)lIπμ2(D) 以上均不对.电流I由长直导线1沿对角线AC方向经A点流入一电阻均匀分布的正方形导线框,再由D点沿对角线BD方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O点产生的磁感强度分别用B1、B2和B3表示,则O点磁感强度的大小为:A(A) B = 0. 因为B1 = B2 = B3 = 0 .(B) B = 0. 因为虽然B1 0, B2 0, B1+B2 = 0, B3=0(C) B 0. 因为虽然B3 = 0, 但B1+B2 0(D) B0. 因为虽然B1+B2 = 0, 但B3 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I,这三条导线在正三角形中心O点产生的磁感强度为:B(D) B=30I/(3a) . .如图所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O 点的磁感强度大小等于:C(A)RIπμ20.(B)Iμ.(D) )11(4πμ+RI.二、填空题如图所示,在真空中,电流由长直导线1沿切向经a点流入一电阻均匀分布的圆环,再由b点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I,圆环半径为R,aob=180.则圆心O点处的磁感强度的大小B = .0图图图图图I练习九毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量n与B的夹角为,如图所示. 则通过半球面S的磁通量为:(A) r2B.(B) 2r2B.(C) r2B sin.(D) r2B cos.如图,载流圆线圈(半径为R)与正方形线圈(边长为a)通有相同电流I ,若两线圈中心O1与O2处的磁感应强度大小相同,R: a为(A) 1:1.(B) π2:1.三、计算题1.在无限长直载流导线的右侧有面积为S1和S2的两个矩形回路,回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S1回路的磁通量与通过S2回路的磁通量之比.(此题作为悬赏题)练习十安培环路定理一、选择题2. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r< R)的磁感强度为B1,圆柱体外(r >R)的磁感强度为B2,则有:(A) B1、B2均与r成正比.(B) B1、B2均与r成反比.(C) B1与r成正比, B2与r成反比.(D) B1与r成反比, B2与r成正比.在图(a)和(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I2和I2,其分布相同,且均在真空中,但在图(b)中,L2回路外有电流I3,P1、P2为两圆形回路上的对应点,则:(A) ⎰⋅1dLlB=⎰⋅2dLlB,21PPBB=.(B) ⎰⋅dLlB⎰⋅dLlB,21PPBB=.图图图图P1L(a)3P2(b)图(D)⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) 0I . (B) 0I /3. (C) 0I /4. (D) 20I /3 . 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理(B) 0 d =⋅⎰L l B ,且环路上任意点B =0. (C) 0 d ≠⋅⎰Ll B ,且环路上任意点B 0. (D) 0 d ≠⋅⎰Ll B,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路,对于环路a ,=⋅⎰a L l B d ;对于环路b , =⋅⎰bL l B d ;对于环路c ,=⋅⎰cL l B d . 0I , 0, 20I .练习十一安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B,正比于v 2.图图图(C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . lIB πμ0222=lπ01l Iπμ0222.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA 轴转动,导线通电转过 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D)将磁场B 减少1/4,线框中电流强度减少1/4.图图l (1)d图(A)(D) (C)(B) (E)。
大学物理稳恒磁场理论及习题
结果:
1.
F
v,
B组
成
的
平
面.
2. F 大小正比于v, q0,sin.
q0沿磁场方向运动, F 0.
q0 垂直磁场方 向运动, F Fmax .
NIZQ 第4页
大学物理学 恒定磁场
在垂直磁场方向改变速率v,改变点电荷 电量q0 .
结论: 场中同一点, Fmax/q0v有确定值. 场中不同点, Fmax/q0v量值不同.
大学物理学 恒定磁场
从毕-萨定律导出运动电荷的磁场
S: 电流元横截面积
n: 单位体积带电粒子数
q: 每个粒子带电量
v: 沿电流方向匀速运动
电流元 Idl产生的磁场:
大学物理学 恒定磁场
一.磁场 磁感应强度
• 磁性起源于电荷的运动 磁铁的磁性: 磁性: 能吸引铁、钴、镍等物质的性质.
磁极: 磁性最强的区域, 分磁北.
磁力: 磁极间存在相互作用, 同号相斥,
异号相吸.
问题: 磁现象产生的原因是什么?
司南勺
北宋沈括发明 “指南针(罗盘
1.在任何磁场中每一条磁感线都
是环绕电流的无头无尾的闭合线, 条形磁铁周围的磁感线 即没有起点也没有终点,而且这些
闭合线都和闭合电路互相套连.
2.在任何磁场中,每一条闭合的磁
感线的方向与该闭合磁感线所包围
的电流流向服从右手螺旋法则.
直线电流的磁感线
NIZQ 第6页
大学物理学 恒定磁场
二.毕澳-萨伐尔定律
r a
sin
B
l
dB
2 1
0I
4π
a
sin 2
sin 2
a2
sin d
大学物理稳恒磁场习题及答案
衡水学院理工科专业《大学物理B 》稳恒磁场习题解答 【1 】一.填空题(每空1分)1.电流密度矢量的界说式为:dIj n dS ⊥=,单位是:安培每平方米(A/m2). 2.真空中有一载有稳恒电流I 的细线圈,则经由过程包抄该线圈的关闭曲面S 的磁通量=0 .若经由过程S 面上某面元d S 的元磁通为d,而线圈中的电流增长为2I 时,经由过程统一面元的元磁通为d ',则d ∶d '=1:2 .3.一曲折的载流导线在统一平面内,外形如图1(O 点是半径为R1和R2的两个半圆弧的配合圆心,电流自无限远来到无限远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=.4.一磁场的磁感强度为k c j b i a B++= (SI),则经由过程一半径为R,启齿向z 轴正偏向的半球壳概况的磁通量的大小为πR2cWb. 5.如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情形下,等于: 对环路a :d B ⋅⎰=____μ0I__;对环路b :d B ⋅⎰=___0____; 对环路c :d B ⋅⎰=__2μ0I__.6.两个带电粒子,以雷同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,活动轨迹半径之比是_____1∶2_____. 二.单项选择题(每小题2分)( B )1.平均磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S,则经由过程S 面的磁通量的大小为( C )2.有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中间产生的磁感强度的大小之比B1 / B2为(D )3.如图3所示,电流从a 点分两路经由过程对称的圆环形分路,会合于b 点.若ca.bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 偏向垂直环形分路地点平面且指向纸内B. 偏向垂直环形分路地点平面且指向纸外C .偏向在环形分路地点平面内,且指向aD .为零( D )4.在真空中有一根半径为R 的半圆形细导线流过的电流为I,则圆心处的磁感强度为 A.R 140πμ B. R120πμ C .0D .R 140μ ( C )5.如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度绕AC 轴扭转时,在中间O 点产生的磁感强度大小为B1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴扭转时,在O 点产生的磁感强度的大小为B2,则B1与B2间的关系为A. B1= B2B. B1= 2B2C .B1=21B2D .B1= B2 /4O IR 1 R 2图1b⊗ ⊙ cI I c a图2c I db a图3A CqqqqO图4(B )6.有一半径为R 的单匝圆线圈,通以电流I,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中间的磁感强度和线圈的磁矩分离是本来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4.(D) 2倍和1/2. 三.断定题(每小题1分,请在括号里打上√或×)( × )1.电源的电动势是将负电荷从电源的负极经由过程电源内部移到电源正极时,非静电力作的功. ( √ )2.磁通量m SB dS φ=⋅⎰的单位为韦伯.( × )3.电流产生的磁场和磁铁产生的磁场性质是有区此外. ( × )4.电动势用正.负来暗示偏向,它是矢量.( √ )5.磁场是一种特别形态的物资,具有能量.动量和电磁质量等物资的根本属性. ( × )6.知足0m SB dS φ=⋅=⎰的面积上的磁感应强度都为零.四.简答题(每小题5分)1.在统一磁感应线上,各点B 的数值是否都相等?为何不把感化于活动电荷的磁力偏向界说为磁感应强度B的偏向?答:在统一磁感应线上,各点B 数值一般不相等.(2分)因为磁场感化于活动电荷的磁力偏向不但与磁感应强度B 的偏向有关,并且与电荷速度偏向有关,即磁力偏向其实不是独一由磁场决议的,所以不把磁力偏向界说为B 的偏向.(3分)2.写出法拉第电磁感应定律的数学表达式,解释该表达式的物理意义. 答:法拉第电磁感应定律的数学表达式r lS BE dl dS t∂⋅=-⋅∂⎰⎰(2分) 物理意义:(1)感生电场是由变更的磁场激发的;(1分)(2)感生电场r E 与Bt∂∂组成左手螺旋关系;(1分)(3)右侧的积分面积S 为左侧积分路径L 包抄的面积.(1分)五.盘算题(每题10分,写出公式.代入数值.盘算成果.)1.如图5所示,AB.CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R.若通以电流I,求O 点的磁感应强度. 解:如图所示,O 点磁场由AB .C B.CD 三部分电流产生.个中AB 产生01=B(1分)CD 产生RIB 1202μ=,(2分)偏向垂直向里(1分)CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,(2分)偏向⊥向里(1分)∴)6231(203210ππμ+-=++=R I B B B B ,(2分)偏向⊥向里.(1分) 2.如图6所示.半径为R 的平均带电圆盘,面电荷密度为σ.当盘以角速度ω绕个中间轴OO '扭转时,求盘心O 点的B 值.解法一:当带电盘绕O 轴迁移转变时,电荷在活动,因而产生磁场.可将圆盘算作很多齐心圆环的组合,而每一个带电圆环迁移转变时相当图5于一圆电流.以O 为圆心,r 为半径,宽为dr 的圆环,此环上电量rdr ds dq πσσ2⋅==(2分)此环迁移转变时,其等效电流rdr dq dI ωσπω=⋅=2(3分) 此电流在环心O 处产生的磁感应强度大小2200drrdIdB ωσμμ==(2分)其偏向沿轴线,是以全部圆盘在盘心O 处产生的磁感应强度大小是R dr dBB Rωσμωσμ0002121==⎰⎰(3分) 解法二:依据活动电荷的磁场公式304r rv q B ⨯=πμ,(2分)求解,在圆盘上取一半径为r,宽为dr 的圆环,电量rdr dq πσ2=,ωr v =(2分)dr rdr r r dq r dB 22440020σωμπσπωμπωμ=⋅==(3分)偏向垂直于盘面向上,同样RqRdr dB B Rπωμωσμσωμ2220000====⎰⎰(3分) 3.图7所示,在一长直载流导线旁有一长为L 导线ab,其上载电流分离为I1和I2,a 端到直导线距离为d 求当导线ab 与长直导线垂直,求ab 受力.解:取如图8所示坐标系直导线在距其为x 处,产生的磁场xI B πμ210=(2分) 其偏向垂直低面向里,电流之I2dx 受安培力大小为dx xI I Bdx I df πμ22102==(3分) df 偏向垂直向上,且各电流之受力偏向雷同,(2分)故,ab 受力为012012ln22d L LdI I I I d Lf df dx x dμμππ++===⎰⎰(3分) 4.一长直导线通有电流120A I =,旁边放一导线ab,个中通有电流210A I =,且两者共面,如图8所示.求导线ab 所受感化力对O 点的力矩.解:如图9所示,在ab 上取r d ,它受力ab F ⊥d 向上,(2分)大小为rI rI F πμ2d d 102=(2分) F d 对O 点力矩F r M⨯=d (2分)图6I 1I2dL图7Md 偏向垂直纸面向外,大小为r I I F r M d 2d d 210πμ==(2分) ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμm N ⋅(2分)5.两平行长直导线相距d=40cm,每根导线载有I1=I2=20A 如图10所示.求: ⑴两导线地点平面内与该两导线等距的一点A 处的磁感应强度; ⑵经由过程图中斜线所示面积的磁通量.(r1=r3=10cm,l=25cm)解: (1)图中的A 点的磁场122222O O A I I B d d μμππ=+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()512124010O O OI I I I T d d dμμμπππ-=+=+=⨯(4分) (2)在正方形中距中间x 处,取一窄条ds ldx =,则经由过程ds 的磁通量m d B ldx φ=()1222O O I I ldxx d z μμππ⎛⎫=+ ⎪ ⎪-⎝⎭ 122O l I I dx x d x μπ⎛⎫=+ ⎪-⎝⎭(3分)31122d r O m m r l I I d dx x d x μφφπ-⎛⎫==+ ⎪-⎝⎭⎰⎰311213ln ln 2O l d r d r I I r r μπ⎛⎫--=+ ⎪⎝⎭ ()121ln 2O l d n I I r μπ⎛⎫-=+ ⎪⎝⎭6111ln 2.210O l d r I wb r μπ--==⨯(3分) 6.已知磁感应强度B=2.0Wb ·m -2的平均磁场, 偏向沿X 轴正偏向,如图11所示,试求:(1) 经由过程abcd 面的磁通量; (2) 经由过程图中befc 面的磁通量; (3)经由过程图中aefd 面的磁通量. 解:(1)经由过程abcd 面的磁通量mabcd abcd B S φ= 2.00.40.3=⨯⨯ 0.24wb =(4分)(2)经由过程ebfc 面的磁通量,因为B 线擦过此面 故0mbdfc φ=(3分)(3)经由过程aefd 面的磁通量图110.24 maefd mabcd wbφφ==(3分)。
稳恒磁场
稳 恒 磁 场 习 题 课(数学表达式中字母为黑体者表示矢量)壹 内容提要一、磁感强度B 的定义 1. 用运动的试验电荷q 0在磁场中受力定义: 大小B=F max /(q 0v ),方向与q 0受力为零时的速度方向平行,且矢量F 、v 、B 满足右手螺旋法则。
2. 用磁矩为m (题库为P m ) 的试验线圈在磁场中受力矩定义:大小B=M max /m ,方向与试验线圈处于稳定平衡时m 的方向相同。
二、毕奥—沙伐尔定律 1.电流元I d l 激发磁场的磁感强度 d B =[μ0 /( 4π)]I d l ×r /r 3; 2. 运动点电荷q 激发磁场的磁感强度 B =[μ0 /( 4π)]q v ×r /r 3。
三、磁场的高斯定理 1. 磁感线(略);2. 磁通量 Φm =⎰⋅Sd S B (计算磁通量时注意曲面S 的法线正方向);3. 高斯定理0d =⋅⎰SS B ;4. 稳恒磁场是无源场。
四、安培环路定理 1. 表达式 :真空中⎰∑=⋅l i I 0 d μl B ,介质中⎰∑=⋅li I 0d l H ; 2. 稳恒磁场是非保守场,是涡旋场或有旋场。
五、磁矩 m (题库为P m ): 1. 定义 m =I ⎰S d S (任何载流线圈均可定义磁矩 m );2. 磁偶极子激发的磁场:延长线上 B=[μ0/(4π)](2 m /r 3);中垂线上B=[μ0/(4π)](-m /r 3);3. 载流线圈在均匀磁场中受力矩 M= m ×B 。
六、洛伦兹力 1. 表达式 F m = q v ×B , F = q (E +v ×B );2. 带电粒子在均匀磁场中运动(设v 与B 的夹角为α):回旋半径 R =mv sin α / (qB ), 回旋周期 T =2πm / (qB ), 回旋频率 ν= qB / (2πm ),螺距 d =2π mv cos α / (qB );3.霍耳效应:(1).定义(略), (2).在磁场方向与电流方向不变的情况下正载流子与负载流子受磁场力方向相同, (3).霍耳电压U H =R H IB/d , (4)霍耳系数R H =1/(nq )。
稳恒电流和稳恒磁场习题解答
第十一章 稳恒电流和稳恒磁场一 选择题1. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(如图)产生的磁感应强度B 的大小为( )A. lI μπ420 B.lIμπ20 C .lI μπ20 D. 0解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lI lIB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里 lI lIB CD π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里合磁感应强度 lIB B B CD BC π420μ=+= 所以选(A )2. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )选择题2选择题1A.x=2的直线上B.在x>2的区域C.在x<1的区域D.不在x、y平面上解:本题选(A)3. 图中,六根无限长导线互相绝缘,通过电流均为I,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大( )A. Ⅰ区域B. Ⅱ区域 C.Ⅲ区域D.Ⅳ区域 E.最大不止一个解:本题选(B)4. 如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知:()A.∮L B·d l=0,且环路上任意一点B=0B.∮L B·d l=0,且环路上任意一点B≠0ⅠⅡ选择题3选择题4C. ∮L B ·d l ≠0,且环路上任意一点B ≠0D.∮L B ·d l ≠0,且环路上任意一点B =常量解:本题选(B )5. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A.B t 、B e 均与r 成正比 B. B i 、B e 均与r成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比解:导体横截面上的电流密度2πRI J =,以圆柱体轴线为圆心,半径为r 的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2RIrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )6. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下× × × ×abc落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A.E a <E b =E c B. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )7. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A.Oa B. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负电粒子要向下偏选择题7cdbaBO转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bqm R v =,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )8. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A 两侧的电势差V A V A >0,设此样品的载流子带负电荷,则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )9. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )选择题8图XA. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。
14 稳恒电流的磁场习题详解
习题三一、选择题1.如图3-1所示,两根长直载流导线垂直纸面放置,电流I 1 =1A ,方向垂直纸面向外;电流I 2 =2A ,方向垂直纸面向内,则P 点的磁感应强度B r的方向与x 轴的夹角为[] (A )30˚; (B )60˚; (C )120˚; (D )210˚。
答案:A解:如图,电流I 1,I 2在P 点产生的磁场大小分别为1212,222I IB B d d ππ==,又由题意知12B B =;再由图中几何关系容易得出,B 与x 轴的夹角为30º。
2.如图3-2所示,一半径为R 的载流圆柱体,电流I 均匀流过截面。
设柱体内(r < R )的磁感应强度为B 1,柱体外(r > R )的磁感应强度为B 2,则 [ ](A )B 1、B 2都与r 成正比; (B )B 1、B 2都与r 成反比;(C )B 1与r 成反比,B 2与r 成正比; (D )B 1与r 成正比,B 2与r 成反比。
答案:D解:无限长均匀载流圆柱体,其内部磁场与截面半径成正比,而外部场等效于电流集中于其轴线上的直线电流磁场,所以外部磁场与半径成反比。
3.关于稳恒电流磁场的磁场强度H v,下列几种说法中正确的是 [ ](A )H v仅与传导电流有关。
(B )若闭合曲线内没有包围传导电流,则曲线上各点的H v必为零。
(C )若闭合曲线上各点H v均为零,则该曲线所包围传导电流的代数和为零。
图3-12I 1I(D )以闭合曲线L为边缘的任意曲面的H v通量均相等。
答案:C解:若闭合曲线上各点H ϖ均为零,则沿着闭合曲线H ϖ环流也为零,根据安培环路定理,则该曲线所包围传导电流的代数和为零。
4.一无限长直圆筒,半径为R ,表面带有一层均匀电荷,面密度为σ,在外力矩的作用下,这圆筒从t=0时刻开始以匀角加速度α绕轴转动,在t 时刻圆筒内离轴为r 处的磁感应强度B r的大小为 [ ](A )0; (B )0R t μσα; (C )0R t r μσα; (D )0rt Rμσα。
大学物理学-稳恒磁场习题课
⑶电子进入均匀磁场B中,如图所示,当电子位于 A点的时刻,具有与磁场方向成 角的速度v,它绕螺旋 线一周后到达B点,求AB的长度,并画出电子的螺旋轨 道,顺着磁场方向看去,它是顺时针旋进还是逆时针旋 进?如果是正离子(如质子),结果有何不同?
1、均匀磁场的磁感应强度B垂直于半径为r的圆面,今以该圆面
其中 直电流 ab和cd的延长线
o dc
fI
R1 R2
eI
过o
b
电流bc是以o为圆心、以 R2为半径的1/4圆弧
I
电流de也是以o为圆心、
但,是以R1为半径的1/4 圆弧
a
直电流ef与圆弧电流de在
e点相切
求:场点o处的磁感强度 B
解:
场点o处的磁感强度是由五段
特殊形状电流产生的场的叠加,f I
o dc
磁场力的大小相等方向相反; (3)质量为m,电量为q的带电粒子,受洛仑兹力作用,
其动能和动量都不变; (4)洛仑兹力总与速度方向垂直,所以带电粒子运动的
轨迹必定是圆。
习题课 1 一电子束以速度v沿X轴方向射出,在Y轴上 有电场强度为E的电场,为了使电子束不发生偏 转,假设只能提供磁感应强度大小为B=2E/v的
df
2ds
n
2 0
2 0
i dl 单位面积受力
da
df Idl B其余
da dl 0i
B总 0i
2 其余 0i
2
df
0i 2
n
dadl 2
表三 作用力
4.应用
静电场
稳恒磁场
类比总结
电偶极子 pe
fi 0
i M pE
三
磁偶极子 pm
fi 0
大学物理习题答案稳恒电流的磁场
第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。
解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。
解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。
)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。
R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。
已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。
解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。
稳恒磁场习题答案
稳恒磁场习题答案稳恒磁场习题答案磁场是物理学中一个重要的概念,它在我们日常生活中扮演着重要的角色。
稳恒磁场习题是物理学中常见的练习题,通过解答这些习题,我们可以更好地理解磁场的性质和应用。
下面是一些常见的稳恒磁场习题及其答案,希望对大家的学习有所帮助。
1. 一根长直导线产生的磁场强度与距离的关系是怎样的?答:根据安培定律,长直导线产生的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
2. 一根长直导线中心点的磁场强度为B,如果将导线弯成一个半径为r的圆环,中心点的磁场强度会发生怎样的变化?答:当将导线弯成一个半径为r的圆环后,中心点的磁场强度会变为零。
这是因为在圆环的中心点,由于对称性的原因,导线上的每一段磁场强度都会相互抵消,最终导致中心点的磁场强度为零。
3. 一个平面线圈中心的磁场强度与电流的关系是怎样的?答:根据比奥-萨伐尔定律,平面线圈中心的磁场强度与电流成正比关系。
即磁场强度随着电流的增加而增加。
4. 一个平面线圈中心的磁场强度与线圈的面积的关系是怎样的?答:一个平面线圈中心的磁场强度与线圈的面积成正比关系。
即磁场强度随着线圈的面积的增加而增加。
5. 一个平面线圈中心的磁场强度与距离的关系是怎样的?答:一个平面线圈中心的磁场强度与距离成反比关系。
即磁场强度随着距离的增加而减小。
6. 一个匀强磁场中,一个带电粒子的运动轨迹是怎样的?答:在一个匀强磁场中,一个带电粒子的运动轨迹是一个半径为r的圆。
这是因为带电粒子在匀强磁场中受到洛伦兹力的作用,该力垂直于带电粒子的速度和磁场方向,导致粒子做圆周运动。
7. 在一个匀强磁场中,一个带电粒子的运动速度对轨道半径的影响是怎样的?答:在一个匀强磁场中,一个带电粒子的运动速度对轨道半径没有影响。
这是因为带电粒子的运动速度只会影响圆周运动的周期,而不会影响圆周运动的半径。
8. 一个匀强磁场中,一个带电粒子的运动轨迹会受到哪些因素的影响?答:一个匀强磁场中,一个带电粒子的运动轨迹受到带电粒子的电荷量、质量、速度以及磁场的强度和方向的影响。
(完整版)大学物理电磁场练习题含答案
前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l I π420μ. (B) l Iπ220μ.(C)l Iπ02μ. (D) 以上均不对. [ ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ ]4.无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B ϖ的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]5.电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B ϖ、2B ϖ和3Bϖ表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B ϖϖ,但B 3≠ 0. [ ]6.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ及3Bϖ,则O 点的磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B ϖϖ,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ] v7.电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B ϖ、2B ϖ、3Bϖ,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ϖϖ,B 3 = 0.(C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B ϖϖ. [ ]8.a R r OO ′I在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B)22202R r a a I -⋅πμ(C) 22202r R a a I-⋅πμ (D) )(222220a r Ra a I -πμ [ ]参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空心部分轴线上的磁感强度可以看成是电流密度为J 的实心圆柱体在挖空部分轴线上的磁感强度1B ϖ和占据挖空部分的电流密度-J 的实心圆柱在轴线上的磁感强度2B ϖ的矢量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=μ 所以挖空部分轴线上一点的磁感强度的大小就等于)(22201r R IaB -π=μ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减小 2分在2/R x <区域减小;在2/R x >区域增大.(x 为离圆心的距离) 3分13. 0 1分I 0μ- 2分14. 4×10-6 T 2分 5 A 2分15. I0μ 1分 0 2分2I0μ 2分16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分 由于电子的运动所形成的圆电流00214a m a e e i ενππ== 因为电子带负电,电流i 的流向与 v ϖ方向相反 2分 ③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B ϖϖϖϖϖ+++= ∵ 1B ϖ、4B ϖ均为0,故32B B B ϖϖϖ+= 2分)2(4102R I B μ= 方向⊗ 2分 242)sin (sin 401203R I a I B π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分 18. 解:电流元1d l I ϖ在O 点产生1d B ϖ的方向为↓(-z 方向) 电流元2d l I ϖ在O 点产生2d B ϖ的方向为⊗(-x 方向) 电流元3d l I ϖ在O 点产生3d B ϖ的方向为⊗ (-x 方向) 3分kR I i R IB ϖϖϖπ-+ππ-=4)1(400μμ 2分 19. 解:设x 为假想平面里面的一边与对称中心轴线距离,⎰⎰⎰++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=μ (导线内) 2分r I B π=202μ (导线外) 2分)(42220x R R Il -π=μΦR R x Il +π+ln20μ 2分 令 d Φ / d x = 0, 得Φ 最大时 Rx )15(21-= 2分20. 解:洛伦兹力的大小 B q f v = 1分对质子:1211/R m B q v v = 1分 对电子: 2222/R m B q v v = 1分∵ 21q q = 1分 ∴ 2121//m m R R = 1分21.解:电子在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接入射和出射点的线段将是圆周的一条弦,如图所示.所以入射和出射点间的距离为:)/(3360sin 2eB m R R l v ==︒= 3分2解:在任一根导线上(例如导线2)取一线元d l ,该线元距O 点为l .该处的磁感强度为θμsin 20l I B π=2分 方向垂直于纸面向里. 1分电流元I d l 受到的磁力为 B l I F ϖϖϖ⨯=d d 2分其大小θμsin 2d d d 20l lI l IB F π== 2分 方向垂直于导线2,如图所示.该力对O 点的力矩为 1分θμsin 2d d d 20π==lI F l M 2分 任一段单位长度导线所受磁力对O 点的力矩⎰⎰+π==120d sin 2d l l l I M M θμθμsin 220π=I 2分 导线2所受力矩方向垂直图面向上,导线1所受力矩方向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r μμμ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /μ 6.25×10-4 T ·m/A 2分=-=1/0μμχm 496 2分9. 一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为____________Wb .10.任意曲面在匀强磁场B ϖ中,取一半径为R 的圆,圆面的法线n ϖ与B ϖ成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S B ϖϖd Φ_______________________.11. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时,(1) 圆线圈中心点(即圆心)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B ϖ_____________.(2) 磁感强度B ϖ沿图中环路L 的线积分 =⎰⋅L l B ϖϖd ______________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为______________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅lB ϖϖd 等于:____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.17.一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I ϖ2d l I ϖ3d l I ϖO如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平面内,导线2、3在Oyz 平面内.试指出电流元1d l I ϖ、2d l I ϖ、3d l I ϖ在O 点产生的Bϖd 的方向,并写出此载流导线在O 点总磁感强度(包括大小与方向).19.一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
电磁感应一章习题答案
电磁感应一章习题答案习题11—1如图,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速度旋转,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时。
图(A)——(D)的ε—t 函数图象中哪一条属于半圆形闭合导线回路中产生的感应电动势?[]解:本题可以通过定性分析进行选择。
依题设,半圆形闭合导线回路作匀角速度旋转,因此回路内的磁通量变化率的大小是一个常量,但是其每转动半周电动势的方向改变一次。
另一方面,若规定回路绕行的正方向为顺时针的,则通过回路所围面积的磁通量0>Φ,当转角从0到π时,0>Φdt d ,由法拉第电磁感应定律,0<ε;当转角从π到π2时,0<Φdt d ,由法拉第电磁感应定律,0>ε,如此重复变化……。
因此,应该选择答案(A)。
习题11—2如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线。
外磁场垂直水平面向上,当外力使ab 向右平移时,cd [](A)不动。
(B)转动。
(C)向左移动。
(D)向右移动。
解:ab 向右平移时,由动生电动势公式可以判断出ab 中的电动势的方向是b →a →c →d →b ,因而在cd 中产生的电流方向是c →d ,由安培力公式容易判断出cd 将受到向右的磁场力的作用,因此,cd 也将向右移动。
所以应选择答案(D)。
习题11—3一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴O O '转动,转轴与磁场方向垂直,转动角速度为ω,如图所示。
用下述哪一种方法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?[](A)把线圈的匝数增加到原来的两倍。
OωBCD 习题11―1图tεO(A)tεO(B)tεO(C)tεO(D)ab c d M NB习题11―2图(B)把线圈的面积增加到原来的两倍,而形状不变。
稳恒磁场练习题及答案
稳恒磁场练习题及答案一、 选择题1、在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问哪个区域中有些点的磁感应强度可能为零 ( D ) (A )仅在象限1 (B )仅在象限2(C )仅在象限1、3 (D )仅在象限2、42、关于洛仑兹力,下列说法错误的是:( D ) (A )带电粒子在磁场中运动,不一定受洛仑兹力 (B )洛仑兹力不做功(C )洛仑兹力只改变粒子运动方向(D )当磁场方向与粒子运动方向一致时,洛仑兹力对粒子作正功 3、一电量为q 的粒子在匀强磁场中运动,下面哪种说法是正确的:( B ) (A )只要速度大小相同,粒子所受的洛仑兹力就相同(B )在速度不变的前提下,若电荷电量q 变为-q ,则粒子受力方向相反,数值不变 (C )粒子进入磁场后,其动量和动能都不改变(D )洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹一定是圆4、由磁场的高斯定理可知 (D )(A )穿入闭合曲面的磁感应线条数必然多于穿出的磁感应线条数; (B )穿入闭合曲面的磁感应线条数必然少于穿出的磁感应线条数; (C )一根磁感应线可以始于闭合曲面外,终止在闭合曲面内; (D )一根磁感应线可以完全处于闭合曲面内。
5、对于某一回路L ,安培环路积分等于零,则可以断定(D )(A) 回路L 内一定有电流。
(B) 回路L 内可能有电流,且代数和不为零。
(C) 回路L 内一定无电流。
(D) 回路L 内可能有电流,但代数和为零。
6、电流I 1穿过一回路L ,而电流I 2则在回路的外面,于是有 ( C )(A) L 上各点的磁感应强度及积分⎰⋅Ll d B都只与I 1有关。
(B) L 上各点的磁感应强度B 只与I 1有关,积分⎰⋅Ll d B与I 1、I 2有关。
(C) L 上各点的磁感应强度B 与I 1、I 2有关,积分⎰⋅L l d B只与I 1有关。
(D) L 上各点的磁感应强度B 及积分⎰⋅Ll d B都与I 1、I 2有关。
大学物理-稳恒磁场习题思考题及答案
习题14-1. 如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B . 解:圆弧在O 点的磁感应强度 R6IR 4I B 001μπθμ==方向垂直纸面向外直导线在O 点的磁感应强度 R 2I 3)]60sin(60[sin 60cos R 4I B 000002πμπμ=--=方向垂直纸面向里 总场强 )313(R 2I B 0-=πμ 方向垂直纸面向里14-2. 两根长直导线沿半径方向引到铁环上A 、B 两点,并与很远处的电源相连,如图所示.求环中心O 点的磁感应强度B .解:设两段圆弧电流对O 的磁感应强度大小分别为1B 、 2B ,导线长度分别为1L 和2L ,横截面积为S ,电阻 率为ρ,电流1I 和2I 的关系12121221L L SL S L R R I I ===ρρ即 2211L I L I = r L I 4r dl 4I B 110L 21011⋅==⎰πμπμ r L I 4r dl 4I B 220L 22022⋅==⎰πμπμ由于两段圆弧电流对O 的磁感应强度方向相反,所以 0B =14-3. 无限长细导线弯成如图所示的形状,其中c 部分是在xoy 平面内半径为R 的半圆,试求通以电流I 时o 点的磁感应强度。
解: a 段 R4IB 01πμ=b 段 0B 2=c 段 R4IB 03μ=O 点的总场强 0044I IB R Rμμπ=-j +k 方向如图 14-4. 无限长直圆柱形导体内有一无限长直圆柱形空腔(如图所示),空腔与导体的两轴线平行,间距为a ,若导体内的电流密度均匀为j ,j 的方向平行于轴线。
求腔内任意点的磁感应强度B 。
解:采用补偿法,以导体的轴线为圆心,过空腔中任一点作闭合回路20r j d πμ=∙⎰L B 1 2rj B 01μ= 同理还是过这一点以空腔导体的轴线为圆心作闭合回路20)r a (j d -=∙⎰πμL B 2 2)r a (j B 02-=μ 1201B B B μ=+=⨯j a 14-5.在半径cm 1=R 的无限长半圆柱形金属片中,有电流A 5=I 自下而上通过,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稳恒磁场一章习题解答习题9—1 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。
正确的图是:[ ]解:根据安培环路定理,容易求得无限长载流空心圆柱导体的内外的磁感应强度分布为⎪⎪⎪⎩⎪⎪⎪⎨⎧--=r Ia b r a r I B πμπμ2)(2)(0022220 )()()(b r b r a a r >≤≤< 所以,应该选择答案(B)。
习题9—2 如图,一个电量为+q 、质量为m 的质点,以速度v沿X 轴射入磁感应强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x =0延伸到无限远,如果质点在x =0和y =0处进入磁场,则它将以速度v-从磁场中某一点出来,这点坐标是x =0和[ ]。
(A) qBm y v +=。
(B) qB m y v2+=。
(C) qB m y v 2-=。
(D) qBm y v-=。
解:依右手螺旋法则,带电质点进入磁场后将在x >0和y >0区间以匀速v 经一个半圆周而从磁场出来,其圆周运动的半径为qBm R v =r BO a b (A) (B) B a b r O B r O a b (C) B Or a b(D) 习题9―1图习题9―2图因此,它从磁场出来点的坐标为x =0和qBm y v2+=,故应选择答案(B)。
习题9—3 通有电流I 的无限长直导线弯成如图三种形状,则P ,Q ,O 各点磁感应强度的大小B P ,B Q ,B O 间的关系为[ ]。
(A) O Q P B B B >>。
(B) O P Q B B B >>。
(C) P O Q B B B >>。
(D) P Q O B B B >>说明:本题得通过计算才能选出正确答案。
对P 点,其磁感应强度的大小aIB P πμ20= 对Q 点,其磁感应强度的大小 [][])221(2180c o s 45cos 4135cos 0cos 4000+=-+-=a I a I a I B Q πμπμπμ对O 点,其磁感应强度的大小 )21(2424000ππμπμμ+=⋅+=a I a I aIB O 显然有P Q O B B B >>,所以选择答案(D)。
[注:对一段直电流的磁感应强度公式)cos (cos 4210θθπμ-=aIB 应当熟练掌握。
]习题9—4 如图所示,一固定的载流大平板, 在其附近有一载流小线框能自由转动或平 动,线框平面与大平板垂直,大平板的电流与线框中的电流方向如图所示,则通电线框的运动情况从大平板向外看是:[ ] (A) 顺时针转动 (B) 靠近大平板AB (C) 逆时针转动(D) 离开大平板向外运动解:根据大平板的电流方向可以判断其右侧磁感应强度的方向平行于大平板、且垂直于I 1;小线框的磁矩方向向上,如图所示。
由公式习题9―3图题解9―4图B P M m ⨯=可以判断小线框受该力矩作用的转动方向如图所示,因此应该选择答案(C)。
习题9—5 哪一幅曲线图能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系?(X 坐标轴垂直于圆线圈平面,圆点在圆线圈中心O )[ ]解:由载流圆线圈(N 匝)轴线上的磁感应强度公式232220)(2)(x R NIR x B +=μ可以判断只有曲线图(C)是正确的。
习题9—6 两根无限长直导线互相垂直地放着,相距d =2.0×102m ,其中一根导线与Z 轴重合,另一根导线与X 轴平行且在XOY 平面内。
设两导线中皆通过I =10A 的电流,则在Y 轴上离两根导线等距的点P 处的磁感应强度的大小为B = 。
解:依题给坐标系,与Z 轴重合的一根导线单独在P 点产生的磁感应强度为)T (102100.210104)2(282701i i i d I B --⨯-=⨯⨯⨯⨯-=-=πππμ同理,另一根与X 轴平行的导线单独在P 点产生的磁感应强度为(T )102)2(2802k k d I B -⨯==πμ由叠加原理,P 点处的磁感应强度的大小为(T)102282221-⨯=+=B B BB O (A) B O(B) B O (C) X B O (D) X BO (E) 习题9―5图习题9―6图习题9—7 如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根导线之间相距为a ,则(1) AB 中点(P 点)的磁感应强度P B= 。
(2) 磁感应强度B沿图中环路l 的线积分 ⎰ll d B·= 。
解:(1) A 、B 两载流导线在P 点产生的磁感应强度等大而反向,叠加的结果使P 点最终的磁感应强度为零,因此,0=P B。
(2) 根据安培环路定理容易判断,磁感应强度B沿图中环路l 的线积分等于-I 。
习题9—8 如图,半圆形线圈(半径为R )通有电流I ,线圈处在与线圈平面平行向右的均匀磁场B中。
则线圈所受磁力矩的大小为 ,方向为 。
把线圈绕O O '转过角度 时,磁力矩恰为零。
解:半圆形线圈的磁矩大小为I R P m 221π=因而线圈所受磁力矩的大小为IB R IB R B P M m 22212sin 21sin πππθ==⋅⋅=根据磁力矩公式B P M m ⨯= 可以判断出磁力矩M的方向向上。
容易知道,当πθk =,k =0,±1,±2,……时,磁力矩恰为零,这等价于把线圈绕O O '转过22)12(πππϕ+=+=k k ,k =0,1,2,3,……。
习题9—9 在均匀磁场B中取一半径为R 的圆,圆面的法线n与B 成60°角,如图所示,则通过以该圆为边线的如右图所示的任意曲面S 的磁通量=∙=⎰⎰SS S d BΦ 。
解:通过圆面的磁通量222160cos R B R B ππΦ=⋅⋅= 圆习题9―7图习题9―8图习题9―9图根据磁场的高斯定理,通过整个闭合曲面的磁通量等于零,即0=+=圆ΦΦΦS所以221R B S πΦΦ-=-=圆习题9—10 如图所示,均匀电场E 沿X 轴正方向,均匀磁场B沿Z 轴正方向,今有一电子在YOZ 平面沿着与Y 轴正方向成135°角的方向以恒定速度v运动,则电场E 和磁场B在数值上应满足的关系是 。
解:电子以恒定速度v运动,说明其所受到的合外力为零,即有0=+m e F F即 0)()(=⨯-+-B e E ev0)(45sin )(=--+-i B e i eEv∴ B E v 22=习题9—11 如图,在无限长直载流导线的右侧有面积为S 1和S 2两矩形回路。
两个回路与长直载流导线在同一平面,且矩行回路的一边与长直导线平行。
则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为 。
解:建立如图所示的坐标轴OX 轴,并在矩形回路内距长直导线x 处取宽为dx 的窄条面元dS =hdx (图中带阴影的面积),则通过该面元的元磁通为hdx xIBdS d πμ20==Φ 所以,通过回路S 1的磁通量为 2ln 220201πμπμIhx dx Ih dS a a ===Φ⎰⎰通过回路S 2的磁通量为2ln 2204202πμπμIhx dx Ih dS a a ===Φ⎰⎰习题9―10图习题9―11图故,1121=ΦΦ习题9—12 两根长直导线通头电流I ,如图所示有三种环路,在每种情况下,⎰∙Ll d B等于:(对环路a )(对环路b ) (对环路c )解:根据安培环路定理,容易得到:对环路a , ⎰∙Ll d B等于I 0μ;对环路b ,⎰∙Ll d B 等于0;对环路c ,⎰∙Ll d B等于2I 0μ。
习题9—13 如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过的稳恒电流为I ,则圆心O 处的电流元l Id 所受的安培力F d的大小为 , 方向为 。
解:圆心O 处的磁感应强度是由半圆形闭合线圈产生的,其直径段的电流在O 处单独产生的磁场为零,其半圆段在O 处产生的磁场即为该点的总磁场aIB O 40μ=O B的方向垂直于图面向内。
根据安培力公式B l Id F d ⨯=可知圆心O 处的电流元l Id 所受的安培力F d的大小为adlI IdlB dF 420μ==力F d的方向垂直于电流元向左。
习题9—14 一根半径为R 的长直导线均匀载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
若假想平面S 可在导线直径与轴O O '所确定的平面内离开O O '轴移动至远处。
试求当通过S 面的磁通量最大时S 平面的位置。
解:见图示,设假想平面S 靠近轴线的一边到轴线的距离为a,易知长直导习题9―12图l IdO a I习题9―13图习题9―14图线内外的磁场分布为202RIrB πμ=内 (R r ≤≤0) r IB πμ20=外 (R r >)在假想平面S 内、距轴为r 处,沿导线直径方向取一宽度为dr 的窄条面元,通过它的元磁通为Bldr d =Φ 通过假想平面S 的磁通量为 l d r r I l d r RIr Bldr d R a R RaR a a⎰⎰⎰⎰+++===πμπμΦΦ22020 R R a Il a R R Il ++-=ln 2)(202220πμπμ由最值条件,令012)2(4020=+⋅+-=Ra Il a R Il da d πμπμΦ即 022=-+R Ra a 解得 R Ra 618.0)15(2=-=(其负根已舍去)习题9—15 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通垂直于电流方向的每单位长度的电流为K 。
求球心处的磁感应强度大小。
解:如图所示,取一直径方向为OX 轴。
并沿电流方向在球面上取一宽度为dl 的球带,该球带可以看成载流圆环,其载有的电流为dI =Kdl =θKRd ,其在球心O 处产生的元磁场为θθμθμd KR R dI dB 20320sin 22)sin (==该元场的方向沿X 轴的正方向。
球面上所有电流在O 点产生的磁感应强度大小为题解9―15图r题解9―14图πμθθμπK d KdB B 002041sin 22=⋅==⎰⎰ 场的方向沿X 轴的正方向。
习题9—16 如图,一半径为R 的带电朔料圆盘,其中有一半径为r 的阴影部分 均匀带正电荷,面电荷密度为σ+,其余部分均匀带负电荷,面电荷密度为σ-,当圆盘以角速度ω旋转时,测得圆盘中心O 点的磁感应强度为零,问R 与r 满足什么关系?解:取与圆盘同心、半径为r 、宽度为dr 的圆环,其带量电量为r d r dS dq πσσ2==其等效的圆电流为rdr rdrdq dI σωωππσ===22 其在中心O 处产生的元场强为 dr rdIdB σωμμ00212==因此,中心O 点的磁感应强度为)2(2121210000R r dr dr dB B R r r -=-==⎰⎰⎰σωμσωμσωμ令该磁感应强度为零可得r R 2=习题9—17 如图,有一密绕平面螺旋线圈,其上通有电流I ,总匝数为N ,它被限制在半径为R 1和R 2的两个圆周之间。