2020年高考物理原子物理总复习
原子物理学总复习
段正路
2014年
1
第一章 原子的基本状况
重点: 1,原子的核式结构 2,α粒子散射实验的意义
2
1、卢瑟福的原子核式模型
原子中的全部正电荷和几乎全部质量都集中在原子中央一 个很小的体积内,称为原子核。原子中的电子在核的周围 绕核运动。
2. α粒子的散射实验:
α粒子被静止核的库仑场散射的角度θ由下式决定
• Z:质子数 • A: 质量数
C4 0
20
a
原子核的角动量
P 核 LnSnLpSp
P核 I(I1)h
原子核的磁矩
I g
I(I1) he 2M
38
原子核的统计性:A为奇数的原子核属于费米子;A为偶 数的原子核属于玻色子。
原子核的结合能
E [Z m p (A Z )m n m 核 ]C 2 或 E [Z m H (A Z )m n m 原 子 ]C 2
r rr 总角动量 JLS JLS,LS 1 ,......,LS
L LS耦合下的原子态符号表示:
2S 1
s=0,单重态
J s=1,三重态
能级排布规则
洪特定则 朗德间隔定则
17
j-j 耦合
rjrj21 rrll12srsr12 rr r Jj1j2
j1 l1 s 1 ,l1 s 1 1 ,....,l1 s 1 j2 l2 s 2 ,l2 s 2 1 ,....,l2 s 2 Jj1j2,j1j2 1 ,....,j1j2
% 1R (m 12n 1 2)Tm Tn
R — 里德堡常数;T(m) —光谱项。
光谱线系 m = 1,n = 2、3、4…,赖曼系(紫外) m = 2,n = 3、4、5…,巴尔末系(可见光) m = 3,n = 4、5、6…,帕邢系(红外) m = 4,n = 5、6、7…,布喇开系(远红外)
2020届高三一轮复习物理典型例题分类精讲:原子物理
2020届高三一轮复习物理典型例题分类精讲:原子物理一、选择题在每题给出的四个选项中,有的只有一项为哪一项正确的,有的有多个选项正确,全选对的得5分,选对但不全的得3分,选错的得0分。
1. 2005年是”世界物理年",100年前的1905年是爱因斯坦的”奇迹'’之年,这一年他先后发表了三篇具有划时代意义的论文,其中关于光量子的理论成功地讲明了光电效应现象。
关于光电效应,以下讲法正确的选项是〔〕A. 当入射光的频率低于极限频率时,不能发生光电效应B. 光电子的最大初动能与入射光的频率成正比C. 光电子的最大初动能与入射光的强度成正比D. 某单色光照耀一金属时不能发生光电效应,改用波长较短的光照耀该金属可能发生光电效应2•从原子核中能放出a、B、丫射线,关于原子核的组成,以下讲法中正确的选项是〔〕A. 原子核中,有质子、中子,还有a粒子B. 原子核中,有质子、中子,还有B粒子C. 原子核中,有质子、中子,还有丫粒子D. 原子核中,只有质子和中子3. 某光电管的阴极是用金属钾制成的,它的逸出功为2.21eV,用波长为2.5 x 10-7m的紫外线照耀阴极,真空中光速为3.0 x 108m/s,元电荷为1.6 x 10-19C,普朗克常量为6.63 x 10-34J s,求得钾的极限频率和该光电管发射的光电子的最大动能应分不是〔〕14 14 -19A. 5.3 X 10 HZ 2.2J B . 5.3 x 10 HZ 4.4 x 10 J33 33 19C. 3.3 x 10 H z, 2.2J D . 3.3 x 10 H z, 4.4 x 10- J4. 以下讲法正确的选项是〔〕A. 2H+3H T:He + ;n 是聚变B. 29;U+;n £4Xe +9;Sr+20n 是裂变C. 24 Ra 288 Rn +:He 是a衰变D. 24Na T24Mg +:e是裂变5. 在演示光电效应的实验中,原先不带电的一块锌板与灵敏验电器相连。
原子物理学复习总结提纲
第一章 原子的位形:卢瑟福模型一、学习要点1、原子的质量和大小R ~10-10 m , N A =6.022⨯1023mol -1,1u=1.6605655⨯10-27kg2、原子核式结构模型(1)汤姆孙原子模型(2)α粒子散射实验:装置、结果、分析(3)原子的核式结构模型(4)α粒子散射理论: 库仑散射理论公式:221212200cot cot cot 12422242C Z Z e Z Z e a b E m v θθθπεπε===⋅'⋅ 卢瑟福散射公式:222124401()4416sin sin 22Z Z e a d d dN N nAt ntN E A θθπεΩΩ'== 2sin d d πθθΩ=实验验证:1422sin ,,Z , ,2A dN t E n N d θρμ--'⎛⎫∝= ⎪Ω⎝⎭,μ靶原子的摩尔质量 微分散射面的物理意义、总截面 24()216sin 2a d d b db σθπθΩ==()022212244()114416sin 22Z Z e d a d E Sin σθσθθθπε⎛⎫≡== ⎪Ω⎝⎭ (5)原子核大小的估计: α粒子正入射(0180θ=)::2120Z Z 14m c e r a E πε=≡ ,m r ~10-15-10-14m第一章自测题1. 选择题(1)原子半径的数量级是:A .10-10cm; B.10-8m C. 10-10m D.10-13m(2)原子核式结构模型的提出是根据α粒子散射实验中:A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也存在小角散射(3)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:A.原子不一定存在核式结构B.散射物太厚C.卢瑟福理论是错误的D.小角散射时一次散射理论不成立(4)用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍? A. 1/4 B . 1/2 C . 1 D. 2(5)动能E K =40keV 的α粒子对心接近Pb(z=82)核而产生散射,则最小距离为(m ):A.5.91010-⨯B.3.01210-⨯C.5.9⨯10-12D.5.9⨯10-14 (6)如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍? A.2 B.1/2 C.1 D .4(7)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少? A. 16 B.8 C.4 D.2(8)在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 D.1:8(9)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A .质子的速度与α粒子的相同;B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2. 填空题(1)α粒子大角散射的结果证明原子结构为 核式结构 .(2)爱因斯坦质能关系为 2E mc = .(3)1原子质量单位(u )= 931.5 MeV/c 2. (4) 24e πε= 1.44 fm.MeV. 3.计算题习题1-2、习题1-3、习题1-5、习题1-6.4.思考题1、什么叫α粒子散射?汤姆孙模型能否说明这种现象?小角度散射如何?大角度散射如何?2、什么是卢瑟福原子的核式模型?用原子的核式模型解释α粒子的大角散射现象。
原子物理知识点总结
原子物理一、波粒二象性1、热辐射:一切物体均在向外辐射电磁波。
这种辐射与温度有关。
故叫热辐射。
特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与温度有关。
2)温度一定时,不同物体所辐射的光谱成分不同。
2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。
若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。
在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔。
注意,黑体并不一定是黑色的。
热辐射特点吸收反射特点一般物体辐射电磁波的情况与温度,材料种类及表面状况有关既吸收,又反射,其能力与材料的种类及入射光波长等因素有关黑体辐射电磁波的强度按波长的分布只与黑体温度有关完全吸收各种入射电磁波,不反射黑体辐射的实验规律:1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。
2)温度升高时,各种波长的辐射强度均增加。
3)温度升高时,辐射强度的极大值向波长较短方向移动。
4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。
普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.νεh=)1063.6(34叫普朗克常量sJh⋅⨯=-。
由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性。
5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象。
发射出来的电子叫光电子。
光电效应由赫兹首先发现。
爱因斯坦指出:① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为ε=h ν,其中h=6.63×10-34 J ·s 叫普朗克常量,ν是光的频率;② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9s )。
(北京专用)2020版高考物理总复习精练:第十六章第1讲原子结构精练(含解析)
第1讲 原子结构A组 基础巩固1.(2017丰台一模)根据卢瑟福提出的原子核式结构模型解释α粒子散射实验,使极少数α粒子发生大角度偏转的作用力是( )A.原子核对α粒子的库仑引力B.原子核对α粒子的库仑斥力C.核外电子对α粒子的库仑引力D.核外电子对α粒子的库仑斥力答案 B α粒子跟电子的碰撞过程动量守恒,因电子的质量远小于α粒子的,所以α粒子的速度变化很小,故电子不可能使α粒子发生大角度偏转。
因为原子核带正电而α粒子也带正电,故它们间的作用力是库仑斥力。
2.一个氢原子从n=3能级跃迁到n=2能级,该氢原子( )A.放出光子,能量增加B.放出光子,能量减少C.吸收光子,能量增加D.吸收光子,能量减少答案 B 根据玻尔原子理论知,氢原子从高能级n=3向低能级n=2跃迁时,将以光子形式放出能量,放出光子后原子能量减少,故B选项正确。
3.(2016北京理综,13,6分)处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率有( )A.1种B.2种C.3种D.4种答案 C 处于能级为n的大量氢原子向低能级跃迁能辐射光的种类为,所以处于n=3能级的大量氢原C2n子向低能级跃迁,辐射光的频率有=3种,故C项正确。
C234.关于原子模型,下列说法错误的是( )A.汤姆孙发现电子,表明原子具有核式结构B.卢瑟福完成的α粒子散射实验,说明了原子的“枣糕”模型是不正确的C.按照玻尔理论,氢原子核外电子从高能级向低能级跃迁时,辐射出光子D.按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,原子总能量增加答案 A 汤姆孙发现电子,表明原子是有结构的,原子是可再分的,故A不正确;卢瑟福完成的α粒子散射实验,说明原子中有核结构存在,故说明“枣糕”模型是不正确的,B说法正确;氢原子核外电子从高能级向低能级跃迁时,辐射出光子,C说法正确;氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电场力做负功,电子动能减小,跃迁过程需要吸收光子,故总能量增加,D说法正确。
2020高考备考物理重难点《原子结构和原子核》(附答案解析版)
重难点10 原子结构和原子核【知识梳理】一、氢原子光谱、氢原子的能级、能级公式 1.原子的核式结构(1)电子的发现:英国物理学家汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱 (1)光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝⎛⎭⎫122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。
3.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n 。
(h 是普朗克常量,h =6.63×10-34 J·s ) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
4.氢原子的能级、能级公式 (1)氢原子的能级 能级图如图所示(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV。
原子物理复习
7.试证明氢原子稳定轨道的长度正好等于电 试证明氢原子稳定轨道的长度正好等于电 子的德布罗意波长的整数倍. 子的德布罗意波长的整数倍 设电子在量子数为n,半径为r 证:设电子在量子数为 ,半径为 n的稳定轨 道上运动, 道上运动,运动速率为υn.则根据玻尔的角 动量假设(或量子化条件 有 动量假设 或量子化条件)有 或量子化条件 me rn v n = nh ( n =1,2,……) , , 则 而
6
玻尔理论的根本弱点 把微观粒子看作是一经典粒子, 把微观粒子看作是一经典粒子,未能完全脱 离经典理论的影响, 离经典理论的影响,仍采用经典理论的思想和 处理方法,它是经典理论加量子条件的混合物 处理方法, ,它虽指出了经典理论不适用描述原子内部电 子的运动, 子的运动,但在研究电子运动时却又采用经典 力学概念如坐标,速度,轨道等概念. 力学概念如坐标,速度,轨道等概念.故玻尔 理论缺乏逻辑性, 理论缺乏逻辑性,它的弱点就在其理论结构本 身.
3
2.夫兰克 夫兰克——赫兹实验是如何进行的,结果如 赫兹实验是如何进行的, 夫兰克 赫兹实验是如何进行的 什么叫共振激发电势?什么叫电离势 何?什么叫共振激发电势 什么叫电离势 什么叫共振激发电势 什么叫电离势? 夫兰克——赫兹实验是用电子碰撞原子 赫兹实验是用电子碰撞原子 答:夫兰克 赫兹实验是 的方法,使原子从低能级跃迁到高能级, 的方法,使原子从低能级跃迁到高能级,从而 证实了原子能级的存在. 证实了原子能级的存在. 当电子与原子进行碰撞,能量交换, 当电子与原子进行碰撞,能量交换,如果 原子的能量状态不是连续分布的, 原子的能量状态不是连续分布的,那么它们相 互交换的能量也不连续, 互交换的能量也不连续,因此实验可直接观测 到电子能量变化不连续的现象. 到电子能量变化不连续的现象. 共振激发电势是指把基态原子激发态到第一激 共振激发电势是指把基态原子激发态到第一激 发时所需的电压,对于汞为4.9伏 发时所需的电压,对于汞为 伏. 电离电势是把基态 是把基态(n= , 电离电势是把基态 =1),原子的核外电子激 发为自由电子时所需的电压. 发为自由电子时所需的电压.
2020年高考物理第二轮提分攻略专题09 原子物理
1
1
半衰期的公式:N 余=N 原 2 t/τ,m 余=m 原 2 t/τ.式中 N 原、m 原表示衰变前的放射性元素的原子数和质量,N 余、
m 余表示衰变后尚未发生衰变的放射性元素的原子数和质量,t 表示衰变时间,τ表示半衰期。
四、原子核与核能
1.核反应的四种类型
类型
可控性
核反应方程典例
衰变
α衰变 β衰变
【知识回扣】
2020 年物理二轮专题过关宝典 专题九:原子物理
一、光电效应
1.光电效应规律
①存在着饱和电流:对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多。
②存在着遏止电压和截止频率:光电子的能量只与入射光的频率有关,而与入射光的强弱无关。当入射光
的频率低于截止频率时不发生光电效应。
③光电效应具有瞬时性:当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电
4
效应方程可得 W0=hν-Ek,则 hνa-Eka=hνb-Ekb,选项 D 错误。 4.(2019·河北唐山市第一次模拟)用金属铷为阴极的光电管观测光电效应现象,实验装置示意图如图甲所示, 实验中测得铷的遏止电压 Uc 与入射光频率ν之间的关系如图乙所示,图线与横轴交点的横坐标为 5.15×1014 Hz.已知普朗克常量 h=6.63×10-34 J·s.则下列说法中正确的是( )
三、衰变、半衰期
1.衰变规律及实质
(1)α衰变和β衰变的比较
衰变类型 衰变方程
α衰变 MZ X→MZ--24Y+42He
β衰变 MZ X→ MZ+1Y+-01e
衰变实质
2 个质子和 2 个中子结合成一个整体射出 211H+210n→42He
中子转化为质子和电子 10n→11H+-01e
2020年高考物理总复习:第十二章第3节 原子核
②聚变:两个轻核结合成质量较大的核的反应.如: ____21_H__+__31H__→__42_H_e_+__10_n_______.
kg=3.6×10-28 kg,故 C 错误,
D 正确. 【答案】BD
例 431H 的质量为 3.016 050 u,质子的质量为 1.007 277 u,中子的质量为 1.008 665 u.1 u 相当于 931.5 MeV.则:(计算结果保留两位有效数字)
(1)一个质子和两个中子结合为氚核时,是吸收能
21H+31H→42He+01n
2.核反应方程式的书写 (1)熟记常见基本粒子的符号是正确书写核反应方 程的基础.如质子(11H)、中子(_10_n__)、α 粒子(__42H__e__)、 β 粒子(_-_01e__)、正电子(01e)、氘核(21H)、氚核(_31H___)等. (2)掌握核反应方程遵守的规律是正确书写核反应 方程或判断某个核反应方程是否正确的依据.由于核反
3.下列说法中正确的是( A ) A.β 衰变所释放的电子是原子核内的中子转化成 质子和电子所产生的 B.γ 射线一般伴随着α 或 β 射线产生,在这三种
射线中,γ 射线的穿透能力最强,电离能力也最强
C.氡的半衰期为 3.8 天,若取 4 个氡原子核,经 7.6 天后就只剩下一个氡原子核了
D.发生α 衰变时,生成核与原来的原子核相比, 中子数减少了 4
42He+94Be→162C+10n(查德威克发现中子)
2173Al+42He→1350P+10n
(约里奥·居里夫妇 发现放射性同位素,
原子物理学复习总结提纲
第一章 原子的位形:卢瑟福模型一、学习要点1、原子的质量和大小R ~10-10m , N A =⨯1023mol -1,1u=⨯10-27kg 2、原子核式结构模型 1汤姆孙原子模型2α粒子散射实验:装置、结果、分析 3原子的核式结构模型 4α粒子散射理论:库仑散射理论公式:221212200cot cot cot 12422242C Z Z e Z Z e a b E m v θθθπεπε===⋅'⋅ 卢瑟福散射公式:222124401()4416sin sin 22Z Z e a d d dN N nAt ntN E A θθπεΩΩ'== 2sin d d πθθΩ=实验验证:1422sin ,,Z , ,2A dN t E n N d θρμ--'⎛⎫∝= ⎪Ω⎝⎭,μ靶原子的摩尔质量微分散射面的物理意义、总截面24()216sin2a d db db σθπθΩ==()022212244()114416sin 22Z Z e d a d E Sin σθσθθθπε⎛⎫≡== ⎪Ω⎝⎭ 5原子核大小的估计:α粒子正入射0180θ=::2120Z Z 14m ce r a E πε=≡ ,m r ~10-15-10-14m第一章自测题1. 选择题1原子半径的数量级是:A .10-10cm; -8m C. 10-10m -13m2原子核式结构模型的提出是根据α粒子散射实验中:A.绝大多数α粒子散射角接近180︒B.α粒子只偏2︒~3︒C.以小角散射为主也存在大角散射D.以大角散射为主也存在小角散射 3进行卢瑟福理论实验验证时发现小角散射与实验不符这说明: A.原子不一定存在核式结构 B.散射物太厚C.卢瑟福理论是错误的D.小角散射时一次散射理论不成立4用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限. 问用质子束所得结果是用α粒子束所得结果的几倍A. 1/4 B . 1/2 C . 1 D. 25动能E K =40keV 的α粒子对心接近Pbz=82核而产生散射,则最小距离为m :1010-⨯ 1210-⨯ ⨯ ⨯如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍2 C.1 D .47在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少A. 168在同一α粒子源和散射靶的条件下观察到α粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为:A .4:1 B.2:2 C.1:4 :89在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:A .质子的速度与α粒子的相同;B .质子的能量与α粒子的相同;C .质子的速度是α粒子的一半;D .质子的能量是α粒子的一半2. 填空题1α粒子大角散射的结果证明原子结构为 核式结构 .2爱因斯坦质能关系为 2E mc = . 31原子质量单位u= MeV/c 2.4 204e πε= . 3.计算题习题1-2、习题1-3、习题1-5、习题1-6.4.思考题1、什么叫α粒子散射 汤姆孙模型能否说明这种现象小角度散射如何大角度散射如何2、什么是卢瑟福原子的核式模型 用原子的核式模型解释α粒子的大角散射现象;3、卢瑟福公式的导出分哪几个步骤4、由卢瑟福公式,可以作出什么可供实验检验的结论3、α粒子在散射角很小时,发现卢瑟福公式与实验有显著偏离,这是什么原因4、为什么说实验证实了卢瑟福公式的正确性,就是证实了原子的核式结构5、用较重的带负电的粒子代替α粒子作散射实验会产生什么结果中性粒子代替α粒子作同样的实验是否可行为什么6、在散射物质比较厚时,能否应用卢瑟福公式为什么第二章 原子的量子态:玻尔模型一、学习要点:1、背景知识1黑体辐射:黑体、黑体辐射、维恩位移律、普朗克黑体辐射公式、能量子假说 2光电效应:光电效应、光电效应实验规律、爱因斯坦方程、光量子光子 3氢原子光谱:线状谱、五个线系记住名称、顺序、里德伯公式2211()R n nν=-'、 光谱项()2nRn T =、并合原则:()()T n T n ν'=-2、玻尔氢原子理论:1玻尔三条基本假设2圆轨道理论:氢原子中假设原子核静止,电子绕核作匀速率圆周运动222200002244,0.053Z Z n e e n r n a a nmm e m e πεπε===≈;13714,Z Z 40202≈===c e n c n e c e n πεααπευ;()24222220Z Z 1()42e n m e R hc E hcT n n nπε∞=-=-=-,n =1,2,3,…… 3实验验证:a 里德伯常量的验证()()22111[]H R T n T n n n νλ'≡=-=-',(1)e A A m R R R m ∞==+ 类氢离子22211[]A A R Z n n ν=-' b 夫朗克-赫兹实验:原理、装置、.结果及分析;原子的电离电势、激发电势 3、椭圆轨道理论n 称为主量子数, n=1,2,3……; l 称角量子数,n 取定后,l=0,1,2,…,n-1; 4、碱金属原子由于原子实极化和轨道贯穿效应,使得价电子能量降低相当于Z>1 ; 光谱四个线系:第二章自测题1.选择题1若氢原子被激发到主量子数为n 的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:A .n-1B .nn-1/2C .nn+1/2D .n2氢原子光谱赖曼系和巴耳末系的线系限波长分别为: 4 和R/9 和R/4 C.4/R 和9/R R 和4/R3氢原子赖曼系的线系限波数为R,则氢原子的电离电势为: A .3Rhc/4 B. Rhc 4e D. Rhc/e4氢原子基态的电离电势和第一激发电势分别是: A .和 B –和 和; D. –和5由玻尔氢原子理论得出的第一玻尔半径0a 的数值是:1010-⨯ -10m C. ×10-12m ×10-12m6根据玻尔理论,若将氢原子激发到n=5的状态,则:A.可能出现10条谱线,分别属四个线系B.可能出现9条谱线,分别属3个线系C.可能出现11条谱线,分别属5个线系D.可能出现1条谱线,属赖曼系 7欲使处于基态的氢原子发出αH 线,则至少需提供多少能量eVA.13.6B.12.09C. 氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线.6 C9氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为:A . eV . 75eV10用能量为的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线不考虑自旋;.10 C12按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的: 10倍 100倍 C .1/137倍 237倍13已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为:A .3∞R /8 ∞R 4 C.8/3∞R 3∞R14电子偶素是由电子和正电子组成的原子,基态电离能量为:B.+C.+ 根据玻尔理论可知,氦离子H e +的第一轨道半径是: A .20a B. 40a C. 0a /2D. 0a /416一次电离的氦离子 H e +处于第一激发态n=2时电子的轨道半径为:⨯-10m ⨯-10m ⨯-10m ⨯-10m 假设氦原子Z=2的一个电子已被电离,如果还想把另一个电子电离,若以eV 为单位至少需提供的能量为:A . B.-54.4 C. 在H e +离子中基态电子的结合能是: 夫—赫实验的结果表明:A 电子自旋的存在;B 原子能量量子化C 原子具有磁性;D 原子角动量量子化2.计算题1、 试由氢原子里德伯常数计算基态氢原子的电离电势和第一激发电势.2、 能量为的电子射入氢原子气体中,气体将发出哪些波长的辐射3、已知氢和重氢的里德伯常数之比为,而它们的核质量之比为m H /m D =.计算质子质量与电子质量之比. 解: 由He H m m R R /11+=∞和D e D m m R R /11+=∞知:999728.0/1/50020.01/1/1=++=++=He He H e D e D H m m m m m m m m R R 解得: 5.1836/=e H m m4、已知锂原子光谱主线系最长波长nm 7.670=λ,辅线系系限波长nm 9.351=∞λ,求锂原子第一激发电势和电离电势;5、钠原子基态为3s,已知其主线系第一条线共振线波长为,漫线系第一条线的波长为,基线系第一条线的波长为,主线系的系限波长为,试求3S,3P,3D,4F 各谱项的项值;3.思考题1、解释下列概念:光谱项、定态、简并、电子的轨道磁矩、对应原理.2、简述玻尔对原子结构的理论的贡献和玻尔理论的地位与不足.3、为什么通常总把氢原子中电子状态能量作为整个氢原子的状态能量4、对波尔的氢原子在量子态时,势能是负的,且数值大于动能,这意味着什么 当氢原子总能量为正时,又是什么状态5、为什么氢原子能级,随着能量的增加,越来越密6、解释下述的概念或物理量,并注意它们之间的关系:激发和辐射;定态、基态、激发态和电离态;能级和光谱项:线系和线系限;激发能,电离能;激发电位、共振电位、电离电位;第三章 量子力学导论一、学习要点1.德布罗意假设: 1内容: ων ==h E , n k k hp λπλ2,===2实验验证:戴维孙—革末试验电子λ≈nm 2.测不准关系:2 ≥∆⋅∆x p x , 2≥∆⋅∆E t ; 3.波函数及其统计解释、标准条件、归一化条件薛定谔方程、定态薛定谔方程、定态波函数、定态 4.量子力学对氢原子的处理第三章自测题1.选择题1为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了:A.电子的波动性和粒子性B.电子的波动性C.电子的粒子性D.所有粒子具有二相性 2德布罗意假设可归结为下列关系式: A .E=h υ, p=λh ; =ω ,P=κ ; C. E=h υ ,p =λ ; D. E=ω ,p=λ4基于德布罗意假设得出的公式λ=nm 的适用条件是:A.自由电子,非相对论近似;B.一切实物粒子,非相对论近似;C.被电场束缚的电子,相对论结果; D 带电的任何粒子,非相对论近似5如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为以焦耳为单位:A .10-34; ; ;2.简答题1波恩对波函数作出什么样的解释 长春光机所19992请回答测不准关系的主要内容和物理实质.长春光机所1998第四章 原子的精细结构:电子自旋一、学习要点1.电子自旋1实验基础与内容:电子除具有质量、电荷外,还具有自旋角动量()1,(2S s s s =+=称自旋角量子数和自旋磁矩,3s s B ee S m μμμ=-=. 自旋投影角动量1,2z s s S m m ==±称自旋磁量子数 2单电子角动量耦合:总角动量()1,02,1,02l l J j j j l ⎧±≠⎪⎪=+=⎨⎪=⎪⎩,称总角量子数内量子数、副量子数;总角动量的投影角动量()j j j j m m p j j jz ,1,,1,,----== ,称总磁量子数3描述一个电子的量子态的四个量子数:强场:s l m m l n ,,,;弱场:j m j l n ,,,原子态光谱项符号 j s L n12+S 态不分裂, ,,,,G F D P 态分裂为两层2.原子有效磁矩 J J P me g2-=μ, )1(2)1()1()1(1++++-++=J J S S L L J J g 3.碱金属原子光谱和能级的精细结构⑴原因:电子自旋—轨道的相互作用. ⑵能级和光谱项的裂距; ⑶选择定则:1±=∆l ,1,0±=∆j画出锂、钠、钾原子的精细结构能级跃迁图.4. 外磁场对原子的作用2原子受磁场作用的附加能量:B g M B E B J J μμ=⋅-=∆附加光谱项()1-m 7.464~,~4B mceB L L g M mc eB gM T J J ≈===∆ππ 能级分裂图3史—盖实验;原子束在非均匀磁场中的分裂212J B dB L s M g m dz v μ⎛⎫=- ⎪⎝⎭原子,m 为原子质量4塞曼效应:光谱线在外磁场中的分裂,机制是原子磁矩与外磁场的相互作用,使能级进一步的分裂所造成的. 塞曼效应的意义①正常塞曼效应:在磁场中原来的一条谱线分裂成3条,相邻两条谱线的波数相差一个洛伦兹单位L ~Cd 6438埃 红光1D 2→1P 1 氦原子 66781埃 1D 2→1P 1②反常塞曼效应:弱磁场下:Na 黄光:D 2线 5890埃 2P 3/2→2S 1/21分为6;D 1线5896埃 2P 1/2→2S 1/21分为4Li 2D 3/2→2P 1/2格罗春图、相邻两条谱线的波数差、能级跃迁图选择定则 )(1);(0);(1+-+-=∆σπσJ M垂直磁场、平行磁场观察的谱线条数及偏振情况第四章自测题1.选择题1单个f 电子总角动量量子数的可能值为: A. j =3,2,1,0; B .j=±3; C. j= ±7/2 , ± 5/2; D. j= 5/2 ,7/22单个d 电子的总角动量投影的可能值为:,3 ; ,4 ; C.235, 215; 2, 5/2 . 3d 电子的总角动量取值可能为: A.215,235; B . 23,215; C. 235,263; D. 2,65产生钠的两条黄色谱线的跃迁是:2→2S 1/2 , 2P 1/2→2S 1/2; B. 2S 1/2→2P 1/2 , 2S 1/2→2P 3/2;C. 2D 3/2→2P 1/2, 2D 3/2→2P 3/2;D. 2D 3/2→2P 1/2 , 2D 3/2→2P 3/2 8碱金属原子光谱精细结构形成的根本物理原因: A.电子自旋的存在 B.观察仪器分辨率的提高 C.选择定则的提出 D.轨道角动量的量子化10考虑电子自旋,碱金属原子光谱中每一条谱线分裂成两条且两条线的间隔随波数增加而减少的是什么线系A.主线系;B.锐线系;C.漫线系;D.基线系11如果l 是单电子原子中电子的轨道角动量量子数,则偶极距跃迁选择定则为: A.0=∆l ; B. 0=∆l 或±1; C. 1±=∆l ; D. 1=∆l12碱金属原子的价电子处于n =3, l =1的状态,其精细结构的状态符号应为: A .32S 1/2; 2; C .32P 1/2; D .32D 3/213下列哪种原子状态在碱金属原子中是不存在的:A .12S 1/2; B. 22S 1/2; C .32P 1/2; D. 32S 1/214对碱金属原子的精细结构12S 1/2 12P 1/2, 32D 5/2, 42F 5/2,32D 3/2这些状态中实际存在的是: 2,32D 5/2,42F 5/2; 2 ,12P 1/2, 42F 5/2; 2,32D 5/2,32D 3/2; 2, 42F 5/2,32D 3/2 15在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:A .0; ; ;17B 原子态2P 1/2对应的有效磁矩g =2/3是 A.B μ33; B. B μ32; C. B μ32 ; D. B μ22. 21若原子处于1D 2和2S 1/2态,试求它们的朗德因子g 值: A .1和2/3; 和2/3; 和4/3; 和2 22由朗德因子公式当L=S,J≠0时,可得g 值: A .2; ; 2; 423由朗德因子公式当L=0但S≠0时,可得g 值: A .1; 2; ;24如果原子处于2P 1/2态,它的朗德因子g 值:3; 3; ; 2 25某原子处于4D 1/2态,若将其放于弱磁场中,则能级分裂为: A .2个; 个; C.不分裂; 个26判断处在弱磁场中,下列原子态的子能级数那一个是正确的:2分裂为2个; 分裂为3个; C.2F 5/2分裂为7个; 分裂为4个27如果原子处于2P 3/2态,将它置于弱外磁场中时,它对应能级应分裂为: 个 个 个 个28态1D 2的能级在磁感应强度B 的弱磁场中分裂多少子能级个 个 个 个29钠黄光D 2线对应着32P 3/2→32S 1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂: 条 条 条 条32使窄的原子束按照施特恩—盖拉赫的方法通过极不均匀的磁场 ,若原子处于5F 1态,试问原子束分裂成A.不分裂 条 条 条 331997北师大对于塞曼效应实验,下列哪种说法是正确的A .实验中利用非均匀磁场观察原子谱线的分裂情况;B .实验中所观察到原子谱线都是线偏振光;C .凡是一条谱线分裂成等间距的三条线的,一定是正常塞曼效应;D.以上3种说法都不正确.2.简答题1碱金属原子能级与轨道角量子数有关的原因是什么造成碱金属原子精细能级的原因是什么为什么S态不分裂,,GDP态分裂为两层F,,,3.计算题教材4-2、4-4、4-5、4-6、4-10、4-121锂原子的基态是S3激发态的锂原子向低能级跃迁时,可能产生几条谱线2,当处于D不考虑精细结构这些谱线中哪些属于你知道的谱线系的同时写出所属谱线系的名称及波数表达式. 试画出有关的能级跃迁图,在图中标出各能级的光谱项符号,并用箭头都标出各种可能的跃迁. 中科院20012分析4D1/2态在外磁场中的分裂情况 .3在Ca的一次正常塞曼效应实验中,从沿磁场方向观察到钙的谱线在磁场中分裂成间距为的两条线,试求磁场强度. 电子的荷质比为×1011C/kg2001中科院固体所;Ca原子3F2 3D2跃迁的光谱线在磁场中可分裂为多少谱线它们与原来谱线的波数差是多少以洛仑兹单位表示若迎着磁场方向观察可看到几条谱线它们是圆偏振光,线偏振光,还是二者皆有中科院第五章多电子原子:泡利原理一、学习要点1. 氦原子和碱土金属原子:氦原子光谱和能级正氦三重态、仲氦单态2. 重点掌握L-S耦合,了解j-j耦合3.洪特定则、朗德间隔定则、泡利不相容原理;4.两个价电子原子的电偶极辐射跃迁选择定则;5.元素周期律:元素周期表,玻尔解释.6.原子的电子壳层:主壳层:K LMNO P Q次壳层、次支壳层电子填充壳层的原则:泡利不相容原理、能量最小原理7.原子基态的电子组态P228表第五章自测题1.选择题2氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:;;;4氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:A.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.5下列原子状态中哪一个是氦原子的基态;; ; D.1S0;7氦原子有单态和三重态,但1s1s3S1并不存在,其原因是:A.因为自旋为1/2,l 1=l2=0 故J=1/2 ;B.泡利不相容原理限制了1s1s3S1的存在;C.因为三重态能量最低的是1s2s3S1;D.因为1s1s3S1和 1s2s3S1是简并态8若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:; ; ; .94D3/2 态的轨道角动量的平方值是:3 2 ; ; 2 2; D.2 210一个p电子与一个s电子在L-S耦合下可能有原子态为:,1,2, 3S1 ; B.3P0,1,2 ,1S0; ,3P0,1,2 ; ,1P111设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:个;个;个;个;12电子组态2p4d所形成的可能原子态有:A.1P 3P 1F 3F; B. 1P 1D 1F 3P 3D 3F;C.3F 1F; 1P 1D 3S 3P 3D.13铍Be原子若处于第一激发态,则其电子组态:;; ;14若镁原子处于基态,它的电子组态应为:A.2s2s15电子组态1s2p所构成的原子态应为:A.1s2p1P1 , 1s2p3P2,1,0 ,1s2p3S1C.1s2p1S0, 1s2p1P1 , 1s2p3S1 , 1s2p3P2,1,0; ,1s2p1P116判断下列各谱项中那个谱项不可能存在:A.3F2; 2; C.2F7/2; 218在铍原子中,如果3D1,2,3对应的三能级可以分辨,当有2s3d3D1,2,3到2s2p3P2,1,0的跃迁中可产生几条光谱线A.6 .3 C19钙原子的能级应该有几重结构A.双重; B.一、三重; C.二、四重; D.单重20元素周期表中:A.同周期各元素的性质和同族元素的性质基本相同;B.同周期各元素的性质不同,同族各元素的性质基本相同C.同周期各元素的性质基本相同,同族各元素的性质不同D.同周期的各元素和同族的各元素性质都不同21当主量子数n=1,2,3,4,5,6时,用字母表示壳层依次为:LMONP;B.KLMNOP;C.KLMOPN;D.KMLNOP;23在原子壳层结构中,当l=0,1,2,3,…时,如果用符号表示各次壳层,依次用下列字母表示:A.s,p,d,g,f,h....B.s,p,d,f,h,g...C.s,p,d,f,g,h...D.s,p,d,h,f,g...24电子填充壳层时,下列说法不正确的是:A.一个被填充满的支壳层,所有的角动量为零;B.一个支壳层被填满半数时,总轨道角动量为零;C.必须是填满一个支壳层以后再开始填充另一个新支壳层;D.一个壳层中按泡利原理容纳的电子数为2n225实际周期表中,每一周期所能容纳的元素数依次为:A.2,8,18,32,50,72;B.2,8,18,18,32,50;C.2,8,8,18,32,50;D.2,8,8,18,18,32.26按泡利原理,主量子数n确定后可有多少个状态A.n2; B.22l+1; C.2j+1; D.2n227某个中性原子的电子组态是1s22s22p63s3p,此原子是:A.处于激发态的碱金属原子;B.处于基态的碱金属原子;C.处于基态的碱土金属原子;D.处于激发态的碱土金属原子;28氩Z=18原子基态的电子组态及原子态是:A.1s22s22p63p81S0; B.1s22s22p62p63d83P0C.1s22s22p6 3s23p61S0; D. 1s22s22p63p43d22D1/229某个中性原子的电子组态是1s22s22p63s23p65g1,此原子是:A.处于激发态的碱土金属原子;B.处于基态的碱土金属原子;C.处于基态的碱金属原子;D.处于激发态的碱金属原子.30有一原子,n=1,2,3的壳层填满,4s支壳层也填满,4p支壳层填了一半,则该元素是:A.BrZ=35; B.RrZ=36; C.VZ=23; D.AsZ=3331由电子壳层理论可知,不论有多少电子,只要它们都处在满壳层和满支壳层上,则其原子态就都是:A.3S0;B.1P1;C.2P1/2;D.1S0.32氖原子的电子组态为1s22s22p6,根据壳层结构可以判断氖原子基态为:A.1P1;B.3S1;C.1S0;D.3P0.2.简答题1简要解释下列概念:泡利不相容原理、洪特定则、朗德间隔定则、能量最小原理、莫塞莱定律.2L-S耦合的某原子的激发态电子组态是2p3p,可能形成哪些原子态若相应的能级顺序符合一般规律,应如何排列并画出此原子由电子组态2p3p向2p3s可能产生的跃迁.首都师大19983写出铍原子基态、第一激发态电子组态及相应光谱项.1991中山大学3.计算题1已知氦原子基态的电子组态是1s1s,若其中一个电子被激发到3s态,问由此激发态向低能态跃迁时,可以产生几条光谱线要求写出相关的电子组态及相应的原子态,并画出能级跃迁图;2镁原子基态的价电子组态是3s3s,若其中一个价电子被激发到4s态,从该激发态向低能级有哪些跃迁写出相关的各电子组态及其相应的原子态,并作出能级跃迁图;一教材习题:杨书P255--256:5—2、5—4、5—5、5—8、5—9、5—11第六章X射线一、学习要点1.x射线的产生与性质2.x射线的连续谱3.x射线的标识谱、莫塞莱定律;4.x射线的吸收、吸收限;5. 康普顿效应第六章自测题1.选择题1伦琴连续光谱有一个短波限 min,它与:A.对阴极材料有关;B.对阴极材料和入射电子能量有关;C.对阴极材料无关,与入射电子能量有关;D.对阴极材料和入射电子能量无关.2原子发射伦琴射线标识谱的条件是:A.原子外层电子被激发;B.原子外层电子被电离;C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强.3各种元素的伦琴线状谱有如下特点:A.与对阴极材料无关,有相仿结构,形成谱线系;B.与对阴极材料无关,无相仿结构,形成谱线系;C.与对阴极材料有关,无相仿结构,形成谱线系;D.与对阴极材料有关,有相仿结构,形成谱线系.2.简答题1简述康普顿散射实验原理、装置、过程和结果分析,如何用该实验来测定普朗克常数2简述X 射线连续谱的特点、产生机制. 什么是轫致辐射3简述X 射线标识谱的特点、产生机制. 写出K 线系的莫塞莱定律.3.计算题教材习题6-2、6-2、6-3、6-5、6-6第七章 原子核物理概论一、学习要点1.原子核的基本性质 1质量数A和电荷数Z;2核由A个核子组成,其中Z个质子p 和N=A-Z个中子n ; 3原子核的大小:R=r 0A 1/3 , r 0≈ ~⨯10-15 m ,ρ=1014 t/m 3═常数 5核磁矩:I p I P m e g2=μ, 核磁子B p m e μβ183612≈= 6原子核的结合能、平均结合能、平均结合能曲线E = Zm p +A -Z m n -M N c 2=ZM H +A -Z m n -M A c 2, 1uc 2= ,AEE = 2.核的放射性衰变: 1α、β、γ射线的性质2指数衰变规律:t e N N λ-=0 ,te m m λ-=0 ,λ2ln =T ,λτ1=放射性强度:000,N A e A A tλλ==-5.核反应1历史上几个著名核反应 2守恒定律3核反应能及核反应阈能及其计算 4核反应截面和核反应机制 5核反应类型6重核裂变裂变方程、裂变能、裂变理论、链式反应 7轻核裂变聚变能、热核聚变的条件、类型等第七章自测题1.选择题1可以基本决定所有原子核性质的两个量是:A 核的质量和大小 B.核自旋和磁矩 C.原子量和电荷 D.质量数和电荷数 2原子核的大小同原子的大小相比,其R 核/R 原的数量级应为: A .105 .103 C3原子核可近似看成一个球形,其半径R 可用下述公式来描述:=r 0A 1/3 B. R =r 0A 2/3 C. R =3034r π =334A π6氘核每个核子的平均结合能为,氦核每个核子的平均结合能为 MeV .有两个氘核结合成一个氦核时A.放出能量 MeV;B.吸收能量 MeV;C.放出能量 MeV;D.吸收能量 MeV ,7由A 个核子组成的原子核的结合能为2mc E ∆=∆,其中m ∆指个质子和A-Z 个中子的静止质量之差; 个核子的运动质量和核运动质量之差; C. A 个核子的运动质量和核静止质量之差; D. A 个核子的静止质量和核静止质量之差9原子核的平均结合能随A 的变化呈现出下列规律A.中等核最大,一般在~ MeV ;B.随A 的增加逐渐增加,最大值约为 MeV ;C. 中等核最大,一般在 MeV ;D.以中等核最大,轻核次之,重核最小. 10已知中子和氢原子的质量分别为和,则12C 的结合能为 A.17.6 MeV ; MeV ; MeV ; MeV .11放射性原子核衰变的基本规律是te N N λ-=0,式中N 代表的物理意义是A. t 时刻衰变掉的核数;B. t=0时刻的核数;C. t 时刻尚未衰变的核数;D. t 时刻子核的数目.12已知某放射性核素的半衰期为2年,经8年衰变掉的核数目是尚存的 倍; 倍; 倍; 倍.131克铀23892U 在1秒内发射出⨯104个α粒子,其半衰期为A.3.4⨯1019秒;B. ⨯1017秒;C. ⨯1017秒;D. ⨯10-18秒.14钍23490Th 的半衰期近似为25天,如果将24克Th 贮藏150天,则钍的数量将存留多少克; ; ; .21已知核2H 、3H 、4He 的比结合能分别为、、,则核反应2H+3H 、→4He+n 的反应能为A.3.13MeVB. D .–22235U 核吸收一个热中子之后,经裂变而形成13954Xe 和9438Sr 核,还产生另外什么粒子A.两个中子;B.一个氘核;C.一个氘核和一个质子;D.三个中子. 24一个235U 吸收一个慢中子后,发生的裂变过程中放出的能量为; B. 100MeV ; C .200MeV ; 核力的力程数量级以米为单位A .10-15; B. 10-18;; D. 10-13.26下述哪一个说法是不正确的A.核力具有饱和性;B.核力与电荷有关;C.核力是短程力;D.核力是交换力.2.简答题1解释下列概念:核电四极矩、核力及其性质、核衰变能、核反应能、裂变能、聚变能、链式反应、核反应截面、热核反应、核反应阈能、K俘获、俄歇电子、内转换、. 内转换电子.2何谓衰变常数、半衰期、平均寿命、放射性强度放射性核素的衰变规律如何3原子核的平均结合能曲线有何特点3.计算题教材7-1、7-2、7-3、7-81算出73Lip, 42He的反应能.已知:11H :, 42He:, 73Li:.2如果开始时放射性物质中含有1克234U,则经过两万年,还有多少未衰变的234U那时它的放射性强度是多少234U的半衰期为×105年2000首都师大314C的半衰期为5500年,写出14C的衰变方程. 如果生物体死后就再没有14C进入体内,现在测得一棵死树的14C放射性强度为活树的1/3,试估算该树已死了多少年1998中科院原子物理复习题1、由氢原子里德伯常数计算氢原子光谱巴尔末系莱曼系中波长最长和最短的谱线波长;2、由氢原子里德伯常数计算基态氢原子的电离电势和第一激发电势;3、已知Li 原子的第一激发电势为,基态的电离电势为,试求Li 原子光谱主线系最长波长和辅线系系限波长的值;1240hc nm eV =⋅4、已知Li 原子光谱主线系最长波长为,辅线系系限波长为, 试求Li 原子的第一激发电势和基态的电离电势;5、试求原子态2P 3/2状态下的的轨道角动量和磁矩、自旋角动量和磁矩和总角动量和磁矩;6、写出下列原子的基态的电子组态和原子态: 11Na,12Mg, 13Al;7、在斯特恩-盖拉赫实验中,极不均匀的横向磁场梯度为 1.0/zB T cm z∂=∂,磁极的纵向长度d=10cm, 磁极中心到屏的长度D=30cm 如图所示, 使用的原子束是处于基态32P 的氧原子,或加热炉温度原子的动能k E =2210-⨯eV;试问在屏上应该看到几个条纹 相邻条纹边沿成分间距是多少 410.578810B eV T μ--=⨯⋅8、在施特恩-盖拉赫实验中,基态的氢原子21/2S 从温度为400K 的加热炉中射出,在屏上接收到两条氢束线,间距为;若把氢原子换成氯原子基态为23/2P ,其它实验条件不变,在屏上可以接收到几条氯束线其相邻两束的间距为多少9、氦原子基态的电子组态是1s1s,若其中有一个电子被激发到3s 态;从形成的激发态向低能态跃迁有几种光谱跃迁 要求写出与跃迁有关的电子组态及在L-S 耦合下各电子组态形成的原子态;并画出相应的能级跃迁图;10、铍原子基态的电子组态是2s2s,若其中有一个电子被激发到3s 态;从形成的激发态向低能态跃迁有几种光谱跃迁 要求写出与跃迁有关的电子组态及在L-S 耦合下各电子组态形成的原子态;并画出相应的能级跃迁图;。
高中物理-专题 原子物理-2020高考真题(解析版)
2021年高考物理100考点最新模拟题千题精练(选修3-5)第六部分 原子物理专题6.19原子物理-2020高考真题一.填空题1.(2020高考江苏物理)大量处于某激发态的氢原子辐射出多条谱线,其中最长和最短波长分别为1λ和2λ,则该激发态与基态的能量差为_______,波长为1λ的光子的动量为_______.(已知普朗克常量为h ,光速为c )【参考答案】 (2)2hc λ 1h λ 【名师解析】激发态与基态的能量差最大,对应最短波长2λ,该激发态与基态的能量差为△E=2hc λ。
由光子动量公式可知,波长为1λ的光子的动量为p1=1h λ。
二.选择题2. (2020高考北京卷)氢原子能级示意如图。
现有大量氢原子处于3n =能级上,下列说法正确的是A.这些原子跃迁过程中最多可辐射出2种频率的光子B.从3n =能级跃迁到1n =能级比跃迁到2n =能级辐射的光子频率低C.从3n =能级跃迁到4n =能级需吸收0.66eV 的能量D. 3n =能级的氢原子电离至少需要吸收13.6eV 的能量【参考答案】C【命题意图】本题考查能级、光的辐射、电离及其相关知识点。
【解题思路】大量氢原子处于n=3能级上,最多可以辐射出2+1=3种频率的光子,选项A 错误;根据h 31=E 3-E 1,h 32=E 3-E 2,可知从n=3能级跃迁到n=1能级比跃迁到n=2能级辐射的光子的频率高,选项B 错误;从n=3能级跃迁到n=4能级需要吸收能量△E= E 4-E 3=(-0.85eV )-(-1.51eV )=0.66eV ,选项C 正确;n=3能级的氢原子电离至少需要吸收1.51eV 的能量,选项D 错误。
3.(2020高考江苏物理)“测温枪”(学名“红外线辐射测温仪”)具有响应快、非接触和操作方便等优点.它是根据黑体辐射规律设计出来的,能将接收到的人体热辐射转换成温度显示.若人体温度升高,则人体热辐射强度I 及其极大值对应的波长λ的变化情况是______________________.A. I 增大,λ增大B. I 增大,λ减小C. I 减小,λ增大D. I 诚小,λ减小【参考答案】B【名师解析】若人体温度升高,则人体热辐射强度I 增大,光子能量增大,频率增大,热辐射强度I 极大值对应的波长λ减小,选项B 正确。
2020年高考物理真题分类汇编 原子结构、原子核、波粒二象性
2020年高考物理真题分类汇编(详解+精校)原子结构、原子核、波粒二象性1.(2020年高考•上海卷)卢瑟福利用a粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是A. B. D.1.D解析:本题考查a粒子散射实验的原理,主要考查学生对该实验的轨迹分析和理解。
由于a粒子轰击金箔时,正对金箔中原子核打上去的一定原路返回,故排除A、C选项;越靠近金原子核的a粒子受力越大,轨迹弯曲程度越大,故D正确。
2.(2020年高考•上海卷)用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是()A.改用频率更小的紫外线照射B.改用X射线照射C.改用强度更大的原紫外线照射D.延长原紫外线的照射时间2.B解析:本题考查光电效应现象,要求学生知道光电效应发生的条件。
根据爱因斯坦对光电效应的研究结论可知光子的频率必须大于金属的极限频率,A错;与光照射时间无关,D错;与光强度无关,C错;X射线的频率比紫外线频率较高,故B对。
3.(2020年高考•上海卷)在存放放射性元素时,若把放射性元素①置于大量水中;②密封于铅盒中;③与轻核元素结合成化合物。
则()A.措施①可减缓放射性元素衰变B.措施②可减缓放射性元素衰变C.措施③可减缓放射性元素衰变D.上述措施均无法减缓放射性元素衰变4.D解析:本题考查衰变及半衰期,要求学生理解半衰期。
原子核的衰变是核内进行的,故半衰期与元素处于化合态、游离态等任何状态无关,与外界温度、压强等任何环境无关,故不改变元素本身,其半衰期不会发生变化,A、B、C三种措施均无法改变,故D对。
5.(2020年高考•北京理综卷)表示放射性元素碘131(i3i I)6衰变的方程是53A.1311—127Sb+4HeB.1311—131Xe+o eC.1311—130I+1n535125354-153530D.131I—130Te+1H535214.B解析:A选项是a衰变,A错误;B选项是6衰变,B正确;C选项放射的是中子,C错误;D选项放射的是质子,D错误。
2020届高中物理二轮总复习《原子物理》试题
2020届高中物理二轮总复习《原子物理》试题试卷满分:150分命题人:嬴本德一、单选题:本题共24小题,每小题2分,共48分。
在每个小题给出的四个选项中,只有一个选项符合题目要求。
1.光子的能量与其()A.频率成正比B.波长成正比C.速度成正比D.速度平方成正比2.关于光电效应,下列说法正确的是()A.极限频率越大的金属材料逸出功越大B.只要光照射的时间足够长,任何金属都能产生光电效应C.从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越小D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多3.下列说法中正确的是()A.为了解释光电效应规律,爱因斯坦提出了光子说B.在完成α粒子散射实验后,卢瑟福提出了原子的能级结构C.玛丽·居里首先发现了放射现象D.在原子核人工转变的实验中,查德威克发现了质子4.对于巴耳末公式,下列说法正确的是()A.所有氢原子光谱的波长都与巴耳末公式相对应B.巴耳末公式只确定了氢原子发光的可见光部分的光的波长C.巴耳末公式确定了氢原子发光的一个线系的波长,其中既有可见光,又有紫外光D.巴耳末公式确定了各种原子发光中的光的波长5.氦原子被电离一个核外电子,形成类氢结构的氦离子,已知基态氦离子能量为E1=-54.4eV,氦离子能级的示意图如图所示,在具有下列能量的光子中,不能被基态氦离子吸收而发生跃迁的是()A.40.8eVB.43.2eVC.51.0eVD.54.4eV 6.关于α、β、γ三种射线,下列说法正确的是()A.α射线是一种波长很短的电磁波B.γ射线是一种波长很短的电磁波C.β射线的电离能力最强D.γ射线的电离能力最强7.有关下列四幅图的说法正确的是()A.甲图中,球m1以速度v碰撞静止球m2,若两球质量相等,碰后m2的速度一定为vB.乙图中,在光颜色保持不变的情况下,入射光越强,饱和电流越大C.丙图中射线1由β粒子组成,射线2为γ射线,射线3由α粒子组成D.丁图中,链式反应属于轻核聚变8.如图,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是()A.①表示γ射线,③表示α射线B.②表示β射线,③表示α射线C.④表示α射线,⑤表示γ射线D.⑤表示β射线,⑥表示α射线9.根据玻尔理论,某原子的电子从能量为E的轨道跃迁到能量为E′的轨道,辐射出波长为λ的光,以h表示普朗克常量,c表示真空中的光速,则E′等于()A.E-hλcB.E+hλcC.E-h cλD.E+h cλ10.关于下面四个装置说法正确的是()A.图甲实验可以说明α粒子的贯穿本领很强B.图乙的实验现象可以用爱因斯坦的质能方程解释C.图丙是利用α射线来监控金属板厚度的变化D.图丁中进行的是聚变反应11.关于光谱,下列说法正确的是()A.大量原子发出的光谱是连续谱,少量原子发出的光是线状谱B.线状谱由不连续的若干波长的光组成C.作光谱分析时只能用发射光谱,不能用吸收光谱D.作光谱分析时只能用吸收光谱,不能用发射光谱12.以下说法正确的是()A.氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,原子电势能增大,原子能量减小B.紫外线照射到金属锌板表面时能够发生光电效应,则当增大紫外线的照射强度时,从锌板表面逸出的光电子的个数越多,光电子的最大初动能增大C.氢原子光谱有很多不同的亮线,说明氢原子能发出很多不同频率的光,但它的光谱不是连续谱D.天然放射现象的发现揭示了原子核有复杂的结构,阴极射线是原子核内的中子转变为质子时产生的高速电子流13.在卢瑟福的α粒子散射实验中,某一α粒子经过某一原子核附近时的轨迹如图3中实线所示.图中P、Q为轨迹上的点,虚线是过P、Q两点并与轨迹相切的直线,两虚线和轨迹将平面分为四个区域.不考虑其他原子核对该α粒子的作用,那么关于该原子核的位置,下列说法中正确的是()A.可能在①区域B.可能在②区域C.可能在③区域D.可能在④区域14.一静止的铀核放出一个α粒子衰变成钍核,衰变方程为23892U→23490Th+42He.下列说法正确的是()A.衰变后钍核的动能等于α粒子的动能B.衰变后钍核的动量大小等于α粒子的动量大小C.铀核的半衰期等于其放出一个α粒子所经历的时间D.衰变后α粒子与钍核的质量之和等于衰变前铀核的质量15.如图所示为氢原子的能级结构示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外辐射出光子,用这些光子照射逸出功为2.49eV的金属钠.下列说法正确的是()A.这群氢原子能辐射出三种不同频率的光,其中从n=3能级跃迁到n=2能级所发出的光波长最短B.这群氢原子在辐射光子的过程中电子绕核运动的动能减少,电势能增加C.能发生光电效应的光有三种D.金属钠表面所发出的光电子的最大初动能是9.60eV 16.大科学工程“人造太阳”主要是将氘核聚变反应释放的能量用来发电.氘核聚变反应方程是:21H+21H→32He+10n.已知21H的质量为2.0136u,32He的质量为3.0150u,10n的质量为1.0087u,1u=931MeV/c2.氘核聚变反应中释放的核能约为()A.3.7MeV B.3.3MeVC.2.7MeV D.0.93MeV17.铀是常用的一种核燃料,若它的原子核发生了如下的裂变反应:23592U+10n→a+b+210n则a+b可能是() A.14054Xe+9336Kr B.14156Ba+9236KrC.14156Ba+9338Sr D.14054Xe+9438Sr18.氢原子从能级m跃迁到能级n时辐射红光的频率为ν1,从能级n跃迁到能级k时吸收紫光的频率为ν2,已知普朗克常量为h,若氢原子从能级k跃迁到能级m,则()A.吸收光子的能量为hν1+hν2B.辐射光子的能量为hν1+hν2C.吸收光子的能量为hν2-hν1D.辐射光子的能量为hν2-hν119.天然放射现象中可产生α、β、γ三种射线.下列说法正确的是()A.β射线是由原子核外电子电离产生的B.23892U经过一次α衰变,变为23890ThC.α射线的穿透能力比γ射线穿透能力强D.放射性元素的半衰期随温度升高而减小20.核能作为一种新能源在现代社会中已不可缺少,我国在完善核电安全基础上将加大核电站建设.核泄漏中的钚(Pu)是一种具有放射性的超铀元素,它可破坏细胞基因,提高罹患癌症的风险.已知钚的一种同位素23994Pu的半衰期为24100年,其衰变方程为23994Pu→X+42He+γ,下列说法中正确的是()A.X原子核中含有92个中子B.100个23994Pu经过24100年后一定还剩余50个C.由于衰变时释放巨大能量,根据E=mc2,衰变过程总质量增加D.衰变发出的γ射线是波长很短的光子,具有很强的穿透能力21.如图所示为氢原子能级示意图,现有大量的氢原子处于n=4的激发态,当向低能级跃迁时辐射出若干种不同频率的光,下列说法正确的是()A.这些氢原子总共可辐射出3种不同频率的光B.由n=2能级跃迁到n=1能级产生的光频率最小C.由n=4能级跃迁到n=1能级产生的光最容易发生衍射现象D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34eV 的金属铂能发生光电效应22.人们在研究原子结构时提出过许多模型,其中比较有名的是枣糕模型和核式结构模型,它们的模型示意图如图所示.下列说法中正确的是()A .α粒子散射实验与枣糕模型和核式结构模型的建立无关B .科学家通过α粒子散射实验否定了枣糕模型,建立了核式结构模型C .科学家通过α粒子散射实验否定了核式结构模型,建立了枣糕模型D .科学家通过α粒子散射实验否定了枣糕模型和核式结构模型,建立了波尔的原子模型23.2017年年初,我国研制的“大连光源”——极紫外自由电子激光装置,发出了波长在100nm(1nm =10-9m)附近连续可调的世界上最强的极紫外激光脉冲.大连光源因其光子的能量大、密度高,可在能源利用、光刻技术、雾霾治理等领域的研究中发挥重要作用.一个处于极紫外波段的光子所具有的能量可以电离一个分子,但又不会把分子打碎.据此判断,能够电离一个分子的能量约为(取普朗克常量h=6.6×10-34J·s ,真空光速c=3×108m/s)()A .10-21J B .10-18J C .10-15JD .10-12J24.氢原子的部分能级如图所示,氢原子吸收以下能量可以从基态跃迁到n=2能级的是()A .10.2eVB .3.4eVC .1.89eVD .1.51eV25.(附加题)在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示,则可判断出()A .甲光的频率大于乙光的频率B .乙光的波长大于丙光的波长C .乙光对应的截止频率大于丙光的截止频率D .甲光对应的光电子最大初动能大于丙光的光电子最大初动能二、多选题:本题共34小题,每小题3分,共102分。
2020高考物理复习 专题23 原子物理(解析版)
2020年5月全国名校联考最新高考模拟试题分项汇编(第一期)原子物理1、(2020·北京市通州区高三下学期5月一模)关于核反应方程2382349290U Th+X →,下列说法正确的是( )A. 此核反应方程中的X 代表的粒子为氢原子核B. 通过降低温度的方法,一定能缩短23892U 的半衰期C. 此核反应释放能量D. 此核反应方程属于β衰变,β粒子是23892U 核外的电子电离形成的【答案】C 【解析】A .由电荷数守恒与质量数守恒可知X 的质量数为4,电荷数为2,核反应方程为238234492902U Th+He →所以此核反应方程中的X 代表的粒子为α粒子,故A 错误; B .半衰期与外界的温度等条件无关,故B 错误;CD .此反应是α衰变,由于发生质量亏损释放能量,故C 正确,D 错误; 故选C 。
2、(2020·江苏省盐城市高三下学期三模)如图所示,α、β、γ三种射线的示意图。
下列说法中正确的是_________。
A. γ射线是电磁波,它的电离作用最强B. γ射线一般伴随着α或β射线产生,它的贯穿能力最强C. α射线是原子核自发射出的氦核,它的电离作用最弱D. β射线是原子核外电子电离形成的电子流,它具有中等的贯穿能力 【答案】B 【解析】A .γ射线是电磁波,它的电离作用最弱,穿透本领最强,选项A 错误;B .γ射线一般伴随着α或β射线产生,它的贯穿能力最强,选项B 正确;C .α射线是原子核自发射出的氦核,它的电离作用最强,选项C 错误;D .β射线是原子核内中子转化为质子时放出的负电子,它具有中等的贯穿能力,选项D 错误。
故选B 。
3、(2020·山东省新高考质量测评联盟高三下学期5月联考)黄旭华,中国核潜艇之父。
黄旭华为中国核潜艇事业的发展做出了重要贡献,在核潜艇水下发射运载火箭的多次海上试验任务中,作为核潜艇工程总设计师、副指挥,开拓了中国核潜艇的研制领域,被誉为中国核潜艇之父。
原子物理学复习
原子物理学(褚圣麟编著高等教育出版社)第一章 原子的基本状况1、α粒子散射实验结论p9:卢瑟福的α粒子散射实验观察到,绝大多数电子只有2~3度的偏转,有1/8000的α粒子偏转大于90°,其中有接近180°的。
2、卢瑟福散射公式p13:22224014sin 2Ze d Ωd Mv σθπε⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,d σ是立体角d Ω内每个原子的散射截面 dnd Ntnσ=;N 为薄膜中单位体积中原子的个数;t 为薄膜厚度;有n 个α粒子射到薄膜上,其中d n 个落在d Ω中第二章 原子的能级和辐射1、光谱的分类p23:(1)线装光谱:是原子所发的; (2)带状光谱:是分子所发的;(3)连续光谱:固体加热所发的,原子和分子在某些情况下也会发连续光谱。
2、波数p243、谱线系p25(m < n , m = 1,2,3…),表示第m 条谱线到第n 条谱线的能量差;对于氢原子,Z = 1。
R 是里德伯常数,它由11/e R R m M∞=+确定,其中M 是原子核质量,m e 是绕核旋转的电子的质量.对于氢原子,R H = 1.09677576×107 m -1。
m = 1时的谱线系称为赖曼系;m = 2时的谱线系称为巴耳末系; m = 3时的谱线系称为帕邢系; m = 4时的谱线系称为布喇开系; m = 5时的谱线系称为普丰特系。
4、原子的能量p29:2hcRE n=-5、氢原子半径p3021n r a Z =,2012244h a meπεπ=.对于氢原子,a 1 = 0.529166×10-10m.6、氢原子能级p31212Z E E n =,2412202(4)me E hππε=-.对于氢原子,E 1 = -13.59 eV . 7、折合质量p39若不满足m << M ,则计算时的质量m 需要使用折合质量MmM mμ=+.8、电离电势(ionizing potential )p46在赖曼系中取n = ∞求得,则电离电势为.9、激发电势(excitation potential )p42原子由第m 条谱线激发到第n 条谱激发电势为.10、两个实验p42 p55:(1)夫兰克—赫兹实验证明原子能级的存在(2)史特恩—盖拉赫实验证明原子空间取向的量子化第三章 量子力学初步1、光子的能量p78E h ν=2、德布罗意(de Broglie )波长p79h pλ=3、不确定性原理(Uncertainty principle )p82/2p x ∆∆≥, /2E t ∆∆≥4、薛定谔方程(Schrodinger equation )p89定态薛定谔方程(time-independent Schrodinger equation ):5、球坐标下的薛定谔方程p1046、波函数必须满足的三个条件:有限;连续;单值(唯一) 7、五个量子数主量子数n = 1, 2, 3 ···角量子数l = 0, 1, 2 ··· (n - 1)角量子数在z 轴的分量(磁量子数)m l = 0, ±1, ±2, ··· ±l 自旋量子数s = 1/2自旋量子数在z 轴的分量m s = ±1/2第四章 碱金属原子和电子自旋1、四种线系2、锂(Li)3、钠(Na)4、碱金属的光谱项表达式*22(Δ)R RT n n ==- 5、原子实的极化和轨道贯穿使电子的能级偏低,其中轨道贯穿影响较大。
高考物理近代物理知识点之原子结构知识点总复习含答案解析(6)
高考物理近代物理知识点之原子结构知识点总复习含答案解析(6)一、选择题1.氢原子从能量为m E 的较高激发态跃迁到能量为n E 的较低激发态,设真空中的光速为c ,则氢原子 A .吸收光子的波长为()m n c E E h - B .辐射光子的波长为()m n c E E h- C .吸收光子的波长为nm chE E -D .辐射光子的波长为nm chE E -2.玻尔的原子模型在解释原子的下列问题时,和卢瑟福的核式结构学说观点不同的是( )A .电子绕核运动的向心力,就是电子与核之间的静电引力B .电子只能在一些不连续的轨道上运动C .电子在不同轨道上运动时能量不同D .电子在不同轨道上运动时静电引力不同3.一个氢原子从n =3能级跃迁到n =2能级,该氢原子( ) A .放出光子,能量增加 B .放出光子,能量减少 C .吸收光子,能量增加 D .吸收光子,能量减少4.图甲所示为氢原子能级图,大量处于n =4激发态的氢原子向低能级跃迁时能辐射出多种不同频率的光,其中用从n =4能级向n =2能级跃迁时辐射的光照射图乙所示光电管的阴极K 时,电路中有光电流产生,则A .改用从n =4能级向n =1能级跃迁时辐射的光,一定能使阴极K 发生光电效应B .改用从n =3能级向n =1能级跃迁时辐射的光,不能使阴极K 发生光电效应C .改用从n =4能级向n =1能级跃迁时辐射的光照射,逸出光电子的最大初动能不变D .入射光的强度增大,逸出光电子的最大初动能也增大 5.下列说法正确的是A .比结合能越小的原子核,核子结合得越牢固,原子核越稳定B .根据玻尔理论可知,氢原子核外电子跃迁过程中电子的电势能与动能之和不变C .原子核发生一次β衰变,原子核内的一个质子转变为一个中子D .处于激发态的原子核辐射出γ射线时,原子核的核子数不会发生变化 6.一个氢原子从量子数n=2的能级跃迁到量子数n=3的能级,该氢原子 A .吸收光子,能量增加 B .放出光子,能量减少 C .放出光子,能量增加 D .吸收光子,能量减少7.下列说法正确的是( )A .汤姆孙通过α粒子散射实验,提出了原子具有核式结构B .一群处于n =4能级上的氢原子向低能级跃迁时最多产生4种谱线C .结合能越大,原子核中核子结合得越牢固,原子核越稳定D .在核反应中,质量数和电荷数都守恒8.如图为氢原子的能级示意图,锌的逸出功是3.34eV ,那么对氢原子在能级跃迁过程中发射或吸收光子的规律认识错误..的是( )A .用能量为14.0eV 的光子照射,可使处于基态的氢原子电离B .一群处于n=4能级的氢原子向低能级跃迁所辐射的光中,有3种不同频率的光能使锌发生光电效应C .一群处于n=3能级的氢原子向基态跃迁时,发出的光照射锌板,锌板表面所发出的光电子的最大初动能为8.75eVD .用能量为10.21eV 的光子照射,可使处于基态的氢原子跃迁到激发态9.若用|E 1|表示氢原子处于基态时能量的绝对值,处于第n 能级的能量为12n E E n ,则在下列各能量值中,可能是氢原子从激发态向基态跃迁时辐射出来的能量的是( )A .114E B .134E C .178E D .1116E 10.人们发现,不同的原子核,其核子的平均质量(原子核的质量除以核子数)与原子序数有如图所示的关系.下列关于原子结构和核反应的说法正确的是( )A.由图可知,原子核D和E聚变成原子核F时会有质量亏损,要吸收能量B.由图可知,原子核A裂变成原子核B和C时会有质量亏损,要放出核能C.已知原子核A裂变成原子核B和C时放出的γ射线能使某金属板逸出光电子,若增加γ射线强度,则逸出光电子的最大初动能增大D.卢瑟福提出的原子核式结构模型,可以解释原子的稳定性和原子光谱的分立特征11.氢原子能级图如图所示,下列说法正确的是A.当氢原子从n=2能级跃迁到n=3能级时,需要吸收0. 89eV的能量B.处于n=2能级的氢原子可以被能量为2eV的电子碰撞而向高能级跃迁C.一个处于n=4能级的氢原子向低能级跃迁时,可以辐射出6 种不同頻率的光子D.n=4能级的氢原子跃迁到n=3能级时辐射出电磁波的波长比n=3能级的氢原子跃迁到n=2能级时辐射出电磁波的波长短12.如图为氢原子能级示意图。
2020年高考物理一轮复习热点题型归纳与变式演练专题32原子结构原子核(解析版)
2020届高考物理一轮复习热点题型归纳与变式演练专题32 原子结构 原子核【专题导航】目录目录热点题型一热点题型一 原子的核式结构原子的核式结构 玻尔理论 (1)(一)对能级图的理解和应用 ......................................................................................................................... 3 (二)对原子核式结构的理解 ......................................................................................................................... 4 热点题型二热点题型二氢原子的能量及变化规律 ................................................................................................................... 5 热点三热点三 原子核的衰变、半衰期 .. (6)(一)确定衰变次数的问题 ............................................................................................................................. 7 (二)衰变射线的性质 ..................................................................................................................................... 8 (三)对半衰期的理解和应用 ......................................................................................................................... 9 热点题型四热点题型四核反应类型与核反应方程 ................................................................................................................... 9 热点题型五热点题型五核能的计算 .......................................................................................................................................... 11 【题型演练】 .. (12)【题型归纳】热点题型一 原子的核式结构 玻尔理论 1.α粒子散射实验粒子散射实验 (1)α粒子散射实验装置粒子散射实验装置(2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但少数α粒子穿过金箔后发生了大角度偏转,极少数α粒子甚至被“撞了回来”. 2.原子的核式结构模型.原子的核式结构模型 (1)α粒子散射实验结果分析粒子散射实验结果分析①核外电子不会使α粒子的速度发生明显改变.粒子的速度发生明显改变. ②汤姆孙模型不能解释α粒子的大角度散射.粒子的大角度散射.③绝大多数α粒子沿直线穿过金箔,说明原子中绝大部分是空的;少数α粒子发生较大角度偏转,反映了原子内部集中存在着对α粒子有斥力的正电荷;极少数α粒子甚至被“撞了回来”,反映了个别α粒子正对着质量比α粒子大得多的物体运动时,受到该物体很大的斥力作用.粒子大得多的物体运动时,受到该物体很大的斥力作用. (2)核式结构模型的局限性核式结构模型的局限性卢瑟福的原子核式结构模型能够很好地解释α粒子散射实验现象,但不能解释原子光谱是特征光谱和原子的稳定性.的稳定性.3.对氢原子能级图的理解.对氢原子能级图的理解 (1)能级图如图所示能级图如图所示(2)氢原子的能级和轨道半径氢原子的能级和轨道半径①氢原子的能级公式:E n =1n 2E 1(n =1,2,3,…),其中E 1为基态能量,其数值为E 1=-13.6 eV 13.6 eV.. ②氢原子的半径公式:r n =n 2r 1(n =1,2,3,…),其中r 1为基态半径,为基态半径,又称玻尔半径,又称玻尔半径,又称玻尔半径,其数值为其数值为r 1=0.53×0.53×1010-10m.(3)能级图中相关量意义的说明.能级图中相关量意义的说明.相关量 意义意义能级图中的横线表示氢原子可能的能量状态——定态定态横线左端的数字“1,2,3…” 表示量子数表示量子数 横线右端的数字“-13.6,-3.4…”表示氢原子的能量表示氢原子的能量相邻横线间的距离表示相邻的能量差,量子数越大,相邻的能量差越小,距离越小差越小,距离越小带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁的条件为hν=E m -E n4.两类能级跃迁两类能级跃迁(1)自发跃迁:高能级→低能级,释放能量,发出光子.低能级,释放能量,发出光子.光子的频率ν=ΔE h =E 高-E 低h .(2)受激跃迁:低能级→高能级,吸收能量.高能级,吸收能量.①光照(吸收光子):吸收光子的全部能量,光子的能量必须恰等于能级差hν=ΔE .②碰撞、加热等:可以吸收实物粒子的部分能量,只要入射粒子能量大于或等于能级差即可,E 外≥ΔE . ③大于电离能的光子被吸收,将原子电离.③大于电离能的光子被吸收,将原子电离. (一)对能级图的理解和应用【例1】(2019·山西太原一模)如图是氢原子的能级示意图.当氢原子从n =4的能级跃迁到n =3的能级时, 辐射出光子a ;从n =3的能级跃迁到n =2的能级时,辐射出光子b .以下判断正确的是 ( )A .在真空中光子a 的波长大于光子b 的波长的波长B .光子b 可使氢原子从基态跃迁到激发态可使氢原子从基态跃迁到激发态C .光子a 可能使处于n =4能级的氢原子电离能级的氢原子电离D .大量处于n =3能级的氢原子向低能级跃迁时最多辐射2种不同谱线种不同谱线 【答案】 A【解析】 氢原子从n =4的能级跃迁到n =3的能级的能级差小于从n =3的能级跃迁到n =2的能级时的能级差,根据E m -E n =hν知,光子a 的能量小于光子b 的能量,所以a 光的频率小于b 光的频率,光子a 的波长大于光子b 的波长,故A 正确;光子b 的能量小于基态与任一激发态的能级差,所以不能被基态的原子吸收,故B 错误;根据E m-E n=hν可求光子a 的能量小于n =4能级的电离能,所以不能使处于n =4能级的氢原子电离,C 错误;大量处于n =3能级的氢原子向低能级跃迁时最多辐射3种不同谱线,故D 错误.【变式】氢原子能级如图,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm.以下判断正确的是( )A .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmB .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级的能级C .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线种谱线D .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级的能级 【答案】CD【解析】根据氢原子的能级图和能级跃迁规律,当氢原子从n =2能级跃迁到n =1能级时,辐射光的波长一定小于656 nm ,因此选项A 错误;根据发生跃迁只能吸收和辐射一定频率的光子,可知选项B 错误,D 正确;一群处于n =3能级上的氢原子向低能级跃迁时可以产生3种频率的光子,所以选项C 正确. (二)对原子核式结构的理解【例2】(2019·上海理工大附中期中)如图所示为卢瑟福α粒子散射实验装置的示意图,图中的显微镜可在圆周轨道上转动,周轨道上转动,通过显微镜前相连的荧光屏可观察通过显微镜前相连的荧光屏可观察α粒子在各个角度的散射情况.粒子在各个角度的散射情况.下列说法正确的是下列说法正确的是( )A .在图中的A 、B 两位置分别进行观察,相同时间内观察到屏上的闪光次数一样多两位置分别进行观察,相同时间内观察到屏上的闪光次数一样多 B .在图中的B 位置进行观察,屏上观察不到任何闪光位置进行观察,屏上观察不到任何闪光C .卢瑟福选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似粒子散射的靶,观察到的实验结果基本相似D .α粒子发生散射的主要原因是α粒子撞击到金原子后产生的反弹粒子撞击到金原子后产生的反弹 【答案】C【解析】.放在A 位置时,相同时间内观察到屏上的闪光次数应最多,说明大多数射线基本不偏折,可知金箔原子内部很空旷,故A 错误;放在B 位置时,相同时间内观察到屏上的闪光次数较少,说明较少射线发生偏折,可知原子内部带正电的体积小,故B 错误;选用不同金属箔片作为α粒子散射的靶,观察到的实验结果基本相似,故C 正确;α粒子发生散射的主要原因是α粒子受到金原子库仑力作用,且金原子质量较大,从而出现的反弹,故D 错误.【变式】如图所示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M 、N 、P 、Q 是轨迹上的四点,在散射过程中可以认为重金属原子核静止.图中所标出的α粒子在各点处的加速度方向正确的是( )A .M 点B .N 点C .P 点D .Q 点【答案】C【解析】.α粒子(氦原子核)和重金属原子核都带正电,互相排斥,加速度方向与α粒子所受斥力方向相同.带电粒子加速度方向沿相应点与重金属原子核连线指向轨迹曲线的凹侧,故只有选项C 正确. 热点题型二 氢原子的能量及变化规律氢原子跃迁时电子动能、电势能与原子能量的变化规律氢原子跃迁时电子动能、电势能与原子能量的变化规律1.原子能量变化规律:E n =E k n +E p n =E 1n 2,随n 增大而增大,随n 的减小而减小,其中E 1=-13.6 eV 13.6 eV.. 2.电子动能变化规律.电子动能变化规律(1)从公式上判断电子绕氢原子核运动时静电力提供向心力即k e 2r 2=m v 2r ,所以E k =ke 22r ,随r 增大而减小.增大而减小.(2)从库仑力做功上判断,当轨道半径增大时,库仑引力做负功,故电子动能减小.反之,当轨道半径减小时,库仑引力做正功,故电子的动能增大.时,库仑引力做正功,故电子的动能增大. 3.原子的电势能的变化规律.原子的电势能的变化规律(1)通过库仑力做功判断,当轨道半径增大时,库仑引力做负功,原子的电势能增大.反之,当轨道半径减小时,库仑引力做正功,原子的电势能减小.小时,库仑引力做正功,原子的电势能减小.(2)利用原子能量公式E n =E k n +E p n 判断,当轨道半径增大时,原子能量增大,电子动能减小,故原子的电势能增大.反之,当轨道半径减小时,原子能量减小,电子动能增大,故原子的电势能减小.【例3】(2019·三明模拟)按照玻尔理论,一个氢原子中的电子从一半径为r a 的圆轨道自发地直接跃迁到一半径为r b 的圆轨道上,已知r a >r b ,则在此过程中( )A .原子要发出某一频率的光子,电子的动能增大,原子的电势能减小,原子的能量也减小B .原子要吸收某一频率的光子,电子的动能减小,原子的电势能减小,原子的能量也减小C .原子要发出一系列频率的光子,电子的动能减小,原子的电势能减小,原子的能量也减小D .原子要吸收一系列频率的光子,电子的动能增大,原子的电势能增大,原子的能量也增大 【答案】A.【解析】由玻尔氢原子理论知,电子轨道半径越大,原子能量越大,当电子从r a 跃迁到r b 时,原子能量减小,放出光子;在电子跃迁过程中,库仑力做正功,原子的电势能减小;由库仑力提供电子做圆周运动的向心力,即ke 2r 2=mv2r ,r 减小,电子速度增大,动能增大,综上所述可知A 正确.【变式】(多选)(2019·宜昌模拟)氢原子辐射出一个光子后,根据玻尔理论,下述说明正确的是( ) A .电子旋转半径减小.电子旋转半径减小 B .氢原子能量增大.氢原子能量增大 C .氢原子电势能增大.氢原子电势能增大 D .核外电子速率增大.核外电子速率增大 【答案】AD.【解析】氢原子辐射出一个光子后,从高能级向低能级跃迁,氢原子的能量减小,轨道半径减小,根据k e2r 2=m v2r ,得轨道半径减小,电子速率增大,动能增大,由于氢原子半径减小的过程中电场力做正功,则氢原子电势能减小,故A 、D 项正确,B 、C 项错误. 热点三 原子核的衰变、半衰期 1.衰变规律及实质.衰变规律及实质 (1)α衰变和β衰变的比较衰变的比较衰变类型α衰变β衰变衰变衰变方程 MZ X→M -4Z -2Y +42HeM Z X→M Z +1Y + 0-1e衰变实质2个质子和2个中子结合成一个整体射出中子转化为质子和电子中子转化为质子和电子211H +210n→42He10n→11H + 0-1e匀强磁场中轨匀强磁场中轨 迹形状迹形状衰变规律电荷数守恒、质量数守恒电荷数守恒、质量数守恒(2)γ射线:γ射线经常是伴随着α衰变或β衰变同时产生的.衰变同时产生的. 2.三种射线的成分和性质.三种射线的成分和性质名称构成符号电荷量 质量电离能力 贯穿本领 α射线氦核 42He +2 e4 u 最强最弱最弱β射线电子-1e -e11 837u较强 较强较强γ射线光子γ 0 0 最弱 最强最强3.半衰期的理解半衰期的理解半衰期的公式:N 余=N 原èæøö12t /τ,m 余=m 原èæøö12t /τ.式中N 原、m 原表示衰变前的放射性元素的原子数和质量,N 余、m 余表示衰变后尚未发生衰变的放射性元素的原子数和质量,t 表示衰变时间,τ表示半衰期.表示半衰期. (一)确定衰变次数的问题【例4】(多选)(2019·南通模拟)钍234 90Th 具有放射性,它能放出一个新的粒子而变为镤23491Pa ,同时伴随有射,同时伴随有射 线产生,其方程为234 90Th→23491Pa +X ,钍的半衰期为24天.则下列说法中正确的是 ( )A .X 为质子为质子B .X 是钍核中的一个中子转化成一个质子时产生的是钍核中的一个中子转化成一个质子时产生的C .γ射线是镤原子核放出的射线是镤原子核放出的D .1 g 钍23490Th 经过120天后还剩0.312 5 g 【答案】 BC【解析] 根据电荷数和质量数守恒知,钍核衰变过程中放出了一个电子,即X 为电子,故A 错误;发生β衰变时释放的电子是由核内一个中子转化成一个质子时产生的,故B 正确;γ射线是镤原子核放出的,故C 正确;钍的半衰期为24天,1 g 钍23490Th 经过120天即经过5个半衰期,故经过120天后还剩0.031 25 g ,故D 错误.【技巧总结】确定衰变次数的方法确定衰变次数的方法设放射性元素AZ X 经过n 次α衰变和m 次β衰变后,变成稳定的新元素A ′Z ′Y . (1)反应方程:AZ X→A ′Z ′Y +n 42He +m 0-1e.(2)根据电荷数和质量数守恒列方程A =A ′+4n ,Z =Z ′+2n -m .两式联立解得:两式联立解得: n =A -A ′4,m =A -A ′2+Z ′-Z .注意:为了确定衰变次数,一般是由质量数的改变先确定α衰变的次数,这是因为β衰变的次数的多少对质量数没有影响,然后再根据衰变规律确定β衰变的次数.衰变的次数.【变式】(多选)(2019·梅州一模)关于天然放射现象,以下叙述正确的是关于天然放射现象,以下叙述正确的是 ( )A .若使放射性物质的温度升高,其半衰期将变大.若使放射性物质的温度升高,其半衰期将变大B .β衰变所释放的电子是原子核内的质子转变为中子时产生的衰变所释放的电子是原子核内的质子转变为中子时产生的C .在α、β、γ这三种射线中,γ射线的穿透能力最强,α射线的电离能力最强射线的电离能力最强D .铀核(23892U)衰变为铅核(20682Pb)的过程中,要经过8次α衰变和6次β衰变衰变【答案】CD【解析】半衰期的时间与元素的物理状态无关,若使某放射性物质的温度升高,其半衰期不变,故A 错误.β衰变所释放的电子是原子核内的中子转化成质子时产生的,故B 错误.在α、β、γ这三种射线中,γ射线的穿透能力最强,α射线的电离能力最强,故C 正确.铀核(23892U)衰变为铅核(20682Pb)的过程中,每经过一次α衰变质子数少2,质量数少4;而每经过一次β衰变质子数增加1,质量数不变;由质量数和核电荷数守恒,可知要经过8次α衰变和6次β衰变,故D 正确.(二)衰变射线的性质【例5】.图中曲线a 、b 、c 、d 为气泡室中某放射物发生衰变放出的部分粒子的径迹,气泡室中磁感应强度方向垂直于纸面向里.以下判断可能正确的是( )A .a 、b 为β粒子的径迹粒子的径迹B .a 、b 为γ粒子的径迹粒子的径迹C .c 、d 为α粒子的径迹粒子的径迹D .c 、d 为β粒子的径迹粒子的径迹【答案】D【解析】.由于α粒子带正电,β粒子带负电,γ粒子不带电,据左手定则可判断a 、b 可能为α粒子的径迹,c 、d 可能为β粒子的径迹,选项D 正确.【变式】(多选)一个静止的放射性原子核处于匀强磁场中,一个静止的放射性原子核处于匀强磁场中,由于发生了衰变而在磁场中形成如图所示的两个由于发生了衰变而在磁场中形成如图所示的两个圆形径迹,两圆半径之比为1∶16,下列判断中正确的是,下列判断中正确的是( )A .该原子核发生了α衰变衰变B .反冲原子核在小圆上逆时针运动.反冲原子核在小圆上逆时针运动C .原来静止的核,其原子序数为15D .放射性的粒子与反冲核运动周期相同.放射性的粒子与反冲核运动周期相同 【答案】BC【解析】衰变后产生的新核——即反冲核及放射的带电粒子在匀强磁场中均做匀速圆周运动,轨道半径r=mvqB ,因反冲核与放射的粒子动量守恒,而反冲核电荷量较大,所以其半径较小,并且反冲核带正电荷,由左手定则可以判定反冲核在小圆上做逆时针运动,在大圆上运动的放射粒子在衰变处由动量守恒可知其向上运动,且顺时针旋转,由左手定则可以判定一定带负电荷.因此,这个衰变为β衰变,放出的粒子为电子,衰变方程为M Q A→M ′Q ′B +0-1e.由两圆的半径之比为1∶16可知,B 核的核电荷数为16.原来的放射性原子核的核电荷数为15,其原子序数为15.即A 为P(磷)核,B 为S(硫)核.由周期公式T =2πmqB 可知,因电子与反冲核的比荷不同,它们在匀强磁场中做匀速圆周运动的周期不相同. (三)对半衰期的理解和应用【例6】(2018·高考江苏卷)已知A 和B 两种放射性元素的半衰期分别为T 和2T ,则相同质量的A 和B 经过经过 2T 后,剩有的A 和B 质量之比为质量之比为 ( ) A .1∶4 B .1∶2 C .2∶1 D .4∶1【答案】B【解析】经过2T ,对A 来说是2个半衰期,A 的质量还剩14,经过2T ,对B 来说是1个半衰期,B 的质量还剩12,所以剩有的A 和B 质量之比为1∶2,选项B 正确.【变式】碘131的半衰期约为8天,若某药物含有质量为m 的碘131,经过32天后,该药物中碘131的含量大约还有( ) A.m 4 B.m 8C.m 16D.m 32【答案】C.【解析】经过n 个半衰期剩余碘131的含量m ′=m èæøö12n 因32天为碘131的4个半衰期,故剩余碘131的含量:m ′=m èæøö124=m 16,选项C 正确. 热点题型四 核反应类型与核反应方程 1.核反应的四种类型.核反应的四种类型类型可控性 核反应方程典例核反应方程典例衰变α衰变自发238 92U→234 90Th +42He β衰变自发 23490Th→23491Pa + 0-1e人工转变人工控制14 7N +42He→17 8O +11H(卢瑟福发现质子)42He +94Be→126C +10n (查德威克发现中子)2713Al +42He→3015P +10n(约里奥·居里夫妇发现放射性同位素,同时发现正电子)3015P→3014Si+ 0+1e重核裂变 比较容易进行人工控制235 92U +10n→14456Ba +8936Kr +310n 23592U +10n→13654Xe +9038Sr +1010n轻核聚变 很难控制21H +31H→42He +10n 2.核反应方程式的书写核反应方程式的书写(1)熟记常见基本粒子的符号,是正确书写核反应方程的基础.如质子(11H)、中子(10n)、α粒子(42He)、β粒子( 0-1e)、正电子(01e)、氘核(21H)、氚核(31H)等.等.(2)掌握核反应方程遵守的规律,是正确书写核反应方程或判断某个核反应方程是否正确的依据,由于核反应不可逆,所以书写核反应方程式时只能用“→”表示反应方向.表示反应方向. (3)核反应过程中质量数守恒,电荷数守恒.核反应过程中质量数守恒,电荷数守恒.【例7】(2018·高考全国卷Ⅲ)1934年,约里奥-居里夫妇用α粒子轰击铝核2713Al ,产生了第一个人工放射性,产生了第一个人工放射性 核素X :α+2713Al→n +X.X 的原子序数和质量数分别为的原子序数和质量数分别为 ( )A .15和28B .15和30C .16和30D .17和31【答案】B【解析】将核反应方程式改写成42He +2713Al→10n +X ,由电荷数和质量数守恒知,X 应为3015X. 【变式1】.(2018·高考北京卷)在核反应方程42He +147N→178O +X 中,X 表示的是表示的是 ( ) A .质子.质子 B .中子.中子C .电子.电子D .α粒子粒子【答案】A【解析】设X 为ZA X ,根据核反应的质量数守恒:4+14=17+Z ,则Z =1.电荷数守恒:2+7=8+A ,则A=1,即X为11H ,为质子,故选项A 正确,B 、C 、D 错误.【变式2】(2018·高考天津卷)国家大科学工程——中国散裂中子源(CSNS)于2017年8月28日首次打靶成日首次打靶成 功,获得中子束流,可以为诸多领域的研究和工业应用提供先进的研究平台,下列核反应中放出的粒子为 中子的是中子的是( )A.147N 俘获一个α粒子,产生178O 并放出一个粒子并放出一个粒子 B.2713Al 俘获一个α粒子,产生3015P 并放出一个粒子并放出一个粒子C.11 5B 俘获一个质子,产生84Be 并放出一个粒子并放出一个粒子D.63Li 俘获一个质子,产生32He 并放出一个粒子并放出一个粒子 【答案】B【解析】根据质量数和电荷数守恒可知四个核反应方程分别为147N +42He→178O +11H 、2713Al +42He→3015P +10n 、115B +11H→84Be +42He 、63Li +11H→32He +42He ,故只有B 项正确.热点题型五 核能的计算 1.应用质能方程解题的流程图.应用质能方程解题的流程图(1)根据ΔE =Δmc 2计算,计算时Δm 的单位是“kg”,c 的单位是“m/s”,ΔE 的单位是“J”.(2)根据ΔE =Δm ×931.5 MeV 计算.因1原子质量单位(u)相当于931.5 MeV 的能量,所以计算时Δm 的单位是“u”,ΔE 的单位是“MeV”.2.根据核子比结合能来计算核能:原子核的结合能=核子的比结合能×核子数.核子数. 3.核能释放的两种途径的理解核能释放的两种途径的理解 (1)使较重的核分裂成中等大小的核.使较重的核分裂成中等大小的核.(2)较小的核结合成中等大小的核,核子的比结合能都会增加,都可以释放能量.较小的核结合成中等大小的核,核子的比结合能都会增加,都可以释放能量.【例8】(2017·高考江苏卷)原子核的比结合能曲线如图所示.根据该曲线,下列判断正确的有( )A.42He 核的结合能约为14 MeV B.42He 核比核比 63Li 核更稳定核更稳定C .两个21H核结合成42He核时释放能量核时释放能量 D. 23592U 核中核子的平均结合能比8936Kr核中的大核中的大【答案】BC.【解析】由题图可知,42He 的比结合能约为7 MeV ,其结合能应为28 MeV ,故A 错误;比结合能较大的核较稳定,故B 正确;比结合能较小的核结合成比结合能较大的核时释放能量,故C 正确;比结合能就是平均结合能,故由图可知D 错误.【变式】(2017·高考全国卷Ⅰ)大科学工程“人造太阳”主要是将氘核聚变反应释放的能量用来发电.氘核聚变反应方程是:21H +21H→32He +10n.已知已知 21H 的质量为2.013 6 u, 32He 的质量为3.015 0 u ,10n 的质量为1.008 7 u ,1 u =931 MeV/c 2氘核聚变反应中释放的核能约为( )A .3.7 MeVB .3.3 MeVC .2.7 MeVD .0.93 MeV 【答案】B.【解析】氘核聚变反应的质量亏损为Δm =2×2.013 6 u -(3.015 0 u +1.008 7 u)=0.003 5 u ,释放的核能为ΔE =Δmc 2=0.003 5×931 MeV/c 2×c 2≈3.3 MeV ,选项B 正确. 【题型演练】1.一个146C 核经一次β衰变后,生成新原子核的质子数和中子数分别是( ) A .6和8 B .5和9C .8和6D .7和7【答案】D【解析】一个146C 核经一次β衰变后,生成新原子核,质量数不变,电荷数增加1,质量数为14,电荷数为7,即新核的质子数为7,中子数也为7,故选D.2.(2019·四川遂宁一诊)不同色光的光子能量如下表所示.不同色光的光子能量如下表所示.色光红 橙 黄 绿蓝—靛紫光子能量范围(eV)1.61~2.002.00~2.072.07~2.142.14~2.532.53~2.762.76~3.10氢原子部分能级的示意图如图所示.氢原子部分能级的示意图如图所示.大量处于n =4能级的氢原子,发射出的光的谱线在可见光范围内,其颜色分别为能级的氢原子,发射出的光的谱线在可见光范围内,其颜色分别为 ( ) A .红、蓝—靛 B .红、紫.红、紫 C .橙、绿.橙、绿 D .蓝—靛、紫靛、紫【答案】A【解析】计算出各种光子能量,然后和表格中数据进行对比,便可解决本题.氢原子处于第四能级,能够发出12.75 eV 、12.09 eV 、10.2 eV 、2.55 eV 、1.89 eV 、0.66 eV 的六种光子,其中1.89 eV 和2.55 eV 属于可见光,1.89eV 的光子为红光,2.55 eV 的光子为蓝—靛. 3.(2019·唐山调研)在匀强磁场中,有一个原来静止的146C 原子核,它放出的粒子与反冲核的径迹是两个相原子核,它放出的粒子与反冲核的径迹是两个相 内切的圆,圆的直径之比为7∶1,那么碳14的衰变方程应为的衰变方程应为 ( )A.146C→01e +145B B.14 6C→42He +104Be C.146C→21H +125B D.146C→ 0-1e +147N【答案】D【解析】静止的放射性原子核发生了衰变放出粒子后,新核的速度与粒子速度方向相反,放出的粒子与新核所受的洛伦兹力方向相同,根据左手定则判断出粒子与新核的电性相反,根据r =mvBq ,因粒子和新核的动量大小相等,可由半径之比7∶1确定电荷量之比为1∶7,即可根据电荷数守恒及质量数守恒得出核反应方程式为D.4.(2019·贵州凯里一中模拟)居里夫妇和贝克勒尔由于对放射性的研究而一起获得1903年的诺贝尔物理学年的诺贝尔物理学奖,下列关于放射性的叙述,正确的是奖,下列关于放射性的叙述,正确的是( ) A .自然界中只有原子序数大于83的元素才具有放射性的元素才具有放射性 B .三种天然放射线中,电离能力和穿透能力最强的是α射线射线C .α衰变238 92U→X +42He 的产物X 由90个质子和144个中子组成个中子组成D .放射性元素的半衰期与原子所处的化学状态和外部条件有关.放射性元素的半衰期与原子所处的化学状态和外部条件有关 【答案】C【解析】原子序数大于83的元素都具有放射性,小于83的个别元素也具有放射性,故A 错误;α射线的。
原子物理学总复习指导
原子物理学总复习指导
一、名词解释:同位素,类氢离子,电离电势,激发电势,量子化通则,原子
空间取向量子化,对应原理,有效量子数,原子实极化,轨道贯穿,有效
电荷数,电子自旋,电子态,原子态,电子组态,LS耦合,jj耦合,泡利原理,原子的磁距,塞曼效应;
二、数据记忆:玻尔半径,氢原子基态能量,里德堡常数;
三、著名实验的内容、物理意义及解释:α粒子散射实验,夫兰克—赫兹实验,
史特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应;
四、理论解释:汤姆逊原子模型的不合理性,卢瑟福核式模型的建立,玻尔氢
原子光谱理论的建立,激光原理;碱金属原子与氢原子能级和光谱异同;
五、计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,索末菲椭圆
轨道半长轴、半短轴公式及量子数的取值,量子力学的角动量表达式及量
子数取值(l,s,j,m),LS耦合,jj耦合,朗德间隔定则,g因子,Mg 计算;
六、谱线跃迁图:精细结构,塞曼效应;电子态及组态、原子态表示,选择定
则;
七、计算题:以布置习题为主,对计算方法熟练掌握。
能级,光谱,谱线系。
八、能力发挥(占总分10%以内):如玻尔速度,为何要计算g因子,量子力
学知识,元素周期表知识,莫塞莱定律如何推导等。
考题类型及分值:名词解释20分,5个;填空和选择题共20分,10个;简答题25分,5个;计算题35分,3个。
(发挥题10分以内,另计)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解题回顾】把原子核知识与电磁场及力 学知识结合起来,考查学生综合分析也是 每年高考中的热点之一。本例中要注意反 冲核与α粒子的动量关系及电磁性质,体 会外切圆的由来.
返回
核能
一、核能 1.核力:为核子间作用力.其特点为短程强
引力,只在相邻的核子间发生作用,与核子的 电性无关.
2.核能:核子结合为原子核时释放的能量或 原子核分解为核子时吸收的能量,叫做原子核 的结合能,亦称核能. 获得核能的两个基本途径是重核裂变和轻核聚变.
【解析】根据玻尔理论,当处于基态的氢原子受到某单色光 照射时,氢原子应吸收一个光子的能量h,从基态跳迁到某一 定态,如果处于该定态的氢原子向较低定态跃迁只能发出频 率为 1、 2、 3的三种光,则该定态一定为第三能级,再 由三种光的频率的大小和氢原子能级关系,当有h 1<h 2 <h 3 ,而且有(h 1+h 2)=h 3,而h 3为照射光的光 子能量,也为基态与第三能级间的能量差,故本题答案为C.
(2)两个公式:(了解)
能级公式:原子各定态的能量叫做原子的能级,对于氢原子 ,其能级公式为:
En=E1/n2(n=1、2、3……)
轨道公式:rn=n2r1(n=1、2、3……)
n为量子数,只能取正整数,En是半径为rn的轨道的能量值 ,它等于核外电子在该轨道上运转时动能和原子的电势能总和 ,若规定无限远处为零电势点,则E1=-13.6eV.
②质量亏损,并不是质量损失也不是质量转化为能量,质量和能量分别是物质的属性 之一,不能等同.
二、核反应 1.重核的裂变:重核俘获一个中子后分裂
为几个中等质量的核的反应过程叫重核的裂 变.
(2)经典电磁理论认为原子发射的光谱,由于原子能量逐渐衰减,因此 其辐射的电磁波的频率应当是连续的;事实上原子发生产生的光谱是不 连续的.
2.玻尔理论. (1)三个假设:
①定态假设——原子只能处于一系列不连续的能量状态中,在这些状态中 原子是稳定的,电子虽然做加速运动,但不向外辐射能量. ②跃迁假设——原子从一种定态(设能量 为E初)跃迁到另一种定态(设能量为E终)时, 它辐射(或吸收)一定频率的光子,光子的能 量由这两种定态的能量差决定,即h =E初-E终。 ③轨道量子化假设——原子的不同能量状 态跟电子沿不同的圆形轨道绕核运动相对应, 原子的定态是不连续的,因此电子的可能轨道 的分布也是不连续的.
3.质量亏损:组成原子核的核子与原子核 的质量之差叫做质量亏损;需说明的是任何 一个原子核的质量总是小于组成它的所有核 子的质量和.
4.爱因斯坦质能方程:凡具有质量的物体 都具有能量,物体的质量和能量间的关系为: E=mc2;若原子核质量亏损为△m,对应释放 的能量为△E=△mc2.
注意:
①核反应过程中需遵循三个守恒定律:电荷数守恒定律、质量 数守恒定律和动量守恒定律;
返回:
原子核的组成
一、天然放射性 1.贝克勒尔首先发现了某些矿物中能发出某种看不见的
射线,此射线可以穿透黑纸使照相底片感光.物质发射这种射 线的性质叫放射性,具有这种性质的物质称作放射性元素.通 过研究发现,原子序数大于83的所有天然存在的元素都具有 这种性质,这种能自发的放射出射线的现象叫天然放射现象.
0 1
e
是正电子.
4.注意:在人工转变中,用某高速粒子去轰击某原子核后,原 子核发射出粒子和射线并转变成新的原子核的过程中,不可认 为是高速粒子从原子核中打出了粒子.
练习
1.下面哪些事实证明了原子核具有复杂结构( ) A.粒子的散射实验 B.天然放射现象 C.阴极射线的发现 D.伦琴射线的发现
2.α射线的本质是( )
注意:量子数n=1定态,又叫基态,能
量值最小,电子动能最大,电势最小;量子
数越大,能量值越大,电子动能越小,电势
能越大.
例题:
练习
1.原子的核式结构学说是根据以下哪个实验或现象提出来的( )
A.光电效应
B.氢原子光谱实验
C.α粒子散射实验 D.天然放射现象
2.卢瑟福提出的原子的核式结构学说的根据 是在α粒子散射实验中发现粒子( )
4 9B2 e 4H e 1 6C 20 1n
(2)发现中子的核反应方程(1932年,查德威克):
.
中子首先是卢瑟福预言了其存在,而小居里夫妇最先做出这一实验,发现了 中子,但小居里夫妇没有注意到卢瑟福的预言,当初认为它是一种波长极短 的电磁波.
三、原子核的人工转变
1.用人工的方法使原子核发生变化叫做原子核的人工转变,它 是人们研究原子核的结构及其变化规律的有力武器.
A.电子流
B.高速电子流
C.光子流
D.高速氦核流
3.放射性元素的半衰期是( ) A.质量减小一半需要的时间 B.原子量减少一半需要的时间 C.原子核全部衰变所需时间的一半 D.原子核有半数发生衰变需要的时间
【例1】23920Th 经过
.
次 衰变和
次
衰变,转变成208
82
Pb
【解析】对于 衰变和 衰变来说, 衰变不改
α粒子带正电,而向A板偏移,因此A板带负 电,B板带正电.
【例3】静止在匀强磁场中的某放射性元素的核,放出一个 粒子, 其速度方向与磁场方向垂直,测得 粒子和反冲核轨道半径之比 R∶r=30∶1,如图17-2-2所示,
图17-2-2
则( ) A. 粒子与反冲核的动量大小相等,方向相反 B.反冲核的原子序数为62 C.原来放射性元素的原子序数为62 D.反冲核与α粒子的速度之比为1∶62
C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率 的光子
D.电子跃迁时辐射的光子的频率等于电子绕核运 转的频率
【例1】在α粒子散射实验中,有少数α粒子发生 了较大角度偏转, 其原因是(A)
A.原子的全部正电荷和绝大部分质量集中在原子中 心一个很小的 核上
B.正电荷在原子中是均匀分布的
C.原子中存在着带负电的电子
【解题回顾】观察下列宏观物体的波动性, 是因为,波长大小,而微观粒子的德布罗意 波长较大,就较容量观察到其波动性.
【例4】α粒子散射实验中,当α粒子最接近 原子核时,α粒子符合下列的情况是(AD)
A.动能最小 B.势能最小 C.α粒子与金原子核组成的系统的能量最小 D.所受原子核的斥力最大
【解析】该题所考查的是原子的核式结构、 动能、电势能、库仑定律及能量守恒等知识 点.α粒子在接近金原子核的过程中,要克服 库仑斥力做功,动能减少电势能增大,两者 相距最近时,动能最小,电势能最大,总能 量守恒.根据库仑定律,距离最近时,斥力最 大.综上所述,本题答案为AD.
【例3】估算运动员跑步时的德布罗意波的波长, 说明为什么我们观察不到运动员的波动性. 【解析】设运动员的质量为60kg,该运动员跑步 时速度为10m/s,则其德布罗意波的波长:
=h/mv=6.63×10-34/(60×10)=1.1×10-36m;由计 算结果可知,其波长太小,几乎观察不到.所以观 察不到宏观的物体的波动性.
D.原子只处在一系列不连续的能量状态中
【解析】α粒子散射实验的意义,在于它是 原子的核式结构理论建立的基础. 答案为A.
【例2】处于基态的氢原子在某单色光的照射 下,只能发出频率为 1、 2、 3的三种光, 且 1 < 2 < 3,则该照射光的光子能量(C) A.h 1 ; B.h 2 ; C.h 3; D.h( 1 + 2 + 3);
①α衰变:M ZX M N 4 2Y24He,同时放出 射线;
②β衰变: M ZX ZM 1Y1 0e ,同时放出 射线;
4.半衰期:放射性元素的原子核有半数发生衰变所 需的时间. 剩余的原子核数和质量,N0、m0为最 初原核子数和质量.
半衰期由核内部的因素决定的,与原 子的物理状态和化学状态无关,即与外部 条件无关.
二、原子核的组成 1.原子核由质子和中子组成,质子和中
子统称为核子,质子数相同,中子数不同的 元素称为同位素.使核子紧密结合在一起的力 叫核力,核力是很强的短距离作用力;原子 核内只有相邻的核子间才有核力作用.
2.核子的发现.
. (1)发现质子的核反应方程(1919年,卢瑟福):17N 42 4H e18C 71 2H
变质量数,所以应当先以质量数的变化来计算
衰变次数.原子每发生一次 衰变时质量就减少4
个单位,电荷数减少2个单位,而每发生一次 衰
变,则质量数不变,电荷数增加一个单位.
质量数由232减少到208共发生α衰变的次数为:
Na=(232-208)/4=6;
再结合电荷数的变化确定β衰变的次数:
N = (9026)824 4
2.三种射线的比较:
①α射线:本质是氦核流,速度约为光速的十分之一,贯穿本 领弱,电离作用极强;
②β射线:电子流,速度接近光速,贯穿本领强,电离作用弱;
③ 射线:本质量波长极短的电磁波,就是光子,贯穿本领最 强,电离作用最弱;
3.原子核的衰变:原子核自发的放出某种粒子而转变成为新核的 过程叫原子核的衰变.
原子核所带的正电荷数等于核外电子数,所以整个原子是中性的,电 子绕核运动的向心力就是核对它的库仑力.
3.原子和原子核的大小:原子的大小数量级大约是10-10m,原子核 的大小数量级在10-15~10-14m之间.
二、玻尔的量子化模型
1.卢瑟福核式结构与经典电磁理论的矛盾:
(1)经典电磁理论对原子核式结构的解释中认为,原子是不稳定的, 电子绕核旋转,并不断向外辐射电磁波,因此电子的能量不断衰减, 最终电子陨落到原子核上;事实上原子是稳定的.
【解题回顾】解决核反应方程类问题时,一定要抓住核反应中 质量数和电荷数守恒这个规律,本例还要注意β衰变的特点— —质量数不变.
【例2】将天然放射性物质放入顶端开有 小孔的铅盒S里,放射线便从小孔中射出, 沿带电平行金属板A、B之间的中线垂直于 电场方向进入电场,轨道如图17-2-1所 示,则轨迹 是 射线,轨迹 是 射线,轨迹 是 射线. 板带正电, 板带负电.