函数公式及图像
高等数学公式大全及常见函数图像
高等数学公式大全及常见函数图像文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)高等数学公式导数公式: 基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。
(完整版)高等数学公式大全及常见函数图像.doc
高等数学公式导数公式:(tgx)sec 2x(arcsin x)11x 2 ( ctgx)csc 2 x(arccos x)1(secx)secx tgx1 x 2(cscx)cscx ctgx(arctgx )1( a x )a x ln a1 x 2(log a x) 1(arcctgx ) 11x 2x ln a基本积分表:tgxdx ln cosx Cdxsec 2 xdx tgx Cctgxdxln sin xC cos 2 xdx2secxdx ln secx tgx Csin 2 xcsc xdxctgx Ccscxdx ln cscx ctgx Csecx tgxdxsecx Cdx1xcsc x ctgxdx cscx Ca 2 x 2a arctg aCa x dxa x Cdx1 x aln ax 2a 2 2a lnCx ashxdx chx Cdx 1 a xa 2x 22a lnCchxdx shxCa xdx x 2arcsinxCdx ln( x x 2 a 2 ) Ca 2ax 2 a 22 2 n 1 I nsin n xdxcos n xdx I n2 00 nx 2a 2dxx x 2a 2a 2 ln( xx 2a 2) C22x 2a 2 dx x x2a2a 2 ln xx 2 a 2C22a2x 2 dx x a 2x2a 2arcsin xC22 a三角函数的有理式积分:sin x2u , cos x 1 u 2, u tg x, dx2du1 u2 1 u 22 1 u 2一些初等函数:双曲正弦: shx e x e x2双曲余弦: chx e x e x2双曲正切: thx shx e x e chx e x earshx ln( x x 2 )1archx ln( x x2 1) arthx 1 ln 1 x2 1 x两个重要极限:lim sin x 1x 0 xlim (1 1 )x e 2.718281828459045...x xxx三角函数公式:·诱导公式:函数sin cos tg ctg角 A-α-sin α cos α -tg α -ctg α90°-αcos α sin α ctg α tg α90° +αcos α -sin α -ctg α -tg α180 °-αsin α -cos α -tg α -ctg α180 ° +α -sin α -cos α tg αctg α270 °-α-cos α -sin α ctg α tg α270 ° +α -cos α sin α -ctg α -tg α360 °-α-sin α cos α -tg α -ctg α360 ° +α sin α cos α tg αctg α·和差角公式:·和差化积公式:sin( ) sin cos cos sin sin sin 2 sin coscos( ) cos cos sin sin2 2tg ( )tg tg sin sin 2 cos sin1 tg tg2 2cos cos 2 cos cos ctg ctg 1ctg ( ) 2 2 ctg ctg cos cos 2 sin sin2 2·倍角公式:sin 2 2 sin coscos2 2 cos2 1 1 2sin 2 cos2 sin2 sin 3 3sin 4sin3ctg 2 ctg 2 1 cos3 4 cos3 3 cos 2ctg 3tg tg 3tg32tg 1 3tg 2tg 21 tg 2·半角公式:sin 1 cos cos 1 cos2 22 2tg 1 cos 1 cos sin ctg 1 cos 1 cos sin1 cos sin 1 cos 1 cos sin 1 cos2 2·正弦定理: a b c 2R ·余弦定理: c2 a2 b2 2ab cosC sin A sin B sin C·反三角函数性质:arcsin x2 arccos x arctgx2arcctgx高阶导数公式——莱布尼兹(Leibniz )公式:n(uv) ( n) C n k u (n k ) v(k)k 0u ( n) v nu (n 1) v n( n 1) u( n 2 )v n(n 1) ( n k 1) u(n k )v(k ) uv ( n)2! k!中值定理与导数应用:拉格朗日中值定理:f (b) 柯西中值定理:f (b) f (a) f ( )(b a) f (a) f ( )F (a) F ( )当 F( x) x时,柯西中值定理就是拉格朗日中值定理。
十个常用数学函数公式
十个常用数学函数公式一、一次函数的表达式与性质一次函数,也称为线性函数,其表达式为y=ax+b,其中a和b是常数,a不等于0。
其中,a称为斜率,决定了函数的斜率的大小和正负方向;b称为截距,决定了函数与y轴的交点位置。
一次函数的图像是一条直线,具有直线的特性,如对称性和平移性等。
二、二次函数的表达式与性质二次函数,其表达式为y=ax^2+bx+c,其中a、b和c是常数,a 不等于0。
二次函数的图像是一个抛物线,具有开口方向、顶点坐标和对称轴等性质。
通过二次函数的图像,可以判断该函数的最大值或最小值,以及抛物线的开口方向。
三、指数函数的表达式与性质指数函数,其表达式为y=a^x,其中a是常数,且a大于0且不等于1。
指数函数的图像是一个逐渐增长或逐渐减小的曲线,具有指数增长和指数衰减的特性。
指数函数的图像在x轴上有一水平渐近线,且图像通过点(0, 1)。
四、对数函数的表达式与性质对数函数,其表达式为y=loga(x),其中a是常数,且a大于0且不等于1。
对数函数的图像是一条逐渐增长或逐渐减小的曲线,具有对数增长和对数衰减的特性。
对数函数的图像在y轴上有一垂直渐近线,且图像通过点(1, 0)。
五、三角函数的表达式与性质三角函数包括正弦函数、余弦函数和正切函数等。
正弦函数的表达式为y=sin(x),余弦函数的表达式为y=cos(x),正切函数的表达式为y=tan(x)。
三角函数的图像是周期性的曲线,具有周期、幅值和相位等特性。
三角函数的图像在特定区间内可以取得最大值和最小值。
六、双曲函数的表达式与性质双曲函数包括双曲正弦函数、双曲余弦函数和双曲正切函数等。
双曲正弦函数的表达式为y=sinh(x),双曲余弦函数的表达式为y=cosh(x),双曲正切函数的表达式为y=tanh(x)。
双曲函数的图像是一条渐近于直线的曲线,具有对称性和渐进线等特性。
七、多项式函数的表达式与性质多项式函数,其表达式为y=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0,其中a_n、a_{n-1}、...、a_1和a_0是常数,n 是非负整数。
考研高等数学常用公式以及函数图像
考研高等数学常用公式及函数图象导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数 角A sincos tg ctg -α -sinα cosα -tgα -ctgα 90°-α cosα sinαctgαtgα 90°+α cosα -sinα -ctgα -tgα 180°-α si nα-cosα -tgα-ctgα 180°+α -sinα -cosα tgα ctgα 270°-α -cosα -sinα ctgα tgα 270°+α -cosα sinα -ctgα -tgα360°-α -sinα cosα -tgα -ctgα 360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
函数常用公式及知识点总结
函数常用公式及知识点总结一、基本的函数类型及其表达式1. 线性函数线性函数是最简单的一类函数,其表达式可以写成y = kx + b的形式,其中k和b是常数,k代表斜率,b代表截距。
线性函数的图像通常是一条直线,斜率决定了直线的倾斜程度,截距决定了直线和y轴的交点位置。
2. 二次函数二次函数的一般形式是y = ax^2 + bx + c,其中a、b、c分别是二次项系数、一次项系数和常数。
二次函数的图像通常是一条开口向上或向下的抛物线,抛物线的开口方向取决于二次项系数a的正负。
3. 指数函数指数函数的一般形式是y = a^x,其中a是底数。
指数函数的特点是以指数形式增长或衰减,当底数a大于1时,函数图像呈现增长趋势;当底数a介于0和1之间时,函数图像呈现衰减趋势。
4. 对数函数对数函数的一般形式是y = log_a(x),其中a是底数。
对数函数和指数函数是互为反函数的关系,对数函数的图像通常是一条斜率逐渐趋近于零的曲线。
5. 三角函数常见的三角函数包括正弦函数、余弦函数和正切函数,它们分别表示了角的正弦值、余弦值和正切值。
三角函数的图像是周期性的波形,具有很强的周期性和对称性特点。
二、函数的常见性质和变换1. 奇偶性函数的奇偶性是指当x取相反数时,函数值是否相等。
如果函数满足f(-x) = f(x),则称其为偶函数;如果函数满足f(-x) = -f(x),则称其为奇函数。
2. 周期性周期性是指函数在一定范围内具有重复的规律性。
对于三角函数和指数函数等周期函数,周期可以通过函数表达式或图像来确定。
3. 平移、缩放和翻转函数可以通过平移、缩放和翻转等方式进行变换。
平移指的是将函数图像沿着x轴或y轴进行平移,缩放指的是改变函数图像的大小或形状,翻转指的是将函数图像进行对称变换。
4. 复合函数复合函数是指一个函数作为另一个函数的自变量,通过这种方式可以得到新的函数。
复合函数的求导、积分和求极限等运算与单个函数类似,但需要注意变量的替换和链式求导法则。
高等数学公式大全以及初等函数图像
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
十个常用数学函数公式
十个常用数学函数公式数学函数是描述数值之间关系的一种工具,可以帮助我们理解和解决各种数学问题。
在数学中,有许多常用的数学函数公式,下面是十个常见的数学函数公式:1.平方函数公式:f(某)=某^2,其中某是任意实数。
该函数的图像是一个平滑的开口向上的抛物线。
2.立方函数公式:f(某)=某^3,其中某是任意实数。
该函数的图像是一个平滑的开口向上的抛物线。
3.开方函数公式:f(某)=√某,其中某是非负实数。
该函数的图像是一个从原点出发的逐渐上升的曲线。
4. 正弦函数公式:f(某) = sin(某),其中某是弧度。
该函数的图像是一个周期性的波动曲线,取值范围在-1到1之间。
5. 余弦函数公式:f(某) = cos(某),其中某是弧度。
该函数的图像也是一个周期性的波动曲线,取值范围在-1到1之间,但与正弦函数相位差。
6. 正切函数公式:f(某) = tan(某),其中某是弧度。
该函数的图像是一个周期性的波动曲线,取值范围在负无穷到正无穷之间。
7.指数函数公式:f(某)=a^某,其中a是大于0且不等于1的常数,某是任意实数。
该函数的图像是一个逐渐上升或下降的曲线。
8. 对数函数公式:f(某) = log_a(某),其中a是大于0且不等于1的常数,某是大于0的实数。
该函数的图像是一个逐渐上升或下降的曲线,是指数函数的反函数。
9.绝对值函数公式:f(某)=,某,其中某是任意实数。
该函数的图像是以原点为对称轴的V形曲线,取值范围在0到正无穷之间。
10.阶乘函数公式:f(某)=某!,其中某是非负整数。
该函数表示某的阶乘,即从1到某的所有正整数的乘积。
这些常用数学函数公式在各个数学领域中都有广泛的应用,如代数、几何、微积分等。
它们的图像和性质对于建立数学模型、解决实际问题以及深入理解数学概念都起到了重要的作用。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2xy =3x y =21xy =1-=x y定义域 R RR [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时xyOxy =2x y =3x y =1-=x y 21xy =O=y xCy =Oxyy在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
函数坐标公式
函数坐标公式
函数坐标公式是指用数学语言描述函数图像的方程式。
一个函数通常可以用以下形式表示:
y = f(x)
其中,x表示自变量,y表示因变量,f(x)表示x的函数值。
对于一些常见的函数,它们的坐标公式可以表达为:
1. 直线函数:y = kx + b ,其中k为斜率,b为截距。
2. 平方函数:y = ax^2 + bx + c ,其中a、b、c为常数,x为自变量。
3. 正弦函数:y = A*sin(Bx + C) + D ,其中A为振幅,B为周期,C为相位差,D为纵坐标偏移量。
4. 余弦函数:y = A*cos(Bx + C) + D ,其中A为振幅,B为周期,C为相位差,D为纵坐标偏移量。
5. 指数函数:y = a^x ,其中a为底数,x为指数。
这些函数的坐标公式可以帮助我们了解它们的性质和特点,以及在不同情况下如何进行计算和绘制函数图像。
六大基本初等函数图像及性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
高等数学公式大全以及初等函数图像
平均曲率:K . : 从M点到M点,切线斜率的倾角变化量;s:MM 弧长。 s
M点的曲率:K lim d
y .
s0 s ds
(1 y2 )3
直线:K 0;
半径为a的圆:K 1 . a
定积分的近似计算 :
b
矩形法: f
a
(x)
b
n
sin sin 2sin cos
2
2
sin sin 2 cos sin
2
2
cos cos 2 cos cos
2
2
cos cos 2sin sin
2
2
反三角函数:
平面外任意一点到该平面的距离:d Ax0 By0 Cz0 D A2 B2 C 2
空间直线的方程:x x0 m
y y0 n
z z0 p
t,其中s
{m,
n,
p};
x 参数方程: y
x0 y0
mt nt
z z0 pt
二次曲面:
a r c s ixn a r cxcos 2
arctan x arc cot x 2
arcsin x :定义域[1,1],值域[ , ] ; arccos x :定义域[1,1],值域[0, ]; 22
arctan x :定义域 (, ) ,值域 ( , ) ; arc cot x :定义域 (, ) ,值域 (0, ) 22
x y
x y z
全微分的近似计算:z dz f x (x, y)x f y (x, y)y
考研高等数学常用公式以及函数图像
考研高等数学常用公式及函数图象导数公式:基本积分表:三角函数得有理式积分:一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·与差角公式: ·与差化积公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理: ·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leib niz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
高等数学公式大全及常见函数图像
高等数学公式之勘阻及广创作导数公式: 基本积分表:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式: ·倍角公式: ·半角公式: 高阶导数公式——莱布尼兹(Leibniz )公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程五类基本初等函数及图形-----------------------------------(1) 幂函数----------------------------------μx y =,μ是常数;-----------------------------------(2) 指数函数 ----------------------------------x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ;-----------------------------------(3) 对数函数 ----------------------------------x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞;----------------------------------- (4) 三角函数 ----------------------------------1. 当u 为正整数时,函数的定义域为区间),(+∞-∞∈x ,他们的图形都经过原点,并当u>1时在原点处与X 轴相切。
函数常用公式
函数常用公式函数是一种映射关系,将一个或多个自变量的值映射为一个因变量的值。
函数在各个学科领域中都有着重要的应用,例如数学、物理、工程、计算机科学等等,因此函数的相关公式也十分重要。
一、一元函数常用公式:1.函数定义式函数定义式是用来表示函数与自变量之间的关系的式子,一般用f(某)或y表示。
例如:y=sin(某), y=某^2+2某+1。
2.反函数如果函数f(某)在其定义域上是单射的,就可以定义它的反函数f^(-1)(某),即将y=f(某)中的某和y互换后再解出某,得到某=f^(-1)(y)。
例如,对于函数y=2某,其反函数是某=y/2。
3.复合函数复合函数指的是由两个或多个函数复合而成的新函数,可以表示为(fog)(某)=f(g(某))。
例如,对于函数f(某)=某^2和g(某)=2某+1,其复合函数为h(某)=(fog)(某)=f(g(某))=f(2某+1)=(2某+1)^2。
4.函数的图像函数的图像是函数所对应的平面直角坐标系中的曲线,表示函数的自变量和因变量之间的关系。
例如,对于函数y=sin(某),其图像是一条波浪形的线,表示某和sin(某)之间的关系。
5.函数的极限函数的极限是指当自变量某无限接近一个确定的值a时,函数f(某)的值无限接近一个确定的值L。
可以表示为lim(f(某))=L,其中某趋近于a。
例如,对于函数f(某)=1/某,当某趋近于0时,其极限为无穷大。
二、多元函数常用公式:1.多元函数多元函数是指含有两个或以上自变量的函数,例如f(某,y),其中某和y是自变量。
在多元函数中,每个自变量的取值都会对函数的值产生影响。
例如,对于函数f(某,y)=某^2+y^2,如果某=2,y=3,则f(某,y)=13。
2.偏导数偏导数是多元函数中求导的一种形式,表示在固定其他自变量的情况下,由某一自变量引起的函数的变化率。
例如,对于函数f(某,y)=某^2+y^2,求f对某的偏导数得到df/d某=2某,求f对y的偏导数得到df/dy=2y。
高等数学公式大全及常见函数图像
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
函数公式大全范文
函数公式大全范文1. 线性函数:f(x) = ax + b,其中a和b是常数。
2. 幂函数:f(x) = ax^b,其中a和b是常数。
3.指数函数:f(x)=a^x,其中a是常数。
4. 对数函数:f(x) = log_a(x),其中a是常数。
5. 三角函数:包括正弦函数(sin(x))、余弦函数(cos(x))、正切函数(tan(x))等。
6. 反三角函数:包括反正弦函数(arcsin(x))、反余弦函数(arccos(x))、反正切函数(arctan(x))等。
7. 双曲函数:包括双曲正弦函数(sinh(x))、双曲余弦函数(cosh(x))、双曲正切函数(tanh(x))等。
8.绝对值函数:f(x)=,x。
9.阶跃函数:f(x)=1,当x≥0时;f(x)=0,当x<0时。
10.方根函数:f(x)=√x。
11.分段函数:包括分段线性函数、分段常函数等。
12.复合函数:f(g(x)),其中f和g都是函数。
13.弧长函数:用于计算曲线的长度。
14.面积函数:用于计算曲线所围成的面积。
15.高斯函数:f(x)=e^(-x^2)。
16.组合函数:f(g(x)),其中f和g都是函数。
17.反函数:f(x)的反函数为f^(-1)(x)。
18.递归函数:函数的定义中包含自身的调用。
19.积分函数:用于计算曲线下的面积。
20.微分函数:用于计算曲线的斜率。
这只是一小部分函数公式,还有很多其他类型的函数。
函数在数学中起着重要的作用,被广泛应用于物理学、工程学、经济学等各个科学和领域中。
不同的函数具有不同的性质和图像,通过研究和应用这些函数公式,可以解决各种实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学公式
一、常用初等代数公式
1.乘法公式
222222()2;()2a b a ab b a b a ab b +=++-=-+;
2.因式分解
22()()a b a b a b -=+-;
3.分式裂项
111(1)1
x x x x =-++ ; 4.指数运算
(1)1(0)n n a a a
-=≠ ; (2)01(1)a a =≠; (3)0)m n a a =≥; (4)m n m n a a a
+=; (5)m n m n a a a -÷=; 5.对数运算
(1)log a N a N =; (2)log log a a b b μμ=; (3)1log log a a b n
=; (4)log 1a a =; (5)log 10a =;
特别地:10lg log ,ln log e a
a a a == 二、几何公式
1.圆
(1)周长 r C π2=,r 为半径;
(2)面积2r S π=,r 为半径. 2.扇形
面积 α22
1r S =,α为扇形的圆心角,以弧度为单位,r 为半径. 3.平行四边形
面积 bh S =,b 为底长,h 为高.
4.梯形
面积 h b a S )(2
1+=
,b a ,分别为上底与下底的长,h 为高. 5.圆柱体
(1)体积 h r V 2π= r 为底面半径,h 为高;
(2)侧面积 rh L π2= r 为底面半径,h 为高.
6. 勾股定理
三、常用基本三角公式
1.度与弧度
(1)1801π
=o (弧度); (2)1(弧度)πo
180=.
2.平方关系
(1)1cos sin 22=+x x ; (2)x x 22sec tan 1=+; (3)x x 2
2csc cot 1=+.
3. 特殊角函数值
四、常用数列公式
等差数列的前n 项和: 2
)(1321n n n a a n a a a a S +=
++++= ; 等比数列的前n 项和: )1( 1)1(12≠--=++++=-q q
q a aq
aq aq a S n n n 五、其他公式
1、求解不等式 ;x a a x a ≤⇔-≤≤ ,
;x a x a x a ≥⇔≥≤-
2、求解一元二次方程的根 2
0ax bx c ++= (a,b,c 为常数,且a ≠0)
1,2x =
3、二元一次方程组:11112212112222;a x a x b a x a x b +=⎧⎨+=⎩ (112212210a a a a -≠)的解为122212
111221221112211211221221
;.
b a b a x a a a a a b a b x a a a a -⎧=⎪-⎪⎨-⎪=⎪-⎩ 函数图像。