2018年中考数学真题分类汇编(第一期)专题22 等腰三角形试题(含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形

一、选择题

1.(2018•山东枣庄•3分)如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()

A.2个B.3个C.4个D.5个

【分析】根据等腰直角三角形的判定即可得到结论.

【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,

故选:B.

【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.

2 (2018•山东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()

A.B.C.D.

【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.

【解答】解:过点F作FG⊥AB于点G,

∵∠ACB=90°,CD⊥AB,

∴∠CDA=90°,

∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,

∵AF平分∠CAB,

∴∠CAF=∠FAD,

∴∠CFA=∠AED=∠CEF,

∴CE=CF,

∵AF平分∠CAB,∠ACF=∠AGF=90°,

∴FC=FG,

∵∠B=∠B,∠FGB=∠ACB=90°,

∴△BFG∽△BAC,

∴=,

∵AC=3,AB=5,∠ACB=90°,

∴BC=4,

∴=,

∵FC=FG,

∴=,

解得:FC=,

即CE的长为.

故选:A.

【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.

3. (2018•山东淄博•4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C 的距离分别为3,4,5,则△ABC的面积为()

A.B.C.D.

【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.

【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.

【解答】解:∵△ABC为等边三角形,

∴BA=BC,

可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,

∴BE=BP=4,AE=PC=5,∠PBE=60°,

∴△BPE为等边三角形,

∴PE=PB=4,∠BPE=60°,

在△AEP中,AE=5,AP=3,PE=4,

∴AE2=PE2+PA2,

∴△APE为直角三角形,且∠APE=90°,

∴∠APB=90°+60°=150°.

∴∠APF=30°,

∴在直角△APF中,AF=AP=,PF=AP=.

∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.

则△ABC的面积是•AB2=•(25+12)=.

故选:A.

【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.

4. (2018•江苏扬州•3分)如图,点A在线段BD上,在BD的同侧做等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:

①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()

A.①②③B.①C.①② D.②③

【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;

(2)通过等积式倒推可知,证明△PAM∽△EMD即可;

(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.

【解答】解:由已知:AC=AB,AD=AE

∵∠BAC=∠EAD

∴∠BAE=∠CAD

∴△BAE∽△CAD

所以①正确

∵△BAE∽△CAD

∴∠BEA=∠CDA

∵∠PME=∠AMD

∴△PME∽△AMD

∴MP•MD=MA•ME

所以②正确

∵∠BEA=∠CDA

∠PME=∠AMD

∴P、E、D、A四点共圆

∴∠APD=∠EAD=90°

∵∠CAE=180°﹣∠BAC﹣∠EAD=90°

∴△CAP∽△CMA

∴AC2=CP•CM

∵AC=AB

∴2CB2=CP•CM

所以③正确

故选:A.

【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.

5.(2018·湖南省常德·3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()

A.6 B.5 C.4 D.3

【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.

【解答】解:∵ED是BC的垂直平分线,

∴DB=DC,

∴∠C=∠DBC,

∵BD是△ABC的角平分线,

∴∠ABD=∠DBC,

∴∠C=∠DBC=∠ABD=30°,

∴BD=2AD=6,

∴CE=CD×cos∠C=3,

故选:D.

【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.

6. (2018·台湾·分)如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:

(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;

(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即

相关文档
最新文档