27.1 图形的相似练习题及答案

合集下载

图形的相似练习题

图形的相似练习题

图形的相似练习题相似性是几何学中一个非常重要的概念,它描述了当两个图形形状相似时的关系。

在本文中,我们将探讨几个图形的相似练习题,并解答这些问题。

练习题1:已知三角形ABC和三角形DEF,且∠A=∠D,∠B=∠E,以及∠C=∠F。

又已知线段AB与线段DE的比例为2:3,线段BC与线段EF的比例为5:7。

证明这两个三角形相似。

解答1:根据已知条件,我们可以得出以下关系:∠A=∠D,∠B=∠E,∠C=∠FAB/DE = 2/3BC/EF = 5/7我们需要证明这两个三角形相似,根据相似性的定义,我们需要证明三个条件:1. 对应角相等(已知条件)2. 对应边的比例相等3. 三角形的形状相似首先,我们可以根据已知条件得出:AB/DE = BC/EF根据等比例的性质,我们知道这意味着三角形ABC和三角形DEF的对应边的比例相等。

其次,我们可以比较相似三角形的其他两对边:AC/DF = AB/DE * BC/EF根据已知条件和等比例的性质,我们可以将上面的等式进一步简化为:AC/DF = (2/3) * (5/7) = 10/21综上所述,我们证明了这两个三角形满足相似性的条件,因此可以得出结论:三角形ABC与三角形DEF相似。

练习题2:已知矩形ABCD的长为8cm,宽为4cm。

在该矩形上作一个相似于矩形ABCD的矩形EFGH,且其长是矩形ABCD的3倍。

求EFGH的宽和周长。

解答2:已知矩形ABCD的长为8cm,宽为4cm。

矩形EFGH是相似于矩形ABCD的,且其长是矩形ABCD的3倍。

我们需要求出矩形EFGH的宽和周长。

根据相似性的定义,我们知道相似的两个矩形的对应边的比例相等。

因此,我们可以得到以下关系:AB/EF = CD/FH = 1/3已知矩形ABCD的长为8cm,宽为4cm,因此我们可以得到:EF = AB * (1/3) = 8 * (1/3) = 8/3 cm所以,矩形EFGH的宽为8/3 cm。

《图形的相似》专题练习含答案解析

《图形的相似》专题练习含答案解析

图形的相似1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于()A.B.C.D.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.544.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.7.计算:﹣2sin45°+(2﹣π)0﹣.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是: ;(2)请在图中画出测量示意图;(3)设树高AB 的长度为x ,请用所测数据(用小写字母表示)求出x .13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,在B 处测得点C 的仰角为38°,塔基A 的俯角为21°,又测得斜坡上点A 到点B 的坡面距离AB 为15米,求折断前发射塔的高.(精确到0.1米)14.如图,在Rt △ABC 中,∠ACB=90°,AC=5,CB=12,AD 是△ABC 的角平分线,过A 、C 、D 三点的圆O 与斜边AB 交于点E ,连接DE .(1)求证:AC=AE ;(2)求AD 的长.15.如图,矩形ABCD 的长,宽分别为和1,且OB=1,点E (,2),连接AE ,ED .(1)求经过A ,E ,D 三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB 放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q 也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.图形的相似参考答案与试题解析1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于()A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,=MN•AC=AM•MC,又S△AMC∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,故选A.【点评】位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.考查位似图形的概念.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【考点】相似三角形的性质.【专题】压轴题.【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:∠B=∠1或,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)【考点】相似三角形的判定.【专题】压轴题;开放型.【分析】此题属于开放题,答案不唯一.注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【解答】解:此题答案不唯一,如∠C=∠2或∠B=∠1或.【点评】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似.要注意正确找出两三角形的对应边、对应角,根据判定定理解题.5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】几何综合题.【分析】此题的图形比较复杂,需要仔细分析图形.(1)根据平行四边形的性质,可得到角相等.∠BPC=∠BRE,∠BCP=∠E,可得△BCP ∽△BER;(2)根据AB∥CD、AC∥DE,可得出△PCQ∽△PAB,△PCQ∽△RDQ,△PAB∽△RDQ.根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系.【解答】解:(1)∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠BAP=∠PCQ,∵∠APB=∠CPQ,∴△PCQ∽△PAB;∵△PCQ∽△RDQ,△PCQ∽△PAB,∴△PAB∽△RDQ.(2)∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,∵AC∥DE,∴BC:CE=BP:PR,∴BP=PR,∴PC是△BER的中位线,∴BP=PR,又∵PC∥DR,∴△PCQ∽△RDQ.又∵点R是DE中点,∴DR=RE.,∴QR=2PQ.又∵BP=PR=PQ+QR=3PQ,∴BP:PQ:QR=3:1:2【点评】此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.【考点】实数的运算;零指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题.【分析】根据实数的有关运算法则计算.【解答】解:原式==﹣.【点评】本题考查实数的基本运算,难度适中.7.(2012•遂宁)计算:﹣2sin45°+(2﹣π)0﹣.【考点】实数的运算;零指数幂;负整数指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题;压轴题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简是根号下不能含有分母和能开方的数.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.【考点】特殊角的三角函数值;绝对值;零指数幂;二次根式的性质与化简.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣3+1﹣=﹣2.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.注意:任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】计算题;压轴题.【分析】由题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答.【解答】解:在Rt△BCD中,CD=BC×sin60°=20×=10又DE=AB=1.5,∴CE=CD+DE=CD+AB=10+1.5≈18.8答:此时风筝离地面的高度约是18.8米.【点评】本题考查直角三角形知识在解决实际问题中的应用.10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形Rt△BCD、Rt△ACD,应利用其公共边DC构造方程关系式,进而可解即可求出答案.【解答】解:在Rt△BCD中,tan45°==1,∴CD=BC.在Rt△ACD中,tan30°=,∴.∴.∴3CD=CD+10.∴CD=+5≈13.66(米)∴条幅顶端D点距离地面的高度为13.66+1.44=15.1(米).【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:皮尺,标杆;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.【考点】相似三角形的应用.【专题】方案型;开放型.【分析】树比较高不易直接到达,因而可以利用三角形相似解决,利用树在阳光下出现的影子来解决.【解答】解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.【点评】本题运用相似三角形的知识测量高度及考查学生的实践操作能力,应用所学知识解决问题的能力.本题答案有多种,测量方案也有多种,如(1)皮尺、标杆、平面镜;(2)皮尺、三角尺、标杆.13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形,据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:作BD⊥AC于D.在Rt△ADB中,sin∠ABD=.∴AD=AB•sin∠ABD=15×sin21°≈5.38米.(3分)∵cos∠ABD=.∴BD=AB•cos∠ABD=15×cos21°≈14.00米.(5分)在Rt△BDC中,tan∠CBD=.∴CD=BD•tan∠CBD≈14.00×tan38°≈10.94米.(8分)∵cos∠CBD=.∴BC=≈≈17.77米(10分)∴AD+CD+BC≈5.38+10.94+17.77=34.09≈34.1米(11分)答:折断前发射塔的高约为34.1米.(12分)注意:按以下方法进行近似计算视为正确,请相应评分.①若到最后再进行近似计算结果为:AD+CD+BC=34.1;②若解题过程中所有三角函数值均先精确到0.01,则近似计算的结果为:AD+CD+BC≈5.40+10.88+17.66=33.94≈33.9.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【专题】计算题;压轴题.【分析】(1)由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED 全等,根据全等三角形的对应边相等即可得证;(2)由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB﹣AE可求出EB的长,再由(1)∠AED=90°,得到DE与AB垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB﹣CD表示出BD=12﹣x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长.【解答】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的∠BAC的平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);(2)∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==.【点评】此题考查了圆周角定理,勾股定理,以及全等三角形的判定与性质,利用了转化的思想,本题的思路为:根据圆周角定理得出直角,利用勾股定理构造方程来求解,从而得到解决问题的目的.灵活运用圆周角定理及勾股定理是解本题的关键.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.【考点】作图﹣位似变换;二次函数图象与几何变换;待定系数法求二次函数解析式;矩形的性质.【专题】压轴题;网格型.【分析】(1)A,E,D三点坐标已知,可用一般式来求解;(2)延长OA到A′,使OA′=3OA,同理可得到其余各点;(3)根据二次项系数是否相同即可判断两个函数是否由平移得到.【解答】解:(1)设经过A,E,D三点的抛物线的表达式为y=ax2+bx+c∵A(1,),E(,2),D(2,)(1分)∴,解之,得∴过A,E,D三点的抛物线的表达式为y=﹣2x2+6x﹣.(4分)(2)如图.(7分)(3)不能,理由如下:(8分)设经过A′,E′,D′三点的抛物线的表达式为y=a′x2+b′x+c′∵A′(3,),E′(,6),D′(6,)∴,解之,得a=﹣2,,∴a≠a′∴经过A′,E′,D′三点的抛物线不能由(1)中的抛物线平移得到.(8分)【点评】一般用待定系数法来求函数解析式;位似变化的方法应熟练掌握;抛物线平移不改变a的值.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?【考点】作图—应用与设计作图.【专题】压轴题;方案型.【分析】(1)由题意可得,供水站建在点M处,根据垂线段最短、两点之间线段最短,可知铺设到甲村某处和乙村某处的管道长度之和的最小值为MB+MD,求值即可;(2)作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,且证明P点与D点重合,即AM'过D点.求出AM'的值即是铺设到点A和点M处的管道长度之和最小的值;(3)作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM于点H,连接GM,则GM=GM',可证得N,D两点重合,即M'N过D点.求GM+GD=M'D 的值就是最小值.【解答】解:方案一:由题意可得:∵A在M的正西方向,∴AM∥OE,∠BAM=∠BOE=30°,又∵∠BMA=60°∴MB⊥OB,∴点M到甲村的最短距离为MB,(1分)∵点M到乙村的最短距离为MD,∴将供水站建在点M处时,管道沿MD,MB线路铺设的长度之和最小,即最小值为MB+MD=3+(km);(3分)方案二:如图①,作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,PE∥AM,PE=AM,∵AM=2BM=6,∴PE=3,(4分)在Rt△DME中,∵DE=DM•sin60°=×=3,ME=DM=×,∴PE=DE,∴P点与D点重合,即AM'过D点,(6分)在线段CD上任取一点P',连接P'A,P′M,P'M',则P'M=P′M',∵AP'+P'M'>AM',∴把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小,即最小值为AD+DM=AM'=;(7分)方案三:作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM 于点H,连接GM,则GM=GM',∴M'N为点M'到OE的最短距离,即M'N=GM+GN在Rt△M'HM中,∠MM'N=30°,MM'=6,∴MH=3,∴NE=MH=3,∵DE=3,∴N,D两点重合,即M'N过D点,在Rt△M'DM中,DM=,∴M'D=(10分)在线段AB上任取一点G',过G'作G'N'⊥OE于N'点,连接G'M',G'M,显然G'M+G'N'=G'M'+G'N'>M'D,∴把供水站建在甲村的G处,管道沿GM,GD线路铺设的长度之和最小,即最小值为GM+GD=M'D=,(11分)综上,∵3+<,∴供水站建在M处,所需铺设的管道长度最短.(12分)【点评】此题主要考查线路最短问题的作图和求值问题,有一定的难度.17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q 也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是25;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.【考点】相似三角形的判定与性质;三角形中位线定理;矩形的判定与性质.【专题】压轴题.【分析】(1)由中位线定理即可求出DF的长;(2)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为面积相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;(3)①当点P在EF上(2≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;②当点P在FC上(5≤t≤7)时,PB=PF+BF就可以得到;(4)当PG∥AB时四边形PHQG是矩形,由此可以直接写出t.【解答】解:(1)Rt△ABC中,∠C=90°,AB=50,∵D,F是AC,BC的中点,∴DF为△ABC的中位线,∴DF=AB=25故答案为:25.(2)能.如图1,连接DF,过点F作FH⊥AB于点H,∵D,F是AC,BC的中点,∴DE∥BC,EF∥AC,四边形CDEF为矩形,∴QK过DF的中点O时,即过矩形CDEF的中点,QK把矩形CDEF分为面积相等的两部分此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.故t==.(3)①当点P在EF上(2≤t≤5)时,如图2,QB=4t,DE+EP=7t,由△PQE∽△BCA,得.∴t=4;②当点P在FC上(5≤t≤7)时,如图3,已知QB=4t,从而PB===5t,由PF=7t﹣35,BF=20,得5t=7t﹣35+20.解得t=7;(4)如图4,t=1;如图5,t=7.(注:判断PG∥AB可分为以下几种情形:当0<t≤2时,点P下行,点G上行,可知其中存在PG∥AB的时刻,如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;5≤t≤7当时,点P,G均在FC上,也不存在PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7<t<8中存在PG ∥AB的时刻,如图5当8≤t≤10时,点P,G均在CD上,不存在PG∥AB)【点评】本题主要运用了相似三角形性质,对应边的比相等,正确找出题目中的相似三角形是解题的关键.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.【考点】相似三角形的判定;平行四边形的性质.【专题】压轴题;开放型.【分析】根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.【解答】解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)【点评】考查了平行线的性质及相似三角形的判定定理.。

《图形的相似》专题练习含答案

《图形的相似》专题练习含答案

图形的相似1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C.D.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.544.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.7.计算:﹣2sin45°+(2﹣π)0﹣.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q 从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.图形的相似参考答案与试题解析1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C.D.【考点】勾股定理;等腰三角形的性质.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S=MN•AC=AM•MC,△AMC∴MN==.故选:C.【点评】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,故选A.【点评】位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.考查位似图形的概念.3.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【考点】相似三角形的性质.【专题】压轴题.【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1∴△ABC的周长:△DEF的周长=3:1∵△ABC的周长为18∴△DEF的周长为6.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:∠B=∠1或,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)【考点】相似三角形的判定.【专题】压轴题;开放型.【分析】此题属于开放题,答案不唯一.注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【解答】解:此题答案不唯一,如∠C=∠2或∠B=∠1或.【点评】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似.要注意正确找出两三角形的对应边、对应角,根据判定定理解题.5.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】几何综合题.【分析】此题的图形比较复杂,需要仔细分析图形.(1)根据平行四边形的性质,可得到角相等.∠BPC=∠BRE,∠BCP=∠E,可得△BCP∽△BER;(2)根据AB∥CD、AC∥DE,可得出△PCQ∽△PAB,△PCQ∽△RDQ,△PAB∽△RDQ.根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系.【解答】解:(1)∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠BAP=∠PCQ,∵∠APB=∠CPQ,∴△PCQ∽△PAB;∵△PCQ∽△RDQ,△PCQ∽△PAB,∴△PAB∽△RDQ.(2)∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,∵AC∥DE,∴BC:CE=BP:PR,∴BP=PR,∴PC是△BER的中位线,∴BP=PR,又∵PC∥DR,∴△PCQ∽△RDQ.又∵点R是DE中点,∴DR=RE.,∴QR=2PQ.又∵BP=PR=PQ+QR=3PQ,∴BP:PQ:QR=3:1:2【点评】此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.6.计算:|3﹣|+()0+(cos230°)2﹣4sin60°.【考点】实数的运算;零指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题.【分析】根据实数的有关运算法则计算.【解答】解:原式==﹣.【点评】本题考查实数的基本运算,难度适中.7.(2012•遂宁)计算:﹣2sin45°+(2﹣π)0﹣.【考点】实数的运算;零指数幂;负整数指数幂;二次根式的性质与化简;特殊角的三角函数值.【专题】计算题;压轴题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简是根号下不能含有分母和能开方的数.8.计算:|﹣|﹣+(π﹣4)0﹣sin30°.【考点】特殊角的三角函数值;绝对值;零指数幂;二次根式的性质与化简.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣3+1﹣=﹣2.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.注意:任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.9.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】计算题;压轴题.【分析】由题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答.【解答】解:在Rt△BCD中,CD=BC×sin60°=20×=10又DE=AB=1.5,∴CE=CD+DE=CD+AB=10+1.5≈18.8答:此时风筝离地面的高度约是18.8米.【点评】本题考查直角三角形知识在解决实际问题中的应用.10.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D的仰角为30°,再向条幅方向前进10米后,又在点B处测得条幅顶端D的仰角为45°,已知测点A、B和C离地面高度都为1.44米,求条幅顶端D点距离地面的高度.(计算结果精确到0.1米,参考数据:≈1.414,≈1.732.)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形Rt△BCD、Rt△ACD,应利用其公共边DC构造方程关系式,进而可解即可求出答案.【解答】解:在Rt△BCD中,tan45°==1,∴CD=BC.在Rt△ACD中,tan30°=,∴.∴.∴3CD=CD+10.∴CD=+5≈13.66(米)∴条幅顶端D点距离地面的高度为13.66+1.44=15.1(米).【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.12.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:皮尺,标杆;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.【考点】相似三角形的应用.【专题】方案型;开放型.【分析】树比较高不易直接到达,因而可以利用三角形相似解决,利用树在阳光下出现的影子来解决.【解答】解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.【点评】本题运用相似三角形的知识测量高度及考查学生的实践操作能力,应用所学知识解决问题的能力.本题答案有多种,测量方案也有多种,如(1)皮尺、标杆、平面镜;(2)皮尺、三角尺、标杆.13.我国南方部分省区发生了雪灾,造成通讯受阴.如图,现有某处山坡上一座发射塔被冰雪从C处压折,塔尖恰好落在坡面上的点B处,在B处测得点C的仰角为38°,塔基A的俯角为21°,又测得斜坡上点A到点B的坡面距离AB为15米,求折断前发射塔的高.(精确到0.1米)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】应用题.【分析】首先分析图形,据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:作BD⊥AC于D.在Rt△ADB中,sin∠ABD=.∴AD=AB•sin∠ABD=15×sin21°≈5.38米.(3分)∵cos∠ABD=.∴BD=AB•cos∠ABD=15×cos21°≈14.00米.(5分)在Rt△BDC中,tan∠CBD=.∴CD=BD•tan∠CBD≈14.00×tan38°≈10.94米.(8分)∵cos∠CBD=.∴BC=≈≈17.77米(10分)∴AD+CD+BC≈5.38+10.94+17.77=34.09≈34.1米(11分)答:折断前发射塔的高约为34.1米.(12分)注意:按以下方法进行近似计算视为正确,请相应评分.①若到最后再进行近似计算结果为:AD+CD+BC=34.1;②若解题过程中所有三角函数值均先精确到0.01,则近似计算的结果为:AD+CD+BC≈5.40+10.88+17.66=33.94≈33.9.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.14.如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.【考点】圆周角定理;全等三角形的判定与性质;勾股定理.【专题】计算题;压轴题.【分析】(1)由圆O的圆周角∠ACB=90°,根据90°的圆周角所对的弦为圆的直径得到AD为圆O的直径,再根据直径所对的圆周角为直角可得三角形ADE为直角三角形,又AD是△ABC的角平分线,可得一对角相等,而这对角都为圆O的圆周角,根据同圆或等圆中,相等的圆周角所对的弦相等可得CD=ED,利用HL可证明直角三角形ACD与AED 全等,根据全等三角形的对应边相等即可得证;(2)由三角形ABC为直角三角形,根据AC及CB的长,利用勾股定理求出AB的长,由第一问的结论AE=AC,用AB﹣AE可求出EB的长,再由(1)∠AED=90°,得到DE与AB 垂直,可得三角形BDE为直角三角形,设DE=CD=x,用CB﹣CD表示出BD=12﹣x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为CD的长,在直角三角形ACD中,由AC及CD的长,利用勾股定理即可求出AD的长.【解答】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的∠BAC的平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);(2)∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==.【点评】此题考查了圆周角定理,勾股定理,以及全等三角形的判定与性质,利用了转化的思想,本题的思路为:根据圆周角定理得出直角,利用勾股定理构造方程来求解,从而得到解决问题的目的.灵活运用圆周角定理及勾股定理是解本题的关键.15.如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.【考点】作图﹣位似变换;二次函数图象与几何变换;待定系数法求二次函数解析式;矩形的性质.【专题】压轴题;网格型.【分析】(1)A,E,D三点坐标已知,可用一般式来求解;(2)延长OA到A′,使OA′=3OA,同理可得到其余各点;(3)根据二次项系数是否相同即可判断两个函数是否由平移得到.【解答】解:(1)设经过A,E,D三点的抛物线的表达式为y=ax2+bx+c∵A(1,),E(,2),D(2,)(1分)∴,解之,得∴过A,E,D三点的抛物线的表达式为y=﹣2x2+6x﹣.(4分)(2)如图.(7分)(3)不能,理由如下:(8分)设经过A′,E′,D′三点的抛物线的表达式为y=a′x2+b′x+c′∵A′(3,),E′(,6),D′(6,)∴,解之,得a=﹣2,,∴a≠a′∴经过A′,E′,D′三点的抛物线不能由(1)中的抛物线平移得到.(8分)【点评】一般用待定系数法来求函数解析式;位似变化的方法应熟练掌握;抛物线平移不改变a的值.16.某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?【考点】作图—应用与设计作图.【专题】压轴题;方案型.【分析】(1)由题意可得,供水站建在点M处,根据垂线段最短、两点之间线段最短,可知铺设到甲村某处和乙村某处的管道长度之和的最小值为MB+MD,求值即可;(2)作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,且证明P点与D点重合,即AM'过D点.求出AM'的值即是铺设到点A和点M处的管道长度之和最小的值;(3)作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM于点H,连接GM,则GM=GM',可证得N,D两点重合,即M'N过D点.求GM+GD=M'D的值就是最小值.【解答】解:方案一:由题意可得:∵A在M的正西方向,∴AM∥OE,∠BAM=∠BOE=30°,又∵∠BMA=60°∴MB⊥OB,∴点M到甲村的最短距离为MB,(1分)∵点M到乙村的最短距离为MD,∴将供水站建在点M处时,管道沿MD,MB线路铺设的长度之和最小,即最小值为MB+MD=3+(km);(3分)方案二:如图①,作点M关于射线OE的对称点M',则MM'=2ME,连接AM'交OE于点P,PE∥AM,PE=AM,∵AM=2BM=6,∴PE=3,(4分)在Rt△DME中,∵DE=DM•sin60°=×=3,ME=DM=×,∴PE=DE,∴P点与D点重合,即AM'过D点,(6分)在线段CD上任取一点P',连接P'A,P′M,P'M',则P'M=P′M',∵AP'+P'M'>AM',∴把供水站建在乙村的D点处,管道沿DA,DM线路铺设的长度之和最小,即最小值为AD+DM=AM'=;(7分)方案三:作点M关于射线OF的对称点M',作M'N⊥OE于N点,交OF于点G,交AM于点H,连接GM,则GM=GM',∴M'N为点M'到OE的最短距离,即M'N=GM+GN在Rt△M'HM中,∠MM'N=30°,MM'=6,∴MH=3,∴NE=MH=3,∵DE=3,∴N,D两点重合,即M'N过D点,在Rt△M'DM中,DM=,∴M'D=(10分)在线段AB上任取一点G',过G'作G'N'⊥OE于N'点,连接G'M',G'M,显然G'M+G'N'=G'M'+G'N'>M'D,∴把供水站建在甲村的G处,管道沿GM,GD线路铺设的长度之和最小,即最小值为GM+GD=M'D=,(11分)综上,∵3+<,∴供水站建在M处,所需铺设的管道长度最短.(12分)【点评】此题主要考查线路最短问题的作图和求值问题,有一定的难度.17.如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q 从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是25 ;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.【考点】相似三角形的判定与性质;三角形中位线定理;矩形的判定与性质.【专题】压轴题.【分析】(1)由中位线定理即可求出DF的长;(2)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为面积相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;(3)①当点P在EF上(2≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;②当点P在FC上(5≤t≤7)时,PB=PF+BF就可以得到;(4)当PG∥AB时四边形PHQG是矩形,由此可以直接写出t.【解答】解:(1)Rt△ABC中,∠C=90°,AB=50,∵D,F是AC,BC的中点,∴DF为△ABC的中位线,∴DF=AB=25故答案为:25.(2)能.如图1,连接DF,过点F作FH⊥AB于点H,∵D,F是AC,BC的中点,∴DE∥BC,EF∥AC,四边形CDEF为矩形,∴QK过DF的中点O时,即过矩形CDEF的中点,QK把矩形CDEF分为面积相等的两部分此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.故t==.(3)①当点P在EF上(2≤t≤5)时,如图2,QB=4t,DE+EP=7t,由△PQE∽△BCA,得.∴t=4;②当点P在FC上(5≤t≤7)时,如图3,已知QB=4t,从而PB===5t,由PF=7t﹣35,BF=20,得5t=7t﹣35+20.解得t=7;(4)如图4,t=1;如图5,t=7.(注:判断PG∥AB可分为以下几种情形:当0<t≤2时,点P下行,点G上行,可知其中存在PG∥AB的时刻,如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;5≤t≤7当时,点P,G均在FC上,也不存在PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7<t<8中存在PG∥AB的时刻,如图5当8≤t≤10时,点P,G均在CD上,不存在PG∥AB)【点评】本题主要运用了相似三角形性质,对应边的比相等,正确找出题目中的相似三角形是解题的关键.18.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.【考点】相似三角形的判定;平行四边形的性质.【专题】压轴题;开放型.【分析】根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.【解答】解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)【点评】考查了平行线的性质及相似三角形的判定定理.。

图形的相似单元测试(含答案)

图形的相似单元测试(含答案)

图形的相似单元测试一、选择题1、【基础题】在比例尺为1:5000的地图上,量得甲,乙两地的距离为25 cm ,则甲、乙两地的实际距离是 ( ) A. 1250千米 B. 125千米 C. 12.5千米 D. 1.25千米2、【基础题】已知135=ab ,则ba b a +-的值是( ) ★ A. 32 B. 23 C. 49 D. 943、【基础题】如右图,在△ABC 中,看DE ∥BC ,12AD BD =,DE =4 cm ,则BC 的长为 ( ) A .8 cm B .12 cm C .11 cm D .10 cm4、【基础题】如右图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( ) A .1:1B .1:2C .1:3D .1:45、【基础题】如下图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( ) ★★★6、【基础题】下列结论不正确的是( ) ★ A. 所有的矩形都相似 B. 所有的正方形都相似 C. 所有的等腰直角三角形都相似 D. 所有的正八边形都相似7、【基础题】下列说法中正确的是( ) ★A. 位似图形可以通过平移而相互得到;B. 位似图形的对应边平行且相等C. 位似图形的位似中心不只有一个D. 位似中心到对应点的距离之比都相等8、【综合题Ⅰ】如右上图,ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出△ABP 与△ECP 相似的是( ) ★★★A. ∠APB =∠EPC ;B. ∠APE =90°C. P 是BC 的中点D. BP ︰BC =2︰3 9、【综合题Ⅱ】如右上图,Rt △ABC 中,AB ⊥AC ,AB =3, AC =4,P 是BC 边上一点,作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP =x ,则PD+PE =( ) A.35x + B. 45x -C.72D.21212525x x -10、【综合题Ⅲ】如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )AB CA. b a c =+B. b ac =C. 222b a c =+D. 22b a c == 二、填空题11、【基础题】在同一时刻,高为1.5m 的标杆的影长为2.5m ,一古塔在地面上影长为50m ,那么古塔的高为 .12、【基础题】两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm ,则另一个三角形的周长是 . 13、【综合题Ⅰ】如左下图,在△ABC 中,AB =5,D 、E 分别是边AC 和AB 上的点,且∠ADE =∠B ,DE =2,那么AD·BC = .14、【基础题】如右上图,在△ABC 和△DEF 中,G 、H 分别是边BC 和EF 的中点,已知AB =2DE ,AC =2DF ,∠BAC =∠EDF . 那么AG :DH = ,△ABC 与△DEF 的面积比是 .15、【基础题】把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,边长应缩小到原来的____倍. 16、【综合Ⅱ】如左下图在Rt △ABC 中, ∠ACB =90°,CD ⊥AB 于D ,若AD =1,BD =4,则CD = .17、【基础题】如右上图,一人拿着一支厘米小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上12厘米的长度恰好遮住电线杆,已知手臂长约60厘米,则电线杆的高为 .18、【基础题】已知一本书的宽与长之比为黄金比,且这本书的长是20 cm ,则它的宽为_____cm.(结果保留根号) 19、【综合Ⅲ】顶角为36°的等腰三角形称为黄金三角形,如图,在△ABC 中,AB =AC =1,∠A =36°,BD 是三角形ABC 的角平分线,那么AD =__ 20、【提高题】如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △、323A B B △的面积分别为1、4,则图中三个阴影三角形面积之和为 .(第20题图)OA 1 A 2A 3A 4 AB B 1 B 2 B 3 14三、解答题21、【基础题】(2008无锡)如图,已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD .22、【综合Ⅰ】如图27-106所示,已知E 为ABCD 的边CD 延长线上的一点,连接BE 交AC 于O ,交AD 于F .求证BO 2=OF ·OE .23、如图,在平面直角坐标系中,已知OA=12 cm ,OB=6 cm ,点P 从O 点开始沿OA 边向点A 以1cm/s 的速度移动,点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动,如果P 、Q 同时出发,用t (单位:秒) 表示移动的时间(06t ≤≤),那么: (1)当t 为何值时, △POQ 与△AOB 相似?(2)设△POQ 的面积为y ,求y 关于t 的函数解析式。

人教版九年级下《27.1图形的相似》课时练习含答案解析

人教版九年级下《27.1图形的相似》课时练习含答案解析

人教版数学九年级下册27.1图形的相似课时练习一、单选题(共15题)1.已知2x =5y (y≠0),则下列比例式成立的是( ) A.25x y = B.52x y= C.25x y = D.52x y =答案:B知识点:比例的性质 解析:解答:∵2x=5y ,知识点: 比例的性质 解析:解答: 由3a =2b ,得出23a b =于是可设a =2k ,则b =3k ,代入a b a-=232k kk -=12- 故选:A .分析: 本题考查了比例的基本性质,是基础题3. 不为0的四个实数a 、b ,c 、d 满足ab=cd ,改写成比例式错误的是( )A . a dc b = B . c b ad =C .d b a c =D .a c b d=答案:D知识点: 比例的性质. 解析:解答: A 、a dc b=ab cd ⇒=故A 正确B、c ba d=ab cd⇒=故B正确C、d ba c=ab cd⇒=故C正确D、a cb d=ad bc⇒=故D错误故选:D.分析: 本题考查了比例的性质,利用了比例的性质:分子分母交叉相乘,乘积相等.4. 如果a=3,b=2,且b是a和c的比例中项,那么c=()A.23±B.23C.43D.43±答案:C知识点: 比例线段解析:解答: 根据题意,可知a:b=b:c,b2=ac,当a=3,b=2时22=3c,3c=4,c=4 3故选:C.分析: 比例中项,也叫“等比中项”,即如果a、b、c三个量成连比例,即a:b=b:c,则b叫做a和c的比例中项.据此代数计算得解.5. 比例尺为1:1000的图纸上某区域面积400cm2,则实际面积为()A.4×105m2 B.4×104m2 C.1.6×105m2D.2×104 m2答案:B知识点:比例线段解析:解答: 设实际面积为x cm2,则400:x=(1:1000)2,解得x=4×108.4×108cm2=4×104m2.故选B.分析: 根据面积比是比例尺的平方比,列比例式求得该区域的实际面积.6、如图,画线段AB的垂直平分线交AB于点O,在这条垂直平分线上截取OC=OA,以A为圆心,AC为半径画弧于AB与点P,则线段AP与AB的比是()A.2B.C.D2答案:D知识点:比例线段.解析:解答: 连接AC,设AO=x,则BO=x,CO=x,故x,x∴线段AP与AB:22故选:D.分析: 利用已知表示出AC的长,即可得出AP以及AB的长,即可得出答案.7. 下列各组中得四条线段成比例的是()A.4cm、2cm、1cm、3cm B.1cm、2cm、3cm、5cmC.3cm、4cm、5cm、6cm D.1cm、2cm、2cm、4cm答案:D知识点:比例线段.解析:解答:A、从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;B、从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;C、从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;D、从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选D.分析: 四条线段成比例,根据线段的长短关系,从小到大排列,判断中间两项的积是否等于两边两项的积,相等即成比例.8. 已知C 是线段AB 的黄金分割点(AC >BC ),则AC :AB=( )A .1):2B .1):2C .(3:2-D .(3:2+ 答案:A知识点: 黄金分割.解析:解答: 根据黄金分割的定义,知AC :AB=1):2故选A .分析: 此题主要考查了黄金分割比的概念.9. 若P 是线段AB 的黄金分割点(PA >PB ),设AB=1,则PA 的长约为( ) A .0.191 B .0.382 C .0.5 D .0.618 答案:D知识点: 黄金分割.解析:解答: 由于P 为线段AB=1的黄金分割点, 且PA >PB ,则PA=0.618×1=0.618. 故选D .分析: 根据黄金分割点的定义,知PA 是较长线段;则PA=0.618AB ,代入数据即可. 10. 主持人站在舞台的黄金分割点处最自然得体,如果舞台AB 长为20米,一个主持人现站在舞台AB 的黄金分割点点C 处,则下列结论一定正确的是( ) ∴AB :AC=AC :BC ; ∴AC≈6.18米;∴AC =1)米;∴BC =米或米. A .∴∴∴∴ B .∴∴∴ C .∴∴ D .∴ 答案:D知识点: 黄金分割.解析:解答: AB 的黄金分割点为点C 处,若AC >BC ,则AB :AC=AC :BC ,所以∴不一定正确;AC≈0.618AB≈12.36或AC≈20-12.36=7.64,所以②错误;若AC 为较长线段时,AC=12AB=10),BC=10(BC 为较长线段时,BC=12AB=10-1),AC=10(),所以③不一定正确,④正确. 故选D .分析:根据黄金分割的定义和AC 为较长线段或较短线段进行判断.11. 等腰∴ABC 中,AB=AC ,∴A=36°,D 是AC 上的一点,AD=BD ,则以下结论中正确的有( )∴∴BCD 是等腰三角形;∴点D 是线段AC 的黄金分割点;∴∴BCD∴∴ABC ;∴BD 平分∴ABC .A .1个B .2个C .3个D .4个 答案:D知识点: 黄金分割;等腰三角形的性质;相似三角形的判定与性质. 解析:解答: ∴AB=AC , ∴∴ABC=∴C=12(180°-∴A )=12(180°-36°)=72°, ∴AD=BD , ∴∴DBA=∴A=36°, ∴∴BDC=2∴A=72°, ∴∴BDC=∴C ,∴∴BCD 为等腰三角形,所以∴正确; ∴∴DBC=∴ABC-∴ABD=36°, ∴∴ABD=∴DBC ,∴BD 平分∴ABC ,所以∴正确; ∴∴DBC=∴A ,∴BCD=∴ACB , ∴∴BCD∴∴ABC ,所以∴正确; ∴BD :AC=CD :BD , 而AD=BD ,∴AD:AC=CD:AD,∴点D是线段AC的黄金分割点,所以∴正确.分析: 先根据等腰三角形的性质和三角形内角和定理计算出∴ABC=∴C=1 2(180°-∴A)=72°,再计算出∴BDC=72°,∴DBC=36°,则可对∴∴∴进行判断;利用∴BCD∴∴ABC得BD:AC=CD:BD,而AD=BD,则AD:AC=CD:AD,于是根据黄金分割的定义可对∴进行判断.12. 用一个2倍放大镜照一个△ABC,下面说法中错误的是()A.△ABC放大后,是原来的2倍B.△ABC放大后,各边长是原来的2倍C.△ABC放大后,周长是原来的2倍D.△ABC放大后,面积是原来的4倍答案:A知识点:相似图形解析:解答: ∴放大前后的三角形相似,∴放大后三角形的内角度数不变,面积为原来的4倍,周长和边长均为原来的2倍.故本题选A.分析: 用2倍的放大镜放大一个△ABC,得到一个与原三角形相似的三角形;根据相似三角形的性质:相似三角形的面积比等于相似比的平方,周长比等于相似比.可知:放大后三角形的面积是原来的4倍,边长和周长是原来的2倍,而内角的度数不会改变13. 对一个图形进行放缩时,下列说法中正确的是()A.图形中线段的长度与角的大小都保持不变B.图形中线段的长度与角的大小都会改变C.图形中线段的长度保持不变、角的大小可以改变D.图形中线段的长度可以改变、角的大小保持不变答案:D知识点:相似图形解析:解答:根据相似多边形的性质:相似多边形的对应边成比例,对应角相等,∴对一个图形进行收缩时,图形中线段的长度改变,角的大小不变,故选D.分析: 根据相似图形的性质得出相似图形的对应边成比例,对应角相等,即可得出答案.(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1 个B.2个C.3个D.4个答案: C解析:解答:(1)所有菱形的对应角不一定相等,故菱形不一定都相似;(2)等腰直角三角形都相似,正确;(3)正方形都相似,正确;(4)矩形对应边比值不一定相等,不矩形不一定都相似;(5)正六边形都相似,正确,故符合题意的有3个.故选:C.分析: 利用相似图形的性质分别判断得出即可.15. 下列说法不一定正确的是()A.所有的等边三角形都相似B.所有的等腰直角三角形都相似C.所有的菱形都相似D.所有的正方形都相似答案:C知识点:相似图形解析:解答:A、所有的等边三角形都相似,正确;B、所有的等腰直角三角形都相似,正确;C、所有的菱形不一定都相似,故错误;D、所有的正方形都相似,正确.故选C.分析: 利用“对应角相等,对应边的比也相等的多边形相似”进行判定即可.二、填空题(共5题)1. 给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有( )(填序号).答案: ①②④⑤知识点:相似图形解析:解答: 下列几何图形:∴两个圆;∴两个正方形;∴两个矩形;∴两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有①②④⑤.故答案为:①②④⑤.2. 在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是()答案: 1:3知识点:相似图形.解析:解答: 由题意可知,相似多边形的边长之比=相似比=2:6=1:3,故答案为:1:3分析:本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比.3. 若用一个2倍放大镜去看△ABC,则∠A的大小();面积大小为()答案:不变,4倍知识点:相似图形.解析:解答: ∵放大后的三角形与原三角形相似∴∠A的度数不变∵放大前后,两相似三角形的相似比为1:2∴它们的面积比为1:4即放大后面积为原来的4倍.分析: 本题考查相似三角形的性质:相似三角形的对应角相等,面积比等于相似比的平方.4、如果图形甲与图形乙相似,图形乙与图形丙相似,那么图形甲与图形丙()答案:相似知识点:相似图形.解析:解答:∵图形甲与图形乙相似,图形乙与图形丙相似,∴图形甲与图形丙相似.故答案为:相似分析:本题考查了相似图形,熟记相似图形具有传递性是解题的关键.5. 已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=()答案:2知识点:比例线段解析:解答:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.分析:根据比例中项的定义可得b2=ac,从而易求b.三、解答题(共5题)1. 如图,在△ABC中,若DE∥BC,12ADDB=,DE=4cm,求BC的长答案:12cm知识点:平行线分线段成比例解析:解答: 解:∵DE∥BC,∴DE ADBC AB=,又∵12ADDB=∴13ADAB=,∴413BC=∴BC=12cm.故答案为:12cm.分析:本题考查了平行线分线段成比例定理,找出图中的比例关系是解题的关键.2. 如图,已知AB∴CD∴EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD=6,DF=3,BC=5,求BE的长答案:7.5知识点:平行线分线段成比例.解析:解答:∵AB∥CD∥EF,答案:m=2n+1知识点:平行线分线段成比例;旋转的性质.分析:本题考查了平行线分线段成比例定理的应用,解此题的关键是能根据定理得出比例式,注意:一组平行线截两条直线,所截得的线段对应成比例.也考查了旋转的性质和等腰三角形的性质.4.有一块三角形的草地,它的一条边长为25m.在图纸上,这条边的长为5cm,其他两条边的长都为4cm,求其他两边的实际长度答案:都是20m.知识点:比例线段即其他两边的实际长度都是20m.分析: 设其他两边的实际长度分别为x m、y m,然后根据相似三角形对应边成比例列式求解即可.5.如图,直线y=3x+3与x轴交于点A,与y轴交于点B.过B点作直线BP与x轴正半轴交于点P,取线段OA、OB、OP,当其中一条线段的长是其他两条线段长度的比例中项时,求P点的坐标。

中考数学《图形的相似》专项练习题及答案

中考数学《图形的相似》专项练习题及答案

中考数学《图形的相似》专项练习题及答案一、单选题1.一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是()A.5cm B.6cm C.(6-√3)cm D.(3+√3)cm2.如图,DE△BC,EF△AB,现得到下列结论:AEEC=BFFC,ADBF=ABBC,EFAB=DEBC,CECF=EABF其中正确的比例式的个数有()A.4个B.3个C.2个D.1个3.如图,△ABC与△ADE成位似图形,位似中心为点A,若AD:AB=1:3,则△ADE与△ABC面积之比为()A.1:2B.1:3C.1:9D.1:164.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的位似比为1:2,△ABC面积为2,则△EDC的面积是()A.2B.8C.16D.326.如图,△ADE△△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()A.1:2B.1:3C.2:3D.3:27.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A.1︰2B.1︰3C.1︰4D.2︰38.如图,按如下方法,将△ABC的三边缩小到原来的12,任取一点O,连AO、BO、CO,并取它们的中点D、E、F得△DEF,则下列说法正确的是()①△ABC与△DEF是相似图形;②△ABC与△DEF的周长比为2:1;③△ABC与△DEF的面积比为4:1.A.①、②B.②、③C.①、③D.①、②、③9.如图,已知AB是半圆O的直径,弦AD,CB相交于点P,若∠DPB=45°,则S△CDP:S△ABP 的值()A.25B.23C.13D.1210.如图,AD△BE△CF,直线l1、l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.811.一个三角形的三边长分别为3,4,5,另一个与它相似的三角形中有一条边长为6.则这个三角形的周长不可能是()A.725B.18C.48D.2412.如图,小正方形的边长为均为1,下列各图(图中小正方形的边长均为1)阴影部分所示的三角形中,与△ABC相似的三角形是()A.B.C.D.二、填空题13.勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中BF=4,DF=2,则AE=.14.如图,矩形ABCD中,AB=3,BC=4,E是BC上一点,BE=1,AE与BD交于点F.则DF的长为.15.如图,点D在△ABC的边BC的延长线上,AD为△ABC的外角的平分线,AB=2BC,AC=3,CD=4,则AB的长为.16.如图,在△ABC中,△BAC=90°,AD△BC于D,BD=3,CD=12,则AD的长为17.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.18.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三、综合题19.如图,已知△BAC=90°,AD△BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:(1)△DFB△△AFD;(2)AB:AC=DF:AF.20.一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=2,AB=4,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请直接写出这个定值.21.如图,已知点D在△ABC的外部,AD△BC,点E在边AB上,AB•AD=BC•AE.(1)求证:△BAC=△AED;(2)在边AC取一点F,如果△AFE=△D,求证:ADBC=AFAC.22.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF。

九年级数学下册27、1图形的相似第2课时相似多边形习题新版新人教版 (1)

九年级数学下册27、1图形的相似第2课时相似多边形习题新版新人教版 (1)

7.【教材P27练习T3变式】一个多边形的边长依次为2,3, 4,5,6,另一个和它相似的多边形的最长边长为24,则 另一个多边形的最短边长为( B ) A.6 B.8 C.10 D.12
8.【教材P57复习题T4改编】【中考·重庆】制作一块3 m×2 m的长方形广告牌的成本是120元,在每平方米制
∴AEDF=FADB,即1x=x-1 1,解得 x1=1+2 5,x2=1-2 5(舍去).
经检验,x=1+2 5是原方程的解且符合题意.
∴AD=1+2
5 .
11.【教材P28习题T6变式】如图,矩形ABCD的长AB=30, 宽BC=20.
(1)如图①,若在矩形ABCD的内部沿四周有宽为1的环形区 域,则矩形A′B′C′D′与矩形ABCD相似吗?请说明理由.
5.相似多边形的对应角__相__等______,对应边__成__比__例____, 对应边的比叫做___相__似__比___.
6.如图,正五边形FGHMN和正五边形ABCDE相似.若 AB∶FG=2∶3,则下列结论中正确的是( B ) A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F
(1)每块矩形地砖的长与宽分别为多少? 解:设每块矩形地砖的长为a cm,宽为b cm, 由题图可知4b=60,即b=15. ∵a+b=60,∴a=60-b=45. ∴每块矩形地砖的长为45 cm,宽为15 cm.
(2)这样的地砖与所铺成的每一部分矩形是否相似?试说 明理由.
解:不相似.理由如下: ∵所铺成的每一部分矩形的长为2×45=90(cm),宽为60 cm, ∴长宽=9600=32. 而地地砖砖的的长宽=4155=31,32≠31, 即所铺成的每一部分矩形的长与宽和地砖的长与宽不成比例, ∴它们不相似.

图形相似单元测试题及答案

图形相似单元测试题及答案

图形相似单元测试题及答案# 图形相似单元测试题及答案一、选择题1. 两个图形相似的条件是什么?A. 面积相等B. 周长相等C. 对应角相等,对应边成比例D. 形状相同答案:C2. 如果两个三角形的对应边长比为2:3,那么它们的面积比是多少?A. 2:3B. 4:9C. 3:2D. 9:4答案:B3. 在相似图形中,对应角的大小关系是什么?A. 相等B. 互为补角C. 互为余角D. 不确定答案:A二、填空题4. 如果一个图形放大到原来的两倍,则其面积变为原来的________倍。

答案:45. 相似三角形的判定定理包括SSS(边边边)、SAS(边角边)、_______。

答案:AAA(角角角)三、简答题6. 请解释什么是相似比,并给出一个例子。

答案:相似比是指两个相似图形对应边长的比值。

例如,如果三角形ABC与三角形DEF相似,且AB:DE=2:3,那么2:3就是它们的相似比。

7. 描述如何判断两个多边形是否相似。

答案:要判断两个多边形是否相似,需要满足以下条件:对应角相等,且对应边成比例。

如果一个多边形的每个角和每条边都与另一个多边形的相应角和边成相同的比例,那么这两个多边形就是相似的。

四、计算题8. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,BC=8cm,求EF的长度。

答案:由于三角形ABC与三角形DEF相似,根据相似比,我们有AB:DE = BC:EF。

将已知数值代入,得到6:9 = 8:EF。

解这个比例,我们得到EF = (8 * 9) / 6 = 12cm。

结束语本单元测试题涵盖了图形相似的基本概念、判定方法和实际应用。

通过这些题目的练习,可以帮助学生加深对图形相似概念的理解和应用能力。

希望同学们能够认真完成这些题目,并在解答过程中发现问题、解决问题,从而提高自己的数学素养。

中考数学《图形的相似》真题汇编含解析

中考数学《图形的相似》真题汇编含解析

图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。

《图形的相似》典型例题、习题精选

《图形的相似》典型例题、习题精选

《图形的相似》典型例题、习题精选典型例题1.给出下列大小不同的4对几何图形:?两个圆;?两个长方形;?两个菱形;?两个正六边形;请指出其中哪几对是相似图形,哪几对不是相似图形,并简单说明理由(分析:两个菱形对应边成比例,但对应角不一定相等,两个长方形对应角相等,但对应边不一定成比例(解:??是相似图形,??不是相似图形点拨:相似图形应同时满足:(1)对应角相等;(2)对应边的比相等,缺一不可(2.如图,梯形ABCD中,AD//BC,EF//BC,EF将梯形ABCD分成两个相似的梯形,为梯形AEFD和梯形EBCF,若AD = 3,BC = 4,则EF的长是多少,分析:因为梯形AEFD与梯形EBCF相似,所以它们的对应边的比相等,即=,所以2EF = AD•BC;因为AD = 3,BC = 4,所以EF = 2解:EF = 2点拨:灵活运用相似多边形对应边的比相等的性质(3.如图所示,判断哪些是形状相同的图形(分析:判断两个图形的形状是否相同,应仔细观察,当两个图形的形状除了大小没有任何差异时,我们才说这两个图形形状相同(和(5),(2)和(6),(3)和(4)是形状相同的图形( 解:(1)点拨:两个边数不一样的图形,绝对不会是形状相同的图形(4.已知四边形ABCD相似于四边形A’B’C’D’,如图,求出?A与x的值(分析:因为这两个四边形相似,所以可知对应角相等,对应边成比例,从而可得?A与x的值(解:?四边形ABCD与四边形A’B’C’D’相似A =?A’,=又??A’= 107º,AB = 5,AD = 4,A’B’= 2A = 107º,=,?x =(点拨:一定要注意相似图形中的对应关系(习题精选选择题:1(RtΔABC的两条直角边分别为3cm、4cm,与它相似的RtΔA’B’C’(相似比为整数)的周长为( )A( 48cm B( 28cm C( 12cm D( 10cm答案:A说明:不难得出RtΔABC的斜边长为5cm,因为RtΔA’B’C’与RtΔABC相似,所以对应边应成比例,因此,可设RtΔA’B’C’的两直角边分别为3k、4k,斜边为5k,则它的周长为3k+4k+5k = 12k,且k为整数,因此,不难从四个选项中看出符合条件的选项应该是A,答案为A(2(下列说法中正确的是( )A(两个平行四边形一定相似B(两个菱形一定相似C(两个等腰直角三角形一定相似D(两个矩形一定相似答案:C说明:两个平行四边形对应边不一定成比例,对应角也不一定相等,所以不一定相似,A错;两个菱形对应边成比例,但对应角不一定相等,所以不一定相似,B 错;两个等腰直角三角形,直角边与斜边的比都是1:,两直角边的比都是1:1,三个角的度数为45º,45º,90º,所以,它们的对应边成比例,对应角相等,即两个等腰直角三角形一定相似这个说法正确;两个矩形对应角相等,但对应边不一定成比例,所以D错;答案为C(3(如果一个矩形与它的一半矩形是相似形,那么大矩形与小矩形的相似比是( )(A(:1 B(:2 C(2:1 D(1:2答案:A说明:小矩形是大矩形的一半,可设原矩形的长为a,宽为b,则一半矩形的长为b,宽为a,因为原矩形和一半矩形相似,所以=,可化简为=,所以答案为A(4(如图中每个正方形均由边长为1的小正方形组成,则下列选项中的三角形(阴影部分)与?ABC相似的是( )(答案:A说明:A选项中的三角形与ΔABC的对应边的比都等于,其它选项中的三角形与ΔABC的对应边的比不相等,故选A(5(如图,点A、B、C、D、E、F、G、H、K都是7×8方格纸中的格点,为使ΔDEM与ΔABC相似,则点M应是F、G、H、K四点中的( )A(F B(G C(H D(K答案:C说明:由题图易知AB = 4,AC = 6,DE = 2,因为ΔDEM与ΔABC相似,所以=,所以DM = 3,M点应该是H点(6(如图,是李连做的一个风筝的支架,AB = 40cm,BP = 60cm,ΔABC与ΔAPQ的相似比是( )A(3:2 B(2:3 C(2:5 D(3:5答案:C说明:相似多边形的对应边的比等于它的相似比,即AB:AP = 40:(40+60) = 2:5,所以选C(解答题:1(小颖的妈妈为小颖缝制了一个长50cm,宽30cm的矩形坐垫,又在坐垫的周围缝上了一圈宽3cm的花边,妈妈说:“里外两个矩形是相似形(”小颖说:“这两个不是相似形(”你认为谁说得对,说明你的理由(解:小颖说得对,这两个矩形不相似(理由:里边矩形长为50cm,宽为30cm;外边矩形长为56cm,宽为36cm,而对应边50:56?30:36,即对应边的比不相等,两个矩形不是相似形,所以小颖说得对(2(在一块长和宽分别为3m和2m的矩形塑料板四周镶上一根木条,若在长边上镶的木条的宽为0.5m,则要使木条内缘围成的矩形与木条外缘围成的矩形相似,在宽边上镶的木条的宽应是多少,解答:设宽边上镶的木条宽xm,则有=,解之得x = 0.75故宽边上镶的木条宽0.75m(3(如图,在矩形ABCD中,AB = 2AD,线段EF = 10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH,矩形MFGN,使矩形MFGN与矩形ABCD相似,且AB 边对应MF边,令MN = x,当x为何值时,矩形EMNH的面积S有最大值,最大值是多少,解:因为矩形MFGN与矩形ABCD相似,所以=MN = x,所以MF = 2x,EM = EF?MF = 10?2x 又因为AB = 2AD,22 S = x(10?2x) = ?2x+10x = ?2(x?)+ 矩形EMNH所以当x =时,S有最大值为(。

中考数学专题练习:图形的相似 (含答案)

中考数学专题练习:图形的相似 (含答案)

中考数学专题练习:图形的相似(含答案)1.(·永州)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为( )A. 2B. 4C. 6D. 82.如图,在△ABC中,点D,E分别在边AB,AC上,且AEAB=ADAC=13,则S△ADE ∶S四边形BCED的值为( )A.1∶ 3 B.1∶3C.1∶8 D.1∶93.(·自贡)如图,在△ABC中,点D,E分别是AB,AC的中点,若△ADE的面积为4,则△ABC的面积为( )A.8 B.12 C.14 D.164.(·杭州)如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连接BE,记△ADE,△BCE的面积分别为S1,S2,( )A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S25.(·泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AGGF的值是( )A.43B.54C.65D.766.如图,D是△ABC内一点,E是△ABC外一点,∠EBC=∠DBA,∠ECB=∠DAB.求证:∠BDE=∠BAC.7.如图△ABC中,∠A=36°,AB=AC,BD是∠ABC的平分线.(1)求证:AD2=CD·AC;(2)若AC=a,求AD.8.如图,AD是△ABC的中线,E为AD上一点,射线CE交AB于点F.(1)若E为AD的中点,求AF BF;(2)若AEED=1k,求AFBF.参考答案1.B 2.C 3.D 4.D 5.C6.证明:∵∠EBC=∠DBA,∠ECB=∠DAB.∴△EBC∽△DBA.∴BEBD=BCBA,∴BEBC=BDBA.∵∠EBC=∠DBA,∴∠EBC+∠CBD=∠DBA+∠CBD,即∠EBD=∠CBA,∴△EBD∽△CBA,∴∠BDE=∠BAC.7.(1)证明:∵△ABC中,AB=AC,∠A=36°, ∴∠ABC=∠C=72°,∵BD是∠ABC的平分线,∴∠ABD=∠DBC=12∠ABC=36°,∴∠BDC=∠C=72°,∵∠DBC=∠A,∠C=∠C,∴△CBA∽△CDB,∴CDCB=CBCA,∴CB2=CD·AC又∵∠BDC=∠C,∠A=∠DBA,∴CB=BD=AD. ∴AD2=CD·AC;(2)解:∵AD2=CD·AC,CD=AC-AD.∴AD2=(AC-AD)·AC=AC2-AD·AC,∴(ADAC)2=1-ADAC.设ADAC=k,得到方程k2=1-k,∴k2+k-1=0,解得k=-1±52.∴k=5-12(负值已舍去),即ADAC=5-12,∵AC=a,∴AD=5-12a.8.解:(1)如解图,作DG∥AB交CF于点G, ∵AD是△ABC的中线,∴CD=12BC,即CDBC=12,∵DG∥AB,∴△CDG∽△CBF,∴DGBF=CDCB=12.∵E为AD的中点,∴AE=ED,∴AEED=1.∵DG∥AB,∴△EDG∽△EAF,∴AFDG=AEED=1.∵DGBF·AFDG=12×1.∴AFBF=12;(2)∵AD是△ABC的中线,∴CD=12 BC,∴CDBC=12.∵DG∥AB,∴△CDG∽△CBF,∴DGBF=CDCB=12.∵E为AD上的一点,且AEED=1k,又∵DG∥AB,∴△EDG∽△EAF,∴AFDG=AEED=1k,∵DGBF·AFDG=12·1k,∴AFBF=12k.。

人教版-数学-九年级下册--27.1 图形的相似(含答案)

人教版-数学-九年级下册--27.1 图形的相似(含答案)

27.1图形的相似(一)◆知识技能1.你认为下列属性选项中哪个才是相似图形的本质属性( )(A)大小不同(B)大小相同(C)形状相同(D)形状不同2.下列图形中:①放大镜下的图片;②幻灯片的底片与投影在屏幕上的图像;③天空中两朵白云的照片;④卫星上拍摄的长城照片与相机拍摄的长城照片.其中相似的组数有( )(A)4组 (B)3组 (C)2组 (D)1组3.下列说法正确的是( )(A)所有的等腰梯形都相似 (B)所有的平行四边形都相似(C)所有的圆都相似 (D)所有的等腰三角形都相似4.下列各组图形有可能不相似的是( )(A)各有一个角是50°的两个等腰三角形; (B)各有一个角是100°的两个等腰三角形(C)各有一个角是50°的两个直角三角形 (D)两个等腰直角三角形◆实践应用5.如图,请把下列各组图形是否相似的结论写在下面的括号内6.如图,在给出的点格内通过放大或缩小画出已给图形的相似形.图27.仔细辨认哟!观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a)、(b)、(c)形状相同的?答:。

答案:1.C2.C3.C 4.A5.①相似②不相似③不相似④相似⑤不相似⑥不相似6.略7.图形(4)、(8)与图形(a)形状相同;图形(6)与图形(b)形状相同;图形(5)与图形(c)形状相同27.1图形的相似(二)◆知识技能1.在比例尺为1:10000的地图上,相距3cm的A、B两地,它们的实际距离为( )(A)300㎝ (B)300m (C)300km (D)30km2.下列各组线段的长度度两两对应成比例的为( )(A)2cm,3cm,4cm,5cm (B)1.5cm,2.5cm,3cm,4.5cm(C)2.2cm,3.3cm,4.4cm,5.5cm (D)3cm,6cm,6cm,12cm3.相似多边形对应角 ,对应边 .4.如果△ABC ≌△A ’B ’C ’,它们的相似比为 .5.已知A 、B 两地的实际距离AB=5千米,画在地图上的距离A’B’=2㎝,则这张地图的比例尺是 .◆实践应用6.如图,四边形ABCD 与四边形EFGH 相似,求:α,β的度数和EH 的长度x .7.线段a=15厘米,b=20厘米,c=75毫米,d=0.1米,求b a 与cb 的值,并思考这四条线段会两两对应成比例吗?◆拓展探究8.如图,BC ∥DE ∥FG ,图中有几对三角形会相似?请你全部写出,并选择其中的一对,说说你判断的理由.B C A D F G E H 6cm 9cm 4cm 780 670 β α xcm 1030 AF G B C D E答案:1.B2.D3.相等,成比例4.15.1:2500006.α=1030,β=1120,x=cm 387.43,43.38,43====d c b a c b b a Θ. ∴a,b,c,d是成比例线段8.3对,理由略.。

图形的相似经典测试题含答案

图形的相似经典测试题含答案

【详解】
解: BCE BDA, CEB DEA
ADE∽B查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的
圆周角相等.
2.如果两个相似正五边形的边长比为 1:10,则它们的面积比为( )
A.1:2
B.1:5
C.1:100
D.1:10
【答案】C
∴∠DFG=∠A=90°,
在 Rt△ADG 和 Rt△FDG 中,
AD=DF DG=DG

∴Rt△ADG≌Rt△FDG(HL),故①正确;
设正方形 ABCD 的边长为 a,AG=FG=x,BG=a−x,
∵BE=EC,
∴EF=CE=BE= 1 a 2
∴GE= 1 a+x 2
由勾股定理得:EG2=BE2+BG2,
即:( 1 a+x)2=( 1 a)2+(a-x)2 解得:x= 1
2
2
3
∴BG=2AG,
故②正确; ∵BE=EF,
∴△BEF 是等腰三角形,易知△GED 不是等腰三角形,
∴△EBF 与△DEG 不相似,
故③错误; 连接 CF, ∵BE=CE,
∴BE= 1 BC, 2
∴S△BFC=2S△BEF. 故④错误, 综上可知正确的结论的是 2 个. 故选:B.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质.
9.如图,在 Rt△ABC 中,∠ACB=90°,CD⊥AB 于点 D,如果 AC=3,AB=6,那么 AD 的值为 ()
A. 3 2
B. 9 2
C. 3 3 2
【答案】A
【解析】
【分析】
【详解】

图形的相似全集汇编附答案

图形的相似全集汇编附答案

图形的相似全集汇编附答案一、选择题1.如图Rt ABC V 中,90ABC ∠=︒,4AB =,3BC =,D 为BC 上一动点,DE BC ⊥,当BD CE =时,BE 的长为( ).A .52B .125C .5158D .3418【答案】D【解析】【分析】利用90ABC ∠=︒,DE BC ⊥得到相似三角形,利用相似三角形的性质求解,,BD DE 再利用勾股定理计算即可.【详解】解:90,ABC ∠=︒Q DE BC ⊥,//,DE BA ∴,CED CAB ∴∆∆:,CE CD ED CA CB AB∴== 90,4,3,ABC AB BC ∠=︒==Q 5,AC ∴=设,BD x = Q BD CE =,,3,BD CE x CD x ∴===-3,534x x ED -∴== 3155,x x ∴=-15,8x ∴= 158,54ED ∴= 3,2ED ∴= Q DE BC ⊥,2222153341()().828BE DB DE ∴=+=+=故选D .【点睛】本题考查的是三角形相似的判定与性质,勾股定理的计算求解,掌握相关知识点是解题关键.2.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG=2,则线段AE 的长度为( )A .6B .8C .10D .12【答案】D【解析】 分析:根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF AB GF GD==2,结合FG=2可求出AF 、AG 的长度,由CG ∥AB 、AB=2CG 可得出CG 为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解. 详解:∵四边形ABCD 为正方形,∴AB=CD ,AB ∥CD ,∴∠ABF=∠GDF ,∠BAF=∠DGF ,∴△ABF ∽△GDF , ∴AF AB GF GD==2, ∴AF=2GF=4,∴AG=6. ∵CG ∥AB ,AB=2CG ,∴CG 为△EAB 的中位线,∴AE=2AG=12.故选D .点睛:本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF 的长度是解题的关键.3.如图所示,在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,作CD 的中垂线与CD 交于点E ,与BC 交于点F .若CF =x ,tanA =y ,则x 与y 之间满足( )A .2244x y +=B .2244x y -=C .2288x y -=D .2288x y+= 【答案】A【解析】【分析】由直角三角形斜边上的中线性质得出CD =12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE=tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE =,得出y =2FE ,求出y 2=24FE ,得出24y=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案.【详解】解:如图所示:∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,∴CD =12AB =AD =4, ∴∠A =∠ACD ,∵EF 垂直平分CD , ∴CE =12CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =GE CE=tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,∴∠ACD =∠FCE ,∴△CEG ∽△FEC , ∴GE CE =CE FE,∴y =2FE , ∴y 2=24FE , ∴24y=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4,∴24y=x 2﹣4, ∴24y+4=x 2, 故选:A .【点睛】本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.4.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ ,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽, ∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.5.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A 'B 'C ,使得△A 'B 'C 的边长是△ABC 的边长的2倍.设点B 的横坐标是﹣3,则点B '的横坐标是( )A.2 B.3 C.4 D.5【答案】B【解析】【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,再利用相似三角形的判定和性质计算即可.【详解】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴1'2 CD BCCE B C==,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.6.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD 217;④FB2=OF•DF.其中正确的是()A.①②④B.①③④C.②③④D.①③【答案】B【解析】【分析】①正确.只要证明EC=EA=BC,推出∠ACB=90°,再利用三角形中位线定理即可判断.②错误.想办法证明BF=2OF,推出S△BOC=3S△OCF即可判断.③正确.设BC=BE=EC=a,求出AC,BD即可判断.④正确.求出BF,OF,DF(用a表示),通过计算证明即可.【详解】解:∵四边形ABCD是平行四边形,∴CD∥AB,OD=OB,OA=OC,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC平分∠DCB,∴∠ECB=12∠DCB=60°,∴∠EBC=∠BCE=∠CEB=60°,∴△ECB是等边三角形,∴EB=BC,∵AB=2BC,∴EA=EB=EC,∴∠ACB=90°,∵OA=OC,EA=EB,∴OE∥BC,∴∠AOE=∠ACB=90°,∴EO⊥AC,故①正确,∵OE∥BC,∴△OEF∽△BCF,∴12 OE OFBC FB==,∴OF=13OB , ∴S △AOD =S △BOC =3S △OCF ,故②错误,设BC=BE=EC=a ,则AB=2a ,AC=3a ,OD=OB=223(72)a a +=a , ∴BD=7a ,∴AC :BD=3a :7a=21:7,故③正确,∵OF=13OB=76a , ∴BF=7a , ∴BF 2=79a 2,OF•DF=7a•7779a a ⎛⎫+= ⎪ ⎪⎝⎭ a 2, ∴BF 2=OF•DF ,故④正确,故选:B .【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.7.如图,点A 在双曲线y ═k x (x >0)上,过点A 作AB ⊥x 轴,垂足为点B ,分别以点O 和点A 为圆心,大于12OA 的长为半径作弧,两弧相交于D ,E 两点,作直线DE 交x 轴于点C ,交y 轴于点F (0,2),连接AC .若AC=1,则k 的值为( )A .2B .3225C 43D 252+【答案】B【解析】 分析:如图,设OA 交CF 于K .利用面积法求出OA 的长,再利用相似三角形的性质求出AB 、OB 即可解决问题;详解:如图,设OA 交CF 于K .由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,22=5OF OC+∴255,∴OA=455,由△FOC∽△OBA,可得OF OC CFOB AB OA==,∴21545 OB AB==,∴OB=85,AB=45,∴A(85,45),∴k=32 25.故选B.点睛:本题考查作图-复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A2B3C.22D3【答案】A 【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE=22AD,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=2AE=2.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.9.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D【解析】【分析】 如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=22为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F ,则△BEO ∽△OFA , ∴BE OE OF AF=, 设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:22221OE EB a a +=+22224OF AF b b +=+ ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++222214()24b b b b ++22 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.10.如图,O是平行四边形ABCD的对角线交点,E为AB中点,DE交AC于点F,若平行四边形ABCD的面积为8,则DOE的面积是()A.2B.32C.1D.94【答案】C【解析】【分析】由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.【详解】解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,∴EM:AN=BE:AB,∵E为AB中点,∴BE=12 AB,∴EM=12 AN,∵平行四边形ABCD的面积为8,∴2×12×AN×BD=8,∴AN×BD=8∴S△OED=12×OD×EM=12×12BD×12AN=18AN×BD=1.故选:C.【点睛】本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.11.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A.AD AEBD EC=B.AF DFAE BE=C.AE AFEC FE=D.DE AFBC FE=【答案】D【解析】【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴AD AEBD EC=,故A正确;∵DF//BE,∴△ADF∽△ABF, ∴AF DFAE BE=,故B正确;∵DF//BE,∴AD AFBD FE=,∵AD AEBD EC=,∴AE AFEC FE=,故C正确;∵DE//BC,∴△ADE∽△ABC,∴DE ADBC AB=,∵DF//BE,∴AF ADAE AB=,∴DE AFBC AE=,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.12.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm 【答案】B【解析】【分析】【详解】由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CHAC BC AB =,即AC BC3412CH CH AB 55⋅⨯=⇒==.∴如图,点E (3,125),F (7,0).设直线EF 的解析式为y kx b =+,则123k b {507k b =+=+,解得:3 k5 {21 b5=-=.∴直线EF的解析式为321y x55=-+.∴当x5=时,()3216PD y5 1.2cm555==-⨯+==.故选B.13.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A.35B.43C.53D.34【答案】C【解析】【分析】首先延长BC,做FN⊥BC,构造直角三角形,利用三角形相似的判定,得出Rt△FNE∽Rt△ECD,再利用相似比得出12.52NE CD==,运用正方形性质,得出△CNF是等腰直角三角形,从而求出CE.【详解】解:过F作BC的垂线,交BC延长线于N点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN,∴Rt△FNE∽Rt△ECD,∵DE的中点G,EG绕E顺时针旋转90°得EF,∴两三角形相似比为1:2,∴可以得到CE=2NF,12.52NE CD==∵AC平分正方形直角,∴∠NFC=45°,∴△CNF是等腰直角三角形,∴CN=NF,∴2255.3323CE NE ==⨯= 故选C .【点睛】 此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.14.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D . 【答案】B【解析】【分析】 根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选:B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.15.如图,将图形用放大镜放大,应该属于( ).A .平移变换B .相似变换C .旋转变换D .对称变换【答案】B【解析】【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.16.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD3【答案】D【解析】【分析】由AE=12AD=12BC,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【详解】解:A、∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFFC,∵AE=12AD=12BC,∴AFFC=12,故A正确,不符合题意;B、过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正确,不符合题意;C、图中与△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5个,故C正确,不符合题意.D、设AD=a,AB=b由△BAE∽△ADC,有ba=2a.∵tan∠CAD=CDAD=ba=2,故D错误,符合题意.故选:D.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.17.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=48 3x-+.故选C.18.如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF 的长为( )A .2B .3C .4D .5【答案】B【解析】 ∵四边形ABCD 是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB ,∠AEG=∠EFB ,∴△AEG ∽△BFE , ∴AE AG BF BE=, 又∵AE=BE , ∴AE 2=AG•BF=2,∴AE=2(舍负),∴GF 2=GE 2+EF 2=AG 2+AE 2+BE 2+BF 2=1+2+2+4=9,∴GF 的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG ∽△BFE .19.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4【答案】D【解析】【分析】 根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4故答案为D .【点睛】 本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.20.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【答案】B【解析】 【分析】 过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE== G Q 为BE 的中点,1,2FE GE BE ∴== ∴1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.。

27.1 图形的相似 答案详解

27.1 图形的相似 答案详解

27.1 图形的相似答案详解解得x=2,所以面积为4×2=8(cm 2).故选C.6.解:因为四边形ABCD 与四边形A ′B ′C ′D ′相似, 所以69118==y x , ∠C=∠α,∠D=∠D ′=140°,所以x=12,y=233, ∠α=∠C=360°-∠A-∠B-∠D=360°-62°-75°-140°=83°. 课时层级训练基础巩固练【测控导航表】 知识点题号 相似图形1,8 成比例线段3,4,7,9 相似多边形的性质及判定 2,5,61.B 解析:①②④选项形状相同,但大小不同,符合相似形的定义,故不符合题意;③选项形状不相同,不符合相似形的定义,故符合题意.故不是相似图形的有1组.故选B.2.A 解析:因为两个五边形相似,其中一个五边形的最长边为20,最短边为4,另一个五边形的最短边为3,设它的最长边为x, 所以x2034 , 解得x=15.故选A.3.B 解析:因为比例尺是1∶500,长方形的土地长5厘米、宽4 厘米 ,所以实际长为5×500=2 500厘米=25米,宽为4×500=2 000厘米=20米,所以实际面积为25×20=500平方米.故选B.4.C 解析:因为1∶3≠2∶4,故选项A 中的四条线段不成比例,因为4∶6≠5∶10,故选项B 中的四条线段不成比例,因为2∶4=3∶6,故选项C 中的四条线段成比例,因为2∶4≠6∶8,故选项D 中的四条线段不成比例,故选C.5.C 解析:由题意得,B 选项中三角形对应角相等,对应边成比例,两三角形相似;A,D 选项中四条边均相等,所以对应边成比例,又角也相等,所以相似;而C 选项中矩形四个角相等,但对应边不一定成比例,所以C 中矩形不是相似多边形.故选C.6.67° 解析:因为四边形ABCD 与四边形EFGH 相似,所以∠D=∠H=55°,在四边形ABCD 中,∠C=360°-138°-100°-55°=67°.所以∠G=∠C=67°.7.25 解析:设脚印的实际长度为x cm, 根据题意得5.151.35 x , 解得x=25.所以脚印的实际长度为25 cm.8.解:由相似图形的定义可知:(1)与(11),(2)与(9),(3)与(10),(4)与(12),(5)与(8),(6)与(7)是相似图形.连线如图所示:9.解:这样的比例式不唯一.设另一个数为x,当1×x=2×2时,x=22; 此时比例式为21=x2. 当1×2=x ×2时,x=2;此时比例式为21=2x.当1×2=x ×2时,x=22; 此时比例式为21=2x.所以添加的数可以是22,2,22.所以比例式不唯一.能力提升练10.解:在矩形ABCD 中,AB=6 cm,BC=8 cm,所以CD=AB=6 cm,AD=BC=8 cm,因为AE=DF=4 cm,所以CF=CD-DF=6-4=2 cm,①当CF 与AE 是对应边时,矩形CFNM 与矩形AEFD 相似, 所以AD CMAE CF=, 即842CM=,解得CM=4,所以时间t=4÷2=2 s;②CF 与AD 是对应边时,矩形CFNM 与矩形ADFE 相似, 所以AECM AD CF =, 即482CM =, 解得CM=1,所以t=1÷2=21 s, 综上所述,当M,N 运动时间为21 s 或2 s 时,矩形CFNM 与矩形AEFD 相似.。

图形的相似练习题及答案

图形的相似练习题及答案

27.1图形的相似练习题及答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2 图形的相似一.选择题:1、下列各组数中,成比例的是( )A .-7,-5,14,5B .-6,-8,3,4C .3,5,9,12D .2,3,6,122、如果x:(x+y)=3:5,那么x:y =( )A. B. C. D.3、如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A 、21B 、31 C 、32 D 、414、下列说法中,错误的是( )(A )两个全等三角形一定是相似形 (B )两个等腰三角形一定相似(C )两个等边三角形一定相似 (D )两个等腰直角三角形一定相似5、如图,RtΔABC 中,∠C=90°,D 是AC 边上一点,AB =5,AC =4,若ΔABC∽ΔBDC ,则CD = .A .2B .32C .43D .94 C B D(第5题)238332583二、填空题6、已知a =4,b =9,c 是a b 、的比例中项,则c = .7、如图,要使ΔABC∽ΔACD,需补充的条件是 .(只要写出一种)8、如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为9、一公园占地面积约为8000002m ,若按比例尺1∶2000缩小后,其面积约为 2m . 10、如图,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点P 作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.三、解答题 11、如图18—95,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm .求梯子的长.(8分)C (第10题) AD (第7题)12、如图,已知AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD=159cm,求CO和DO.(8分)4513、如图,在正方形网格上有111C B A ∆∽222A C B ∆,这两个三角形相似吗如果相似,求出222111A C B A C B ∆∆和的面积比.(15分)14、已知:如图,在△ABC 中,点D 、E 、F 分别在AC 、AB 、BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE、△EFB、△ACB 的周长之比和面积之比.(10分)615、如图所示,梯形ABCD 中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P 的位置,使得以P,A,D 为顶点的三角形与以P,B,C 为顶点的三角形相似.参考答案一、选择题:二、填空题:6、±6;7、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;8、6m ;9、;10、3三、解答题:11.梯子长为440cm12.cm DO cm CO 65.55,35.103==(提示:设xcm DO =,则()cm x CO -=159,因为AB BD AB AC ⊥⊥,,︒=∠=∠90B A ,BOD AOC ∠=∠,所以△AOC∽△BDO,所以DOCO BO AO =即x x -=1594278,所以65.55=x ) 13、相似,相似比为(提示:,且222111135C A B C A B ∠=︒=∠)14、周长之比:ADE ∆的周长:EFB ∆的周长:ACB ∆的周长5:2:3=;25:4:9::=∆∆∆ACB EFB AD E S S S .设x EF =,则x AD x EF -==3,.所以5:2:3::=AC EF AD .因为△ADE∽△EFB∽△ACB,所以可求得周长比等于相似比,面积比等于相似比的平方.P A B D C 1:4,1:2222111=∆∆C B A C B A S S 222112211==B A B A C A C A15、(1)若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,∴AD AP BP BC=,∴273APAP=-,∴AP2-7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴AP AD BC BP=,又∵∠A=∠B= 90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.∴AP ADBP BC=,∴273APAP=-, ∴AP=145.检验:当AP=145时,由BP=215,AD=2,BC=3,∴AP AD BP BC=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A 1、145、6 处.7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.1 图形的相似
一.选择题:
1、下列各组数中,成比例的是( )
A .-7,-5,14,5
B .-6,-8,3,4
C .3,5,9,12
D .2,3,6,12
2、如果x:(x+y)=3:5,那么x:y =( )
A. B. C. D.
3、如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )
A 、21
B 、31
C 、32
D 、4
1
4、下列说法中,错误的是( )
(A )两个全等三角形一定是相似形 (B )两个等腰三角形一定相似 (C )两个等边三角形一定相似 (D )两个等腰直角三角形一定相似
5、如图,RtΔABC 中,∠C =90°,D 是AC 边上一点,AB =5,AC =4,若ΔABC ∽ΔBDC , 则CD = . A .2 B .32 C .43 D .9
4
二、填空题
6、已知a =4,b =9,c 是a b 、的比例中项,则c = .
7、如图,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)
8、如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为
C
B
A
D
(第5题)
A
B
C
D (第7题)
2
3833258
9、一公园占地面积约为8000002m ,若按比例尺1∶2000缩小后,其面积约为 2m . 10、如图,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点P 作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.
三、解答题
11、如图18—95,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm .求梯子的长.(8分)
12、如图,已知AC ⊥AB ,BD ⊥AB ,AO =78cm ,BO =42cm ,CD =159cm ,求CO 和DO .(8分)
C
B
A
P
(第10题)
13、如图,在正方形网格上有111C B A ∆∽222A C B ∆,这两个三角形相似吗?如果相似,求
出222111A C B A C B ∆∆和的面积比.(15分)
14、已知:如图,在△ABC 中,点D 、E 、F 分别在AC 、AB 、BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE 、△EFB 、△ACB 的周长之比和面积之比.(10分)
15、如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.
P A B D
C
参考答案
一、选择题:1.B 2.D 3.A 4.D 5.D 二、填空题:
6、±6;
7、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;
8、6m ;
9、0.2;10、3 三、解答题: 11.梯子长为440cm
12.cm DO cm CO 65.55,35.103==(提示:设xcm DO =,则()cm x CO -=159,因为AB BD AB AC ⊥⊥,,
︒=∠=∠90B A ,BOD AOC ∠=∠,所以△AOC ∽△BDO ,所以
DO
CO
BO AO =即
x x
-=1594278,所以
65.55=x )
13、相似,相似比为
(提示:,且222111135C A B C A B ∠=︒=∠)
14、周长之比:ADE ∆的周长:EFB ∆的周长:ACB ∆的周长5:2:3=;
25
:4:9::=∆∆∆ACB EFB ADE S S S .设
x EF =,则
x
AD x EF -==3,.所以
5:2:3::=AC EF AD .因为△ADE ∽△EFB ∽△ACB ,所以可求得周长比等于相似比,
面积比等于相似比的平方.
15、(1)若点A,P,D 分别与点B,C,P 对应,即△APD ∽△BCP,

AD AP
BP BC =
, ∴273
AP AP =-, ∴AP 2-7AP+6=0, ∴AP=1或AP=6,
检测:当AP=1时,由BC=3,AD=2,BP=6, ∴
AP AD
BC BP
=, 又∵∠A=∠B= 90°,∴△APD ∽△BCP. 当AP=6时,由BC=3,AD=2,BP=1, 又∵∠A=∠B=90°, ∴△APD ∽△BCP.
(2)若点A,P,D 分别与点B,P,C 对应,即△APD ∽△BPC.
1:4,1:22
22111=∆∆C B A C B A S S
22
2112211==B A B A C A C
A
∴AP AD
BP BC
=,∴
2
73
AP
AP
=
-
, ∴AP=
14
5
.
检验:当AP=14
5
时,由BP=
21
5
,AD=2,BC=3,
∴AP AD BP BC
=,
又∵∠A=∠B=90°,∴△APD∽△BPC.
因此,点P的位置有三处,即在线段AB距离点A 1、14
5
、6 处.。

相关文档
最新文档